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Sensor arrays

• Multiple co-located sensors within few
wavelengths sample a wave-field in time and
space.

• Scalar or vector wave-fields are sampled by
proper sensors (electro-magnetic, acoustic
pressure and velocity, strain…).

• Antenna is synthetically generated by linearly
combining element outputs in reception or
feeding properly convolved signal versions to
sensors in transmission.

• Massively parallel hardware architectures.
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Sensor array processing

• Time-synchronized multi-sensor systems (arrays)
are widely used today in remote sensing,
biomedical, telecommunications and multimedia
applications, for their capabilities of exploiting the
wavefield properties for the purposes of localization
of sources and copy of (re-)radiated signals.

• Signals and environmental parameters are
estimated by processing the received multi-channel
data.

• The array processing theory encompasses a broad
range of specific applications (radar, SAR/ISAR,
sonar, MIMO…) into a compact framework.
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Main advantages of sensor 
arrays

• Elimination or great reduction of mechanical sensor movements
(rotating antennas, near-field microphones, etc…).

• Potentially smaller environmental impact (conformal arrays).

• Electronic compensation of platform movements (yaw, pitch and
roll).

• Multiple functions sharing the same sensors (e.g. search +
tracking + radio-communications).

• Simultaneous management of multiple threads. This is
impossible to do consistently with single sensor systems.

• Higher transmitting power and antenna gain available.

• Greater empirical life-span, fault-tolerance and upgradeability of
sensor arrays than conventional systems.

• Hardware modularity (lower costs due to mass production of key
components even for few systems).
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Perceived array disadvantages

• Antenna cost more than proportional to element number.

• Computational cost roughly proportional to the cube of
the number of sensors and the number of narrowband
channels.

• Higher weight and power requirements.

• Reduced gain for the same antenna size due to inter-
sensor gaps and near-fixed orientation.

• Ambiguity problems especially at high frequencies
(circuitry size obstacles element size reduction w.r.t. the
wavelength).

• Superficially attractive competing solutions in
communications (pico-cells, sensor networks).

• Difficult performance prediction in several environments.
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A bit of history…

• Most complex living organisms have passive
arrays with two or more sensors, like ears,
sonars and tactile systems for hunting, food
search and risk avoiding.

• At early stages of communications and remote
sensing development, sensor arrays were not
endorsed, because of technical and scientific
knowledge limitations.

• Only pressing of war and the introduction of new
services forced switching to arrays.

• Today single-sensor systems are confined to
low-performance equipment.
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1940-1945: Early ideas

• Array processing techniques date 
back to the W.W. II, mainly in 
Germany (MAMMUT and 
WASSERMANN ground radars, 
hydrophone arrays on 
battleships, cruisers and 
submarines)

• Evolution of earlier two-sensor 
interferometers with the 
introduction of the electronic 
steering (beamforming) of many 
elementary sensorsPeak power 100Peak power 100Peak power 100Peak power 100----200 KW, 125 MHz, pulse 200 KW, 125 MHz, pulse 200 KW, 125 MHz, pulse 200 KW, 125 MHz, pulse 

width 3width 3width 3width 3 µµµµs, PRF 500 Hz, range > 240 Km, , PRF 500 Hz, range > 240 Km, , PRF 500 Hz, range > 240 Km, , PRF 500 Hz, range > 240 Km, 
accuracy: 0.25accuracy: 0.25accuracy: 0.25accuracy: 0.25°°°° (v) for WASSERMANN, 0.5(v) for WASSERMANN, 0.5(v) for WASSERMANN, 0.5(v) for WASSERMANN, 0.5°°°°
(h) for MAMMUT(h) for MAMMUT(h) for MAMMUT(h) for MAMMUT
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1945-1968: Fourier-based array 
processing

• Phase scanned microwave radar 

• Monopulse radar for tracking

• Digital beamforming (sonar)

• Early seismic imaging and migration algorithms

• Synthetic Aperture Radar (SAR)

• AR modeling of uniform linear arrays
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1969-1972: Adaptive beamforming 

• Linear combination of array outputs, optimized to
recover signals of interest and cancel out interferences
(passive sonar, radar)

Nulled out interferences

Y

O
ARRAY

1st source of interest

2nd source of interest

Adapted array beam-

patterns versus angle of

incidence of wavefronts

X

Beam

No. 1

Beam No. 2
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1972-1977: 3-D applications

• Space-time array processing (STAP) for radar

• Magnetic resonance Fourier-based imaging

• Multi-function phased array radar

• Wave-based seismic processing

• Pisarenko harmonic decomposition: first 
consistent exploitation of the array signal model!
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1977-1980: MUSIC and 
subspace techniques

• Integrated localization and adaptive beamforming of 
multiple sources by a subspace technique

• Consistent, but slightly suboptimal location estimates

• Initially applied to towed passive sonar and ESM systems
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1980-1985: Theoretical 
advancements

• ML techniques for localization

• Extensive application of MLE to underwater acoustics and 
seismic prospecting

• Theoretical justification of signal subspace algorithms as 
approximate MLE.

• Fast and accurate rooting algorithms (ROOT MUSIC, MIN-
NORM, ESPRIT) for direction finding
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1985-90: Extensions

• Asymptotically efficient subspace techniques (WSF
and MODE)

• Extensive performance analysis of algorithms

• Information Theoretic techniques for model
selection (AIC, MDL)

• HOS-based signal subspace identification (blind
signal separation)

• Processing of coherent multipath:
– Spatial smoothing

– Toeplitz approximation

– Coherent wideband focusing

– Adaptive wideband steered beamforming
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1990-1996: Rethinking

• Sensitivity analysis of algorithms to modeling errors
gave badly surprising results.

• Optimal subspace algorithms replace MLE in critical
applications

• Quasi-deterministic signal modeling (instrumental
variable fitting)

• Wide-band array interpolation and beamspace
processing

• Narrow-band matched-field processing for
reverberant fields (underwater acoustics,
ultrasound, seismics)

• Linearly constrained adaptive beamforming for
robust source tracking and signal copy
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1997-2001: Network integration

• Smart-antennas (cellular base stations, satellites)

• Space Division Multiple Access

• Space-time coding

• Adaptive (2nd generation) multi-function, multi-
static radar

• Seismic tomography

• MMIC active T/R modules for microwaves

• Array proposals for multimedia applications
(audio recording and immersive playback,
teleconference, acoustic surveillance)
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2001-2005: Robust array 
processing

• Spread source modeling

• Isotropic and redundant arrays

• Robust Capon-type beamforming

• Robust wide-band parametric localization 
(WAVES)

• Robust ML wide-band steered beamforming

• Robust wide-band matched-field array 
processing
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2005-Today

• Attempts to improve finite sample performance 
with random matrix statistical tools.

• MIMO systems under channel state uncertainties.

• Large scale (suboptimal) covariance estimation
for audio.

• Transfer of L1 based compressed sensing
techniques to array processing/spectral
estimation.

– But all high resolution parametric array estimators do 
compressed sensing in a rigorous way.
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The future

• More rigorous array response modeling, especially for
(ultra-) wide-band systems.

• Overcoming basic inadequacies of classical wide-
band approaches:

– limitations of the binning approach;

– limitations of time delay approaches for multiple UWB source
estimation.

– Severe inconsistency of estimators w.r.t. the physical model.

• Innovative beamspace processing (e.g., Laguerre-
Gauss) for UWB arrays and SAR/ISAR.

• Understanding propagation uncertainties and spatial
source distribution effects on MIMO systems.
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Some array-based products
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Array problem setting

Goals: 

•signal source localization in space and frequency

•optimal reconstruction of (re-)radiated signals

•array response calibration

•wave-field measurements

Available information: 

•wave-field physical mode

•array geometry (spatial sampling)

•sensor characteristics

•probabilistic signal model
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Review of narrowband array 
classical theory

• Static beamforming

• Adaptive beamforming

• Parametric source localization

• Array geometries

• Mutual coupling effects

• Modal interpolation

• Calibration

• Only state of the art techniques are reviewed

• Blind signal recovery not considered here
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PROPAGATION AND ARRAY 
MODELING BACKGROUND

Part I
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Example: EM wave propagation 
in homogeneous, isotropic and 

linear medium

Far-field source

X

Y

0

rk

Array sensors

Near-field sourceS(f, k  )
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Waves impinging on a N sensor 
array
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Starting assumptions

• Linear sensors and propagating medium (linear
superposition of source signals) to ensure
superposition of effects.

• Convolutive, discrete time (wide-band) model

• Additive noise, independent from source signals.

• Known array response for any source location of
interest p (not sufficient for MLE!)

• No spatial aliasing (e.g., ambiguity of location)
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Point source approximation

• A point source is a source whose dimensions
cannot be resolved from array data:

– Sources located at infinity (plane wave approximation).

– Small sources in near field (spherical wave).

– Represented by a Dirac pulse in spatial coordinates.

• Point source assumption allows consistent
localization by arrays with sufficient number of
sensors.

• Extended sources often modeled by (stochastic)
clusters of point sources emitting inter-correlated
signals.
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Standard frequency domain array 
model for point sources
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Narrow-band transfer function 
approximation

• Approximation of the generic array sensor 
response around the frequency of interest.
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Narrow-band array model 
approximations

• Narrow-band 
phasor model

– Signal envelopes 
transferred as 
pure sinusoids 
with frequency f0 .

• Time (group) 
delay model

– Delayed signal 
envelopes 
transferred as 
pure sinusoids 
with frequency f0 
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Narrow-band discrete time 
signal model

• The bandwidth of the filtered array signal, centred at f, is much smaller 

than the reciprocal of the sum of the lengths of the impulse response and 

of the source correlation

– Snapshots can be considered as mutually independent (i.e., the spectra of sampled

signals and noise are essentially constant within the filter pass-band)

• A wide-band, stationary signal can be decomposed into approximately 

independent narrow-band components by a critically sub-sampled filter 

bank or a block DFT processing
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Basic array research topics

• Flexible propagation and array response models
for theoretical analysis and simulation purposes.

• Field calibration of arrays based on experimental
measurements and/or parametric models (modal
interpolation).

• Beampattern (spatial filter) synthesis for optimal
transmission and reception of signals

• Model identifiability condition to prevent aliasing
and false source detection;

• Source location and signal estimation by
calibrated or uncalibrated arrays.
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Propagation and array 
response models

• Establish links between wave propagation
equations and steering vector.

• Integral models based on voltage (line integral of
a vector field) and current (integral flux through a
surface patch) concepts.

• Integral model have very low sensitivity w.r.t. field
perturbations, maybe due to imperfect
propagation modeling.

• Hyperbolic wave equation solutions luckily not
very sensitive to boundary conditions.
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Electric array multiport 
modeling example

• Array element discretization (integral equations based on
vector potential), e.g., thin wire antennas, subdivided into
pieces of about 0.1 λ.

• Linear medium and electrical loads.

• External electrical field E(f,r;p) given by a wavefront (linear-
shaped or not) radiated at frequency f from the position
characterized by the generic coordinate vector p.

• Compact sub-elements w.r.t. wavelength, subdivided into two
disjoint subsets:

A. N antenna sub-elements connected by gaps to input/output waveguides
(active array) , located around positions ra(n) with port currents Ia(n,p) and
voltages Va(n,p), for n=1,2,..,N.

B. M-N sub-elements not connected to waveguides (passive co-array)
located around positions rb(n,p) with currents Ib(n,p), for n=N+1,2,..,M.
They can also model nearby scatterers.
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Multiport array model

• Wavefront excited array seen as a multiport with 
external voltage sources (generalized Thevenin 
equivalence).
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Passive
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Active (input-
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Source position 
dependent field 
induced voltages

Passive, not 

excited multiport
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Impedance type integral model 
for thin wire antenna array

• Symbolic solution similar to the one obtained by 
the loop method for lumped circuits.
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Network solution

• Off diagonal terms in admittance matrix characterize mutual coupling
between sensors

• Load-dependent mutual coupling.

• No general load optimization procedure unlike the single sensor case.

• Interference by sub-element and scatterer reflections (constructive or
destructive).

• For thin wires, impedance matrix blocks are nearly independent from
the wavefront arrival angle (DOA).
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Steering vector calculation 
from antenna electrical model

• Loads are connected to array outputs and ADCs
sense array port voltages (or currents).

• The array steering vector for position p is
obtained for zero transmission excitation.
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Common approximations

• Sensors compact w.r.t. wavelength.

• Block shaped impedance and admittance
matrices (e.g., decoupled wires).

• Response proportional to a projection of the
electric field at the sensor gaps (array ports).
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Baseline far field steering 
vector

• Each sensor has a directivity pattern given by 
gn(f,p) and is located at position rn .

• Planar impinging wave-front.

• Given field polarization.

• In many cases the steering vector is normalized.
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Mutual coupling reflection-
based model

• Mutual coupling can be interpreted as the sum of
multiple reflections between sensors.

• Linear transformation of the baseline steering
vector by a finite coupling matrix.
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Invariances of ideal mutual 
coupling matrices

• The mutual coupling (MC) matrix of a long, linear, 
equi-spaced array tends to be Toeplitz (equal 
elements along diagonals) for a translational 
invariance argument:

– the neighborhood of all identical elements is the same, but 
translated along a line.

• Toeplitz MC matrix can be enforced on a whole 
short linear array by extending it with passive 
(dummy), impedance-matched elements.

• Circular array MC matrix ideally is circulant:
– the neighborhood of all elements is the same, but rotated in 

angle.
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Mutual coupling remarks

• The above model does not consider the effect of 
nearby scattering and  so essentially refers to 
short/small antenna arrays.

• Mutual coupling matrix mostly depends on the 
direction (sensors always are somewhat 
directive).

• Often it is preferable to consider the coupled 
array as an unknown one, calibrate and 
interpolate its response with a general model 
(e.g., circular harmonics, polynomials), rather 
than enforcing a particular steering vector 
structure.
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Diversity factors in arrays

• The effectiveness of array design depends on the
spatial diversity of sensor responses w.r.t. arrival
angles.

• The directivity gain terms create an angular partition of
the space (beam space diversity):

– highly directive, oriented elements reduce the effective number of
sensors (i.e., number of resolvable sources) active in some
directions, but increase the overall array gain.

– increasing sensor directivity helps in reducing array size and
mutual coupling.

• The phase (delay) components depend on the inter-
sensor separation (element space diversity):

– a large separation increases directional and range resolution
capabilities of the array at expense of ambiguity risks and
sensitivity to sensor position and tolerances.

– a small separation creates a redundant wave-field sampling (i.e.,
smaller spatial resolution) and increases mutual coupling.
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Polarized plane waves

• Polarized incident plane wavefront, orthogonally 
decomposed on the plane perpendicular to the 
propagation vector -k.

• Linear composition of two plane waves.
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Steering vector of polarized 
waves

• Array output is the linear combination of the 
partial outputs for excitations along i and j.

• Linear combination of non-normalized partial 
steering vectors.
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Vector arrays

• Most wave-fields are characterized by up to three
independent components (e.g., vector potentials).

• Two or more sensors essentially sensitive to a single
polarization or field component and located nearly at
the same position form a vector sensor.

• More information about the source signal, but limited
space diversity addition: most sensors are not excited
by common wavefronts.

• In sonar and audio applications up to three orthogonal
velocity directional sensors plus one pressure (scalar)
sensor are placed at each sampling site.

• Unequal sensor sensitivities and internal noise levels
complicate processing.
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Array manifold ambiguity

• The array steering vector describes a manifold (i.e., an
hypersurface) w.r.t. parameters in p at constant frequency.

• Ambiguity or spatial aliasing arises when a steering vector
at direction p is linearly dependent from another set of
steering vectors at different directions.

• A K-fold ambiguity arises when K steering vectors, referred
to different angles, become linearly dependent, but all
combinations of dimension K-1 are linearly independent.

• In the presence of ambiguity, infinite scenarios exist that
cannot be distinguished by any data-based processing
technique, leading to false, systematic source detections.
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Correlation coefficient
and simple ambiguity

• Simple ambiguity can be detected by a unit
magnitude correlation coefficient (CC) or grating
lobe among two different steering vectors, whose
plot is a kind of beampattern.
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Ambiguity sources

• Basic spatial ambiguity is tied to:
– unavoidable non-uniqueness of sensor relative phases within the FoV

(similar to digital signal aliasing);

– same directionality and mechanical orientation of array sensors;

– many sensors interspaced by much more than half wavelength.

– sampling lattices with few, distant sensors.

• To avoid low order ambiguities:
– ensure sensor directivity pattern and/or orientation diversity (non-

identical sensors, squinted directional antennas, mutual coupling);

– insert many sensor interspaced by less than half wavelength;

– avoid large gaps in sampling lattices (several wavelengths wide);

– avoid close, similar sensors;

– prefer irregular lattices.

• High order ambiguity is tied to and measurable by the 
following modal array decomposition in the directional 
parameter space.
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Modal decomposition of the 
array response

• The array manifold is approximated by a matrix
combination (expansion) of linearly independent basis
functions of the location coordinates p at constant
frequency.

• The numerical rank of the mixing matrix A is the
maximum number of independent steering vectors
and of surely detectable sources over the entire field
of view (FoV).

• This number is smaller for smaller angular sectors!
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Some modal decompositions

• Angular harmonic decomposition: sinusoidal
basis functions over azimuth fit each sensor
response.

• Chebychev decomposition: stretched Chebychev
angular polynomial basis over a sector.

• Spherical harmonic decomposition for 3-D arrays
(little computational gains…).

• Local (prolate-like) decomposition on the
orthogonal basis of actual steering vectors over
little angular sectors. Requires SVD concepts
(see later).
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Angular harmonic expansion of 
the delay factor

• Azimuthal harmonic expansion of the delay factor in 
2-D is expressed by Bessel J functions of the first 
kind.

