
Bandwidth Management in Live Virtual Machine
Migration

Department of Information Engineering, Electronic and Telecommunication,
Sapienza University of Rome

Doctorate of Philosophy in Information and
Communications Technologies Engineering – XXIX Cycle

Candidate

Danilo Amendola
ID number 1596823

Thesis Advisors

Prof. Enzo Baccarelli
Ph.Dr. Nicola Cordeschi

Thesis reviewers:
Prof. Stefano Buzzi
Prof. Romano Fantacci

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Information and Communications
Technologies Engineering

15 December 2016



Thesis defended on 27 February 2017
in front of a Board of Examiners composed by:

Prof. Piero Tognolatti
Prof. Fortunato Santucci
Prof. Eugenio Martinelli
Prof.ssa Elena Pettinelli
Prof. Elio Di Claudio

Bandwidth Management in Live Virtual Machine Migration
Ph.D. thesis. Sapienza – University of Rome
ISBN: 000000000-0
© 2017 Danilo Amendola. All rights reserved

This thesis has been typeset by LATEX.

Version: January 29, 2017

Author’s email: danilo.amendola@gmail.com

mailto:danilo.amendola@gmail.com


ii

Abstract

In this thesis I investigated the bandwidth management problem on live migration
of virtual machine in different environment. First part of the thesis is dedicated to
intra-data-center bandwidth optimization problem, while in the second part of the
document I present the solution for wireless live migration in 5G and edge computing
emerging technologies.

Live virtual machine migration aims at enabling the dynamic balanced use of
the networking/computing physical resources of virtualized data centers, so to lead
to reduced energy consumption and improve data centers’ flexibility. However, the
bandwidth consumption and latency of current state-of-the-art live VM migration
techniques still reduce the experienced benefits to much less than their potential.
Motivated by this consideration I analytically characterize and test the optimal
bandwidth manager for intra-data-center live migration of VMs. The goal is to min-
imize the migration-induced communication energy consumption under service level
agreement (SLA)-induced hard constraints on the total migration time, downtime,
slowdown of the migrating applications and overall available bandwidth.

For this purpose, after recognizing that the resulting (non-convex) optimization
problem is an instance of Geometric Programming, I solve it by resorting to an
“ad hoc” developed adaptive version of the so-called primal-dual gradient-based
iterations and, then, I analytically characterize its feasibility conditions. The carried
out simulations point out that:

(i) the energy savings attained by the proposed bandwidth manager over the
state-of-the-art ones currently utilized by Xen, KVM and VMware hypervisors
are over 40% and approach 66% under strict QoS constraints;

(ii) the proposed bandwidth manager is capable to quickly adapt to the abrupt
changes possibly experienced by the dirty rates of the running applications
and/or the round trip times of the utilized (possibly, congested) TCP/IP
connections; and,

(iii) its actual implementation may be carried out in a distributed and scalable way,
and it consumes less than 1.5% of the CPU computing power per migrated
VM.

Second part of this work regards live virtual machine migration into a wireless
channel environment, to reduced energy consumption in future live migration context
for 5G and Fog computing (also know as edge computing). Then, I analytically
characterize and test an optimal tunable-complexity bandwidth manager for live
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migration of virtual machines in wireless channel. I present the optimal tunable-
complexity bandwidth manager for the QoS live migration of virtual machines
under a wireless channel from mobile device to Fog site/access point. The goal
is the minimization of the migration-induced communication energy under service
level agreement hard constrains on the total migration time, downtime and overall
available bandwidth. I solved the non-convex problem by resorting to suitably
developed adaptive version of the so-called primal-dual gradient-based iteration
and, then, I analytically characterize its feasibility conditions. Hence, I develop
and simulate the resulting bandwidth manager on a wireless migration environment
between a mobile device and a Fog site in scenarios 3G, 4G and WiFi, then, I test
and compare its energy performance through extensive simulations.

The thesis is organized in seven chapters, firstly three chapters are dedicated to
introduce the context and related work. Therefore, the core of the thesis is spread
into two distinguished parts. Finally, I conclude in Chapter 7 that is followed by
Appendix and Bibliography. Chapter 1 provide an introduction to virtualization
and data-center, in Chapter 2 I discus about the tackled problem and reference
technology, then, in Chapter 3 I describe related work for live migration of virtual
machine and an in deep presentation of current approaches to live migration is
provided (images have been crafted on purpose to improve understandability). Part
I, Chapter 4 is dedicated to intra-data-center bandwidth problem. Instead, Part
II, Chapter 5 and Chapter 6, concern live virtual machine migration in wireless
channel for 5G technology and Chapter 6 provide a brief discussion on the goodness
of multi-path TCP compared to single-path TCP. Finally, Chapter 7 contains the
conclusion of the thesis.
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CHAPTER 1
INTRODUCTION

The first computer virtualization was done in 1960s on IBM main-
frame by G.J. Popek and R.P. Goldberg: “Formal Requirements for
Virtualizable Third Generation Architectures” and in [1] 1974 they de-
scribes the roles and properties of virtual machines and virtual machine
monitors that we still use today.

- ,

Data centers structures are facilities to house server and network components
under an engineered solutions. Data centers provide optimized solutions with
intensive high performance, high reliability, and optimized energy consumption.

Data centers have their root in huge computer rooms of big industries. Nowadays
data centers are located all around the work and new interesting locations are
proposed recently (e.g. desert locations, deep sea, etc.), to take advantage of
environmental feature. Technology evolution changed the simple computer room
into evolved network systems capable to provide fast Internet connectivity and
non-stop operation to deploy systems and to establish always-on presence on the
Internet. This very large facilities, called Internet Data Centers (IDCs), or similarly
Cloud Data Centers (CDCs), that I call in a term: data center. They have enabled
businesses to do much more with much less, both in terms of physical space and
time required to create and maintain data.

During the last two decades data centers’ infrastructures quickly growing in terms
of number of devices, energy requirement and network complexity, therefore new
solutions was provided to better perform services with less energy consumption and
more reliability. Traditional data center, it is defined by the physical infrastructure,
which is dedicated to a singular purpose and determines the amount of data that
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can be stored and handled by the data center as a whole. Early data centers
offer sufficient performance and reliability, in particular considering there was little
point of reference. But slow and inefficient delivery was a prominent challenge,
and utilization was astonishingly low in relation to the total resource capacity.
A milestone evolution of data center is the Cloud, between years 2003 and 2010,
virtualized data centers produced a big revolution, made it possible to pool the
resources of computing, network and storage, using that resources to create a central,
with more flexible resource that could be reallocated based on customer’s needs.

We are entering in the era of cloud computing. Forecasting of mobile data traffic
increase thousand times in 2020 with respect to 2010, and doubling of mobile data
traffic every year [2].

With the deployment of 5G technologies the world will be fully interconnected
and those enable many challenging applications. With the mobile cloud computing
(MCC), more personalized and interactive services will be available with resource-
limited mobile terminals. Fifth-generation cellular networks aims to change the
world by connecting anything to anything.

Mobile cloud computing emerging in the context of 5G has the potential to
overcome resource limitation in the mobile devices (that appear as a bottleneck in
5G applications), which enables many resource-intensive services for mobile users
with the support of mobile big data delivery and cloud-assisted computing [3]. With
this considerations I write Part II of my thesis on live migration over wireless
5G context application. New generation of wireless networks will combine very
interactive and more responsive applications with powerful computing and high
storage capacity data centers. For this features it is essential to have computation
and storage capacity at the edge of the network.

Amazon’s history is the emblem of cloud computing evolution. The company
understand that their internal data center infrastructures was overestimated for
the most part of the year, they had very powerful and high capable storage and
computing capacity but low data center’s throughput utilization during the rest of
the year. Infrastructure’s network was not capable to fit the changing of requested
resources, then the next step was the evolution in an architecture with the capability
to sell unused resources and create the first world cloud company, today know as
Amazon Web Services (AWS).

1.1 Data Center Virtualization

Virtualization in data centers have received significant attention as a cost-effective
solution in infrastructure for storing large amount of data and housing large-scale
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service applications. Big companies like Amazon, Google, Yahoo! and Facebook are
using data centers for their core services [4, 5, 6] or to sell their resources to external
customers.

The architectures data center are far from being ideal, data centers use dedicate
servers to run applications, resulting in poor server utilization and high operational
cost. The situation improved with the emergence of server virtualization technologies
(e.g.: VMware, Xen, KVM, etc.). Use of virtualization technologies allow multiple
virtual machines (VMs) to be co-located in the same physical server, furthermore,
these technologies improve performance isolation between co-located VMs, improving
performance and preventing interference attacks.

As in server virtualization also network virtualization aims at creating virtual
networks (VNs) on top of a shared physical network substrate allowing each virtual
network. The separation between logical networks and physical networks permit to
introduce customized network protocols and management policies.

I briefly introduce some concept and a short overview of recent literatures on
virtualization data center networks and architectures. In the work [7] Bari et al.
their contribution are three fold: (i) first, they provide a summary of the recent work
on data center network virtualization; (ii) second, they compared these architecture
and highlight their design trade-offs; (iii) third, they pointed out the key future
research directions for data center network virtualization. For the growing interest
on energy consumption many paper was written in the last years about green data
center networks (DCNs), in [8] Bila et al. present a taxonomy survey on DCNs, with
an overview of the research and the recent state-of-art energy efficiency techniques
DCNs.

1.2 Data center architectures

This section provide an overview of data center architecture, I won’t be exhaustive
about that argument, essentially I am looking on an overview about milestone on
data center architectures.

Looking at conventional data center network topology [7] as in Fig. 1.1 I can
distinguish different layers. The Top-of-Rack (ToR) switch in the access layer that
provides connectivity to the servers mounted on every rack. The aggregation switch
(AS) in the aggregation layer (or distribution layer) forwards traffic from multiple
access layer (ToR) switches to the core layer. Core layer provides secure connectivity
between aggregation switches and core routers (CR) connected to the external
network, the Internet.

Traditional data center networks which organize switches in a simple tree topology
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Figure 1.1. Conventional data center network topology. From [7]

fall under this category as proposals such as VL2 [9] or more complicated topology
such as fat trees [10]. A second category is called hybrid architectures [11], include
designs in which packets are forwarded using a combination of switches and servers
as in solutions such as BCube [12] and DCell [13]. Third, we can consider server-only
data center architectures which do not rely on switches for packet forwarding, each
server plays two role, running regular applications and also relaying traffic between
servers. Every server is directly connected to a few other servers to form a data
center-wide interconnected in a three dimensional torus topology [11].

A Conventional topology is flat layer 2 topology, which uses only layer 2 switches.
Clos is a topologies family built up from multiple stages of switches, in which each
ones in a stage is connected to all switches in the next stage, which provides extensive
path diversity.

A special type of Clos is the Fat-tree topology that is organized in a tree-like
structure, as shown in Fig. 1.2. This topology, introduced by Leiserson in [10], have
the properties that make it suitable for data center networks. It is built of k-port
switches contains k pods; each pod has two layers (aggregation and edge) of k/2
switches. It contains (k/2)2 core switches, each ones of them has one poret connected
to each of k pods. The ith port of any core switch is connected to pod i so that
consecutive ports in the aggregation layer of each pod switch are connected to core
switches on k/2 strides. Each edge switch is directly connected to k/2 end-host; each
of the remaining k/2 ports of an edge switch is connected to k/2 of an aggregation
switch [14, 7].

Microsoft researchers presented in the work [9] VL2 an evolution for data center
network topology, based on Clos topology. The objective of VL2 is a practical
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Figure 1.2. Simple Fat-tree topology. Using the two-level routing. From [14]

network architecture that scales to support huge data centers with uniform high
capacity between servers and enable any server to be assigned to any service.

In [11] Popa et al. compared four different possible topologies for data centers:
Fat tree switch-only networks, de bruijn-based server-only networks, BCube and de
Bruijn-based hybrid networks.

An open problem in data centers networks is the routing of packets into the
data center architecture considering the path between source and destination with
load-balancing across the set of paths to make fall use of the available network
capacity.

However, this is not the focus topic of my research.
In the next chapter I will illustrate the basic knowledge of my work, in particular

what is the live migration of virtual machine in data centers and how does it works.
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CHAPTER 2
BACKGROUND

“We are in the midst of a substantial change in the way computing
services are provided. As a consumer, you surf the web on your cell
phone, get directions from a GPS device, and stream movies and music
from the cloud. At the heart of these services is virtualization — the
ability to abstract a physical server into a virtual machine.”

- Matthew Portnoy, Virtualization Essentials[15]

Virtualization is an emerging technique that allows running multiple operat-
ing systems (OSs) simultaneously on a single server. For this purpose, a special
middleware layer, the virtual machine manager (VMM) or hypervisor, abstracts
from physical computing/networking resources and provides the so-called virtual
machines (VMs), which act like real networked computers with their own virtual
resources [15].

In the last decade there was fundamental changes in the way computing services
are provided. At the beginning was mainframe, and personal computer changes
the rule of the game through digitization of the physical desktop, and client/server
technology. The Internet, boom and bubble, spanned the last and current centuries
and continue today. We are, today, in the midst of another of those model-changing
trends: virtualization.

In modern virtualized networked data centers (VNetDCs), live migration allows
to move a continuously running VM from one server to another, so to attain multiple
goals, including failure tolerance and energy-saving through server consolidation/load
balancing [16]. Although live migration is becoming a service primitive function for
the resource management of VNetDCs, it may induce slowdown of the application
run by the migrating VM, as well as not negligible increments of the networking
traffic and the computing-plus-networking energy consumption. Several position
papers point out that the transmission rates of Web servers reduce by 15% to 20%
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and the energy consumption may increase up to 15% during live VM migration [16],
[17], [18]. This means that, if not carefully optimized, live VM migration may waste
more energy as being saved afterwards as shown by Xu et al. [16].

Therefore, since effective energy-saving techniques for computing servers have
quickly evolved during the last ten years [19], energy consumption of the network
devices supporting intra-data-center live VM migration has emerged as a substantial
issue [16]. At this regard, the work in [20] shows that, in a typical VNetDC from
Google, the migration-induced network energy consumption approaches 50% of the
overall ICT consumption when the server utilization is around 15% of total, which
is quite typical in production data centers. This means, in turn, that, assuming an
average industrial electricity cost of $ 0.07 per kW-hour, minimizing the networking-
induced energy consumption of medium/large VNetDCs equipped with more 32k
servers may translate to a saving of about $ 3.8 M over a typical four-year service
life of a VNetDC [20].

2.1 Reference scenario and tackled problem

Motivated by these techno-economic considerations, I focus on the optimal adapted
and distributed management of the network bandwidth consumed by intra-data-
center live VM migration. A (simplified) sketch of the reference VNetDC platform
is reported in Fig. 2.1 (see, for example, Figs. 10.3 and 13.4 of [15]).

Under dynamic workload, VMs may experience “hot spots” (inadequate network/-
computing/memory resources to fulfill the QoS requirements) and “cold spots”(over
provisioned resources with low server utilizations). Migrating VMs in order to
alleviate hot (resp., cold) spots through load balancing (resp., server consolidation)
needs to address at run-time three basic questions, namely:

(i) When to migrate;

(ii) Which VMs to migrate and where to migrate them; and,

(iii) How to manage the bandwidths of the end-to-end connections which support
the planned VM migration.

Task of the Resource Profiler of Fig. 2.1 is to periodically measure the resource
requirements of the instantiated VMs and the spare resources of the active servers,
in order to allow the Hot/Cold-spot Detector to individuate over/under-loaded
servers and, then, trigger VM migrations. After receiving a migration signaling, the
Migration Planner of Fig. 2.1 proceeds to individuate both the VMs to be migrated
and the corresponding list of source-destination servers.
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Figure 2.1. Reference VNetDC architecture for intra-data-center live VM migration.
Continue (resp., dotted) arrowed lines denote end-to-end TCP connections conveying
migration (resp., application) traffic. Dashed-dotted arrowed lines denote signalling
flows for implementing the resource profiling and migration plan. APP: application;
VMM: virtual machine manager; OS: operating system; HW: networking/computing
hardware; EVS: external virtual switch; VNIC: virtual network interface card; NIC:
physical network interface card; NAS: network-attached storage.

Determining a new mapping of VMs to physical servers that mitigates Hot/Cold
spots while meeting the QoS requirements of the migrating applications is an NP-
hard vector bin packing problem. In general, it is approximatively solved by selecting
a suitable scalar [21],[22], [23] or vector [24] metric which adequately captures the
migration cost and, then, by implementing a greedy-type heuristic (such as, for
example, the Worst-Fit [22], Best-Fit Decreasing [23], First-Fit Decreasing [21] or
modified Best-Fit Decreasing [24] heuristic) which provides a “good” approximate
solution of the bin packing problem (see Chapter 6 of [19] and Chapter 14 of [25] for
updated overviews on the overall topic of cost-effective constrained VM placement).

Finally, after receiving the list of the VMs to be migrated and the corresponding
source-destination servers from the Migration Planner, task of the VMMs of Fig. 2.1 is
to build up the corresponding end-to-end connections and manage the corresponding
bandwidths. In current production VNetDCs, VM placement is actually performed by
various capacity planning tools, such as VMware Capacity Planner, IBM WebSphere
CloudBurst and Lanamark Suite [15], [19]. These tools seek to consolidate VMs for
CPU, memory and computing power savings, yet without considering consumption
of network resources.
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Motivated by these considerations, the QoS energy-efficient dynamic and dis-
tributed management of the migration bandwidths is, indeed, the specific topic of this
contribution. Our target is to minimize the communication energy wasted by live VM
migration under five QoS hard constraints, which capture the typically considered
SLA-induced performance metrics [16], [19]. Specifically, the first two constraints
upper limit the total migration time and downtime (e.g., the service interruption
time). In order to avoid (possible) migration-induced traffic congestion phenomena,
the third constraint limits the maximum bandwidth available for the migration,
while the fourth constraint upper bounds the maximum tolerated slowdown of the
migrated application. Finally, the last constraint enforces the convergence of the
overall migration process by lower limiting the corresponding speed-up factor, that
is, the minimum ratio between the volumes of data migrated over two consecutive
rounds.

2.2 Reference technology live migration: Xen Migra-
tion

Xen is an abstraction, built atop other abstractions, wrapped around other abstrac-
tions. In the virtualization Xen is the reference technology for academic world.
In this section I explain general aspects about live migration, but keep in mind
that the documentation is based mainly on Xen’s papers and books. The goal of
virtualization technologies are the target to uncouple the software from messy, noisy,
fallible hardware. One of the benefit of them is to offer a sort of total hardware
independence, but for this purpose another feature is essential: migration.

Migration, as already introduced, is a core function for virtualizzed data center
to provide flexibility and reliability. Migration transfers the entire virtual machine
(in-memory state of the kernel, all processes and all applications states) on a different
physical server with a short downtime for the user’s perspective. Migration may
be live or cold (sometimes called also hot and dead, but less-commonly used),
distinguishing them on the basis of whether the instance is running at the time of
migration. In the live migration, the virtual machine is paused and downtime is
kept minimum. In cold migration, the virtual machine is paused, saved and sent
to another physical machine. In both cases the saved machine will expect receive
its IP address and ARP cache to work in the new network. This is no obvious
cause the in-memory state of network stack persist unchanged in both cases live
and cold migration, the first method introduced in Xen to migrate a machine was
the command xmsave and xmrestore. With this command the administrator can
hibernate a machine, saving its entire memory image to disk and power off the
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physical machine. Hence, using restore command to start again the machines after
restarting the server.

Figure 2.2. Overview of live migration process in Xen. From [26].

Live migration move a domain from a physical machine to another transparently,
imperceptibly to the customer’s world. Xen transfers the domain’s configuration
with the state of the machine and it does not require the administrator any manually
operation. As you can see in Fig. 2.2, and in [26], it is not based only on the basic
idea of save and restore the machine’s state. Source machine does not hibernate
until the very last phase of migration, and it is the time of out-of-service is very
short. In the following Chapter 3 and Section 3.1 I explain how live migration works,
with detailed descriptions of different techniques.

In Xen, see Fig. 2.2, live migration begin with request or reservation, to the
target machine containing the necessary resources. If the target accepts the request,
the source begins the iterative pre-copy phase of live migration. In this phase, Xen
copies pages of memory over a TCP connection to the destination server. At the
same time, pages that change are marked as dirty and then recopied iteratively in
the next round of iterative pre-copy. The server iterates this until only frequently
changed pages remain, then only few data need to be copy to the destination. Hence,
it begins the stop-and-copy phase. Now Xen stops the VM and copies over any
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pages remains. Xen will iterate up to 29 times and stop if the number of dirty pages
falls below a certain threshold. Administrator can specify the maximum number
of iterations and the dirty pages threshold at compile time. Finally the VM starts
executing on the destination server [26].
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CHAPTER 3
RELATED WORK

“We are like dwarfs perched on the shoulders of giants, and thus I are
able to see more and farther than the latter. And this is not at all because
of the acuteness of our sight or the stature of our body, but because I are
carried aloft and elevated by the magnitude of the giants.”

- Bernard of Chartres, Riemen, prologue to Steiner 2006, p. 23

During the last years, the problem of the VM placement has been largely
investigated by both academy and industry (see, for example, the recent overviews
in [16], and Chapter 14 of [25]) and several software environments have been recently
developed for supporting the VM placement operation (see, for example, Chapter 6
of [19] for an updated overview). However, at the best of the authors’ knowledge, the
bandwidth management problem tackled by this thesis deals with a still unexplored
research topic, as also confirmed by several recent position papers [16], [27], [28],
[29].

In the following an overview on the related work to my thesis. Firstly, I review
some recent advances on the basic techniques adopted for implementing intra-
data-center live VM migration. Afterwards, I consider some contributions which
specifically deal with the energy consumption on virtual machine migration.