• Expansion coefficients quickly converging to zero for 
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Bessel-J function table

• The Bessel functions of the first kind are found 
also in optics, waveguides and disk antennas.
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Spherical harmonic 
decomposition

• Spherical harmonics 
– Solutions of the Laplace equation in spherical coordinates;

– Orthogonal basis for 3-D modal decomposition of 3-D 
arrays.
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Remarks on orthogonal 
expansion

• For algorithmic purposes, it is better to expand 
the normalized array steering vector, at the likely 
expense of the expansion convergence rate due 
to non-linear distortion of the angular response.

• Only vector direction matters for ambiguity.

• Phase/delay centering of the expansion is a 
critical art to reduce the expansion order and get 
low errors.

• Basis for a virtual array design independent of 
physical constraints.
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Notes on orthogonal 
expansions (2)

• Frequency-dependent convergence rate (faster
at low frequencies, slower at high frequencies).

• Strong dependence on sensor directivity.

• Non parsimonious for sparse arrays.

• Divergence and or large fitting errors outside the
calibration/definition angular sector for a bad
basis function selection.

• 3-D array manifold expansions not convenient
from any point of view.
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Notes on orthogonal 
expansions (3)

• Harmonic expansion reduces a general array to a 
transformed harmonic one, fine for algorithmic 
purposes (e.g., root-finding harmonic retrieval).

• Possible improvements of low SNR thresholds 
and high SNR robustness for complex reasons

• Expansions reduce random calibration errors by 
relieving measurement noise (LS or ML fitting)!
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Near field array behavior

• The definition of near/far field is not very clear for 
arrays (sensor and array sizes differ by much).

• Conventionally the typical array antenna size D in 
formulas is made equal to the array (maximum) 
diameter.

• In thin wire / patch antenna simulators only far field 
components of the vector potential are retained!
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Near-field source models

• The array model with coupling is valid even for a
distance of few wavelengths between the target
and the sensors.

• Far field (point source) steering vector model is
quickly approximated by increasing the source
distance.

• For really near field sources (<0.1 λ), the target
itself must be inserted in the array electric model
as some additional, coupled and electrically
feeded elements.

• Steering vector and signal models remain
essentially the same.
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Basic commercial array types

• Passive Electronically Scanned Antenna (PESA):
– Sensor outputs combined by a passive, distributed or lumped network in 

Tx and/or Rx;

– MISO or MIMO models: sequential, programmable generation of 
synthetic beams.

– Signal amplification and demodulation only at beam outputs.

• Active Electronically Scanned Antenna (AESA):
– Sensors combined by an active network made containing amplifiers and 

other active elements (filters, summation nodes);

– Enables the use of T/R modules including amplifiers and matched 
interfaces behind each antenna patch;

– Signal demodulation at beam outputs. 

• Parallel array receiver/transmitter:
– one (digital) receiver/amplifier for each sensor;

– sensor outputs digitized and recorded in parallel batches;

– digital communication network.

– real time and batch processing possible even for multiple tasks;

– high power requirements for multiple receivers.
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Performance notes

• PESA, AESA are often trademarks with little 
influence on intrinsic performance. 

• Real technical evaluation elements include:
– array aperture and ambiguity

– number of sensors available for flexible/adaptive post-
combination

– noise factor

– reliability and restorability.

– antenna losses.

• Real world substitution of PESA with AESA
without post-processing advances gave little or 
no practical advantage (e.g., F18).
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Synthetic antenna generation

• Sensor outputs are combined by a Multiple Input
Single Output (MISO) multi-port network;

• Antenna gain given by the scalar product in frequency
or Laplace domains between the array steering vector
(i.e., sinusoidal response to a wavefront) and the
network transfer function vector.
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Notes

• Hyperbolic wave propagation is essentially
modeled by delays and attenuation.

• Sensor combination that generates a beam
represents an inversion of the propagation
equations to recover the radiated signal.

• Due to multiple, diverse sensors, inversion is
much easier than for SISO systems.

• Distributed networks more suited for this task.

• Lumped networks (generally LC) may require a
high number of reactive elements for a good
wide-band approximation.
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Basic analog combining 
operations 

• Narrow-band

– Phase shift and 
weighted sum of 
sensor outputs.

– Valid only at a 
single frequency.

• Wide-band

– Delay and sum 
network.

– Continuous
delays allowed in 
principle.
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Sensor interconnection 
network

• Early array sensors outputs were simply combined by LC
delay lines and amplifiers up to the VHF band (Hubbard,
1921) and by waveguides and phase shifters above to create
a fixed or programmable synthetic beam (as seen in the
beamforming section), giving origin to the passive phased-
array.

• In the last decades, passive mixing networks were replaced
by integrated (MMIC, MEMS), active network for noise
behavior and hardware modularity.

• Today each sensor, maybe specialized for transmission or
reception, is preferably connected to a separate receiver and
ADC converter chain (parallel, active array) for subsequent
DSP.

• Parallel array receivers preserve more statistical information,
in particular the information about the actual steering vectors.

• Very large arrays (radar, sonar) may still require passive or
active combination of some sensor subsets (sub-arrays) to
reduce hardware and computational costs.
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Receiver building blocks

• Delay lines or phase shifters modify and/or
calibrate the steering vectors and the signal
model, and create beams.

• RF mixers and amplifiers convert sensor outputs
into baseband signal envelopes and change
instantaneous bandwidth and operating
frequency of the array.

• Sampling and ADC devices are driven by a clock
distribution network.

• Basic DSP (DFT, filters) is used for signal
preconditioning after digital conversion and
sample storage.
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LC delay lines

• Inductors and capacitors 
can be inserted or 
excluded by mechanical 
switches, relays, PIN 
diode matrices.

• Still used in electrostatic 
loudspeakers and up to 
VHF.

• Similar architecture is 
used for load matching 
in HF/VHF radios.
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Electro-mechanical delay lines 

• A piezo-mechanic sensor transforms the electric
signal into acoustic vibrations.

• In a piezo-electric material, the electric field is
proportional to local strain.

• Acoustical signal propagation speed is reduced.

• Convenient delay is obtained by acoustic
propagation through surface acoustic wave
devices (SAWs), quartz blocks, aerial baffles.

• At the end, the signal is converted back into
electric form by another piezo-mechanic
transducer (also used as pressure sensor in
acoustic arrays).
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Phase shifters

• Waveguides filled with ferroelectric or ferromagnetic
material (almost constant group delay, good for UWB)
and microstripes slow down wave propagation speed.
In many cases a continuously variable delay is
possible.

• Fiber optic, single conductor waveguides: no TEM
mode, variable group delay (dispersion) with
frequency. Suited for narrow-band applications.

• Two-conductors waveguides, commuted by PIN
diodes, have very low dispersion for wide-band uses.

• Today in active arrays fixed phase shifters can be
easily and preferably used for sub-array combining.
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Phase shifter design issues

• Passive phase shifters attenuate signals before
amplifiers, bad for sensitivity and SNR!

• Network design similar to that of generalized FIR
filters, but with less control on response and
sidelobes due to irregular delay lattices.

• Quantized (digital) phase shifters designs,
common in radar applications, require complex
optimization routines of uncertain convergenge to
the global minimum (genetic, simulated
annealing).

• Phase shifters reduce cabling costs w.r.t. fully
parallel receivers.
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Passive vs. active phase 
shifters

• Active phase shifters contain integrated amplifier
stages.

– Magnitude and phase weighting (more freedom);

– Non reciprocal, uni-directional (transmission or reception);

– Signal gain;

– Power requirements.

• Passive phase shifters;
– Essentially change phase (like optical lenses).

– Reciprocal (LC ladders, isotropic, homogeneous filling) for 
transmission and reception or non-reciprocal;

– Signal loss;

– Minimal power requirements.

– Interferences due to impedance mismatches.
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Mixer and amplifiers

• Main problems for these components are:
– Noise factor;

– Parameter mismatches and response fluctuation with time,
especially within analog linear combination networks;

– Challenging signal ranges must be covered across the array
(field peaks and nulls within wavelengths);

– Non-linear inter-modulation distortion introduces spurious
and statistically coupled sum-difference frequency
components in wide-band receivers.

• Real time checks:
– Faulty channels provide spurious signals hard to detect in

subsequent processing;

– AGC must be precisely tracked and recorded on every
sensor to ensure signal model consistency.
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Basic array receiver types

• Homodyne receivers (complex carrier, two ADCs):
– Low carrier frequency, easy to realize with DDS.

– Highly sensitive to I/Q calibration errors (overlapped spectral
images);

– Still preferred in the USA for RF communications given tight
tolerances.

• Heterodyne receivers (real carrier with IF, one ADC):
– Higher carrier frequencies;

– Insensitive to spectral aliases;

– Require low-cost analog filters, S/H and ADC;

– Extremely low phase noise oscillators (such as fractional PLLs);

– Higher signal range;

– Generally IF digital sampling.

• Baseband receivers in acoustics.
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Array receiver requirements

• Carriers for demodulation must be delayed and
scaled copies of a single signal.

• Power splitting techniques for small arrays and
clock regeneration by PLL for large arrays are
generally used.

• For astronomical search operations, that use
even sensors on satellites, radio synchronization
is adopted.

• The steering vector is modified by the receiver
transfer functions and internal reflections, that
should be perfectly known for accurate
operations.
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Digitization issues

• Heavy ADC requirements:
– High conversion ranges and rates: flash, sigma-delta and

successive approximation ADC with 6-16 bits, 100K-
2Gsample/s in RF applications;

– Static and dynamic (for any subset of codes spanned within
a small time interval) monotonicity of conversion;

– Dynamic range much greater for arrays than for single
receivers because of wavefront spatial interference;

– AGC has to track huge signal changes;

– High spurious free range (SFR) to avoid false detections;

– Stability of transfer characteristics with time;

– Low aperture jitter;

– High power requirements: main challenge for costs and
sizes.
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Synchronization

• All ADCs must operate with a synchronous clock.

• Single clock source and power-splitters work for
small array size.

• PLL regenerated clocks used for larger arrays.

• Synchronization errors between sensors are
equivalent to a movement of the array sensors in
the direction of the impinging wavefront.

• Fixed (mean) delay errors can be compensated
by calibration.

• Random delay errors (aperture jitter) raise
essentially the noise floor with frequency.

10/03/2015 Robust and Wideband Array Processing I 77



Classical array modeling issues

• Ignoring mutual coupling effects (i.e., assuming diagonal
admittance matrix) leads to gross errors in processing.

• Actual steering vector much different from the theoretical
one, but recoverable by calibration, but correction tables
are memory and computation time consuming.

• Large changes of mutual coupling with frequency and/or
direction of wave-front arrivals.

• Algorithms tailored to specific, simple array geometries
and sensor directivity may not work reliably with closely
spaced antennas.

• Mutual coupling is small among microphones, piezo-
electric sensors and hydrophones.
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ALGEBRAIC AND STATISICAL
CONCEPTS REVIEW

Part II
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Numerical optimization

• Array processing and design is based on the 
solution of a set of numerical optimization
problems.

• Optimization means obtaining a set of system
parameters (direction/time of arrivals, frequency
response, interpolation coefficients,…) or signal
parameters (voltages, variance, mean…) from a 
set of linear or non-linear equations satisfying a 
set of conditions.

• A cost functional is derived and optimized from 
theoretical paradigms to find the best solution
among the feasible solutions of the equation set.
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Optimization for signal
processing

• Cost functionals are tied to statistical properties of signals
and free design parameters of system equations

• If signals are not stationary or system equations are not
permanent, also optimal parameters (slowly) change with 
time.

• The rate of system changes should be much lower than
the minimun frequency carried by signals, otherwise the 
equation set is inconsistent.

• Parameter updating is advantageously based on 
information carried by recently incoming signals.
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Optimization problem
formulation

• Building of a non-oriented system model based on 
physical equations and individuating information-carrying
input and output signals.

• Solve the non-oriented equation set so to make input-
output relationships explicit, obtaining an abstract, oriented
model.

• Define a cost functional based on signals, where system
parameters are the unknowns;

• Numerically find the global minimum (or maximum) of the 
cost functional.
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Parametric model abstraction
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Array parametric model 
building elements

Acoustic

propagation

equations

Device equations

Electromagnetic

propagation

equations

Signal transfer 

equations

Geometric

and physical

Constraints

(graph)
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Problemi di ottimizzazione

Optimization
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Stocastic

(data driven)

Stochastic signal

model

Heuristic cost

functional

Cost function

Deduced from

Signal model

10/03/2015 Robust and Wideband Array Processing I 85



Example: deterministic optimization
(e.g., FIR filter design)
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Stochastic optimization

• Stochastic optimization mainly uses input and output 
signals as a basis.

• Minimize or maximize the cost functional by modifying free 
model parameters.

• Generally non-linear injective function from the signal
space to the much lower-dimensional parameter space.

• Some parameters may be un-observable from system
output identification.

• Ensure paremeter identifiability issues before proceeding.

( )( ), ( )opt T n nΘ = u y
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Cost functional minimization
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Classification

Optimization

algorithms

Direct
Iterative

Probabilistic

Genetic

Monte Carlo

Newton

Gradient

Search

Ranking

Linear Algebra
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Direct algorithms

• Terminated in a finite number of steps.

• Include many linear algebra techniques (Gauss, 
Cholesky, Gram-Schmidt, QR, DCT, FFT, 
DWT,…)  and rank-based ordering (e.g., median
filter).

• Solve few,  but important problems.

• Subject to round-off errors.

• Suited for small-sized problems (generally less
than 100 unknowns).

• Fundamental building blocks for more general 
optimization techniques.
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Probabilistic algorithms

• Ensure a guaranteed probability of finding the 
optimal solution given available time and 
computing resources.

• Try and err approach based on multiple 
evaluations of the cost functional for varying
parameters.

• Suited for big data problems (>100,000 
unknowns) or for strongly non-linear functionals. 

• Very slow convergence, not suited for real time 
signal processing.
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Iterative algorithms

• Start from a coarse solution and refine it on the basis of a 
local model of the functional.

• Include fundamental processing blocks for signal
processing, like SVD and EVD.

• Suited for medium to large sized problems (100-10.000 
equations).
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Search methods

• Start from a tentative coarse solution.

• Functiona evaluated on a local grid of points in the 
parameter space.

• Find the parameter changes that locally minimize the 
functional.

• Iterate until solution does not appreciably change
(convergence).

• Simple and costly algorithms.

• Too slow for signal processing.

10/03/2015 Robust and Wideband Array Processing I 93



Descent methods

• Heuristic methods based on the multivariate Taylor expansion
of the cost functional around the (supposed) global minimum.

• Iteratively refine a starting solution on the basis of the local
gradient of the functional w.r.t. free parameters.

• Second order faster Newton type techniques require the 
additional knowlenge of the Hessian (second derivative matrix) 
of the functional or an its close approximation (Hessian
replacement matrix).

• Find the local extremum closest to the starting guess solution.

• The Hessian or its replacement must be positive definite within
a compact region around the local minimum for convergence.

• Non positive Hessian means (local) parameter identifiability
loss!
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Gradient method (1st order)
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Complex derivatives

• Special complex derivatives are defined for complex vector 
variable optimization problems with real valued functionals.

• They must obey the chain, product, quotient rule.

• At an extremum, the conjugate derivative must be zero.
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Newton method (2nd order)
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Geometrical intepretation of the 
Newton method

J(w)

Current

solution

New 

solution

If the Hessian is positive definite (paraboloid convexity

toward the graph bottom), the solution locally

converges very quickly to the global minimum:
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Convergence rate

• Convergence rate in a neighborhood of the global minimum is
expressed by the order p and the convergence ratio β. 

• The Newton method has p = 2 and β ≈ 1 (quadratic convergence).

• Gradient descent has p = 1 and β  < (κ-1)2/(κ+1)2, where κ is the 
condition number of the Hessian (ratio between maximum and 
minimum eigenvalues):
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Discussion

• Gradient descent is very slow for correlated inputs (i.e., ill-
conditioned Hessian) and is used for little, cheap systems.

• Newton method is fast near the global minimum, but the 
Hessian must be positive definite everywhere for a global 
convergence capacity.

• Newton method should be initialized by other techniques
in most practical application.

• Functionals employed in array processing are oscillating
and non-convex far from the local minimum.

• No real guarantee of convergence in application!
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Quadratic optimization and 
linear(ized) systems

• Most array processing problems involve 
quadratic or nearly quadratic cost functionals, so 
that the underlying problem is locally linear.

• Local linearization of system equations is
essential for optimization purposes and 
sensitivity and performance analysis of array 
processing algorithms.

• The transfer functions between equation
perturbations and parameters are sought.

• So principles of Least Squares optimization of 
linear equation sets is of paramount relevance.
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Algebraical and statistical 
background

• Most math manipulations in array processing
involve solving rank deficient, under- and over-
determined linear systems and eigenvector-like
matrix decompositions (e.g., SVD).

• Processing algorithms development is driven by
their resistance to model (systematic or random)
and statistical (finite sample) errors:

– random models;

– optimal estimation;

– robust estimation.

• A brief review of linear algebra and statistical
concepts and applications will follow.
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Least Squares linear systems

• The theory of linear Least Squares is
fundamental to understand the links between the
estimation theory and the numerical optimization
and to establish sound concepts of statistical
robustness of sample estimates.

• In particular, Gaussian ML estimation problems
and performance analysis can be very often
recasted, at least locally around true parameters,
as the solution and the sensitivity analysis of a
linear LS system.
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Basic LS parametric estimation 
problems

• Interpolation of a noisy target vector on a fixed
vector basis (design matrix).

• Inversion of the noisy output of a linear system to
recover system inputs.

• Regression between two set of noisy signals.

• The three problems have different reasoning
behind and application and different statistical
properties.
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Linear interpolation

• The interpolation problem is the single LS problem which 
is completely understood.

,
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Linear inversion

• Tries to recover a known signal by a set of system noisy
observations

• Frequently used in engineering, but not theoretically
rigorous because of bias and input noise amplification.
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Linear regression

• Tries to recover a noisy signal by a set of system noisy
observations

• Used in statistics and stochastic prediction problem (AR, 
MA, ARMA), but not well understood.
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Interpolation problem setting

• In compact (matrix) form the following over-determined
system is derived from the above linear model:

( ) ( 1) ( 1) ( 1)

( )

N P P N N

N P

× × × ×

       
= −       

       
>

= −

A w x e

Aw x e w

Interpolation
(fitting) error

Parameter
estimates
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Gaussian error model

• A stochastic model is assumed for the additive
noise (equal to the fitting error, if the estimated
parameter vector w were the true one).