Basically, live migration consists in the copy of all necessary data from physical
server to the destination server, as sowed in the Fig. 2.1. The simplest way to
provide this functionality is the stop-and-copy technique, that you can see in Fig.
3.3. Stop-and-copy entail that we must stop the VM on the source server, then start
copying the entire memory, registry, etc. to the destination server, hence, reactivate
the VM in new location.
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The first research line mainly focuses on the volume of data migrated by three
basic live migration techniques, namely,

• the pre-copy,

• post-copy

• and hybrid techniques.

Specifically, pre-copy based VM migration (see Fig. 3.2) has been firstly inves-
tigated in [30]. This work proposes a heuristic bandwidth manager for the Xen
hypervisor, which dynamically increases the migration bandwidth over consecutive
migration rounds. The goal is to reduce the downtime due to the memory dirty
rate of the migrating VM, while increasing the utilization of the overall available
bandwidth. This bandwidth management policy is the de facto state-of-the-art one
and it is currently implemented by a number of commercial VMMs, such as, Xen,
VMware and KVM hypervisors [19]. However, this policy:

(i) does not minimize the communication energy wasted by live VM migration;
and,

(ii) does not enforce any constraint on the total migration time and/or downtime.

Subsequent works on the pre-copy based live VM migration leveraged [30] and
aimed at reducing the migrated data by performing data compression [31], [32], [33],
and/or by exploiting the memory change probabilities of the running applications
[34]. Specifically, in [31], the incremental changes in the dirtied pages are computed
and sequentially migrated, after performing run-length encoding. The authors of [32]
propose a check-pointing mechanism, in order to trace the execution of the VM at
the source server. The cloned VM on the destination server is synchronized with the
VM on the source server by iteratively transferring suitable log messages. Since the
total size of the log files is (substantially) less than of the dirtied pages, a reduction of
the volume of the migrated data is attained. The work in [33] proposes to reduce the
total migrated data by using hash-based fingerprints to find similar memory pages.
The approach pursued in [34] for reducing the volume of the migrated data relies on
the fact that the pre-copy technique migrates memory pages over consecutive rounds
and the data migrated at each round are those which have been dirtied during the
previous round. Hence, in order to avoid multiple migrations of a same memory
page, the scheduler proposed in [34] ranks the memory pages for increasing values
of their dirty rates and, then, migrates the pages with the highest dirty rates at
the end of the migration process (that is, during the last round). Overall, these
contributions:
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(i) do not consider the energy aspects of the migration process; and,

(ii) do not enforce QoS constraints on the performance metrics.

Post-copy techniques (see Fig. 3.3) for live VM migration are proposed in [35],
[36] and [37]. At this regard, [35] proposes a dynamic combined utilization of
self-ballooning and pre-fetching techniques, in order to reduce as much as possible
the migrated data, as well as the occurrence of network faults. The authors of
[36] introduce the concept of VM fork (e.g., a form of process forking), in order to
quickly instantiate VM clones on-the-fly. Similarly, [37] develops a post-copy based
framework for the (quasi) instantaneous consolidation of VMs which process fast
time-varying workloads.

Lastly, hybrid live migration (see Fig. 3.4) techniques are presented in [38] and
[39], which attempt to combine the positive aspects of the post-copy and pre-copy
paradigms. Specifically, [38] proposes a pre-paging technique, which speculates on
the memory locations of the application run by the migrating VM. The authors of
[39] present a technique that suitable combines delta compression and run-length
coding, while migrating the data during the post-copy phase. Overall, the papers
in [35]-[39] do not afford the bandwidth management problem and/or the related
energy aspects. They subsume, indeed, that the migration bandwidth is assigned at
run-time by the VMM on a best effort basis, that is, by accounting for the currently
available residual bandwidth.

The (aforementioned) second research direction focuses on the modeling analysis
and measurement of the CPU and network energies consumed by pre-copy based
live VM migration techniques [18], [28], [40]. Specifically, [18] and [28] present
quantitative approaches for modeling the time performance and energy consumption
of the migration processes, which exploit the dynamic bandwidth management
proposed in [30].

In [21], the authors investigate the optimized VM placement in VNetDCs by
considering both the migration and server-induced costs. However, the migration
cost considered in [21] accounts only for the slow-down of the migrating application.
The work in [22] proposes both gray and black box approaches for performing load
balancing through live VM migration. However, this work focuses on VM placement
strategies and does not consider the migration costs. The authors of [40] develop a
framework for the minimum-energy consolidation of VMs in VNetDCs. Although the
approach in [40] exploits live migration for moving the VMs to be consolidated, it does
not consider the migration-induced performance penalty and energy consumption.
Overall, all the works in [18], [28] and [40] rely on the state-of-the-art bandwidth
management policy developed in [30] and do not attempt to optimize it.
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3.1 Current approach to live migration of VMs

This section provides a short review on the main aspects of live VM migration which
are directly involved by the management of the migration bandwidth. Updated
overviews on the general topic of live VM migration are provided, for example, in
[16], Chapter 3 of [19] and Chapter 17 of [25].

Live VM migration allows a running VM to be transferred from a physical source
server to a destination one by exploiting the end-to-end (typically, TCP/IP-based)
connection built up atop the underlying intra-data-center LAN [19]. Since current
VNetDCs are equipped with network-attached storage (NAS) which is uniformly
accessible from the servers (see Fig. 2.1), intra-data-center VM migration reduces to
copy the in-memory state and the CPU registers of the migrated VM.

There are four main techniques for VM migration, namely, stop-and-copy migra-
tion (SaCM), pre-copy migration (PeCM), post-copy migration (PoCM) and hybrid
migration (HyBM). They trade-off the total migration time and downtime. These
techniques rely on the implementation of at least one of the following three phases
[30]:

1. Push phase: the source server transfers to the destination server the memory
image (e.g., the RAM content) of the migrating VM over consecutive rounds.
To ensure consistency, the memory pages modified (e.g., dirtied) during this
phase are re-sent over multiple rounds;

2. Stop-and-Copy phase: the VM at the source server is halted and lastly modified
memory pages and device states are transferred to the destination server;

3. Pull phase: the migrated VM begins to run on the destination server. The
access to memory pages still residing on the source server is accomplished by
issuing page-fault interrupts.

Hence, the techniques available for live migration are four:

• stop-and-copy migration (SaCM),

• pre-copy migration (PeCM),

• post-copy migration (PoCM),

• hybrid copy migration (HyBM).

SaCM technique utilizes only the Stop-and-Copy phase. This guarantees that
the volume of the migrated data equates the memory size of the migrated VM, but
it generally induces long downtimes [17].
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Figure 3.1. Time-line for stop-and-copy live migration.

PeCM technique implements the push and stop-and-copy phases of the migration
process. It guarantees finite migration times, tolerable downtimes and robustness
against the (possible) failures of the destination server (see Section 4.3). However, it
induces overhead in the total volume of the migrated data, which may be substantial
under write-intensive applications [17].

Figure 3.2. Time-line for pre-copy based live migration.

PoCM technique is composed by the stop-and-copy and pull phases of the
migration process. Since only the I/O and CPU device states are transferred to
the destination server during the stop-and-copy phase, the experienced downtime is
limited and no data overhead is induced. However, the resulting total migration time
is, in principle, undefined and, due to the page-fault interrupts issued during the pull
phase, the slowdown experienced by the migrated application may be substantial.

Figure 3.3. Time-line for post-copy based live migration.

Then HyBM technique incorporates all three phases of the migration process,
in order to trade-off the (aforementioned) pros and cons of the PeCM and PoCM
techniques [17]. For this purpose, the read-only (resp., write-intensive) memory pages
of the migrating VM are transferred during the push (resp., pull) phase, while the
content of the I/O and CPU registers are quickly migrated during the stop-and-copy
phase. So doing, the total migration time of the HyBM technique is lower (resp.,
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larger) than the corresponding one of the PoCM (resp., PeCM) technique, while the
opposite conclusion holds for the resulting downtime [17].

Figure 3.4. Time-line for hybrid live migration.

Figure 3.5. Comparison of approach to manage VM performance overhead caused live
migration, deployment, and snapshotting of multiple VMs with a single data center.
From [16]

I anticipate that the optimal bandwidth manager developed in this thesis may be
applied under all the mentioned migration techniques. However, in order to speed
up its presentation, in the sequel I focus on the PeCM as reference technique. The
main reasons behind this choice are that:

(i) PeCM is the migration technique currently implemented by a number of
commercial VMMs, such as, Xen, VMware and KVM [15], [19]; and,

(ii) the bandwidth management framework provided by the PeCM technique is
general enough to embrace those featured by the SaCM, PoCM and HyBM
techniques.
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In the schema in Fig. 3.5 from [16] the authors provided a survey of different
approaches to manage VM performance overhead caused live migration, deployment,
and snapshotting of multiple VMs with a single data center.

3.2 Pre-copy live migration (PeCM)

The PeCM technique involves six stages [30], as you can see in the Fig. 3.6, namely:

1. Pre-migration: resource profiling, detection of the (possibly present) hot/cold
spots and planning of the VMs to be migrated are performed. At the end of
this stage, the Migration Planner communicates to the VMMs the VMs to be
migrated and the selected destination servers (see the dashed-dotted signaling
paths of Fig. 2.1). This stage spans TPM seconds, e.g, TPM (s), where s means
seconds;

2. Reservation: the computing/communication/storage/memory physical re-
sources are reserved at the destination server by instantiating a large enough
VM container (see the dotted box of Fig. 2.1). TRE (s) is the duration (in
seconds) of this stage;

3. Iterative pre-copy: this stage is composed by (IMAX + 1) rounds and spans
TIP seconds. During the initial round (e.g., at round#0), the entire memory
content of the migrating VM is sent to the destination server. During the
subsequent IMAX rounds (e.g., from round#1 to round#IMAX), the memory
pages modified during the previous round are re-transferred to the destination
server (see Fig. 3.7);

4. Stop-and-copy: the migrating VM is halted and a final memory-copy round
(e.g., round#(IMAX + 1)) is performed (see Fig. 3.7). This last round spans
TSC seconds;

5. Commitment: the destination server notifies that it has received successfully a
consistent copy of the migrated VM. TCM (s) is the duration of this stage;

6. Re-activation: the I/O resources and IP address are re-attached to the migrated
VM on the destination server. TAT (s) is the needed time.

Before proceeding, I remark that a task of the Pre-migration phase is to guaran-
tee that the designed migration plan is stable, i.e., it is not affected by ping-pong
phenomena. I anticipate that, for this purpose, the approach developed in Section 4
of [22] has been implemented in the carried out tests. Specifically, as in [22], the
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Figure 3.6. Pre-copy live migration stages (six stages).