• Often noise is assumed Gaussian distributed,
white, with zero mean and unknown variance σ2.

• Under these hypoteses, each interpolating
equations constitutes a statistically independent
observation of the analyzed system.
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Gaussian Likelihood

• Problem unknowns are the parameter vector w and the 
noise variance.
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Concentrated Maximum 
Likelihood (ML) estimation

• The negative Gaussian log likelihood is first 
minimized w.r.t. w:

2 2
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ML and Least Squares

• For this problem the ML estimate of interpolation 
coefficients coincides with the LS one. 

• The estimate of the additive noise variance requires a little 
more attention:

22
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1
( )ML LS

N
σ = e w

ML estimate, biased for finite N

22

2 2

1
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N P
σ =

−
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Separable ML estimates

• The LS problem arises from the elimination
(concentration) of the parameter vector of the
Gaussian log-likelihood.

• The noise variance estimate is not independent
of the other parameter estimates.

• However the sample error of the variance
estimate is a consequence of the parameter
estimation errors: this ML problem is therefore
said to be separable.

• However the LS solution is valid even when σ2=0
and the Gaussian log-likelihood becomes
singular.
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LS algorithms: normal 
equations

• The LS solution satisfies the following Hermitian system of 
normal equations if the rank of the matrix A is full. 

( ) 1
†H H

LS

−
= =w A A A x A x

H H

LS =A Aw A x

Moore-Penrose

pseudoinverse of A
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LS solution sensitivity

• The LS solution by normal equations has severe risks of
numerical instability. In particular, the LS solution
insensitivity is expressed through the condition number κ
(ratio betweem maximum and minimum eigenvalues) of
AHA, which is of order 105-1012 for radar and acoustic
signals!

( )( )

( )

H H

H

H
ε ε κ

+ + ∆ =

∆
⇒ ≤ ⋅

A A E w w A x

E w
A A

wA A
≜
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Orthogonalization methods

• To overcome the numerical stability problem, LS 
techniques based on proper orthogonalization of 
the columns of A are used. 

• These methods act directly on data, without
building Hermitian sample correlation matrices
and are said of the square root type.

• In parallel to the algorithmic aspects, these
techniques shed light on the stochastic influence
of single observations (equations) on the global
estimate.
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QR decomposition (QRD)
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Full rank LS-QR solution
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Full rank LS solution by QRD
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• Three equation subsets are visible after the QRD.

P equations are satified by the full 

rank hypothesis.

One equation is satisfied if and 

only if σ=0.

N-P-1 equations are always

satisfied. 
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LS solution property

• The LS fitting error is orthogonal to the column 
space of A (orthogonality principle).
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Expected value of the LS 
solution

• If the noise is zero mean, the mean of the LS 
solution is the true w, hence the LS estimate is 
unbiased.
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Robust and Wideband Array Processing I 121



Estimation covariance of the LS 
solution

• If the noise is uncorrelated (white) among
observations, the LS solution covariance only
depends on the noise variance and the structure
of the design matrix A.
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Directional properties of the LS 
solution

• The eigenvectors of AHA define special
combinations (directions) of the parameters: the
estimation error covariance among these
combinations is diagonal and inversely
proportional to the eigenvalues of AHA.
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Design matrix choice issues

• The ideal design matrix AHA must have the lowest
possible condition number (i.e., 1), hence A must be
orthogonal.

• It is important to discard high variance directions (at the
possible expense of bias) and/or reparametrize the
problem.

• This is the basic idea behind the Principal Component
Analysis (PCA).
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Best Linear Unbiased Estimator 
(BLUE)

• The LS estimator is a linear transformation (i.e., orthogonal 
projection) of the observation vector x .

• It is shown that it is also the best (minimun variance) linear 
unbiased estimator (BLUE) of w if the noise has zero 
mean and finite variance. 

• In fact, let us consider an alternate estimator of w which 
satisfies:

* 0( )= = +w Bx B Aw v
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Unbiasedness condition

• Any linear, unbiased estimator must satisfy the 
third condition:
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Linear estimator covariance

• The covariance of a generic linear estimator has
the same form as the covariance of the LS
estimator.
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Best linear unbiased estimator

• Let us consider the following positive semidefinite 
matrix obtained by the following symmetrization:
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Comments on the BLUE 
estimator

• Zero mean and finite variance properties of noise 
do not imply the assumption of any special 
probability distribution.

• In any case, the LS estimate is the BLUE.

• For non Gaussian noise (e.g. Laplacian noise), 
the asymptotically best (more efficient) unbiased 
estimator is the Maximum Likelihood (ML) one 
and differs from the LS estimator, but it must be 
non-linear!
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Statistical impact of each 
equation
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On the statistical impact of 
equations on the LS estimate

• Noise and other disturbance effects on various LS
equations are widely different.

• A large noise value affecting a high impact equation
can cause gross errors on the LS estimate.

• The same noise sample affecting a low impact
equation may have negligible effects on the LS
estimate.

• It is difficult to optimize the statistical impact in DSP
applications. In fact, most present sensor array
problems (e.g., ML) are not well posed.

• This is the main source of noise-induced breakdown
at low SNR.
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Singular value Decomposition 
(SVD)
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Eigenvectors and singular 
vectors compared

• The eigenvectors of the left- and right-
symmetrized forms of matrix A are the singular
vectors of A.

• The eigenvalues of the same symmetric forms
are the squares of the singular values of A.
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LS solution by SVD

• The linear LS interpolation problem is completely 
defined by the (reduced size) SVD of A.
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Euclidean matrix norms

1
( ) ,2

2 2

1

1 1

( ) ,2
2 2

†

† 1

( ) ,2
2 2

† 1

( ) ( )2 2

sup ( )

sup ( )

sup ( )

( )
( ) ( )

( )

H

N P

H

N
N N

H

P
P N

H

N P P N
P

σ

σ

σ

σ
κ κ

σ

×

−

− −

×

−

×

× ×

=

=

=

= = =

u v

u v

u v

u Av
A A

u v

u A v
A A

u v

u A v
A A

u v

A
A A A A A

A

≜

≜

≜

Robust and Wideband Array Processing I 135



10/03/2015

Optimal matrix rank truncation 
by SVD
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Principal component analysis

• Design matrices with nearly dependent columns
lead to hyper-sensitive LS solutions.

• It is possible to prune some parameters before
estimation (still by QR and SVD concepts).

• Best results are obtained by using only the
dominant singular triplets (principal components)
of the design matrix.

• Often truncation is directed by statistical
significance tests (MDL, random matrix theory).

• The incomplete rank LS solution must be re-
defined. The SVD is optimal even for this task.
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Reduced rank LS solution
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Discussion about reduced rank 
LS solution

• The rank reduced fitting error and bias increase
w.r.t. the LS one, but the solution is statistically
more stable.

• To avoid estimation bias, the target signal must
remain in the columns span of the reduced rank
design matrix.

• If the noise is strong, a tradeoff must be
exercised between bias and covariance of the
parameter estimate.

• Delicate questions about consistency and
asymptotical efficiency of the rank-reduced LS
estimates arise.
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Other SVD uses

• The SVD can be applied to a sample matrix X (N
observations × P channels), furnishing at the
same time:

– ML Gaussian sample covariance (Rxx) for zero-mean
signals;

– Observation location within the eigenvector space of Rxx

(Karhunen-Loewe Transform, KLT);

– Statistical impact analysis of single observations onto the LS
solution.

Robust and Wideband Array Processing I 140



10/03/2015

Linear time invariant models
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Gaussian ML covariance 
estimate
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SVD, KLT and statistical impact
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Wiener–type noise reduction by 
the SVD
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Discussion

• An observation y(k) with Nk much larger than unity can
significantly alter the global estimate.

• This condition is easily verifiable by the SVD or derived
robust tools (e.g., the robust pseudocovariance).

• These problems raised questions about the robustness of
the parametric array processing in real world.

• We need additional math support for assessing the quality
and robustness of an estimator.
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Empirical distribution

• Most common statistics and estimators depend on x only
through the sample empirical distribution FM(x) obtained
from M independent observations.
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Empirical distribution examples
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Estimators and empirical
distributions

• A generic estimator TN(x) represents an injective,
deterministic mapping between the empirical distribution
space and the parameter space of θθθθ:
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Estimation process
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Example: 1-D ML estimator 
(differential form)
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u0(x) is the Dirac pulse, centered on zero.
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Consistency in distribution

• An estimator is said consistent at the distribution F(x) if, in 
probability

• Consistency means that, for increasing sample size, the
estimated parameters converge in probability to the
design ones (not always the true ones).

• The estimator variance vanishes for infinite sample size.

[ ] [ ]( ) lim ( )M M
M

T F T F
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= =θ x x
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Asymptotic bias

• Estimators may not converge in probability (for increasing
sample size) to the true parameters θθθθ0 . The limit
difference is said asymptotic bias.
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Log-Likelihood

• By the Central Limit Theorem, the distribution of the
(negative) log-likelihood of the sample x is asymptotically
Gaussian and can be expanded in Taylor series around
the true parameters θθθθ0....
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Regular distributions

• A distribution is said regular if:

• The gradient w.r.t. parameters of the log-likelihood of a

regular distribution is zero at the true parameters.
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Fisher Information Matrix

• The Fisher Information Matrix (FIM) J[f(x/θθθθ)] is the
expected value of the Hessian (curvature) of the log-
likehood functional.
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ML estimate

• Minimizing the sample log-likelihood around the true
parameters leads to an approximate formula for the ML
estimate, which resembles a single Newton iteration.
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Log-Likelihood statistics
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ML estimator (MLE) statistics

• At this point, it is easy to obtain the main
statistics of the ML estimate, following the same
passages made with LS fitting estimate.
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Local LS system interpretation 
of the MLE

• The fact that the sample Hessian of the MLE
asymptotically converges to the FIM indicates
that it arises from the symmetrization of a certain
known underlying system matrix.

• The unknown vector is the ML estimation error.

• The target is a zero mean, white random vector.

• A similar system block is appended for each
independent observation.

• The resulting LS problem is homoscedastic, so
the MLE locally is the BLUE estimate of a zero
vector.
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Local LS interpretation of the 
MLE
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Cramer-Rao Bound

• The minimum covariance of any unbiased parameter
estimator of a regular distribution is given by the Cramer-
Rao bound (CRB), which asymptotically coincides with the
ML error covariance, if the number of parameters of the
likelihood is finite.

• In this case the MLE is said asymptotically efficient.
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Efficiency of ML estimates

• The ML estimator is tied to the specific
distribution assumed for data and cannot be
rigorously generalized to other distributions.

• The MLE is often difficult or even impossible to
realize.

• Different distributions may have quite different
ML estimators.
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Real world sample problems

• In real world samples many hidden
contamination sources exist:

– Missing data (inliers) by recording defects, 
arbitrary interpolations, zero padding, etc…;

– Non stationarities (transients, level changes) 
often introduced by the acquisition system;

– Gross errors (outliers), due to e.m. pulses, 
un-modeled interference, etc…;

– Actual distribution different from the assumed
one (quantization, clipping, thresholding, 
etc…).
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Contaminated distributions

• Sometimes, a small, unknown fraction of samples comes
from a different distribution.

• For instance, some return echoes used for radar clutter
estimation contain a target: detection threshold is unduely
raised.

• Signal model slightly changes during acquisition.

• There is the need of a reference contamination model for
assessing the robustness of an estimator.
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Example: contaminated array impulse
response

Outliers

Outlier effects on 

different

estimators

Empirical response

Robust and Wideband Array Processing I 165



10/03/2015

Contamination model

• Gross errors: in the sample worst case outliers placed at
infinity exist with propability.

• Sistematically contaminated sample by a different

distribution H(x)
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Array robust estimation

• Classical robust estimators (median, covariance,
MAD, robust regression,…) have several direct
applications to array processing, especially in
calibration, SCM estimation, fault detection.

• However, array processing mainly uses functional-
type parametric (M-)estimators and error sources are
partly in the equation model and party in the data.

• Most robustness is required to avoid catastrophic
intermediate decisions (e.g., source number
detection) or mitigate their consequences.

• So array robust approaches follow a different path
than classical robust estimators.
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CALIBRATION AND ARRAY
MODELS 

Part III
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Array calibration fundamentals

• The basic form of array calibration is essentially
an interpolation problem.

• A known signal s(t), independent by any possible
disturbance, is transmitted by a source located at
known position p, for example in an anechoic
chamber.

• There is only additive thermal noise, independent
and equi-powered between sensors.

• In the general wide-band case, the expected
array response is a convolution.

• In the narrow-band case, the length of the
impulse response is simply one.
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LS calibration

• The problem is solved in parallel for all sensors in
discrete time.

• Different receiver noise characteristics create
estimation problems (hetero-scedastic
observations).

• Generally background noise can be assumed
Gaussian distributed in controlled environments.
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Notes on LS calibration

• In general, accurate time alignment of target responses vs.
excitation source is required, otherwise:

– Non-causal or void responses may appear;

– Steering vectors are affected by unknown phase shifts in narrow-band
cases.

• Wide-band responses (assumed FIR) are converted into
steering vectors by the vector Discrete Time Fourier
Transform, after taking into account the mapping between
the analog analysis frequencies and the digital frequencies
after demodulation and conversion.

• LS calibrated vectors are essentially corrupted by a small
additive, independent Gaussian noise vectors, equi-
powered between sensors. Its variance is inversely
proportional to the number of independent array response
observations.

• Time-uncorrelated test signals are preferred (e.g., chirp
signals, sinusoids modulated by Barker codes), since
provide more independent observations.
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Empirical modal calibration

• Steering vectors measured at different directions
can be interpolated on a finite angular modal
basis derived by a priori consideration.

• The resulting interpolated modal matrix provides
cleaner steering vectors than the calibrated ones.

• Good calibration is fundamental for the accuracy
and robustness of subsequent array processing.
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Mutual coupling matrix 
estimation

• Forces estimation of an unique mutual coupling
matrix M for a wide angular sector.

• Extremely careful time alignment is required.

• Always prefer interpolation to inversion whenever
possible.

• Solution easily ill-conditioned and diverging outside
the sector, requiring further constraints (unitary
matrix, regularization).

• Matrix transformation model not valid in general
(closure problem w.r.t. angular sensor response).
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LS array calibration in 
telecommunication devices

• Routinely done in telecommunications devices,
such as MIMO Wi-Fi ones, to estimate the actual
steering (mixing in pattern recognition jargon)
matrix from a known periodic training sequence.

• Estimation often done in non-white noise.

• Different signal model than expected, often with
dominant model error effects over symbol noise.

• Consequent perturbation of any derived estimate.
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Array geometries

• The importance of the array size (aperture vs. the
wavefront) and dimensional tolerances are of
paramount importance for final performance,
exactly as in optics.

• The choice of an array geometry involves
tradeoffs between number of elements, ambiguity
resistance, synthetic gains, robustness to
element mis-calibration and mis-placement.

• Common geometries belong to a few
fundamental types, with some modifications
(sensor pruning, filling, unequal spacing) and
hybridizations.
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Classical array geometries: 
ULA

• The most classical geometry is the Uniform Linear 
Array (ULA) with N omnidirectional (or identical) 
sensors, equispaced along a line by d wavelengths.

• Vandermonde type steering vector:
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ULA properties

• N-1 steering vectors corresponding to different wavenumbers
dsin(θ) are linearly independent by the polynomial algebra
fundamental theorem: therefore N-1 sources can be
asymptotically resolved.

• Front-rear ambiguity and no resolution capability in elevation
with identical sensors.

• Ambiguity (spatial aliasing) within FOV for d>0.5.

• Invisible space (physically impossible wavenumbers) for d<0.5.

• Design techniques and processing derived from the ones of
FIR filters (LS, equi-ripple Remez, windowing).
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Linear array ambiguities

• Enlarging inter-sensor separation or pruning the 
sensors raise CC sidelobes and create grating 
lobes of ambiguity for equal effective aperture.
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ULA mutual coupling

• Ignoring end effects, the mutual coupling ULA matrix
is approximatively Toeplitz shaped, with equal
diagonal elements, which can be further
approximatively diagonalized by the DFT.

• Computational efficiency is retained.

• Dummy, not feeded, but loaded elements can be
added at both ULA ends to enforce Toeplitz coupling
on active sensors
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Compound linear arrays

• To overcome the limitations of the basic ULA, multiple
linear subarrays pointing to different directions can be
employed (L-shaped, X-shaped, grid) .

• Most basic ambiguities can be removed with a
reasonable number of additional sensors.

• New sampling lattices have to be re-checked for
ambiguity forms.

• Sources impinging from the directions of large
sidelobes interfere with the main source and reduce
or destroy spatial resolution.

• From these studies, some element can be moved
(non-uniform LA) or pruned to save resources at the
expense of the sidelobe structure.
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Sensor choices for linear arrays

• Directive sensors aligned in parallel on a linear
array do not modify ambiguity properties, except
for the attenuation of some sectors.

• Directional, parallel sensors force large minimum
inter-sensor spacing with great ambiguity risks.

• Horns and apertures are less subject to mutual
coupling.

• Introducing diversity in directivity patterns and
vector sensors zeroes computational and
constructive advantages of linear arrays, but
removes most ambiguities.
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Isotropic arrays in 2-D

• The family contains circular and multiple ring arrays.

• Equal statistical performance over all azimuth angles
with omnidirectional sensors.

• Circular sensor coordinate scatter matrix (equal
singular values along abscissa and ordinate axes).

• Multi-ring circular arrays maintain isotropy even with
equal, radially oriented directive sensor.

• Compact single-ring circular arrays have diagonal
harmonic decomposition matrix with scaled Bessel-J
coefficients.

• When a Bessel function is zero (resonance), the
circular array loses one effective sensor.
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Uniform circular arrays

• Uniform circular arrays (UCAs) are the most
efficient isotropic arrays for a given physical
aperture.
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UCA mutual coupling

• Because of circular simmetry, the ideal mutual
coupling matrix of the UCA is right circulant and
can be diagonalized by the DFT.

• If the UCA is compact w.r.t. the wavelength, its
angular harmonics modal decomposition is also
(near) diagonal even under mutual coupling.

• UCA enables processing algorithms in close form
in the Z-domain, as the ULA.
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Multi-ring array (MRA)

• Two or more rings with the same number of sensors avoid
resonances over several octaves.

• Compact multi-ring arrays can be combined by spatial DFT
and harmonic filters to give an overall wide-band diagonal
harmonic decomposition equal for all frequencies (Di
Claudio, 2005).

• Each combination output has a scaled harmonic spatial
response.

• The number of sensors in inner rings cannot be reduced to
avoid Bessel function aliasing by mutual coupling.

• Maximum number of resolvable sources less than the
number of hamonics and the sensors on each ring (linearly
dependent ring spatial responses).

• Cheap thin wire realizations.
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MRA DFT harmonic combining
(Di Claudio, 2005)

• Spatial DFT can be realized by four quadrant
multipliers and analog Butler matrices made by 
phase shifters and couplers.
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Other planar geometries

• Filled circular disks are often special cases of the 
MRA and can be viewed in different ways.

• Uniformly filled rectangle array (meshes) have 
two inter-related wavenumbers.
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3-D geometries

• Primarily used in acoustics:
– filled cylindric surfaces in sonar.

– filled spherical surfaces in aerial acoustics.

• Sensor shadowing and interconnection problems.

• Slow, memory hungry 3-D scan techniques.
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Noise sources in arrays

• Internal noise sources:
– Thermal, shot and Flicker noise from analog channel and 

electronics;

– Digital quantization noise from ADC;

– Intermodulation noise by non-linearity;

– Tone-like spurious signals.

• External noise sources:
– Industrial noise;

– Interference;

– Atmospheric noise;

– Spatially un-resolvable source mixture.

– Background clutter in active systems.
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Thermal (Johnson, Nyquist)
noise

• Originated in resistive devices.

• Zero mean, Gaussian distributed.

• White (constant) power spectral density up to some
GHz.

• Independent between sensors.

• Only possible correlated exception is the noise
generated by a resistive load and coupled (re-radiated)
toward other sensors.

• Variance sensitive to AGC status.
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Shot (Schotty) noise

• Due to current inhomogeneities in resistive 
electric and electronic components (graphite).

• Poisson distributed.

• Heavier distribution tails than Gaussian
(leptokurtotic, troublesome for LS fitting).

• Almost white and proportional to DC bias current.

• Almost independent between sensors.
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Flicker noise

• Still not well explained.

• Linked to time
correlated releases of
particles, energy...

• Lepto-kurtotic (pulse-
type) noise.

• (1/f) power spectrum.

• Relevant at low
frequencies (audio,
sonar) below about 100
Hz, masked by other
noise sources at higher
frequencies.
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Quantization noise

• Typical of ADC quantization.

• Uniformly distributed.

• Temporally correlated with simple or narrow-
band signals.

• May take the form of spurious harmonics.

• Spurious correlation with useful signal:
– mitigated by dithering or wide-band, complex signals.

– reduced by large ADC resolution.

• Nearly uncorrelated (spatially white) between
sensors.
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Oversampling

• Oversampling + low pass filtering + decimation
– more room in frequency for dispersing noise, post filtered by 

a FIR interpolating filter.

– increases correlation with signal and create spurious 
harmonics: moderate advantages without other 
countermeasures, because of noise aliasing.

– Do not use IIR filters, that concentrate their strong re-
quantization noise near system pole frequencies.
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Noise shaping for audio

• In oversampled systems, collect, filter and re-circulate
least significant bits to push noise out of the band.

• As an alternative, use Sigma-Delta differential
modulation.
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Sigma-Delta loops

• Assumes that the quantizer generates white noise, 
uncorrelated with signals
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Dithering

• ADC LSBs often excited by injecting out of band 
artificial noise at the input for dithering at little
expense of in-band noise spectral density.

• Dither essentially shakes the ADC LSB, makes
quantization noise uncorrelated with the signal
and linearizes integral nonlinearities.

• Mainly done for RF (IF) signals. Digital dithering 
can be summed to input by a DAC and digitally 
subtracted or filtered out at the output.

• Enhanced resolution and SFR by more than 10 
dB.

• Weak signal detection is also enhanced.
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Aperture jitter model
• Due to sampling time uncertainty in ADCs.

• Delay is multiplied by signal time derivative.

• ADC aperture jitter generates a Gaussian, temporally
coloured (high pass or nearly white) noise

• Independent (i.e., spatially white) between sensors.

• The delay τ(n) is a random process, generally
Gaussian and with a low-pass spectrum, mainly due to 
the random electrical load on clock drivers.
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Intermodulation noise

• Addition of small non-linear distortion
components originated by wide-band signals
whose spectrum extends over more than one
octave.

• Increases with signal power.

• Non stationary.

• Complex spectrum, flattens while increasing
signal bandwidth.

• Maybe correlated between sensors (since they
receive about the same signal mixture…).
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External noise sources

• Sum of many low-power signals (machinery, shrimps) or
few strong impulsive sources (lightning, jamming, NEMP,
dolphins).

• Strong sources often better regarded as Signals of Interest
(SOI), because of non-Gaussianity and nulling chance,
sometimes excised from the sample.

• Spatially correlated between sensors.
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Clutter returns

• Active systems radiate e.m. energy versus
targets.

• A large number of background objects reflect
incoming signals toward the array receiver
(clutter).

• Same return structure as signals of interest.

• Non Gaussian, heavy tailed clutter distribution.

• Clutter is correlated in space and with target
returns.

• Clutter can be consistently estimated only in the
absence of targets of interests.
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NARROWBAND ARRAY 
PROCESSING REVIEW

Part IV
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Digital beamforming

• A convolutive combination of sensor outputs realizes a
synthetic beam.

• Static and adaptive narrow-band beamforming is realized with
a single, generally complex, weight for each sensor outputs
and one summing node.

• On-line analog beamforming
– One beam at a time;

– Transients when switching weights;

– High operating frequency;

– Low latency.

• Off-line digital beamforming.
– Multiple beams computed in parallel on stored data;

– No transients on switching;

– Low operating frequencies (IF, baseband);

– High latency.
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Narrowband non-adaptive 
beamforming (Haykin 1984)
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• Beam shaped by weight vector w.

• The spatial response b(f,θθθθ) is called

beampattern.

• Sensor spatial responses constitute

the linear basis for design, similar to 

digital FIR filters.
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Typical beamforming and FIR 
filter optimization

• High order error norms are used (we require
smooth solutions).

• LS optimization, good for noise and aliasing
filtering, can be performed also on-line.

• Equiripple or L-∞ norm or minimax designs for 
coefficien economy: complex and unstable
algorithms only for batch works.
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ULA beamforming examples
• Windows directly applied to the steering vector to

suppress sidelobes (rectangular or intrinsic, Hann,
Chebichev,…).

• Dominant pencil eigenvector design wev optimized for
uniform interference loading in angle space.
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Narrowband adaptive LCMV 
beamforming

•The weight vector  w linearly combines array ouputs

optimizing a specific criterion and satisfies K<M linear 

constraints
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•In this example, the signal arriving from p0 passes without 

distortion, the signal from p1 is cancelled, while the 

beamformer output energy is minimized:
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LCMV beamformer optimization

•The (M-K)-dimensional, orthogonal basis U (blocking

matrix) is defined by

H =U C 0

•The vector w is decomposed into a fixed quiescent vector
w0, which satisfies the linear constraints, and an adaptive
vector w1, which solves an unconstrained optimization
problem.
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LCMV properties

• Assumes interferences uncorrelated with the
signal of interest.

• Correlated interference (e.g., specular multipath,
repeater jammer) entering the blocking matrix
(auxiliary beams) produce cancellation of the
useful signal.

• LCMV beamforming generalizes earlier and basic
Applebaum and Capon Minimum Variance
Distortion-Less (MVDR) beamformers.

• Assumes Gaussian white signals: the Least
Squares error is the recovered signal. Cost
function should be adapted to the actual signal
distribution (Laplacian, pulsed,…), but the LCMV
beamformer architecture is unchanged.
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LCMV (MVDR) example

• Four Gaussian uncorrelated sources at -25°, -10°, 20°
and 25°, with SNR = 26, 20, 14 and 26 respectively.

• Single unit gain constraint at 10° (i.e., Minimum
Variance Distortion-Less Beamformer, MVDR).
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Notes on LCMV

• Rather high noise gain.

• Deep nulls at strong interfering sources.

• Unit gain versus the source of interest.

• Numerically delicate and non-regular sidelobe
level, partly due to finite sample SCM errors.

• If environment changes a little during adaptation
(e.g., source direction, pointing constraint), high
level of noise and interferences can be re-
injected from the mainlobe.
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Virtual array (beamspace) 

• A bank of W di K<N fixed beamformers applied to an
array simulates a virtual array with K directive sensors.
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Virtual array uses

• Compresses the size of very large arrays (e.g.,
phased array radars, pruned antennas) while
retaining maximum gain within a limited angular
sector.

• Interpolation and recalibration of a real array onto a
virtual one with special, simple geometry for reducing
computations.

• Focusing of a near-field source onto a well-known
virtual far-field response (distortion and curvature of
field correction).

• Focusing from multiple frequencies onto a fixed virtual
array (chromatic aberration correction).

• Fault tolerance (elimination of faulty sensors and
subsequent response interpolation).
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Prolate-like virtual array beams

• Four real, orthogonal beams concentrated within an 
angular  sector centered at ULA broadside.

10/03/2015

( ) ( )

( ) ( )

2

2

H

k

H

k k

d

d

π

π

θ

θ

θ θ θ

θ θ θ λ

−

∆

−∆

 
  = 
  

 
 
 

∫

∫

a a w

a a w

Robust and Wideband Array Processing I 215



Beamforming in trasmission

• A filtered version of the desired signal is applied at
each transmitting transducer.

• Beam is reconstructed by the Huygens principle.

• Transmission beamforming concentrates power in the
desired directions and minimizes the power radiated in
undesired directions.

• Reduces EM pollution and evidence.

• Multiple beams can be simultaneously generated
(space-time coding), for high capacity MIMO
communications, sonar and multi-function radar.
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Notes on transmit beamforming

• Basic rules for ambiguity are identical between 
transmit and receive beamforming.

• Ambiguity in capture means that it is not possible 
to avoid radiation toward grating lobe directions.

• So called super-directive transmit beamforming
with widely spaced sensors allows grating lobes, 
at least in element space.

• Grating lobes are suppressed by a certain sensor 
directivity in beamspace.

• In transmission there is not the issue of steering 
vector normalization: in such applications only 
radiation intensity at the target location counts!
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Narrow-band array transmitter
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Multi-source localization

• Sonar and radar should detect and locate
multiple, closely spaced targets in typical
environments.

• Data batch available: track before detect. No
information loss accepted before localization (i.e.,
no lossy compressed sensing).

• Signal copy to validate detection.

• Only arrays with DSP offer sufficient information
and flexibility for all these tasks.

• High computational costs, but affordable today.
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Early narrow-band source 
localization techniques

• Earlier parametric direction finding narrow-band 
techniques were based on interferometry from 
two to four sensors.

– Phase /amplitude real time analysis.

– Special antenna design and accurate calibration.

• More measurements are available in modern
arrays with DSP.

– Spatial AR regression over ULAs to detect wavenumbers;

– Beamforming on a grid of spatial coordinates and output 
power or feature peaking (spatial imaging).

– Anyway, not a correct exploitation of the array signal model.
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Source localization approaches
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The spatial covariance
approach

• All existing localization algorithms are based on the
structure of the Spatial Covariance Matrix (SCM).

• The SCM collects all available stationary second
order information from narrow-band arrays and
circular signals (uncorrelated I/Q components).

• High-order statistics (HOS) are sometimes used, but
they are built so to share the basic SCM structure.

• Other second-order (e.g., ciclostationary),
approaches are more rigorously viewed within a wide-
band framework, since they observe temporal
correlations between snapshots.
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Gaussian SCM estimate

• Zero mean variables (previously remove DC 
offsets and demodulated sinusoidal carriers).

• Sample mean of independent snapshots (i.e., 
critically Nyquist sampled vector array outputs).

• Non-uniform time weighting is possible.
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Remarks on SCM

• Sufficient statistics only for temporally white,
circular Gaussian noise and signals
(unconditional model) and near optimal for most
practical environments.

– Gaussian ML estimators are functions of the SCM only.

– Energy-type (bolometric) detection and estimation.

– Needs further information on Rvv.

• Standard array signal model assumes isotropic
noise with unknown variance (Rvv = λvI).

• Whitening required for general noise covariance.

• Modified (real-valued) SCM required for non-
circular (even Gaussian) signals and noise.
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Noise whitening

• Algorithms are initially formulated for white noise, i.e., with
SCM proportional to the identity matrix.

• The known or the independently estimated noise SCM is
factorized into Cholesky or Hermitian square root factors.

• The inverse of these factors is applied to signal snapshots
before computing SCM or to the SCM estimate.

• The transformed noise covariance is now white.
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Signal coherence

• If some signal can be at least partially reconstructed
by other ones, it is said to be coherent with them.

• Coherence strongly degrades source localization and
signal analysis by arrays.

• Coherence is originated by specular multipath over
smooth surfaces and jamming.

• Sometimes modeled by a curved wavefront.

• The steering vector of coherent sources is a linear
combination of the steering vectors of all rays.

• In the fully coherent case, P(f) is rank deficient.

• Partial coherence is observed in scattering and
clutter.
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Coherence example

• Two radiating sources and a common (point) 
scatterer.
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Coherent signal covariance

• The signals of sources 1 and 2 are uncorrelated.

• Scattered signal is a mix of the two source
signals.

• Covariance is Hermitian and positive semi-
definite.
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Beamforming approach
(Bartlett)

• A directive beam w(p) is pointed toward each
location p of interest;

• Locations are estimated by the local maxima of
the beam output power.
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• This estimate is ML iff a single source is present,
w(p)=a(p) and the noise is white. (Rnn=λIM).
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Beamforming based
localization

• Generalization of periodogram techniques.

• Non-parametric estimates (imaging).

• Tolerant to signal coherence and model mismatches.

• Easy to compute in real time with precomputed
beamformers on a grid of location parameters.

• Source direction of arrival (DOA) estimated by picking
the angle of maximum beamformer output power.

• Non consistent estimation in the multi-source case.
– bias due to beam sidelobes.

– some sources may be masked or cancelled.

– Rayleigh resolution limit dictated by CC ambiguity function.
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Minimum Variamce
Distortionless beamformers

(Capon or MVDR)
• w(p) minimizes the array output power without linearly

distorting the signal of interest coming from p (i.e.,
w(p)Ha(p,f)=1) ;

• w(p) suffers of cancellation of the useful signal if the
array is mis-calibrated and/or sources are coherent,
but it has low sensitivity to SCM estimation errors and
to the presence of multiple closely spaced sources.
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Other beamformers for 
localization

• More sophisticated beamformers can be devised:
– APES uses a normalized MVDR vector for constant noise

power output.

– More complex LCMV beamformers for particular cases (fixed
sources/jammers).

– Robust beamformers to cope with model uncertainties and
tailored to signal copy.

• Beamformers are superficially attractive for
localization, because of simplicity and parallel
processing, but are very costly, require large arrays
and furnish quantized, non consistent, location
estimates.

• Beamformers may be useful for quick data inspection,
but the performance of MVDR with coherent arrivals
is marginal.
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Narrow-band parametric
models

• Fully exploit the multi-source array signal model.

• Mostly based on a probabilistic data description.

• The number of sources (say D) must be known a
priori or estimated from a set of snapshots.

• Gaussian parametric models demonstrated good
adherence to real world scenarios (at least for
noise) and have nice geometrical interpretations.
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Maximum Likelihood parameter 
estimation

• If a probabilistic characterization of signals is
available and the parametric model equations are
exact, a Maximum Likelihood (ML) estimator
under mild conditions furnishes a set of
noteworthy advantages:

– The ML approach casts parameter estimation as the search
of the local or global extrema of a real-valued functional;

– ML estimates are asymptotically unbiased; bias vanishes as
O(1/M) for a number of independent observations M;

– ML estimates are consistent, i.e., estimation variance
asymptotically vanishes as O(1/M) ;

– If the number of parameters remains finite w.r.t. M, the ML
estimator is asymptotically efficient, i.e., approaches the
variance Cramer Rao Bound (CRB) for unbiased estimators.
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Mainstream Gaussian models

• Conditional Gaussian model:
– Independent signal and noise processes.

– Gaussian circular noise field with known SCM, up to a scale 
factor;

– Deterministic, but unknown signals, that are estimated together 
with location parameters.

– Consistent, but not asymptotically efficient (though near 
optimal)  vs. location for finite SNR and array size.

– Non-consistent (noisy) though useful signal estimates.

– Insensitive to signal distribution.

• Unconditional Gaussian model:
– Independent, circular, Gaussian signal and noise processes;

– Estimates locations, signal covariance, noise variance.

– Asymptotically efficient vs. stochastic CRB, which is higher than 
deterministic CRB.

– Sensitive to actual signal and noise distributions.
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Some comments on ML 
estimators

• The partition between noise and signals (of
interest) is rather arbitrary and flexible.

• The essential limit to the partition is the statistical
independence between the two processes.

• The steering vectors of all sources of interest
must be known.

• The noise SCM estimate must be consistent.

• Some signals may be considered as
deterministic or subject to known parametric
modifications (dispersion, Doppler shifts).

• In many practical cases, performance tradeoffs of
different models are not clear.
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Identifiability conditions
(Schmidt, 1980)

10/03/2015

• The general localization problem with sensor
arrays is well posed (not ambiguous) only when:

– The sources of interest are point sources (Dirac pulses in
the location parameter space), narrow-band (the source has
a rank-one representation in the SCM) .