Hot/Cold-spot Detector of Fig.2.1 periodically measures the average aggregate uti-
lization of the computing-plus-bandwidth resources of the currently running physical
servers. To ensure that small transient fluctuations of the measured utilization do
not trigger needless migrations, a migration request is signaled by the Detector of Fig.
2.1 only when at least k out the m most recent measurements together with the next
predicted value of the servers’ utilization fall out a target (e.g., desired) utilization
interval U (see Eq. (1) of [22] and the related text). It has been experienced that
this approach is capable to effectively filter out transient fluctuations of the average
resource utilization and avoid needless migrations [22]. As in Section 7 of [22], I
anticipate that, in the carried out tests, I posed: k = 3, m = 5 and U = [0.4, 0.75],
while the measuring period has been set to 10 seconds.

3.3 Migration times and network energy

From a formal point of view, the total migration time TTOT (s) is the overall
duration:

TTOT , TPM + TRE + TIP + TSC + TCM + TAT , (3.1)

of the (aforementioned) six stages, while the downtime:

TDT , TSC + TCM + TAT , (3.2)
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is the time required for the execution of the last three stages. From a practical point
of view, TTOT in (3.1) is the period when the states of the source and destination
servers must be synchronized which may also affect the reliability of the migration
process (see Section 4.3 in the sequel), while TDT in (3.2) is the period in which the
migrating VM is halted and the clients experience a service outage [16].

Let R (Mb/s) be the transmission rate used during the third and fourth stages
for migrating the VM, that is, the migration bandwidth. Since, by definition, only
TIP and TSC depend on R, while all the remaining migration times in Eqs. (3.1) and

Figure 3.7. Time-chart of the PeCM technique.

(3.2) play the role of constant parameters, in the sequel, I focus on the evaluation of
the (already defined) stop-and-copy time TSC and the resulting memory migration
time TMMT , which is defined as in:

TMMT ≡ TMMT (R) , TIP (R) + TSC(R). (3.3)

Hence, TMMT is the time needed for completing the memory transferring of the
migrating VM, e.g., the duration of the performed (IMAX + 2) memory-copy rounds
of Fig. 3.7.

3.3.1 Modeling the bandwidth-dependent migration times

Table 3.1 reports the definitions of the key parameters used in the thesis. Since
the PeCM technique performs the iterative pre-copy of dirtied memory bits over
consecutive rounds (see Fig. 3.7), let Vi (Mb) and Ti (s), i = 0, . . . , (IMAX + 1), be
the volume of the migrated data and the time duration of the ith round, respectively.
By definition, V0 and T0 are the memory size M0 (Mb) of the migrating VM and
the time needed for migrating it during the 0th round, respectively (see the leftmost
part of Fig. 3.7).

Hence, after indicating by w (Mb/s) the (average) memory dirty rate of the
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Symbol Meaning/Role
IMAX Number of migration pre−copy rounds
i Round index, i=0,. . .,(IMAX + 1)
w(Mb/s) Memory dirty rate of the migrated VM
R (Mb/s) Migration bandwidth
P (R) (W ) Communication power at the migration bandwidth R
R̂ (Mb/s) Maximum available migration bandwidth
M0 (Mb) Memory size of the migrated VM
ETOT (J) Total consumed communication energy
∆MMT (s) Maximum tolerated memory migration time
∆SC (s) Maximum tolerated stop−and−copy time
β Migration speed−up factor
n Integer−valued iteration index

Table 3.1. Main taxonomy of the thesis.

migrating application (e.g., the average number of bits per−second which are modified
by the application), directly from the reported definitions I have:

Vi , w Ti−1 = M0(w/R)i, i = 1, . . . , (IMAX + 1), (3.4)

with V0 ≡M0, and

Ti , Vi/R = (M0/R)(w/R)i, i = 0, . . . , (IMAX + 1), (3.5)

so that I also have (see (3.3))

TMMT (R) ≡
IMAX+1∑
i=0

Ti = (M0/R)(
IMAX+1∑
i=0

(w/R)i), (3.6)

and (see Eq. (3.5))

TSC(R) ≡ TIMAX+1 = (M0/R)(w/R)IMAX+1. (3.7)

3.3.2 Network energy consumption

The power (measured in Watt (W )) drawn by a physical network interface card (NIC)
consists of a static (e.g., setup) portion and a dynamic portion [41, 42, 43]. The
static portion PSETUP (W) does not depend on the transmission rate R and accounts
for the power needed for the setup of the server-to-server network connection. The
dynamic portion: PDYN ≡ PDYN (R) accounts for the additional rate-depending
power consumed by both the transmit and receive physical NICs, when they work on
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behalf of the migrating VM. In order to limit the implementation cost, current data-
centers use off-the-shelf rack-mount physical servers interconnected by commodity
Ethernet switches [44], [45]. Furthermore, they typically implement TCPNewReno-
based protocol for performing congestion control and attaining server-to-server
reliable communication [45, 46]. This means, in turn, that the dynamic power
wasted by the transmit/receive NICs may be modeled as in [47, 41, 48]

PDYN (R) = K0(R)α, (3.8)

where
K0 , (1/g)(RTT/1.22 MSS)α, ((W)× (s/Mb)α). (3.9)

In Eq. (3.9), RTT (s) is the average round-trip-time of the available end-to-end
connection, g((W)−1) is the coding gain-to-receive noise power ratio, α > 1 is a
(dimension-less) shaping factor and MSS (Mb) is the maximum size of the utilized
TCP segments [45], [47, 41].

In order to utilize a single unified framework for modeling the energy performance
of the (aforementioned) migration techniques, let

θ ,

 1, for PeCM

0, for SaCM/PoCM,
(3.10)

be an auxiliary binary variable which, by definition, is unit-valued (resp., vanishes)
under the PeCM (resp., SaCM and PoCM) technique1. Therefore, since the dynamic
energy Ei (J) consumed during the ith round equates the product: Ei ≡ Ei(R) ,
PDYN (R) Ti, i = 0, . . . , (IMAX + 1), by summing these products over the round
index, I obtain the following expression for the total communication energy ETOT
(J) consumed during the migration process:

ETOT ≡ ETOT (R) =

K0M0R
α−1

1 + θ

IMAX+1∑
i=1

(w/R)i
+ ESETUP , (3.11)

with ESETUP (J) which accounts for the static portion of ETOT . Likewise, by
summing the expressions in (3.4) over the round index, I arrive at the following
closed-form formula for the total volume VTOT (Mb) of the migrated data:

VTOT ,
IMAX+1∑
i=0

Vi = M0[1 + θ(
IMAX+1∑
i=1

(w/R)i)]. (3.12)

1According to the definition of Section 3.1, the HyBM technique utilizes θ = 1 (resp., θ = 0)
during the push phase (resp., the stop-and-copy and pull phases).
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Before proceeding, two main remarks are in order. First, the sum-expressions
in (3.11), (3.12) hold for every value of the ratio (w/R). In the specific cases of
(w/R) = 1 and (w/R) 6= 1, these summations may be calculated in closed-form
as reported in (A.1) of the final Appendices. However, in order to speed up the
presentation, in the sequel, I adopt the sum-expressions in (3.11), (3.12). Second,
according to (3.10), the terms proportional to θ in (3.11) and (3.12) account for the
energy and data overheads induced by the iterative pre-copy stage of Fig. 3.7. Hence,
by definition, these terms vanish under the SaCM and PoCM techniques. However,
since these techniques may induce large migration times and downtimes (see Section
3.1), the attainment of a balanced consumed energy-vs.-time performance trade-off
is the reason for introducing the bandwidth manager optimization problem of the
following Chapter 4.

Remark 1. On the validity limits of the adopted network performance model
Regarding the validity limits of the network performance model of Eqs. (3.8) and

(3.9), three remarks are in order. First, since Eqs. (3.8) and (3.9) model the power-
vs.-rate relationship of end-to-end (possibly, multi-hop) TCP connections, they hold
regardless of the physical topology of the intra-data-center network. These formulas
assume that the considered TCP connections work in the Congestion Avoidance
state [45], [47], [49]. Since current intra-data-center networks adopt topologies which
maximize the resulting bisection bandwidths (such as, for example, the fat tree
topology; see [25]), this assumption is typically met in practical application scenarios
(see, for example, the test results reported in [16], [25] and [45]). Second, actual
(single-path multi-hop) end-to-end migration routes are selected by the IP-based
Network layer of the implemented Internet protocol stack during the Pre-migration
phase of Section 3.1. For this purpose, the (usual) shortest-path (e.g., minimum-cost)
criterion is typically pursued [16], [27]. Third, the power consumption-vs.-delay
performance of the selected end-to-end migration route is measured by the resulting
values of the parameters g and RTT of Eq. (3.9). Specifically, since longer routes
consume more power and induce larger end-to-end delays, I expect that the value
assumed by g (resp., RTT ) in Eq. (3.9) decreases (resp., increases) for increasing
number of the hops of the designed route. In agreement with these considerations, I
anticipate that the test scenarios of Section 4.9 with larger values of K0 could be
refer, indeed, to longer end-to-end routes.
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Part I

Part 1: Bandwidth manager in
intra-data-center networks
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CHAPTER 4
MINIMUM ENERGY BANDWIDTH MANAGER IN

INTRA-DATA-CENTER NETWORKS

“In these situations the combination of virtualization and migration
significantly improves manageability.”

- Clark et al., Live Migration of Virtual Machines [30]

In this chapter I illustrate the bandwidth management optimization problem
(BMOP) for live virtual machine migration intra-data-center networks, the major
contributions of my work may be summarized with the following points:

(i) by referring to intra-data-center live VM migration (see Fig. 2.1), I cast the
contrasting targets of low communication energy consumption and limited
migration time/downtime in the form of a suitable (non-convex) optimiza-
tion problem, namely, the bandwidth management problem. The BMOP
formulation is general enough to embrace all the (aforementioned) pre-copy,
post-copy and hybrid live VM migration techniques. Furthermore, it may be
applied to both in-bound and out-bound live VM migration over wired/wireless
virtualized data centers;

(ii) I develop closed-form analytical conditions, which are necessary and sufficient
for the feasibility of the BMOP. Interestingly enough, a suitable exploitation
of these conditions leads to a closed-form analytical formula for the optimized
setting of the number of pre-copy rounds. This is, indeed, still an open problem,
even under the state-of-the-art bandwidth management policy of [30] (see, for
example, [50] and references therein);
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(iii) I develop an adaptive version of the resulting optimal bandwidth manager,
which is capable to quickly track in a fully autonomic way the (possibly,
unpredictable) time-variations of both memory dirty rate of the migrating
application and congestion level of the used end-to-end network connection.
The proposed bandwidth manager may be implemented in a distributed and
scalable way, so that its per-migration implementation complexity is constant
and does not depend on the (possibly large) size of the considered data center.
Furthermore, it may be utilized in tandem with every heuristic adopted by
the Migration Planner of Fig. 2.1 for the dynamic VM placement;

(iv) lastly, I present the results of extensive field trials carried out by prototyping
in software the proposed bandwidth manager through a (partial) modification
of the legacy Xen hypervisor [51]. The carried out field trials support three
main conclusions. First, the proposed adaptive bandwidth manager quickly
converges to the optimal migration bandwidth, typically within 5-6 iterations
with a final accuracy around 6%-7%. Second, the per-VM computing resource
required for running the proposed bandwidth manager is limited up to 1-1.5%
of the CPU computing power, regardless of the size of the considered data
center. Third, in all carried out trials, the energy reduction of the proposed
bandwidth manager over the state-of-the-art one of [30] is over 40% and it
approaches 66% under strict QoS constraints. The corresponding stretching of
the execution times of the migrated applications remains limited up to 20%,
even for write-intensive programs [52].