– The source number D is smaller than the sensor number
(i.e., N).

– The number of free model parameters to estimate
(location+signal+noise related ones) is smaller than the
number of free real parameters of the sample SCM (equal or
less than N2). This is not obvious at all in 3-D or in some
physical problems (e.g., light speed estimate).

– D steering vectors, related to different directions, are always
linearly independent (no spatial aliasing);
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Conditional ML estimates

• The noise is spatially white (or pre-whitened).

• Often a single snapshot is avaliable (monopulse
estimation).

• Signals are unknown and estimated together with
location parameters (no a priori distribution is
assumed).

• Raw array ouputs can be replaced by matched filter
sampled outputs without information loss.

• Single source of interest in many cases.

• Simplified steering vector by special array geometries
(Watson-Watts, proportional 2-D e 3-D monopulse).

• Non linear multi-source estimation. Sub-optimal
estimators often preferred for initialization and less
stringent requisites.
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Gaussian conditional ML 
monopulse model

• Single source, monopulse case.

• Signal estimated by LS fitting, conditioned to the 
candidate steering vector.
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ML monopulse estimator in 
white noise

• Signal estimate can be eliminated and the resulting
concentrated ML is a special beamforming search in the
location parameter space.

• Neyman-Pearson detection test is set up after ML estimate.
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Beamspace 3-D proportional
monopulse

• Generally formed by four identical, directive sensors
colocated on the vertices of a square on the vertical yz
plane, recombined into three orthogonal beams

• Elevation φ and azimuth θ are zero along the x axis.

• “Sum” beam (sigma) no. 1 with a single directional
mainlobe

• Gain of “difference” (delta) beams no. 2 e 3 about
proportional to θ and φ through monopulse gains.
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Watson-Watts array

• Four identical and slightly directive sensors at the 
vertices of ha square with diagonal length d and 
sides aligned along x e y axes.
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Polar source 2D angle 
parametrization and monopulse

• The source position is
parametrized by the off-
boresight angle  θ and by 
the revolution angle ϕ
around the boresight
axis. 
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Polar separable Gauss-
Laguerre functions (GLF)
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Polar Amplitude Comparison
Monopulse (P-ACM) receiver

• For any pair of GLFs having radial order 0 and consecutive 
radial orders, it is possible to build a P-ACM as follows:
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First-order P-ACM

• The simplest polar ACM is characterized by the following 
three beampatterns:
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P-ACM sum beampattern

-3

-2,2

-1,4

-0,6

0,2

1

1,8

2,6

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

-3
,0

-2
,4

-1
,8

-1
,2

-0
,6

0
,0

0
,6

1
,2

1
,8

2
,4

3
,0

elevation [deg]

Gain

azimuth [deg]

Robust and Wideband Array Processing I 248



10/03/2015

P-ACM difference beampatterns
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Unconditional Gaussian model 
assumptions

• In the stochastic model for passive arrays, signals and
noise are generally assumed as realizations of
independent, zero mean, ergodic, multivariate circular
Gaussian processes, since:

– the PDF of narrowband filtered signals approaches a Gaussian PDF
(Whittle, 1956), under mild assumptions.

– typical deviations from Gaussianity (impulse noise, sub-Gaussian
signals) can be treated as outlier contaminations (Johnson, 1993)
and/or handled by simple modifications of techniques derived in a
Gaussian framework.

– ML parameter estimators for general non-Gaussian array signals
are generally direction-dependent and require information
unavailable in practice.

• M>N independent snapshot available.

• Location, signal covariance and noise variance are the
unknowns.
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Unconditional Gaussian ML 
estimation

• The SCM is a sufficient statistic for ML parameter
estimation, if:

– the array response is a continuous and derivable function of the
directional parameters

– the array response is perfectly known for any possible combination
of parameters (a real issue).

– the noise-only SCM is known up to a real, positive scalar.

– the number of unknown parameters to be estimated is less than the
number of the degrees of freedom of the SCM

• Array or signal redundancies (e.g., ciclo-stationarity) can be
exploited to achieve identifiability in special cases.

• Under these hypotheses, ML estimation is asymptotically
(M→∞) unbiased and efficient

• Estimation of directional parameters is statistically
decoupled from that of signal cross-spectra in most cases.
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Unconditional ML localization

• Results in a non-linear covariance fitting which

requires a joint search in the directional parameter

space.

• After 1992, ML algorithms have been replaced by

more flexible and still asymptotically efficient signal

subspace fitting algorithms (WSF, MODE) based on

the equivalent signal subspace concept.
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Subspace fitting estimators

• An alternate, but statistically and numerical
equivalent characterization of the SCM is in
terms of its eigenvectors, partitioned into signal
and noise subspaces, and eigenvalues.

• ML algorithms can be manipulated to work on
this alternate SCM characterization.

• A priori estimation of the source number (or,
better, the number of uncorrelated, impinging
signals) can be made from the eigen-spectrum.

• If the choice is correct, asymptotical efficiency
can be retained.
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Signal subspace

• For spatially white noise and D sources, only η≤D
eigenvalues of Rxx(f) are larger than the noise power λv.

• Remaining ones are all equal to λv.

• The η dominant eigenvectors define the signal subspace
basis Es.

• The other eigenvectors define the complementary noise
subspace basis En.
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GLS Paige equations for 
subspace fitting algorithms

• Direct (ML-type) fitting (WSF, MODE):

• Inverse (MUSIC type) fitting, only valid for non-

coherent sources (η=D):
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Equation comparison

• MUSIC type estimators estimate one source at 
time after suppressing the others.

– The desired steering vector is the target of a regression from 
sample signal subspace.

– Breakdown when other source residuals greater then signal 
coming from the analyzed direction.

– Fitting error is generally not detailed: robustness to array 
errors but performance limitations.

• ML/WSF estimators model all sources at the 
same time.

– The weighted signal subspace or the SCM itself is the target 
of interpolation by a set of trial steering vectors.

– Risk of curse of parameters.
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Subspace estimators

• Direct and inverse subspace modeling are two
faces of the same medal.

• Direct signal subspace fitting is an
heteroscedastic regression of a set of supposed
true steering vectors onto the weighted sample
signal subspace.

• Inverse subspace fitting, like MUSIC (Multiple
Signal Interception and Classification) tries to
recover a single steering vector from the sample
signal subspace:

– Steering vector errors are accounted for in some manner;

– MUSIC-type beamforming nulls all sources except one at a
time.
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Weighted Subspace Fitting

• Assumes no error in steering vectors.

• Subspace weighting optimized for finite sample errors
only.

• Asymptotically efficient under the central model even
for coherent scenarios.

• Optimal Wiener type subspace weighting amplifies
calibration errors and whitens spurious projections of
signal eigenvectors onto the noise subspace.

• All locations must be calibrated.

• Attempts of inserting effects of mis-calibration
resulted in loss of consistency, bias and efficiency.

10/03/2015 Robust and Wideband Array Processing I 258



Weighted signal subspace SNR 
threshold

• Wiener WSF weights indicate the existence of a 
a tight estimation threshold at low SNR.

• The threshold depends on the separation of the 
minimum SCM eigenvalue from noise.

• In academic simulations, ML may exploit signal
eigenvector leakage in the noise subspace, but
at the cost of high SNR instabilities.
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MODE
• For ULAs a clever rooting technique is possible

for WSF, based on the property of Toeplitz
Sylvester matrices generated by a polynomial.

• Unit modulus root angles of the polynomial
directly furnish azimuth estimates.
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MODE GLS equation

• Solved iteratively until (uncertain) convergence.

• The Sylvester matrix asymptotically spans the 
noise subspace orthogonal to steering vectors.

• Polynomial roots radii modifications w.r.t. unity 
account for little steering vector mis-calibration.

• However MODE remains a rather weak estimator.
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Comments on MODE

• MODE exploits the fact that ULA subarrays share the
same steering vectors with a power-type phase shift.

• Implicit averaging of subarray SCMs (spatial
smoothing) to a certain degree restores the maximum
signal subspace rank D even in the case of full
coherence.

• This method was used to enhance MUSIC, but at the
expense of the overall array effective aperture.

• MODE fully and correctly exploits spatial smoothing
for asymptotical efficiency and improved WSF
iteration complexity and safety.

• However forward-backward conjugate relationships of
ULA steering vectors can still provide statistical
advantages by destroying source coherence.
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MUSIC as beamforming
• Equivalent MUSIC functionals (pseudo-spectra)

for white noise establish links with Capon and
Bartlett estimators:

– Bartlett estimator for the uniformly weighted signal
subspace;

– MVDR estimator in the limit of infinite source SNR.
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Spatial spectra comparison

• Cost functions of Bartlett, Capon and MUSIC (signal
and noise subspace versions) are compared.
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MUSIC properties

• Near asymptotically efficient for uncorrelated sources.

• Optimal w.r.t. i.i.d. Gaussian errors in normalized steering
vectors.

• Calibration needed only within the angular sector of
interest.

• Small angle finite sample bias, but not negligible.

• Spurious sources and rather high estimation threshold at
low SNR.

• Classical source selection criteria cannot deal with strongly
coherent sources, but proper MUSIC spectra do show
peaks near coherent sources, but with bias and Rayleigh-
limited resolution as a Bartlett beamformer!

• Suggested workarounds for coherent sources (Toeplitz
constraints, spatial smoothing) impair performance in the
uncorrelated cases: SCM eigenstructure distortion, bias,
reduced aperture, non-white background noise).
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MUSIC SNR threshold
• MUSIC must invert the steering vector linearly

combining a noisy signal subspace.

• Signal subspace perturbations within the signal
subspace itself (Gs) do modify the problem.

• Signal subspace perturbations within the noise
subspace (Gv) regularize the system at low SNR, 
but at the expense of DOA bias and additional
error variance.

• When error is excessive, MUSIC spectrum fails
to resolve spatially close sources (nulls merge):
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ROOT MUSIC

• For arrays with an harmonic response (ULA or 
circular harmonic azimutal fittings) the steering vector 
is Vandermonde.

• A polynomial in Z domain can be formed, simulating
an ideal Toeplitz noise subspace projector.

• Angles of roots close to the unit circle furnish DOA 
estimates (beware of quadrantal polinomial
symmetry).

• Highly reduced SNR threshold problems.

• Fast computation.

• Effective display of the low SNR/sample size MUSIC 
inconsistency.

• Mestre and al. try to approach ROOT MUSIC 
performance with modified spectral forms.
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ROOT MUSIC (2)
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ROOT MUSIC (3)

• ROOT MUSIC creates a Toeplitz modification of 
the noise projector.

• The projector exactly intersects a slightly 
modified (i.e., exponentially weighted) steering 
vector:

– Superresolution possible by root and residue analysis.

• Spectral MUSIC does not exactly intersect the 
array manifold for finite sample and calibration 
errors:

– no viable technique for distinguishing and separately 
converge to relatively close sources.
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ROOT-MUSIC PERFORMANCE
• 16 sensors ULA, 100 samples, two uncorrelated 

equi-powered sources at 10° and 15° w.r.t. 
broadside.

• SS-MUSIC is an advanced variant.
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MUSIC and coherent sources
• The asymptotical consistency of MUSIC is tied to the perfect

asymptotical nulling of all sources operated by noise
subspace eigenvectors.

• Nulls can be placed well within the Rayleigh resolution limit
(super-resolution).

• Coherent sources cannot be individually nulled, but still
appear in the beampattern form of the MUSIC pseudo-
spectrum: a literature tale has been (in part) disproved.

• However peaks produced by coherent arrivals appear
separate only because of the intrinsic array beampattern
(good for ULA!) and they are anyway slightly biased, due to
the partial superposition of other sources contributes.

• So, while coherent sources can be detected from a MUSIC
pseudo-spectrum, only partially uncorrelated sources can be
consistently detected in super-resolution.

• Coherent sources can still be detected by MUSIC spectra
better than using Bartlett beamforming, because of the implicit
source power equalization in the orthogonal signal subspace
which reduces sidelobe interference.
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Subspace DOA algorithm
dataflow summary

• Collect and a set of independent snapshots

• Perform noise pre-whitening.

• Estimate SCM and its eigendecomposition from 
snapshots or compute SVD of the snapshot matrix.

• Estimate the numerical rank of the SCM (i.e., number
of uncorrelated signals) by Information Theoretic
criteria.

• Only for ML/WSF, get initial, rough DOA estimates by 
beamforming or other suboptimal techniques.

• Compute or locally refine DOA estimates.

• Optionally, estimate incoming signals by LS/SVD 
fitting or constrained beamforming on original
snapshots.

• Validate signals.
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Comparison of subspace techniques

WSF type

• Asymptotically efficient for 
finite sample errors.

• Handles coherent sources.

• Critical calibration.

• Multi-dimensional search.

• Amplify modeling errors.

• Gross errors expected at 
high SNR.

• Tolerant to under-estimation
of D.

MUSIC type

• Near asymptotically efficient 
only for uncorrelated 
sources.

• Optimal for i.i.d. steering 
vector perturbations.

• Difficult handling of coherent 
sources.

• 1-D search.

• Higher low SNR threshold.

• Tolerant to over-estimation
of D.
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(Almost-)deterministic model

• Two simultaneous and temporally aligned
snapshots x(k) e y(k) are available from an array
and another auxiliary system (AS), whose
outputs are considered as reference signals
(e.g., stored replicas);

• Noise and interference components of the array
and AS must be independent;

• It is not necessary to explicitly know noise SCM
and the details of the AS.

• The AS may even be a non-linear system!

• Synchronization time shift must be lower than the
signal correlation time.
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(Almost-)deterministic model

• Includes as a limit case the purely deterministic
model with known training signals (active radar).
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Generalized cross-correlation
(GCC)

• The GCC is the sufficient statistic for the quasi-
deterministic ML estimate. Array and AS signals
are individually spatially whitened.
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Parameter concentration

• Estimated location parameter are asymptotically (M→∞)
neraly decoupled by those of the signal covariances;

• The Gaussian ML estimates of signal-related
parameters are extracted as a function of location
parameters and back-substituted (imperfect
concentration);

• The orthogonal signal subspace is obtained by the left
singular vectors of the GCC, having singular values
close to one.

• Optimal subspace weighting is given by singular values
itself.
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GCC location estimates

• WSF, MUSIC and MODE are applicable, taking 
into account steering vector prewhitening.
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Sample SCM eigenspectra

• If η<D, signals are coherent. The number of
identifiable coherent sources diminishes.

• Sample noise eigenvalues are spreaded around the 
true value (asymptotical Chi-squared distribution).
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Sample GCC singular values

• GCC sample singular
values are close to one for
sources, while the others
decay to zero while
increasing M.
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Rotational invariance
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• Some algorithms (ESPRIT, MODE) exploit the

rotational invariance (phase factor) existing among

steering vectors of two or more subarrays

characterized by a translational invariance.
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ESPRIT (Roy e Kailath, 1985)

• Exploits GCC and rotational invariance concepts.

• Makes it easier the selection of the sources of
interest from subarray outputs.

• Irremediably sensitive to mutual coupling
between close subarrays.
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Source number estimatiom

• From SCM and GCC only the number of uncorrelated
impinging signals can be estimated from the eigenvalue
spectra.

• Coherent source resolution can be only asserted by the
value of fitting residuals compared to the noise floor
estimate (search for one more source…).

• The data projection on the noise subspace asymptotically
approaches a (M by N-D) random matrix with i.i.d.
Gaussian entries for which several eigenvalue bounds
exist.

• This is a relevant consequence of the asymptotical
independence of eigenvector and eigenvalues estimates.
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Likelihood ratio for signal 
detection in the SCM

• For η signals, N sensors and M samples:
– (N-η)th power of the ratio between the geometrical and

arithmetical means of supposed noise eigenvalues (equality
test);

– upper bounded by one.
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Theoretical Information Criteria

• Minimize a cost function given by the scaled log-
Likelihood Ratio LR plus a penalty term dependent on 
the sample size and the number of free SCM 
parameters for all hypotheses between zero and N-1 
signals present.

• MDL is asymptotically consistent, but tends to 
underestimate the number of signals in finite sample, 
while AIC always tends to overestimate it.
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Random matrix approach

• Tries to estimate a bound for the largest sample
noise eigenvalue for each hypothesis.

• Sets a lower threshold for signal eigenvalues.

• Results available under several assumptions.

• For Gaussian noise, sample eigenvalues can be
approximated in large sample by ranked Chi-
Square or even Gaussian independent random
variables.
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Source copy and validation

• A heteroscedastic GLS fitting is finally performed to
extract source signals of interest.

• Specially designed LCMV or even robust
beamformers may advantageously replace the LS
fitting in many cases.

• If the last condition on LS error is not fulfilled in a
statistical test, there are other (maybe coherent)
sources to find!
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Statistical test breakdown

• Temporal aliasing and spectral leakage from receiver
filters create non-white, non-stationary noise fields.

• Finite receiver bandwidth creates a multi-rank source,
i.e., ghost sources.

• Any existing academic statistical model will break
down! Simple, regularized tests may perform
acceptably and even better than sophisticated ones.

• Wrong number of sources implies some loss of
location accuracy of all sources, starting from the
weakest ones, or even a catastrophe at high SNR.

• Consistency may be lost due to the use of an
automatic source detection criteria: in some trials bias
or over-fitting may spoil the overall estimates.
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Remarks

• All these detection techniques are based on the 
assumption that the signal covariance rank is finite
and equals the number of arrivals (rays) rather that
the number of uncorrelated source signal, as it is.

• ML techniques are robust (softly degrade their
consistency and may lose weak sources) in the 
presence of covariance rank underestimation, but too
weak detected source may catastrophically impact 
estimation of stronger sources at high SNR (the 
Fisher Information Matrix becomes ill-conditioned).

• MUSIC is robust to rank overestimation instead, but
finds non-existing weak arrivals to be pruned later.
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Self calibration

• Theoretically feasible only for lightly loaded arrays
(i.e., D<<N) with sufficient degrees of freedom in the
SCM, in addition to location and covariance
parameters.

• Requires a parametric, compact model for steering
vector errors.

• ML or subspace functional optimized for all
parameters.

• In most cases, some parametrizations lead to singular
Fisher Information Matrix (hence some parameters
are not uniquely identifiable).

• Several scenarios are anyway required to fully identify
a valid re-calibration matrix.
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Compressed sensing for arrays

• Any near-optimal technique examined here realizes a 
near-optimal compressed sensing scheme (minimal 
number of sources and their parametrization).

• Especially for coherent scenarios and ML/WSF 
initialization one may attempt to estimate the number 
of sources by a semi-parametric, general purpose 
compressed sensing algorithm.

• A codebook of tentative steering vectors is fitted to 
the signal subspace.

• A solution involving the minimal number of 
parameters is sought, generally obtained by 
regularized L1 norm fitting.

10/03/2015 Robust and Wideband Array Processing I 291



Basic compressed sensing 
solutions

• The codebook subspace fitting has infinite 
solutions.

• The minimum L2 norm solution is very smooth 
with spatially distributed amplitudes.

• Solutions however exhibit beamforming type 
peaks in the vicinity of sources using appropriate 
spectral measures.
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Minimun norm L2 solution

• 10 sensors ULA, 4 
sources (10.2°,15.3°,-
20°,-30°), the first two 
are coherent, SNR about 
20 dB.

• Zero fitting error.

• No compression, no 
super-resolution!
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Tikhonov regularization

• A penalty is added to 
the cost functional to 
suppress small solution 
coefficients.

• Tikhonov regolarization
makes the error non-
zero, but the solution is 
still smooth and full.
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L1 penalized solution

• Very simple 
version

• Five sources 
detected

• Sparse solution 
with many zeros

• Heavy 
computations
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Other CS type solutions

• More sophisticated L1 penalized functionals.

• Orthogonal Matching Pursuit (Cadzow 1990):
– sequentially adds tentative sources minimizing the WSF LS 

fitting error from a steering vector codebooks;

– first used in WSF initialization;

– re-proposed by many computer science authors in a 
simplified, less performing version!

• Direct pseudo-spectrum optimization. 
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General purpose CS drawbacks

• No consistency claims is possible if all the source 
DOAs are not in the codebook!

– source splitting.

– source excision.

– ghost sources.

• Unclear detection and threshold strategies.

• Uncertain convergence: the important Restricted 
Isometry Property (RIP) is never satisfied for 
increasingly close DOA angles!
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Conclusions about CS

• General purpose compressed sensing is only 
interesting for data exploration and optimal 
algorithm initialization.

• CS is a Mathematical, non-physical viewpoint. 

• Uncertain interpretation of results.

• High system complexity.

• No theoretical guarantees!

10/03/2015 Robust and Wideband Array Processing I 298



PERFORMANCE AND 
ROBUSTNESS OF ARRAY 
PROCESSING

PART V
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Error sources in array 
processing

• Signal-related 
errors

– Finite sample 
errors

– Heavy-tailed 
distributions

– Outliers

– Non-stationarity

– Spectral leakage

– Temporal aliasing 

– Non-linearity

• Model-based 
errors

– Coherent sources

– Calibration errors

– Multipath & 
multimode 
propagation

– Reverberation 

– Ambiguity

– Environmental 
changes
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First-order perturbation
analysis

• Statistical analysis of array processing algorithms
is not easy or productive with traditional
techniques, because they are strongly non linear.

• The so called (first-order) perturbative method
has a widespread relevance for this task.

• It works calculating the sensitivity w.r.t.
parameters of the linearized model, a kind of
Newton derivative.

• Valid for moderate to high SNR and sample size
and sufficiently small perturbations.

10/03/2015 Robust and Wideband Array Processing I 301



Perturbative techniques

• These techniques are strongly tied to the CRB
concept and can analyze the statistical impact of
various parameters and give a clear geometrical
significance to estimation errors.

• Asymptotically, the linearized estimator around true
parameters assumes the form of the interpolation of a
random vector on a fixed basis, where the unknown
are the parameter estimation errors.

• If the random vector is asymptotically Gaussian
distributed, as often it is, the local ML estimator is the
local linear LS fitting.

• Anyway, the local BLUE estimator is still the LS one!
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SCM eigenvector perturbation
(Golub 1989)
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• The EVD of a Hermitian matrix R perturbed by another

Hermitian matrix εR(1) is expanded in Taylor series w.r.t. the

dummy variable ε (scale factor of the perturbation itself).

• A deterministic relationship (transfer function) is obtained

between terms of the same order in ε :

( )( ) ( )( )

( )

(1) (1) (1) (1)

(1)

(1)2

2

; ;diag ;

H

i jH

ij

j i

g

ε ε ε ε

ε
λ λ

+ + + = + + + +

−
∝ ⇒ = − = =

−

R R V V V V Λ Λ

R R v R v
V VG G G G 0

R

… … …

ɶ
≜

Robust and Wideband Array Processing I 303



Eigenvalue perturbation rewind

• Eigenvalue perturbation is asymptotically independent
from that of eigenvectors.

• Sample eigenvalue distribution is asymptotically Chi-
Squared with 2M degrees of freedom in the Gaussian
case, hence converging in large sample to a
Gaussian distribution.

• Eigenvalues estimates are asymptotically mutually
indipendent.

• IMHO, a more detailed stochastic model is not
desirable for most applications, because of the
dominance of systematic and random array model
perturbations on the SCM.
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Stochastic finite sample 
perturbation

10/03/2015

• The random cosine matrix G can be statistically characterized
w.r.t. a dummy variable vanishing with M.

• Perturbation strength is reduced by increasing the SNR;

• Since a good SCM estimator is asymptotically Gaussian and
unbiased for large M, EVD perturbation results are still valid for
a wide class of signal distributions (asymptotical robustness)
and ML or robust SCM estimators.

• Perturbations of signal eigenvectors into noise subspace are
mutually uncorrelated!
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Asymptotical analysis of WSF
(Viberg 1991)
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A deterministic relationship between parameter estimation

errors and finite sample signal subspace perturbation is found

by equating first order tems in ε:
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The local linear system
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• Location errors are separable from spectral errors in C(1) by

projecting both term of first order expansion onto the

orthogonal complement of A(p), defined by the orthonormal

basis U:
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Asymptotical considerations
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• The design matrix F is fixed and characteristic of the array

and environment.

• The target vector r is instead random and depend on the

elements of G;

• If r is Gaussian and the array is perfectly calibrated, the

MLE (and BLUE) is locally given by a local LS interpolation

(i.e., by the classical WSF).
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MODE vs. MD-MUSIC

• Two coherent sources at 0° and 15° in AWGN.

• Eight sensor ULA, d=0.5.
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SNR thresholds

• Non-linear parametric estimators are typically affected
by gross estimation errors whenever the square root
CRB approaches about one half of the angular
separation of closely spaced sources (at low SNR) or
model uncertainty becomes of the same order of
magnitude as finite sample errors (at high SNR).

• For medium SNR asymptotically efficient estimators
do approach the corresponding CRB.

• Introducing further information about SCM structure,
such as forward-backward relationships for ULAs,
may improve bounds and estimator performance, at
least in the absence of model errors.

• However, if model errors do not satisfy assumed
symmetries, performance may be worsened.
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Gross errors presence and 
experiment validation

• Gross errors put into evidence by comparing the
non-robust sample standard deviation plot vs. the
robust Median Absolute Deviation (MAD) plot,
trimmed to a Gaussian distribution.

• However, even MAD has a non-regular behavior.
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Discussion

• This perturbation analysis gives also origin to a
practical, state of the art, Newton type local
optimization of the difficult WSF functional.

• The first order perturbation is valid for a large SNR
range and can be adapted in principle to any kind of
error.

• It demonstrates that no other algorithm based on the
SCM can have better large sample estimation
variance than WSF, which must equate the ML one,
i.e., approach the CRB, under mild conditions.

• The asymptotical perturbative setting makes it easy to
analyze the statistical impact of any local equation.
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Model errors effects on the 
SCM

A. Eigenvalue bounds based on a single
deterministic perturbation.

B. Statistical analysis based on a deterministic or
random steering vector perturbation model.
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Eigenvalue deterministic bound

• Steering vector errors modify eigenvector
directions and eigenvalues of the SCM.

• Static mis-calibration does not affect noise
eigenvalues (the signal subspace rank is not
changed).

• Time varying errors during acquisition (e.g.,
originated by scattering, motion) modify noise
subspace eigenvalues and eigenvectors.
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Notes on the deterministic 
bound

• Typical values of ε between 0.01 and 0.1.

• It is a pessimistic bound in general, but shows
that closely spaced sources may inflate
eigenvalue changes through an high condition
number of the steering matrix.

• Noise subspace is not spherical anymore with
time-varying errors.

– Large sources may mask weaker ones;

– Source number detection must take this fact into account.

• Noise pre-whitening (not analyzed here) may
further inflate mis-calibration effects.
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Eigenvector perturbations
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Array

Long range

Multipath (new 

source)

Near sensor multipath
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Near source scattering
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Sensitivity to model errors

• SCM signal eigenvectors act as independent,
cleaned snapshots, asymptotically summarizing
all available information of the SCM.

• The finite sample WSF optimal weighting
amplifies model errors for high SNR sources and
small eigenvectors originated by coherent ones.

• An uniformly weighted signal subspace (used by
the so-called MD-MUSIC) improves results in
many of these cases at a significant expense of
statistical efficiency:
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Typical model error effects

Calibrated array Random 2% RMS array 

errors
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Statistical robustness

• An estimator is said qualitatively robust if:
– it is near optimal (i.e., near asymptotically efficient) to the

central (nominal) model, often a Gaussian one;

– a moderate perturbation (on the data or model side) produces a
statistically bounded estimation error;

– a large contamination acting on few samples (e.g., lightning)
cannot significantly impair the entire estimate (bounded
influence function).

• A truly robust estimator has bounded impact of any
SCM estimator and is a minimax estimator of some
kind (minimizes the maximum risk of bias and
variance).

• Array parameter estimators are essentially M-
estimators, i.e., they are based on non-linear
functional optimizations, difficult to make robust and
reasonably efficient from a statistical point of view.
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Robustness hints

• Gaussian ML estimation is intrinsically non-robust,
because tied to a single, well behaved distribution,
leading to an unbounded statistical impact.

• Subspace algorithms instead work through an
intermediate statistic (SCM, GCC), which can be
made robust in principle against data contamination.

• Gaussian-based estimators applied to a robust
statistic are essentially robust to data distribution.

• However on the equation side it is possible an
asymptotical mismatch: while increasing the sample
size, local equations remain related to a wrong model,
while the (robust) statistic converges to the true SCM!
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Signal-related errors

• Finite sample effects have been analyzed in
depth for localization and beamforming. In many
cases they are not the primary source of
impairment in practical applications

• Outliers, non-stationarities and heavy-tailed
distributions are rather dangerous and can be
afforded within the framework of robust SCM
estimation.

• In any case, the reference (central) statistical
signal model should be Gaussian, or, at least,
elliptical. Without this assumption, existing array
processing algorithms must be completely re-
designed.
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Model-related errors

• They constitute the main thread to array
processing algorithms even for small
perturbations.

• Consequences on direction finding algorithms
are:

– Non-consistent detection of the number of sources
(imperfect noise whitening, weak signal masking);

– Bias;

– Gross errors in parameter estimation;

– Estimation variance plateaux at high SNR (the classical
CRB is not valid anymore).
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Qualitative robustness

• WSF and ML weight model errors about
proportionally to the sum of signal powers:

– Masking of weak signals;

– Errors of all sources contribute to the DOA estimate error.

– Subspace fitting inconsistent if only some steering vectors
are poorly calibrated w.r.t. the true environment.

• MUSIC is only sensitive to the relative steering 
vector mismatch of the analyzed source (other
sources are cancelled anyway by inversion).

• MUSIC  pseudo-spectrum is insensitive (i.e. 
qualitatively robust) to zero-mean reasonable
random steering vector perturbations.
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Model errors as hidden 
coherence effects

• Most model errors can be viewed as a result of mis-
calibration and some unexpected form of signal
coherence.

• Model errors at low SNR and/or moderate sample
size are masked by finite sample errors. Thus the ML
estimator still essentially minimizes the estimation
error at low SNR.

• After a certain threshold SNR, model errors show up
as irreducible bias and excess estimation variance.

• Weak algorithms exhibit a breakdown at high SNR
with a non consistent behavior (variance may even
increase with SNR!).

• Excluding very low eigenvectors in coherent cases
raises the low SNR threshold, but may avoid
catastrophe.
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Random i.i.d. steering vector 
errors 

• Steering vector error often assumed i.i.d.
between sensors and directions.

• SCM diagonal loading depending on error
strength and overall signal power.

• Formula useful for modified MMSE signal
subspace estimation and LCMV beamforming.
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Coherent multipath model

• By hypothesis, all the multipath arrivals happen
well within the duration of the temporal impulse
response of the analysis filter

• Otherwise, SCM aliasing results and a new
uncorrelated source appears.

• The actual array response (steering vector) is a
linear combination of elementary steering
vectors, one for each multipath ray.
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Classical ML approach

• Elementary steering vectors individually belong to a
calibrated manifold (e.g., plane waves parametrized
by their propagation directions).

• The SCM rank is less than the overall number of
multipath arrivals.

• The combination coefficients are further unknowns to
be estimated from the sample SCM.

• High number of unknowns and few independent
observations are the receipt for bad parameter
estimation.

• In addition, multipath coefficients often are time
varying (fast fading), impairing the rank limited SCM
source signature.
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Fast fading model

• Simplicistic scattering models are often used in
telecommunications (circle, independent fading
coefficient at each sensor).

• The mean SCM source signature is multi-rank,
but is spread essentially within a rather small
angular sector, not filling the entire space, and
badly conditioned.
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Drawbacks

• It is practically impossible to calibrate for all possible
multipath sources (far field, near field, spatially extended
sources, etc…).

• The overall number of resolvable sources diminishes,
because the number of unknowns and the CRB increases.

• Rays (or small “difference type” eigenvectors) below a
threshold SNR are badly estimated and damage the overall
performance.

• Only critical ML searches and some suboptimal subspace
techniques (spatial smoothing) can be used.

• The overall number of sources can be estimated by
information theoretic criteria only by sequentially fitting a
set of competing models on the data.
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Finite bandwidth source SCM
signature

• The SCM source model is multi-rank.

• The source subspace is confined within the subspace of
the steering vector, plus its low-order derivatives vs.
frequency.

• SCM structure is rather involved for ciclostationary sources.

• Aliasing and spectral leakage from filters further complicate
this formula.

• Multi-rank signature places a severe upper limit to the
detectability of weak sources spatially close to stronger
ones.

• The dominant eigenvector of a properly selected single
source SCM is a better replacement for the steering vector
at the central bin frequency (i.e., a best rank-one SCM
approximation).
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Finite bandwidth source SCM
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Matched-field processing

• In many cases, the multipath structure is not
completely arbitrary (seismics, low-flying aircrafts
on the sea, ducts, shallow waters, microphone
arrays within rooms) or it can be accurately
estimated (quasi-static radio links).

• Solutions of the hyperbolic wave equation are
quite insensitive to reasonable changes of
boundary conditions and losses in the medium.

• The array response is made by a linear
combination of modes, whose coefficients
depend upon source location.
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Matched-field signal model

• A baseline solution is computed by a wavefield
simulator for a given environmental parameter
vector c (propagation speed, reflection
coefficients at the boundaries, surface roughness
indexes,…).

• A random error vector takes into account
wavefield approximations and uncertainties.
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Properties of matched field 
model

• The matched-field model is often capable of 3-D
localization and beamforming, together with the
identification of some environmental parameters
(as in seismic migration).

• The number of array sensors must be higher
than the number Q of significant modes for an
unique matched-field source representation.

• Ambiguity in the presence of multiple sources
increases in reverberant environments.

• There is some freedom in choosing Q for the best
bias/variance trade-off of the overall matched-
field modelling.
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Example: Low-flying beacon

• The main contribute to the
steering vector is due to
the direct path and the
reflected path from the
image source

• Phase relationships are
rather stable

• Diffuse multipath is also
present, depending on the
sea state

• Height and distance of the
beacon are both
identifiable with a sufficient
vertical array aperture
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Matched field MUSIC for 
specular multipath

• Steering vector is an unknown combination of the
steering vectors of the target and of its reflection(s)
from spread virtual sources, plus a random term.

• MUSIC can robustly cope with random array errors.
Do not ever try this with ML or WSF!

• Constrained minimum eigenvalue problem at each
candidate target location.
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Real-world data examples

• Narrow-band matched-
field localization 
experiment at the 
INFOCOM Dpt.

• Wave-field simulated by 
the virtual source Matlab
program

• Recorded data well 
matched to simulated 
responses

• One sharp peak exists in 
the MUSIC pseudo-
spectrum for a single 
source (above). 

• Many spurious peaks arise 
in the two-source case 
(below)
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Robust matched-field array 
processing

• Matched-field processing inherently calls for
robust estimators due to practical wave-field
approximations.

• Capon-type adaptive beamforming is the
preferred basic matched-field technique for both
signal copy and source localization tasks in
uncertain environments.

• Both the SCM and the signal model can be
modified.

• Robust adaptive LCMV beamformers are
required because of the risk of common errors in
pointing, calibration, bad constraint setup, etc…
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Robust matched-field adaptive 
beamforming approaches

• Statistically robust SCM estimation against finite 
sample errors and outliers.

• Mutual coupling correction.

• Optimal quiescent vector selection in a random 
environment.

• Direction-dependent linear constraints.

• Quadratic robustness constraints.

• Wideband ML steered beamforming.

• Matched-field focusing.
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Robustness to signal 
distribution

• Noise is often Gaussian, but not always.

• Non Gaussian signals of interest may appear when
using the unconditional model.

• A set of distributions close in some norm to the
Gaussian one or a contaminated Gaussian
distribution is assumed as reference.