4.1 QoS bandwidth management optimization problem

Four constraints are considered in the formulation of the BMOP, which capture, in
turn, the metrics currently adopted for measuring the performance of live migration
techniques [16], [18].

The first two constraints upper limit the tolerated memory migration and stop-
and-copy times of Eqs. (3.6) and (3.7) and they read as in:

Ψ1(R) , θ[(TMMT (R)/∆MMT )− 1] ≤ 0, (4.1)

and

Ψ2(R) , [(TSC(R)/∆SC)− 1] ≤ 0. (4.2)

In Eqs. (4.1) and (4.2), ∆MMT (s) and ∆SC (s) are the tolerated maximum memory
migration and stop-and-copy delays (see Eqs. (3.6) and (3.7)). Furthermore, the θ
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parameter in (4.1) accounts for the fact that, by definition, the memory migration
and stop-and-copy times coincide under the SaCM and PoCM techniques (see Eq.
(3.3) at vanishing TIP ).

A further constraint arises from the consideration that, without any stop con-
dition, the iterative pre-copy stage of the PeCM technique may run indefinitely
(see Fig. 3.7). Although the stop conditions depend highly on the design of the
considered VMM, in [50] it is pointed out that they should account for the follow-
ing two thresholds: (i) the number of the performed rounds exceeds a pre-defined
threshold IMAX ; and, (ii) the ratio (Vi/Vi+1) of the volumes of data migrated over
two consecutive rounds falls below a predefined speed-factor β > 1. Hence, since the
constraints in (4.1) and (4.2) and the energy function in (3.11) already account for
IMAX , an exploitation of (3.4) allows us to formulate the β-related constraint as in:

Ψ3(R) , θ[(βw/R)− 1] ≤ 0. (4.3)

By definition, this constraint is present only when the PeCM technique is considered
and this motivates the presence of the θ parameter (see Eq. (3.10)).

The last constraint accounts for the maximum bandwidth assigned to the migra-
tion process and it is fixed in order to avoid (or, at least, mitigate) migration-induced
traffic congestion phenomena [16]. In principle, depending on the considered VMM,
the available bandwidth may be exclusively dedicated to the migration process
(e.g., out-band migration) or may be shared with the application running on the
migrating VM (e.g., in-band migration) [49]. In the first case, the constraint reads
as in: R ≤ RMAX , where RMAX (Mb/s) is the maximum bandwidth exclusively
dedicated to the migration process. In the second case, a total bandwidth RTOT
(Mb/s) is assigned to the migrating VM and shared with the hosted application (see
the continue and dotted arrowed paths of Fig. 2.1). Hence, in order to upper limit
the slowdown (e.g., the stretching of the execution time) suffered by the migrating
application, as detailed in Section 4.2.1, I limit the fraction of the overall available
bandwidth RTOT used by the migration process up to ρMAX ∈ (0, 1), e.g., I enforce
the constraint: R ≤ ρMAXRTOT . Hence, after introducing the dummy variable:

R̂ , {RMAX ; ρMAXRTOT }, (4.4)

the following constraint:
(R/R̂)− 1 ≤ 0, (4.5)

applies both cases of in/out-band migration, provided that I pose RMAX =∞ (resp.,
ρMAXRTOT =∞) under the in-band (resp., out-band) migration.
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Overall, the considered QoS BMOP is formally defined as in:

min
R≥0

ETOT (R), (4.6)

s.t.: constraints in (4.1), (4.2), (4.3) and (4.5) . (4.7)

4.2 Generalization of the problem

The reported formulation of the BMOP may be directly generalized along three
main directions of potential interest.

First, in the case in which the application run by the migrating VM presents
varied traffics over the time, the resulting dirty rate may change during the migration
process. In order to deal with this case, let wi (Mb/s) be the dirty rate during the
ith round of Fig. 3.7, and let us introduce the following two dummy positions:

wMAX , max
1≤i≤IMAX+1

{wi}, (4.8)

and

Ci ,

1, for i = 0,∏i
m=1 wm, for i ≥ 1.

(4.9)

Hence, after replacing: (i) (w/R)i by Ci/(R)i into Eqs. (3.6) and (3.11); (ii)
(w/R)IMAX+1 by CIMAX+1/(R)IMAX+1 into Eq. (3.7); and, (iii) w by wMAX into
(4.3), the problem formulation in (4.6), (4.7) still applies verbatim. At this regard,
I anticipate that, since wMAX in (4.8) and Ci in (4.9) play the role of (positive)
constants, the solving approach of Section 4.7 directly generalizes to the case of
time-varying dirty rate. The adaptive capacity of the resulting bandwidth manager
to (possibly, unpredictable) variations of the dirty rates is tested in Section 4.9.3.

Second, in order to reduce the size of the migrated VM and/or protect the
migrated data, compression coding (such as, for example, run-length, delta or
ballooning-based coding) and/or error-protection coding (such as, for example, FEC
coding and ARQ mechanisms) may be applied to the memory image of the migrating
VM during the Pre-migration stage [16], [18], [19]. Hence, after indicating by S (bit)
the size of the uncompressed VM, the size M0 of the resulting compressed and/or
coded version to be actually migrated may be expressed as in: M0 = (cop)(red)S,
where 0 ≤ cop ≤ 1 is the utilized compression ratio, and red ≥ 1 is the inverse of
the adopted coding rate (e.g., red = 1 for not coded migration). Hence, without loss
of generality, in the sequel, I directly consider M0 as the actual size of the migrated
VM.

Third, from the outset it follows that the BMOP applies, by design, to the PecM,
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SaCM and PoCM techniques, by posing, respectively:

θ = 1, IMAX≥ 1, (PeCM) (4.10)

θ = 0, IMAX= −1, ρMAXRTOT =∞, (SaCM) (4.11)

and
θ = 0, IMAX= −1, (PoCM) (4.12)

in Eqs. (3.11)-(4.4). The application of the BMOP to the HyBM technique follows
the guidelines of the footnote 1.

4.2.1 Limiting the tolerated migration-induced slowdown

Let TMIG
EXE (resp., TEXE) be the average execution time of the application run by the

VM in the presence (resp., absence) of migration. After modeling the migrating VM
as a M/M/1 queue with First-In First-Out (FIFO) service discipline, the analysis
carried out in [49] leads to the conclusion that the migration-induced slowdown:
SDMIG , T

MIG
EXE/TEXE equates:

SDMIG = 1
1− ρMIG

, (4.13)

where ρMIG ∈ [0, 1] is the utilization factor of the NICs of Fig. 2.1 by the
migrated data (see the dotted lines of Fig. 2.1). The same conclusion holds when
the M/G/1 queue model with Processor Sharing (PS) service disciple is adopted1.
Furthermore, since the average queue delay of the (more general) G/G/1/FIFO
queue systems still scales up as: (1− ρMIG)−1 at medium/large values of ρMIG (I
say, for ρMIG > 0.1; see, for example, Chapter 24 of [44]), I conclude that (4.13) still
captures the asymptotic behavior of the slowdown of G/G/1/FIFO queues, while it
is somewhat conservative (i.e., it acts as an upper bound) at low values of ρMIG (I
say, at ρMIG ≤ 0.1).

Overall, the net conclusion is that imposing an upper bound ρMAX on ρMIG in
(4.13) leads to fix an upper bound on the tolerated application slowdown, regardless
of the queue model adopted for the migrating VM. This is the reason, indeed, for
including the constraint in (4.5) into the formulation of the tackled QoS migration
problem. Actually measured values of slowdown for a spectrum of test applications
are reported in Section 4.9.6.

1This is a direct consequence of the fact that the M/M/1/FIFO and the M/G/1/PS queue
systems share the same formula for the corresponding average queue delays (see, for example,
Chapter 22 of [44]). At this regard, I point out that the credit-based service discipline implemented
by the state-of-the-art Xen scheduler is, indeed, an instance of the PS service discipline (see [51]).
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4.3 Migration failure-vs.- memory migration time

Due to the (possible) failure of the involved servers, VM migration may halt in the
middle of memory transfer and this leads to energy wasting [53]. Motivated by this
consideration, in this section, I point out how the constraint in (4.1) on the allowed
memory migration time limits the maximum tolerated migration-failure probability
and the corresponding wasted energy. Towards this end, let PrF (∆MMT ) be the
(possibly, profiled) server failure probability (SFP) over a time-window of ∆MMT

seconds. The actual behavior of this probability is application-dependent and it
may be influenced by specific working metrics, such as, for example, server age,
server utilization, volume of the performed I/O operations and maintenance level
[53]. However, due to the decreasing reliability of the hardware components with the
age, it is reasonable to expect that the SFP increases (or, at least, does not decrease)
for increasing values of ∆MMT . This is confirmed by the analysis of [54], which leads
to the following (quite general) power-like parametric model for the SFP:

PrF (∆MMT ) =


(1 + ω)(∆MMT

TF
)− ω(∆MMT

TF
)3, for ∆MMT ≤ TF ,

1, for ∆MMT > TF

(4.14)

In (4.14), ω ∈ [0, 0.5] is a dimension-less (possibly, profiled) shaping factor which
fixes the heavy-tail behavior of the SFP, while TF (s) is the (server age-dependent)
maximum expected inter-failure time. Hence, fixing a maximum value: ∆MMT on
the tolerated memory migration time is equivalent to upper-bound the corresponding
SFP. This leads to two main conclusions. First, the constraint in (4.1) on the allowed
memory migration time plays the role of a reliability constraint. Second, under the
(somewhat conservative) assumption that all the already transferred data are lost
when a migration failure happens, the corresponding average energy wasted over a
time-window of ∆MMT seconds reads as in:

N PrF (∆MMT ) ETOT . (4.15)

In (4.15), N is the (possibly, profiled) average total number of VM migrations
which are attempted over ∆MMT seconds, while ETOT , E{ETOT } is the (possibly,
profiled) per-migration average consumed energy.
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4.4 VM migration-vs.-VM replication

VM migration may be also employed to attain high availability (HA) by providing
fault-tolerance and/or supporting on-line server maintenance [53]. In principle, HA
may be achieved either by live migration or whole-system replication (WSR) of the
VMs [32], [55]. Goal of this section is to give insight about the communication-
vs.-computing energy trade-off dictated by the migration-vs.-replication dichotomy.
Towards this end, I (shortly) point out that WSR is a HA-oriented technique which
simultaneously runs in parallel a same VM on (at least ) two different physical servers.
By leveraging the deterministic replay of the input commands and the periodic
exchange of synchronization interrupts, WSR guarantees that the primary and
replicated servers perform the same sequence of state transitions and, then, produce
the same output sequence [55]. In order to evaluate the overall energy: EWSR (J)
required by the replication of the same VM on the source and destination servers,
let LTOT (Mb) be the overall workload offered by the VM and let psS (resp., psD)
be the average processing speed (in (Mb/s)) at which this workload is processed by
the source (resp., destination) server2. Furthermore, let PS (resp., PD) the average
computing power consumed by running the VM on the source (resp., destination)
server, and let SDWSR

S (resp., SDWSR
D ) be the replication-induced slowdown at the

source (resp., destination) server3. Hence, the overall average energy consumed by
the WSR equates:

EWSR =
(
LTOT
psS

)
PS SD

WSR
S +

(
LTOT
psD

)
PD SDWSR

D . (4.16)

The corresponding overall computing-plus-communication energy: EMIG(J) wasted
by the VM migration reads as in:

EMIG =
(
LTOT
psS

)
PS SD

MIG
S f +

(
LTOT
psD

)
PD SDMIG

D (1− f) + ETOT . (4.17)

In Eq. (4.17), I have that: (i) SDMIG
S (resp., SDMIG

D ) is the migration-induced
slowdown at the source (resp., destination) server (see Eq. (4.13)); (ii) f (resp.,
(1 − f)) is the fraction of the overall workload LTOT processed by the source
(resp., destination) server; and, (iii) ETOT is the communication energy in (3.11)
consumed by the VM migration. Hence, from an energy point of view, VM migration

2These processing speeds are proportional to the fractions of CPU cycles that the VMMs of Fig.
2.1 assign to the VM on the source and destination servers [51].