• Robust SCM estimation is all what is needed for
subspace estimators.

• Rotation properties of the scatter matrix (implicit by
MUSIC, ML, WSF…) are not always maintained by
robust SCM estimators.

• Bias and nonnegative SCM estimates may result. Use
regularization (e.g., add a scaled identity matrix)!
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Main basic approaches to SCM
robustification

• Independent robust estimate of each cross-sensor
correlation (or cross-correlation coefficient).

• Robust scale estimation along many different slices of
the SCM (as in Bartlett beamforming), followed by a
non-negative covariance fitting.

• Rotationally invariant robust SVD (PCA) by iterative
re-weighting of the norm of each observation.

• Clustering of snapshots based on some heuristic
criteria (norm, alignment), followed by outlier excision
and robust SCM estimation of remaining ones.
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Robust cross-correlation
coefficient

• A robust correlation coefficient is separately computed
among all real and imaginary part of sensor output signals.

• Quarter-square identity is used.

• SCM for circular signals is reconstructed.

10/03/2015

{ }

2 2

2 2 2 2

( ) ( )2
( , )

( ) ( )

ˆ ( , ) median ( , ); 1,2, ,

median( )
; ( ) median median( )

( )

ˆ( , ) ( ) ( , ) ( ); , 1, ,

1,

k i k j k i k jk k
k i j

k k k i k j k i k j

i j k i j

i i
i

i

i i j j

S c s S c sc s

c s S c s S c s

k K

S
S

i j S S i j P

i

ρ

ρ ρ

ρ

+ − −
=

+ + + −

= =

−
 = = − 

= =

=

y y y y
x x

y y y y

x x x x

x x
y x x x

x

R x x x x

…

…

…, 1; 1, ,P j i P− = + …

Robust and Wideband Array Processing I 342



Robust element-wise SCM
estimate

• Quality of the estimate is tied to the robust scale 
estimator S(x) used.

• The SCM estimate may not be positive definite 
(regularize it…).

• SCM estimate is not invariant over 
orthogonal/unitary transformations (conceptual
issue for PCA).

• The presented robust SCM has high resistance
to outliers (~25%), but it is far from efficiency at
the multivariate Gaussian distribution.
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A clever orthogonally invariant
use of robust SCM

• Compute robust SCM as indicated.

• Compute EVD and save eigenvectors.

• Rotate the data matrix with these eigenvectors.
a) Compute a robust scale estimate of rotated columns (i.e.,

robust singular values) and reconstruct a positive definite
SCM.

b) Identify, remove or clip outliers, then compute a Gaussian
or pseudo-vcovariance SCM estimate.

• Constrain SCM estimate for circular signals.

• Bias might result, not a cheap approach, but
useful for accurate data inspection.
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Robust SCM estimation
• Processing strictly tied to the sample SCM eigen-

structure.

• Excision of anomalous snapshots (outliers).

• Adaptive re-weighting of remaining snapshots for 
SCM estimation (pseudo-covariance).

• Pseudo-SCM eigenvalue regularization.
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x2

e2

e1

Outliers
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Pseudo-covariance

• Robust ML estimation of a least informative, elliptical and
circular multivariate PDF.

• PDF choice limited by numerical considerations.
• An improper PDF often results.
• Used for clutter SCM estimation in radar.
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Notes on pseudo-covariance

• Pseudo-covariance preserves the orthogonal
transformation property of the Gaussian ML SCM
estimate, so common subspace fitting estimators can
be applied without modifications.

• Preserves the independence of observations.

• It is able to equalize by construction the statistical
impact of all snapshots on the SVD, so it is useful in
clutter scatter estimation, where samples are taken
ad differente ranges and some bins can contain
targets.

• It is not able to locate even one faulty sensor.

• Fine for moderately long-tailed noise distributions
(e.g., shrimp noise in underwater sonar).
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Robust beamforming

• In extreme cases multi-source high resolution
estimators substantially fail in locating signals of
interest.

• A Capon based robust beamformer can be a
better choice than WSF or MUSIC, even for
signal copy.

• Antenna movements, near-field scattering, time
varying multipath, pointing errors, uncertain
propagation medium (non-homogeneous,
stratified) are always present.

• Standard Capon is surely weak under coherent
environments.
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Signal cancellation in adaptive 
beamforming

• The signal of interest leaks in the blocking
subspace.

• The quiescent path and the adaptive sidelobe
canceller both contain the signal of interest.

• If the SNR in the blocking subspace is greater
than about 0.5, the signal at the beamformer
output is almost completely suppressed.
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Diagonal loading

• The finite sample variance of adaptive beamformers
mainly depends on the amplitude and spread of the
smallest (noise) eigenvalues of the empirical SCM.

• Small eigenvalues can be fully suppressed in a Principal
Component Analysis framework or increased by a
constant quantity, or raised above a threshold
(eigenvalue thresholding).

• The simple diagonal loading applies the same amount of
regularization noise to all eigenvalues.
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Linear constraints on LCMV

• Static linear constraints were often inserted on
the LCMV weight vector design.

• In particular, gradient constraints are useful to
mitigate effects of pointing errors.

• The beamformer mainlobe is however enlarged
and any constraint strategy can be defeated by
certain array perturbations.

10/03/2015

( ) ( ) ( )
1

1

0

0

H

qp p

 
  ∂ ∂  = 
 ∂ ∂  
 
 

a p a p
a p w⋯

⋮

Robust and Wideband Array Processing I 351



• A true robust beamforming procedure should not
be tied to an exact error modeling.

• Robust beamforming should withstand array
perturbations of any kind up to a pre-specified
leverage point.

• So it should be a minimax procedure of some
type.

• All developed robust beamformers make use of
adaptive diagonal loading in various forms.

• A finer error model specification is un-desired!

Minimax robust beamforming
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Optimal matched-field 
quiescent vector

• It represents the best fit of a vector to a set of steering
vectors simulated within a ball in the space of
environmental parameters, centred around a set of
nominal parameters

• The optimal quiescent vector is proportional to the
dominant eigenvector of the ball scatter matrix.
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Linear constraints for robust 
matched field beamforming

• The eigenvectors corresponding to the negligible
eigenvalues of A define the blocking subspace

• The weight vector should not have significant
projections along remaining eigenvectors to
avoid cancellation of the useful signal in adaptive
beamforming.

• These constraints are globally expressed by the
undetermined set of linear equations:
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Quadratic constraints

• Cancellation can be mitigated in a minimax
approach by keeping the norm of the adaptive
weight vector below a certain threshold.

• This is a ridge regression problem, equivalent to
an optimal diagonal loading.

• Requires the solution of a secular equation
involving sample SCM eigenvalues.
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Equivalent constraint 
formulations

• The SNR threshold approach leads to a similar norm
bound.

• The MV beamformer output power can be maximized
for a steering vector in a ball around the nominal one
(Robust Capon beamforming by Luo, Li and Stoica)

• The resulting ridge regression is equivalent to a
convex optimization problem (Vorobyov), but it is far
more computationally efficient.

• It is equivalent to a non-linear compression of
dominant SCM eigenvalues.
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Robust beamforming example
• Two uncorrelated, equi-powered Gaussian sources at 15°

(no. 1) and 31° (no. 2), SNR = 20 dB.

• Source no. 2 with five fully coherent scatterers with SNR 
around 0 dB, located at 28°, 29°, 30°, 31° and 33°.

• Beamformer aimed at 30°.

10/03/2015 Robust and Wideband Array Processing I 357



Comments on robust Capon 
beamforming

• The MVDR beamformer places several lobes on
coherent scatterers to cancel the main source no.
2.

• The MVDR weight vector has very high norm
(i.e., noise amplification).

• The light robustification herein performed by
norm limitation reduces the weight vector norm,
stabilizes the mainlobe and avoids significant
cancellation by nearby coherent scatters.

• The null placed on the interference source no. 1
is however widened in the robust beamformer.
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Space-time coding robustness
• It can be viewed as a special matched-field 

beamforming problem.

• Lack of robustness constraints with respect to the 
array response H can lead to:

– part of signals of interest creates a nearly white background 
noise field. 

– SNR and upper rate bound reduction of each extracted 
stream due to uncorrelated friendly noise superposition.

– high risk of complete link loss.
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Space-time coding issues

• Limited accuracy of array steering vector
estimation, due to non-stationarity and short
training sequences.

• Non-independent, but low-rank sector correlated
fading.

• Some approaches taken by matched field
models, such as picking only the largest
eigenvectors of the array transfer matrix.

• Not much space for improvements, except
adopting diagonally loaded signal copy for robust
MMSE signal estimation.
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Narrow-band model limitations

• Low number of independent snapshots available
for a given observation time in reverberant
environments.

• Very fine frequency resolution required in most
applications:

– Analysis must be repeated for several close frequencies,
leading to a wide-band, but incoherent processing.

– Excessive number of free parameters (curse of
dimensionality) and high estimation variance.

– Analysis unable to really separate contributions of various
propagation modes.

• High wavefield ambiguity in reverberant
environments.

• Much superior efficiency of robust algorithms in
wide-band scenarios.
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WIDEBAND ARRAY 
PROCESSING

Part VI
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Wide-band array processing

• Narrow-band model conditions for identifiability
are not fullfilled in relevant applications (sonar,
acoustics, seismics, UWB communications).

• Wide-band signal model radically changes with
frequency.

• The common research goal is of extending the
appealing geometrical narrow-band approaches
to wide-band environments.
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The boundary between narrow-
and wide-band settings

• The general array convolutional model must
surely replace the instantaneous narrow-band
mixing model when the SCM is not anymore the
sufficient statistic for Gaussian ML identification.

• This happens when the effective length of the
array output multi-channel correlation (the largest
impulse response length plus the signal
correlation length) exceeds one sampling period.

• In this case the sufficient statistic for Gaussian
ML identification in the stationary case becomes
the space-time covariance matrix (STCM).
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Wide-band and UWB paradigms

• Array design and performance are tied to the ratio
between physical distance/aperture and the operating
wave-length.

• Below λ/4 inter−sensor spacing, element responses
become too similar (redundant) and mutual coupling
effects quickly increase.

• Over λ/2 spacing, ambiguity appears in various forms.

• Over one octave signal bandwidth, amplifier and
receiver linearity becomes critical (IMD products).

• So it makes sense to speak about an Ultra-Wide
Band (UWB) paradigm when bandwidth is greater
than about one octave.
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Space-time covariance matrix

• The STCM is the multi-channel covariance matrix 
between all (zero mean) sensor outputs and their 
delayed versions up to a certain order P.

• The space time snapshot is also introduced.
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STCM block structure

• The STCM has a block Toeplitz structure in the
stationary case, useful for building fast estimation
algorithms.

10/03/2015

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

0 1 2 1

1 0

2 1

1

1 1 0

xx xx xx xx

xx xx

xx xx

ST

xx

xx xx xx

H

xx

P

P

p E m m p

 − − − +
 
 
 

=  
 
 −
 

−  

 = + 

R R R R

R R

R R
R

R

R R R

R x x

⋯ ⋯

⋱ ⋱ ⋯ ⋮

⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋯ ⋯ ⋱ ⋱

⋯ ⋯ ⋯

Robust and Wideband Array Processing I 367



STCM hints

• In some cases, the narrow-band steering vector might
be considered as constant across the signal
bandwidth, but source signals and/or the background
noise are temporally correlated. It is easy to verify
that the STCM must still be used instead of the
narrow-band SCM, which implies P=1.

• STCM can be built with either (complex) pass-band or
(real) low-pass signals.

• Integer delays have uncertain and slow convergence
to the array response across the full digital bandwidth.

– Signals can be oversampled and then low-pass filtered.

– By Papoulis theorem, the integer delay expansion can be
replaced by more quickly converging expansions, based on
Laguerre generalized FIR (dispersive transmission lines) or 1-D
Gauss-Hermite filters banks.
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Array model representation 
accuracy by STCM

• Many wide-band signal properties can be better
assessed in continuous time.

• Even under the finite bandwidth hypothesis,
discrete time FIR (MA) type array models have
inherent approximations, to be evaluated for
each case.

• Sample Fourier transforms and integrals have
often to be performed by high order quadrature
and interpolation formulas.

• Estimation algorithms must take into account
these basic approximation errors.
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Delay of arrivals

• The simplest Ultra-Wide Band systems cannot afford
resources for operating on the huge STCM and operate in
non-critical environment (single dominating source, white
noise and uncorrelated sensors).

• So it makes sense to operate on selected STCM slices on
pairs of sensors.

• Non dispersive propagation implies a constant group delay
between sensor pairs, which can be the target of a
localization procedure instead of angles.

• Time Difference of Arrivals (TDOA) localizes sources in a
non-dispersive medium on one branch of a hyperboloid of
revolution with two sensors placed in the foci, approaching
a conical surface at long ranges.

• Al least two sensors are needed for far-field localization on
a plane, three in 3-D space, using cone or hyperbolic least
mean intersection.
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Time-Delay of Arrival (TDOA) 
estimation

• Assume that medium and sensor responses are
matched so that output array signals are delayed
copies of the same source signal immersed into
independent noise realizations.

• This model is often used in radio-astronomy,
radio-navigation, seismics, aerial acoustics and
UWB short-range communications.

• Fractional delay estimation implies oversampling.

• TDOA is measured between sensor pairs.

• In most cases, delays are clustered afterwards.
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Two-sensor 2-D TDOA model

• Angle θ measured from the broadside of the measurement
basis line passing through a sensor pair.

• Single baseband (real valued) source signal.

• Weakly temporally correlated source signals.

• Independent, temporally white, additive noise between
sensors.

• Wave-front direction is estimated from inter-sensor delays.
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Cross-correlation based TDOA
techniques

• Regression between two sensor signals.

• Optional estimation of sensor gain ratio.

• Maximization of the cross-correlation function.

• AMDF (i.e., MPEG-like motion compensation)
does the same thing in the L1 norm, more robust
to impulsive signals.
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Notes on cross-correlation 
techniques

• Popular in UWB communications and acoustics.

• Spurious peaks (delay ambiguity) for temporally
correlated signals.

• Biased cross-correlation estimates lead to biased
delay (angle) estimates.

• Discrete-time cross-correlation estimates interpolated
around peaks by a parabola (Jacovitti-Scarano).

• AMDF better performing in many experiments.

• Really suboptimal and weak estimators to sensor mis-
matching, reverberation and coloured source spectra.
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GCC TDOA models
• The two sensor model is essentially a quasi-

deterministic-model.

• The GCC, concentrated w.r.t. sensor output spectra,
is the sufficient statistic for this problem in the
frequency domain.
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GCC properties

• The GCC of two delayed signals contains a
disturbed harmonic vs. the analysis frequency.

• Whitening of sensor signals equalizes estimation
variance (a necessary condition for MLE…).

• Very insensitive statistic to signal and noise
spectra.

• Difficult consistent and unbiased estimation of
the GCC because periodogram estimates are
affected by finite bin width and spectral aliasing.
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Pre-whitened GCC

• Two-stage pre-whitening is highly preferable:
– A compactly parametrized pre-whitener (e.g., an AR one) is

preferably estimated from both sensor signals, averaging
the sum (LS) or the logarithmic sum (Approximate ML) of
signal prediction errors.

– Both sensor signals are pre-whitened in parallel, may be in a
block-wise fashion (as done in LPC).

– GCC is estimated by a very long DFT applied to whitened
signals.

– GCC is regularizes at (near-)zeroes of the spectra: however
these points will be missing data for harmonic estimation!

• Harmonic modulation is highly disturbing for
parametric delay estimation:

– PHAT: use only the phase component of the non-zero
sample GCC sequence.
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AR Pre-whitener
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TDOA estimation

• DFT applied to PHAT: very common and highly
sensitive to low SNR regions.

• Weighted LS fitting in the AML spirit, applied to GCC:
robust (bounded frequency sample impact), but
apparently unknown in the community.

• AR regression applied to GCC, robust to disturbed
(by delay spread) harmonics.

• MUSIC can often detect multiple delays even in
reverberant fields, but TDOA pairing is difficult and
require lots of sensor pairs (Di Claudio, Parisi, 2000).

• Cepstral pre-processing may improve PHAT
estimation (Di Claudio, Parisi, 2003).
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Final TDOA estimation
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TDOA pooling for arrays

• In 3-D localization, seismics (distorted wave-fronts!)
and multi-sensor estimation, several TDOAs are
estimated by different sensor pairs.

• If the TDOA pattern is unique for a certain location, it
can be compared with the estimated TDOA pattern
(Bienati, Spagnolini, 2001).

• TDOA sample errors by GCC or PHAT can be
assumed asymptotically Gaussian with zero mean
and variance inversely proportional to the SNR.

• Some gross error in TDOA estimation should be
expected: use robust LS interpolators (e.g., Huber
IRLS).
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LS (CC) TDOA pattern matching

• Very expensive in seismics, but quite acceptable
for ULAs, where multiples of a single delay are
searched for.

• Balanced (LCC) type functionals for TDOA
pattern matching may be preferable, since errors
are expected in both reference and measurement
sides.
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Multi-source localization by TDOA
spatial clustering
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TDOA actual performance

• The TDOA CRB in white noise is proportional to the
energy of the temporal derivative of the sequence, but
many error sources are present.

• The Bienati method approaches the single source
CRB in a vast SNR range.

• While GCC based approaches demonstrated good
results in ad hoc simulations and/or non-critical
environments, they cannot effectively afford:

– correlated noise (longer baseline needed, more ambiguity);

– multiple sources and specular reflections;

– sensor pair matching errors;

– signal copy (low gain and minimal interference suppression).
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New trends in TDOA estimation

• For moving targets, change rates of TDOA
increase overall accuracy.

• Complex non-linear ML fitting have been tried
(Estimate-Maximize procedures).

• Noise sensor inter-correlation and sensor
matching remain unsolved issues.

• STCM-based models were historically preferred
because of the similarity with their narrow-band
counterparts, higher flexibility and rigour of the
theoretical development.

• However any wide-band array model is
intrinsically approximated to a certain degree.
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STCM sinusoidal response

• Only a complex sinusoid has an exact rank one
signature on the STCM and should be
considered as the basis for further developments.

• The discrete time sinusoid frequency is tied to
the continuous time one by a mapping
determined by demodulation and sampling
operations.

• The space-time steering vector (STSV) is a
function of the continuous and discrete time
frequencies and of location parameters.
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Space-time steering vector
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The frequency subspace

• E(υ) is a basis for the STCM subspace potentially
spanned by all the steering vectors at a given
frequency, in absence of invisible space.

• Frequency subspaces and space time steering
vectors obey the following relevant DFT-like
orthogonality property.

• The narrow-band steering vector can be
evidently recovered by applying a multi-channel
(block) P-point DFT to the STSV.
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Signal subspace of a random 
source

• A stationary, random source has a multi rank
signature on the STCM with rank bound equal or
greater than P.

• Some signal eigenvalues can be really low.
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STCM source subspace rank

• No sharp rank bound: the source cannot be
completely characterized by P subband steering
vectors of a DFT (closure problem)!

• A well defined noise subspace still exists.
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STCM based techniques

• Frequency domain binning approach:
– A bank of critically sampled FIR filters (or a DFT) creates up to P 

subband signals from the space-time snapshots.

– Each subband signal approximates the narrow-band model.

– A SCM is estimated for each subband.

– Almost Gaussian subband signals.

– Difficult signal reconstruction.

– Signal non- (ciclo-) stationarity is smoothed out.

– Aliasing and spectral leakage.

– High latency design for stationary signals.

• Time domain delay and sum approach:
– Tapped delay filters or beamformers are applied to each sensor.

– Intrinsically UWB.

– Easy signal reconstruction, even not stationary.

– Low latency.

– High costs.

– Difficult multi-source location estimate.
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Welch DFT periodogram STCM 
estimate

• Estimates a constrained frequency transformed, block
diagonal STCM from independent space-time
snapshots.

• Assumes stationary signals, i.e.,enforcing zero
correlation among different frequencies.

– Divides each sensor output sequence into non-overlapping
segments of length P , whose stacking gives origin to the ST
snapshots.

– Applies a (windowed) DFT to each segment, forming P
narrowband frequency domain snapshots.

– Estimate subband SCMs from narrowband snaphots.

• Rather slow temporal convergence.

• Plagued by spectral leakage (bias) and temporal
aliasing.

• Asymptotically efficient w.r.t. observation time.
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Welch binning data flow
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Temporal correlation based
STCM estimate

• Separately computes cross- and auto-correlation
sequences for each sensor pair and put them in the sample
STCM.

– Biased temporal correlation estimator gives positive semidefinite STCM
estimates (in the absence of numerical errors).

– Can employ FFT for fast aperiodic correlation.

– Costly memory shuffling.

– Minimal degrees of freedom (Toeplitz blocks) for maximum stability.

– Long triangular lag window;

– Lower bias than Welch periodogram in STCM for typical STCMs.

– Fast statistical convergence for M>NP.

– Optional temporal window for non-stationary signal tapering.
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Covariance type STCM estimate

• Averages ST snapshots or builds intermediate
Toepliz/Hankel data matrices.

• Positive definite, unbiased STCM estimates.

• Fast SVD computation by conjugate gradient Lanczos
type algorithms with low condition number,

• Employs fast aperiodic convolution algorithms.

• Optional temporal snapshot tapering window.

• Huge memory requirements.
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Links between subband SCM 
estimates

• Welch periodogram subband SCM estimate is a 
Bartlett type estimator applied to the STCM.

• Capon MVDR SCM estimate is possible (Krolik):
– Spectral leakage suppression.

– Fast convergence.

– Signal cancellation issues for non- (or cyclo-) stationary
signals.

– Background noise SCM distortion.
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Work in progress

• Use 2-D Hermite-Laguerre expansion of the
array response, which turns out to be a
sophisticated beamspace transformation of the
STCM for ULAs.

– More accurate response modeling.

– Fast convergence (low degrees of freedom).

– Finite rank signal subspaces.

• Optimal rank detection of the sample STCM.

• Understanding observed loss of consistence of
Bartlett and Velch SCM estimators from STCM.
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Array design issues

• A single array cannot efficiently cover a
bandwidth larger than about one octave:

– Small aperture and high mutual coupling at low frequencies.

– Excessive spacing and ambiguity at high frequencies.

• Telescopic arrays with scaled, nested subarrays
are required for demanding UWB applications
(sonar, audio, ESM).

– Multi-ring circular arrays;

– Irregularly spaced arrays.

– Pruned arrays.

– Interpolated arrays.

– Difficult signal copy from sparse subarrays.
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Wideband beamforming on the 
STCM

• Mainly used in sonar, radar, seismic inversion
and ultrasound.

• Multi-channel convolution applied to the space-
time snapshots in time or frequency domain.

• Array model heavily changes with frequency.

• Huge data: heavy compromises between
computational power and global efficacy.

• Huge number of free parameters: constrained
architectures are searched.

• Delay and sum (adaptive) beamforming useful for
wide-band signal copy.
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Delay and sum beamformer

• Tapped delay lines (FIR filters) connected to each
sensor.

• Adaptive LCMV possible.

• Distortion-less response constraint inverts array
response to a desired response hd.

• Typically operates with two to four time oversampling.
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Delay-and-sum MVDR
beamformer

• Noise and independent interference collected in 
an additive vector v.

• DR constraint plus optional ones.
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Steered delay and sum 
beamformer

• Fractional delays align in time all the components
of the signal coming from the direction of interest.

• Short (narrow-band type) weight vector cancels
interferences while preserving desired signal.
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Focused beamformers

• Steered beamformers, preferred in radio-astronomy,
sonar and ultrasound, have the minimum number of
free parameters among wide-band beamformers.

• Interfering sources not well compressed in rank with
loss of degrees of freedom.

• Alternate formulation of steered beamforming in the
frequency domain after binning.

– Realign all the source steering vectors at bin frequencies onto
the corresponding steering vectors of a virtual array at least
within a sufficiently wide angular sector centered on the
direction of interest.

– Linear transformation (focusing matrices) of bin outputs.

– Unitary transformations preserve orthogonality between
constraint and blocking subspaces for adaptive beamforming.
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Focusing matrices

• Orthogonal (Procrustes) focusing matrices
– work only on the union of small angular sectors, one or two

beamwidths wide;

– rather high focusing errors;

– careful scaling of amplitudes and phases of steering vectors is
needed to avoid signal distortion;

– no off-sector spatial filtering capability.

• LS and equiripple interpolation:
– spatial filtering of off-sector sources;

– near singular focusing matrices for narrow sectors;

– wide angular sectors possible but with rather lage errors;

– virtual narrow-band array manifold must be within the span of
the (harmonic) modal decomposition of the manifolds of all
frequencies;

– reduced virtual array size often required to full-fill this
requirement;

– no directional ambiguity is allowed!
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Wide-band steered (focused) 
beamformer (STBF)
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Procrustes unitary focusing

• Based on the SVD and the orthogonal polar
factorization of matrices.

• i.i.d. steering vectors errors would induce bias and
can be consistently corrected in a LS sense by a
proper PCA.
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Remarks on unitary focusing

• Possible only within the union of small angular
sectors (< one beamwidth for each sector across
its central direction).

• Good academic simulation results based on 
heuristic (magic) angle selection and equation
weighting schemes.

• Non-convergence of iterated focusing.

• It is essential to match normalized and phase
centered steering vectors:

– Unitary matrices cannot change vector L2 norm. Steering 
vector normalization prevents irreducible fitting errors.

– Phase centering minimizes phase rotations within the sector
and the overall fitting error.
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Adaptive STBF

• Approximately common signal model for all
frequencies after preliminary focusing.

• Single weight vector of length N for all
frequencies.

• Refined quiescent vector in LCMV structure
against multipath.

• Capability of isolating, combining or suppressing
reverberation modes on the basis of their relative
group delays.

• ML-STBF is almost independent of the signal
spectrum and intrinsically robust to model and
finite sample errors.

• Targeted to seismic, underwater, ultrasound and
audio processing.
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MV-STBF
• Suppresses multipath delayed more than the
source only correlation time.

• Averages sample focused subband matrices.
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Stochastic ML-STBF

• Output subband signals are assumed as zero mean,
circular, Gaussian and mutually independent w.r.t.
time and frequency.

• Fast and safe modified Newton algorithm for training.

• Built-in linear and quadratic robustness constraints.

• Implicit time domain de-correlation of multipath and
focusing errors delayed beyond one sampling period!
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Choice of the adaptive STBF
quiescent vector

• Focused subband steering vectors are not
generally aligned on the same direction and do
not have the same magnitude.

• The optimal quiescent vector (i.e., the effective
focused array response) departs from the
(scaled) steering vector of the virtual array at the
pointing direction.

• An optimal quiescent vector should be within the
ball of focused steering vectors.

• Different optimality criteria can be established!

• All work much better than the standard one…
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Wide-band quiescent vectors
• The ML-STBF theory allows the development of 

a set of powerful, spectrum insensitive wideband 
matched-field quiescent vectors
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Quiescent vector choice

• ML vector preferable for applications to 
reverberant fields (spectrum estimation, imaging) 
since optimizes log-spectrum (real cepstrum) 
response.

• WAVES vector useful only for moderate 
reverberation level.

• PB-LS vector very robust under multipath.

• Further 1-D phase and magnitude control of the 
frequency response is required for correct signal
extraction.
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Comparison between the ML-
STBF and the robust MV-STBF

• Two coloured, uncorrelated far-field sources at 7 
and 15 degrees from broadside

• ULA 10 sensors, SNR 20 dB, 80-120 Hz, L=100
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Mediterranean Vertical Array 
Data - wavenumber scan

• Vertical ULA, 48 sensors moored in shallow 
water near the isle of Elba (SACLANT), WAVES 
vector, narrowband source at 160 Hz
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Acoustic source separation

• INFOCOM array (8 microphones)

• Bandwidth 400-1150 Hz

• ML-STBF + ML quiescent vector

• Unitary matched-field focusing
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Random scattering

• Optimal quiescent vectors can largely improve output 
SNR and multipath suppression/combination with ML-
STBF and MV-STBF.

• ULA 25 sensors, 0.8-1.2 GHz, L=100, 5% RMS array 
errors, 10 randomly located scatterers + far-field AR 
interference.
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Wide-band parametric 
localization techniques

• Incoherent techniques
– Separate localization within each subband with beamforming,

MUSIC, ML, WSF, etc….

– Clustering of location estimates in frequency.

– Low SNR clustering breakdown.

– Low independent sample number.

– No focusing issues.

– High number of narrow-band targets.

• Coherent techniques
– Single basic statistic for the entire bandwidth (STCM, subband

SCM set, etc…).

– Overall wide-band functional not completely consistent
(focusing, spectral leakage, pathological signals with few
modes).

– Bias and excess estimation variance at high SNR.

– Low SNR thresholds.

– Number of detectable sources lower than the sensor number.
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Coherent wide-band estimators

• Often assume independent bin information.

• Approximate ML or WSF estimates
– High statistical efficiency for all scenarios.

– Non-robust to mis-modeling at high SNR.

– Uncertain convergence to the true parameters.

– Need bootstrapping by suboptimal estimators.

– Lower SNR threshold limited by bootstrapping.

• Focusing techniques
– Start from focused SCMs or STCM.

– Performance limited by focusing errors at high SNR.

– Near-optimal performance at low SNR with final WSF/MODE
type estimators and full beamspace width.

– Virtual array choice very important for results (ULA or canonical
harmonic decomposition are the preferred manifolds for
focusing).

– Reduced Fisher information for reduced size beamspaces.
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Wide-band coherent WSF and 
Approximated ML estimators

• Assume the availability of independent subband
SCM estimates and the proper Gaussian
(elliptical) statistical model for data.

• Independency means non-overlapping bin filter
responses (insufficient for signal copy).

• Approximation mainly comes from:
– ignoring correlations among bin;

– finite bin bandwith;

– non-closed subspace fitting with subband steering vectors
measured at the central bin frequency;

– spectral leakage and aliasing (non-white, non-stationary,
statistically dependent noise background).
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Wide-band WSF and AML
• Given in advance:

– (whitened) SCM estimates;

– number of wide-band sources;

– array manifold for all directions and frequency of interest;

– good initial location guesses within a fraction of beamwidth.
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Wide-band coherent focusing,
CSSM (Wang-Kaveh 1985)

• Focused SCMs are averaged together to form an
universal covariance matrix USCM).

• A narrow-band location estimator is applied to the
USCM.

• Approximates a conditional (A)ML estimator.
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WAVES subspace focusing
(Di Claudio, Parisi, 2001)

• CSSM focusing errors impair consistency of
estimates;

• Focusing only weighted signal subspaces allows to
control the statistical impact of sample (corrupted)
subspaces.

• Subband sample signal eigenvectors play the role
of independent observations within a pseudo-data
matrix (Weighted AVErage of Signal Subspaces,
WAVES).
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WAVES location estimator

• A USCM is generated from WAVES and used for
narrow-band parametric estimation.

• The optimal, universal noise SCM is the same as
in CSSM at least in white noise.

• The optimal subspace weighting is the same as
the WSF one.

• WAVES approximates a coherent wide-band
WSF or UML.
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WAVES optional robust
weighting

• The WAVES is assumed as generated by samples of an
elliptical, zeo-mean, non-Gaussian multivariate
distribution.

• The USCM signal subspace is estimated by a robust
pseudocovariance trimmed on a Least Informative
Distribution (Huber 1981).

• Fine for coherent sources and strong interferers.

• Slight performance loss in non-critical scenarios.
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CSSM vs. WAVES

10/03/2015

• ULA focused in beamspace (N=8, M=100, J=33, D=4),

two white sources and two coloured AR interference

sources.

• Continuous line: WAVES; Dashed line: CSSM:

WAVES has smaller bias.

Robust and Wideband Array Processing I 426



CSSM vs. WAVES comparison

• CSSM may have a slightly higher performance
than WAVES at low SNR and with nearly white
sources (it is a conditional estimator).

• However WAVES can better afford non-white
spectra, strong and weak sources, discard empty
bins and asymptotically converges to the correct
subspace even if noise SCM is mis-specified.

• Under certain conditions (unitary focusing, no
focusing errors), WAVES is asymptotically
equivalent to the wide-band WSF.

• Both CSSM and WAVES can employ the same
focusing techniques.
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Notes on coherent focusing

• Focusing of any kind can decorrelate coherent
sources with a delay larger than one sampling
period.

• USCM signal subspace rank shrinks for really
coherent wave-fronts and requires the use of
MODE or WSF for final location estimator.

• Focusing is effective for fractional bandwidths up
to 50% and reasonably wide sectors.

• Unitary coherent focusing requires preliminary
beamforming to find source clusters.

• Unitary focusing can be performed only within the
union of source clusters, one-two beamwidths
wide each , to avoid excessive errors.
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Matched field WAVES

• WAVES puts in evidence and smooths out
random array perturbations, seen as excess
noise in the USCM.

• If steering vectors are derived by a matched-field
model, robust localization exploiting even 3-D
reflections is possible.

• WAVES noise subspace weighted with the
inverse sample noise eigenvalues (EW-MUSIC)
better compensates for reverberation effects
even in case of wrong estimation of the source
number.
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3-D localization experiment in 
reverberant field by MF-WAVES

• INFOCOM Dpt. microphone array, 600-1200 Hz

• Two acoustic sources in reverberant room at (2.10, 
3.11, 0.82) and (2.70, 3.11, 0.82) m

• WAVES + EW-MUSIC

• Matched-field focusing

• 15 calibration points

• 6 dB SRR

• Sep. 1/5 beamwidth

• Low bias
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Beamforming invariance 
focusing

• It is possible to focus the wide-band array on a
virtual array of smaller size, generally derived by
linearly (beamspace) transforming an ULA
manifold or an harmonic basis in azimuth.

• First the minimum LS error subspace is found for
a given angular sector and defines the final
virtual array manifold.

• The steering vectors at each frequency of interest
are fitted to the virtual target.

• Weighted LS error functional with angular
gradient error control (important for asymptotical
performance) gives best results.
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Weighted LS beamforming
invariance

10/03/2015

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )

0 00 0 0 00

1 0 0 1 0

0 0 0 0 0

1

1

1 2 1 2

2

0 1 0 0 0 1 0 0 1

, , ;

1
; ;

;

k k M k M

KQRD QRD
H H H H

k k k k k

k

H
EVD

N NN N N NN

LS
H H H H H H

k k

f f

K

η

η ηη ηη

η η

=

× ×   × − × −−   

−

×

   = =   

= = =

≅    
=     <    

≅ = =

∑

A a p a p A a p a p

WA Q R WA Q R C Q Q Q Q

Λ I 0
C U U U U

0 Λ I

WA T Q U C B C U Q W b p

⋯ ⋯

⋯ ( )0 M
  b p

Tentative virtual 

array response

Low error 

subspace
Arbitrary 

matrix

Refined virtual 

array response

Diagonal 

weight

matrix

Robust and Wideband Array Processing I 432



Focusing filters
• A bank of D&S wide-band beamformers is applied to

the ST snapshot and realigns all frequencies as in a
single narrow-band snapshot, albeit with correlated
signals and noise.

• Any set of focusing matrices for a finely spaced
frequency set can be rendered as a focusing filter
bank by frequency interpolation.

• Sophisticated numerical Inverse FT approximation is
required (wildly oscillating functions!).
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STCM based MUSIC 
(BASS-ALE)

• Exploits the STCM noise subspace.

• Not capable of coping with coherent sources.

• Small source power impact on functional.
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Work in progress

• The rich structure of the STCM can be exploited
for high resolution MUSIC type estimators for
high resolution narrow-band signal subspace
circumventing SCM estimation (STCM-MUSIC).

• STCM-MUSIC is very robust to the source
covariance structure and approaches the wide-
band CRB even with coherent and strongly
coloured signals.

• Exploits source power information.

• For any wide-band estimator, pure sinusoidal or
cyclostationary signal estimates remain the main
challenge.
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