3The replication-induced slowdown arises from the interrupts which are needed to guarantee
server synchronization. Its typical value is around 2 [32], [55]. Since the migration-induced slowdown
arises from bandwidth-contention phenomena (see Eq. (4.13)), the replication and migration-induced
slowdowns generally assume different values.
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outperforms VM replication when the following inequality holds:

EMIG < EWSR. (4.18)

Interestingly enough, in the case in which the source and destination servers are
homogeneous computing nodes (that is, when I have: psS ≡ psD , ps0; PS ≡
PD , P0; SDWSR

S ≡ SDWSR
D , SDWSR

0 , and SDMIG
S ≡ SDMIG

D , SDMIG
0 ), the

inequality in (4.18) reduces to the following one:

ETOT <
(
LTOT
ps0

)
P0
[
2SDWSR

0 − SDMIG
0

]
, (4.19)

which holds regardless of the value assumed by f in (4.17). Eq. (4.19) confirms
that, in order to guarantee energy-efficient VM migrations, I must minimize the
communication energy ETOT wasted by the memory migration and simultaneously
limit the migration-induced slowdown. This is, indeed, the target of the BMOP in
(4.6), (4.7).

4.5 Feasibility conditions of the BMOP

The following Proposition 1 formalizes the necessary and sufficient conditions for
the feasibility of the BMOP in (4.6), (4.7) (see the Appendix A for the proof).

Proposition 1. The BMOP in (4.6), (4.7) is feasible if and only if the following
three conditions are simultaneously met:{(

M0
∆MMT

)[(
IMAX + 2

R̂

)
δ

(w
R̂
− 1

)
+(

1− (w/R̂)IMAX+2

R̂− w

) (
1− δ

(w
R̂
− 1

))]}
≤ 1, (4.20)

(M0/∆SC)(1/R̂)(w/R̂)IMAX+1 ≤ 1, (4.21)

θ β (w/R̂) ≤ 1. (4.22)

Regarding the practical utility of the conditions (4.20)-(4.22), I point out that,
when (and only when) these conditions are met, I are guaranteed that there exists at
least one value of R that satisfies all the constraints in (4.1), (4.2), (4.3), (4.4) and
(4.5). Interestingly, the effects of R̂ and IMAX on the reported feasibility conditions
are formally stressed by the following Proposition 2.
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Proposition 2. (a)) At fixed IMAX , all the functions at the left-hand-side (l.h.s.)
of Eqs. (4.20) unused internals- (4.22) strictly decrease (resp., strictly increase)
for increasing values of R̂ (resp., w).

(a)) At fixed R̂, I have that:

(b.1)) the feasibility condition in (4.22) may be met only if (w/R̂) ≤ 1 at θ = 1;

(b.1)) for increasing values of IMAX , the function at the l.h.s. of Eq. (4.21): (i)
does not vary; (ii) is strictly decreasing; and, (iii) is strictly increasing,
at (w/R̂) = 1, (w/R̂) < 1, and (w/R̂) > 1, respectively;

(b.1)) for increasing values of IMAX , the function at the l.h.s. of Eq. (4.20)
strictly increases, regardless of the values assumed by the ratio (w/R̂).

Proof. A direct inspection of Eqs. (4.20)-(4.22) leads to the stated conclusions.

Overall, Proposition 2 points out that increasing values of R̂ always reduce the
memory migration and stop-and-copy times TMMT and TSC , while the corresponding
effects of IMAX are more questionable. In fact, TMMT always increases for increasing
IMAX (see Proposition 2.b.3 ), while larger values of IMAX lead to reduced values of
TSC only at: (w/R̂) < 1 (see Proposition 2.b.2 ).

4.6 On the optimized setting of IMAX

The previously reported conclusion leads, in turn, to two main insights of practical
interest. First, at (w/R̂) ≥ 1, the migration technique that minimizes the stop-and-
copy time in (3.7) is the SaCM one (see Eq. (4.11)). Second, at (w/R̂) < 1, I claim
that an optimized setting: ĨMAX of IMAX is obtained by computing the value of
IMAX that meets the constraint in (4.21) with the equality, that is,

ĨMAX ≡
⌈

log(M0/∆SCR̂)
log(R̂/w)

− 1
⌉
, for (R̂/w) > 1, (4.23)

where d.e is the ceiling function. In order to support this claim, let us consider
the cases of: (i) ĨMAX ≤ 0; (ii) ĨMAX ≥ 1 and the feasibility condition in
(4.20) failing at IMAX = ĨMAX ; and, (iii) ĨMAX ≥ 1 and the BMOP feasible at
IMAX = ĨMAX . The first case occurs when the tolerated stop-and-copy time ∆SC in
(4.2) is so high that the PeCM technique is useless. In this case, the SaCM technique
should be applied, in order to minimize both the volume of the migrated data and
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the corresponding consumed communication energy (see (4.11)). When the second
case happens, the BMOP is infeasible and I are forced to increase ∆MMT up till the
condition in (4.20) is met at IMAX = ĨMAX . Finally, when the third case occurs,
the value of ∆SC is so low that the SaCM technique fails to meet the feasibility
condition in (4.21) (see Eq.(4.11)). Hence, in this case, the key question concerns the
evaluation of the optimal setting of IMAX that minimizes the consumed energy ETOT
in (4.6). Unfortunately, this is an outstanding question which is still unresolved,
even in the (more investigated) case of state-of-the-art hypervisors. In fact, it has
been tested that the application-oblivious default setting: IMAX = 29 currently
implemented by state-of-the-art hypervisors [19] does not guarantee, indeed, the
on-line convergence of the iterative pre-copy process, especially for values of (w/R̂)
approaching the unit [16], [50]. Interestingly enough, I anticipate that, in all the
carried out field trials, I have ascertained that the application-aware setting in (4.23)
minimizes also the consumed energy in (4.6) (see Section 4.9.5).

4.7 Optimal bandwidth management

The objective function in (3.11) is not convex for 1 < α < 2, so that the resulting
BMOP is not a convex optimization problem. However, since the objective function
and the constraints in (4.6), (4.7) are posynomial functions (see Section 11.5 of [56]),
and, then, the BMOP is an instance of Geometric Programming, it may be recast
in a convex form by applying the log-transformation: R̃ , log(R). Hence, after
introducing the following dummy positions (see Eqs. (3.11), (4.1)), (4.2) and (4.3)):
ETOT (R̃) , ETOT (R = eR̃), and Ψi(R̃) , Ψi(R = eR̃), i = 1, 2, 3, the BMOP may
be equivalently re-formulated as in:

min
R̃

ETOT (R̃), (4.24)

s.t. : Ψi(R̃) ≤ 0, i = 1, 2, 3, and: R̃− log R̂ ≤ 0. (4.25)

Since the above problem is strictly convex, it admits an unique solution whenever
the feasibility conditions in (4.20)-(4.22) are met. The solution may be computed,
in turn, through an application of the Karush-Kuhn-Tucker (KKT) optimality con-
ditions, provided that the Slater’s qualification is also met (see Chapter 4 of [56]).
At this regard, the following (sufficient) condition may be proved (see the Appendix
B for the proof).

Proposition 3. Let all the feasibility conditions in (4.20)-(4.22) be met with the
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strict inequality. Then, the Slater’s qualification holds for the optimization problem
in (4.24), (4.25).

Since the problem in (4.24), (4.25) is convex, the box constraint on R̃ in (4.25)
may be managed as an implicit one. Hence, the resulting Lagrangian function reads
as in:

L(R̃,
−→
λ ) = ETOT (R̃) +

3∑
i=1

λiΨi(R̃), (4.26)

where
−→
λ , [λ1λ2λ3]T is the (column) vector of the (nonnegative) Lagrange mul-

tipliers of the convex constraints in (4.25). Furthermore, since strong duality and
Lagrangian min-max equality hold (see Chapter 6 of [56]), the (unique) solution of
(4.24), (4.25) is the saddle point:

max−→
λ≥−→0

{
min

R̃≤log R̂

{
L(R̃,

−→
λ )
}}

, (4.27)

of the Lagrangian function in (4.26). This is, in turn, the orthogonal projection onto
the box-type sets: R̃ ≤ logR̂, and

−→
λ ≥ −→0 of the solution of the following algebraic

equation:
−→
∇L(R̃,

−→
λ ) = −→0 , (4.28)

where −→∇(.) is the four-dimensional vector gradient of L(.) in (4.26) performed with
respect to the primal and dual (scalar) variables R̃ and λi, i=1, 2, 3. The final
Appendix C details the analytical expressions of the four partial derivatives ∇

R̃
L(.)

and ∇λiL(.), i=1, 2, 3.

4.7.1 Adaptive primal-dual iterations

Due to the presence of the exponential terms, the solution:

{R̃∗, λ∗1, λ∗2, λ∗3}, (4.29)

of Eq. (4.28) resists closed-form computation. However, it may be iteratively
computed by implementing on-line a suitable set of gradient-based projected primal-
dual iterations. At this regard, I note that, as pointed out in [57] and [58], the
primal-dual algorithm is an iterative procedure for solving convex optimization
problems, which applies quasi-Newton methods for updating the primal-dual variables
simultaneously and moving towards the saddle-point of the underlying Lagrangian
function at each iteration. In our framework, four scalar iterations must be carried
out at the nth step, namely (see Eqs. (4.27) and (4.28)):
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R̃(n+1) = min
{

log R̂; R̃(n) − ζ(n)
0 ∇R̃L(R̃(n),

−→
λ (n))

}
, (4.30)

and
λ

(n+1)
j = max

{
0; λ(n)

j + ζ
(n)
j ∇λjL(R̃(n),

−→
λ (n))

}
, j = 1, 2, 3, (4.31)

where n = 0, 1, 2, . . . , is a discrete iteration index and
{
ζ

(n)
j

}
, j = 0, 1, 2, 3, is a

(suitable) sequence of nonnegative step-sizes.
Regarding the convergence to the global minimum of the primal-dual iterations of

Eqs. (4.30) and (4.31), three main remarks are in order. First, under the feasibility
conditions of Proposition 1, the global minimum of Eqs. (4.24) and (4.25) exists.
Second, due to the strict convexity of the problem in (4.24) and (4.25), the global
minimum is unique (see Theorem 3.4.2 of [56]). Furthermore, the convergence of the
primal-dual iterations of Eqs. (4.30) and (4.31) to the global minimum is guaranteed,
regardless of the adopted starting point and the size of the considered instance of
the optimization problem. Formal proofs of this property of global convergence
may be found, for example, in [56], [57] and [59]. Third, in practical application
scenarios, the average memory dirty rate w and/or the round-trip-time dependent
K0 parameter in (3.11) may exhibit unpredictable (possibly, abrupt) time-variations
over a same migration session and/or consecutive migration sessions. As detailed in
Section 4.9.3, w may vary due to workload fluctuations experienced by the migrating
VM [50], [49], while congestion-induced jitters of the round-trip-time RTT of the
utilized TCP connection may give arise to (unpredictable) changes of K0 in (3.9).
An effective means for tracking the unpredictable time-fluctuations of K0 and/or w
in an adaptive way is provided by the gradient-descendant algorithm in [60] for the
adaptive updating of (scalar) step-size sequences. In my framework, these updating
iterations read as in:

ζ
(n+1)
0 = max

{
0; min

{
aMAX ; ζ(n)

0 − γB(n)
0 ∇R̃L(R̃(n),

−→
λ (n))

}}
, (4.32)

and

ζ
(n+1)
j = max

{
0; min

{
aMAX ; ζ(n)

j + γB
(n)
j ∇λjL(R̃(n),

−→
λ (n))

}}
, j = 1, 2, 3,

(4.33)
where γ and aMAX are positive constants to be suitably tuned [60] (see Section
4.9.3). Furthermore, the scalar B(n)

j in (4.32) and (4.33) is the derivative of the
variable at the l.h.s. of Eqs. (4.30) and (4.31) with respect to the corresponding
step-size ζ(n)

j [60], and it may be iteratively updated as in (see Eq. (2.5) of [60]):

B
(n+1)
0 =

(
1− ζ(n)

0

)
B

(n)
0 −∇

R̃
L(R̃(n),

−→
λ (n)), (4.34)
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and
B

(n+1)
j =

(
1− ζ(n)

j

)
B

(n)
j +∇λjL(R̃(n),

−→
λ (n)), j = 1, 2, 3, (4.35)

with B(0)
j = 0, for j = 0, 1, 2, 3.

4.8 Implementation aspects: profiling tasks and imple-
mentation scalability

The implementation of the proposed bandwidth manager requires a priori information
about the power-vs.-rate relationship in (3.8) and the memory size and dirty rate
in (3.5). As detailed in the sequel, this information may be acquired on-line during
the first part of the Pre-migration stage by exploiting some commands and profiling
tools already done available by current VMMs [19], [51].

Profiling the network connection and the migrating application

The average round-trip-time RTT in (3.9) and the maximum throughput R̂ in (4.4)
of the available TCP connection may be directly measured at the Transport layer
by using, for example, the (standard) Linux iperf command [51]. In order to profile
at runtime the parameters ESETUP , K0 and α in (3.11), I may use the Xen ifconfig
command [51]. It reports the power state of the physical NIC which is used by
the migrating VM (see Fig. 2.1). Hence, by issuing the ifconfig command at R=0
and R=1 (Mb/s), I directly measure ESETUP and K0, respectively (see Eq. (3.11)).
Afterwards, by issuing the ifconfig command at R=R̂, I measure the total (e.g.,
static-plus-dynamic) power: PTOT (R̂) consumed by the TCP connection at R=R̂.
Hence, since, by definition, I have that:

PDYN (R̂) , R̂EDYN (R̂) ≡ PTOT (R̂)− R̂ESETUP , (4.36)

directly from the relationship in (3.8), I obtain the following closed-form expression
for the α exponent:

α =
log(PDYN (R̂)

K0
)

log R̂
≡

log(PTOT (R̂)−R̂ESETUP
K0

)
log R̂

. (4.37)

I ascertained through the carried out field trials that the profiled energy consumptions
in (3.11) of the implemented connections differ from the actual ones measured through
an (external) Watts Up Pro power-meter less than 2%. This confirms that both the
performed profiling operations and the adopted energy and traffic models of Section
3.3 are, indeed, accurate enough.
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Regarding the profiling of the migrating application, I note that the memory
size M0 of the migrating VM may be measured during the Pre-migration stage
through the xenstore command [51]. Afterwards, in order to profile at run-time
the corresponding average dirty memory rate w, let M̃0 be the (integer-valued)
number of memory pages of the migrating VM and let m = 0, 1, . . . , (M̃0 − 1),
be the (possibly, relative) corresponding memory address index. Furthermore, let
χ(m, i) ∈ {0, 1}, m = 0, 1, . . . , (M̃0 − 1), i = 0, . . . , IMAX , be the binary function
which marks the dirtied/not dirtied state of the mth memory page at the end of
the ith round. Interestingly enough, the spectrum {χ(m, i)} of the dirtied memory
pages may be directly acquired at run-time from the dirty bitmap which the Xen
hypervisor makes periodically available [19], [51]. Therefore, the resulting dirty
memory rate w averaged over the duration TIP of the iterative pre-copy stage may
be directly profiled on-line through the following relationship:

w =
(

M0

TIP M̃0

)M̃0−1∑
m=0

IMAX∑
i=0

χ(m, i)

 (Mb/s). (4.38)

Implementation complexity and scalability

From an implementation point of view, the four primal-dual iterations in (4.30),
(4.31) are carried out by the source server during the last part of the Pre-migration
stage. Although the duration of each n−indexed iteration in (4.30), (4.31) may
depend on the adopted VMM, it should be small enough to allow the iterations to
converge to the global optimum within a limited fraction of the overall Pre-migration
stage. On the basis of this consideration, I anticipate that, in the carried out field
trials, the time duration: TI(s) of each n−indexed iteration is set to ten times the
inverse of the maximum clock’s frequency of the utilized CPU.

Regarding the implementation complexity and scalability of the proposed band-
width manager, I point out that each VMM locally runs the iterations in (4.30), (4.31)
and only manages the migration of the hosted VMs (see Fig. 2.1). Furthermore, the
implementation complexity of the iterations in (4.30), (4.31) does not depend on
the actual setting of IMAX . These structural properties of the proposed bandwidth
manager lead, in turn, to three main conclusions about the resulting implementation
complexity. First, the implementation of the manager may be carried out on a
per-VM basis, that is, in a distributed way. Second, the resulting per-migration
implementation complexity does not depend neither on the total number of (possibly,
simultaneous) performed migrations nor on the (possibly, large) size of the considered
data center. This is due to the fact that, in our framework, the overall effect on the
performed migration of the aggregate traffic supported by the data center is fully
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summarized by the corresponding value assumed by the (scalar) K0 parameter of
Eq. (3.9). Third, the implementation complexity of Eqs. (4.30) and (4.31) increases,
by design, in a linear way with the average number M I of the (n-indexed) iterations
requested by the convergence to the global minimum. Hence, the per-migration
implementation complexity of the proposed bandwidth manager scales up as O(M I),
with M I typically limited up to 10 iterations (see Section 4.9.3). From the outset,
I conclude that the problem in Eqs. (4.6) and (4.7) is a non-convex optimization
problem but it is not NP-Hard. This property is retained by the overall class of the
Geometric Programming problems and the tackled problem is, indeed, an instance
of Geometric Programming (see, for example, Section 11.5 of [56]). At this regard, I
point out that rich lists of non-convex polynomial-complexity optimization problems
are provided, for example, in [61] and [62], where the non-convexity-vs.-NP-Hardness
dichotomy is also discussed.

4.9 Simulations result

In order to actually test and compare the performance of the proposed bandwidth
manager, I have implemented a wired test-bed. In-band PeCM is the utilized
migration technique and the architecture of the implemented test-bed is the one
reported in Fig. 2.1.

At this regard, I stress that, since our focus is on the management of the migration
bandwidth, the placement of the migrating VM is assumed to be already decided
by the Migration Planner of Fig. 2.1 during the Pre-migration stage of Section
3.2. Hence, according to Section 2.1, testing the placement performance of the
migrated VMs is out of the scope of the carried out field trials. Furthermore, since
the distributed nature of the proposed bandwidth manager guarantees that its per-
migration implementation complexity does not depend on the size of the considered
data center (see the last part of the previous Section 4.8), as, for example, in [18], [28],
[30], [50] and [49], it suffices to consider a test-bed which is constituted by two LAN-
interconnected virtualized physical servers. Specifically, the implemented test-bed
consists of two identical Dell Power Edge servers equipped with 3.06 GHz Intel Xeon
dual-core CPU and 4 GB of RAM. They alternate the roles of source/destination
servers for the migrating VMs. A Gigabit Ethernet LAN is implemented through
a Cisco Nexus 55548P commodity switch. The NAS of Fig. 2.1 is configured by
using an IBM server xSeries 336 having Intel Xeon X5470 3.00 GHz CPU, 2 GB
fully buffered DIMM modules, integrated Gigabit Ethernet NICs, and an Ultra320
SCSI controller.

All servers use the paravirtualized Xen 3.3 hypervisor as VMM [51]. We imple-
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mented in software the proposed bandwidth manager at the driver domain (e.g.,
Dom0 ) of the legacy Xen 3.3 protocol hosted by the servers. Interestingly, out of
approximatively 1600 lines of code needed for implementing the proposed bandwidth
manager, 40% is directly reused from existing Xen/Linux code. The reused code
includes part of the Linux’s TCPNewReno congestion control protocol, and Xen’s
I/O buffer management, shadow page tables, dirty bitmaps, iperf and ifconfig com-
mand tools [51]. Furthermore, in the carried out field trials, the Xen-driven CPU
scheduler is set to operate under the no work conserving mode [51], in order to avoid
resource contention among concurrent VMs. Specifically, I enforce Dom0 to use a
single physical core, in order to isolate it and avoid performance interference. The
migrating VM uses the remaining physical core.

4.9.1 Test applications and test-bed profiling

Multiple heterogeneous synthetic and real-world applications have been selected, in
order to carry out comparative field trials. Specifically, as a synthetic benchmark,
I used the memtester application [63], which is a highly write-intensive program
currently used to find faults in RAM. Interestingly, it allows us to set the value
of the average memory dirty rate w through an input program parameter. From
the SPEC CINT2000 benchmark tool [64], the sub-programs gap, vortex and eon
have been selected as first instances of real-world applications with (very) different
spectra of the resulting memory change probabilities (see Section 4.9.7). The gap,
vortex and eon applications are three real-world programs which mainly stress the
processor, memory and compiler components of the host server, respectively [64].

As second set of real-world applications, from SPEC CPU2006 [65], the 401.bzip2
and 429.mcf programs have been chosen. The first one is a read-intensive (e.g., CPU
intensive) application, which exhibits a quite low memory dirty rate. The second
one is a more memory intensive application, which presents a balanced mix of read
and write memory accesses. Finally, as third instance of real-world application, I
have also selected the memcached program [52]. This is a (very) write-intensive
program, which caches multiple key/value pairs in the main memory. In this case, I
used memaslap as load generator (e.g., client program) [66] and I have configured it,
so to randomly generate set and get operations at an 1 : 10 ratio.

In the carried out field trials, TCPNewReno-over-IP connections are built up for
migrating the tested VMs. Both theMSS in (3.9) of the utilized TCP connections and
the capacity of the transmit and receive buffers of the implemented Xen hypervisor
are set to the size of the memory pages of the migrated VMs (see Table 4.1). So
doing, if a TCP segment is lost and/or a part of a memory page is dirtied, the whole
TCP segment is marked as lost/dirtied and re-migrated later.
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Each migration trial has been repeated six times and the average results are
reported in the sequel. Furthermore, unless otherwise stated, it is understood that
a random ordering is adopted for migrating the dirtied memory pages over the
pre-copy rounds. The effect of specific migration orderings will be examined in the
last Section 4.9.7. Finally, in all carried out field trials, the migration of the VM
from the source server starts after 15 seconds of pre-running. During this initial
time interval, all the profiling tasks of Section 4.8 are carried out. Table 4.1 reports
the profiled parameters of the implemented test-bed.

α = 1.31 ESETUP = 3× 10−4 (J)
K0 = 1.8× 10−3 ((W)× (s/Mb)α) RTT = 4× 10−4 (s)

MSS = 12 (Kb) Buffers′size of the VMM = 12 (Kb)
Table 4.1. Profiled parameters of the implemented test-bed.

4.9.2 The benchmark Xen bandwidth management

The currently implemented Xen hypervisor adopts a pre-copy heuristic bandwidth
management policy, which operates on a best effort basis, while attempting to
shorten the final stop-and-copy time [19], [30]. The rationale behind this Xen policy
is that, in principle, the stop-and-copy time may be reduced by monotonically
increasing the migration bandwidth over consecutive rounds [30]. For this purpose,
the Xen hypervisor uses pre-assigned minimum: RXENMIN (Mb/s), and maximum:
RXENMAX (Mb/s) bandwidth thresholds4, in order to bound the migration bandwidth
during the pre-copy stage (see Section 5.3 of [30]). Specifically, the Xen migration
bandwidth RXEN equates: RXENMIN (Mb/s) at round#0, and, then, it increases
in each subsequent round by a constant term: ∆RXEN (Mb/s), so to reach the
maximum value: RXEN = RXENMAX at the last round: round#(IXENMAX + 1) (see Section
5.3 of [30]). In the carried out field trials, I have implemented this benchmark policy
by setting:

∆RXEN = (RXENMAX − w)/(IXENMAX + 1), (4.39)

and
RXENi = w + i∆RXEN , i = 0, . . . , (IXENMAX + 1). (4.40)

We point out that, on the basis of the (recent) surveys in [16], Chapter 3 of [19]
and Chapter 17 of [25], as well as at best of the authors’ knowledge, this is the only
bandwidth management policy currently considered by both academy and industry

4In the sequel, I denote by the upper-script: XEN the Xen’s performance metrics and working
parameters, while I mark by the asterisk: ∗ the performance metrics and working parameters of the
proposed bandwidth manager.
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for VM migration. This is also the bandwidth policy currently implemented by Xen,
KVM and VMware commercial hypervisors [19].

4.9.3 Tests on the tracking capabilities under contention phenom-
ena

Real-world applications may vary the produced traffics over the time [47] and, then,
it may be of interest to test how the proposed bandwidth manager reacts when
the workload offered by the migrating VM changes unexpectedly. As pointed out
in [16], memory contention phenomena and/or network congestions may produce
abrupt (typically, unpredictable) time-variations of the parameters w and/or K0

present in the energy function of Eq. (3.11). Hence, in order to evaluate the tracking
capabilities of the proposed adaptive bandwidth manager in (4.30), (4.31) and its
sensitivity to the parameters aMAX and γ in (4.32), (4.33), in Fig. 4.1(a) I report the
measured behaviors of the energy sequence: {E∗(n)

TOT , n ≥ 0} when, due to memory
contention phenomena, the memory dirty rate of the running memtester application
abruptly passes from: w = 225 (Mb/s) to: w = 675 (Mb/s) at n = 30 and, then, it
falls out to: w = 225 (Mb/s) at n = 60. Fig. 4.1(b) reports the corresponding energy
behaviors when, due to congestion-induced fluctuations of the round-trip-time RTT ,
the K0 parameter in (3.9) passes from: 1.8× 10−3 ((W)× (s/Mb)α) to: 1.8× 10−2

((W)× (s/Mb)α) at n = 30 and, then, it falls out to: 1.8× 10−3((W)× (s/Mb)α) at
n = 60.

An examination of the plots of Fig. 4.1 supports four main conclusions. First,
according to the fact that the energy function in Eq. (3.11) increases for increasing
w and/or K0, all the plots of Figs. 4.1(a) and 4.1(b) scale up at n = 30 and, then,
scale down at n = 60. Second, the proposed bandwidth manager quickly reacts to
abrupt unpredicted time variations of the migrating application and/or underlying
network connection. Specifically, I have numerically ascertained that it is capable to
converge to the steady-state optimum within 25-30 iterations with a final accuracy
less than 1%, while only 5-6 iterations suffice to attain the convergence with an
accuracy around 6%-7% (see Fig. 4.1). Third, virtually indistinguishable plots are
obtained for γ ranging over the interval [10, 103], so that Fig. 4.1(a) reports the time
trajectories measured at γ = 100 and aMAX = 10−3, 5× 10−3 and 10−1. Fourth, the
plots of Figs. 4.1(a) and 4.1(b) at aMAX = 0.1 (resp., aMAX = 0.001) present the
shortest (resp., longest) durations of the transient states, but they exhibit the largest
(resp., smallest) oscillations in the steady-states. The plots at aMAX = 0.005 show,
indeed, intermediate behaviors. Specifically, in Fig. 4.1(a), the plot at aMAX = 0.005
approaches the plot at aMAX = 0.1, while, in Fig. 4.1(b), the curve at aMAX = 0.005
approaches the corresponding curve at aMAX = 0.001. We believe that this is due
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Figure 4.1. Time evolutions (in the n index) of the energy consumption of the proposed
bandwidth manager at: R̂ = 900 (Mb/s), M0 = 512 (Mb), β = 1.15, ∆MMT = 13.5 (s),
∆SC = 0.6 (s), ĨMAX = 3, and γ = 100 for the application scenario of Section 4.9.3. (a)
Case of time-varying w; (b) Case of time-varying K0.

to the fact that the scaling behavior of the energy function in Eq. (3.11) is different
when w or K0 is varied.

Overall, from the outset, I conclude that the proposed adaptive bandwidth
manager is robust with respect to the actual tuning of γ and aMAX , at least
for values of γ and aMAX ranging over the intervals [10, 103] and [10−3, 10−1],
respectively. However, at least in the carried out field trials, the setting: γ = 100 and
aMAX = 5× 10−3 exhibits the best trade-off among the contrasting requirements of
short transient-states and stable steady-states, and it will be adopted in the sequel.

4.9.4 Validation tests on ĨMAX

By referring to the test-bed setting of Table 4.1, the bar plots of Figs. 4.2 and 4.3
report the measured energy consumption: E∗TOT of the proposed bandwidth manager
for increasing values of IMAX at R̂ = 300 (Mb/s) and R̂ = 100 (Mb/s), respectively.
The corresponding values of ĨMAX in (4.23) are marked on the x-axis of the reported
Figures.

An examination of these plots leads to three main conclusions. First, in all carried
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ĨMAX = 17

(c) w = 270 (Mb/s)

Figure 4.2. E∗TOT - vs. - IMAX behavior for the proposed bandwidth manager at: R̂ = 300
(Mb/s), M0 = 512 (Mb), β = 1.10, ∆MMT = 50 (s), ∆SC = 0.3 (s). The application
scenario of Section 4.9.4 is considered at: (a) w = 120 (Mb/s); (b) w = 225 (Mb/s);
and, (c) w = 270 (Mb/s).

out tests, ĨMAX in (4.23) coincides with the value of IMAX at which E∗TOT attains
its global minimum. Second, in all tested cases, I have experienced that ĨMAX is
the smallest value of IMAX which makes the BMOP in (4.6), (4.7) to be feasible.
Third, the measured increasing behavior of E∗TOT ≡ E∗TOT (IMAX) for IMAX ≥ ĨMAX

is quite slow, and the corresponding energy gap: |E∗TOT (IMAX) − E∗TOT (ĨMAX)|
stays below 8%, even for values of the difference: |IMAX − ĨMAX | as high as 10.
Overall, these observations confirm that the setting in (4.23) effectively reduces the
consumed energy and it is also robust against measurement errors possibly affecting
the performed profiling operations.

4.9.5 Comparative energy tests under random migration ordering
and synthetic workload

The benchmark bandwidth management policy of the Xen hypervisor of Section
4.9.2 does not guarantee, by design, minimum energy consumptions and does not
enforce QoS constraints on the resulting memory migration and stop-and-copy
times. Furthermore, differently from ĨMAX in (4.23), the maximum number of
allowed rounds: IXENMAX is fixed by the Xen hypervisor in an application-oblivious
way (typically, IXENMAX ≤ 29; see [19], [51]). Hence, in order to carry out fair energy
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ĨMAX = 27

(c) w = 90 (Mb/s)

Figure 4.3. E∗TOT - vs. - IMAX behavior for the proposed bandwidth manager at: R̂ = 100
(Mb/s), M0 = 512 (Mb), β = 1.10, ∆MMT = 50 (s), ∆SC = 0.3 (s). The application
scenario of Section 4.9.4 is considered at: (a) w = 60 (Mb/s); (b) w = 75 (Mb/s); and,
(c) w = 90 (Mb/s).

comparisons, in the carried out field trials, I proceed as follows: (i) set IXENMAX and
RXENMAX ; (ii) measure the resulting Xen energy consumption EXENTOT (J), speed-up factor
βXEN , memory migration time TXENMMT , and stop-and-copy time TXENSC ; (iii) enforce
R̂ ≡ RXENMAX , together with the QoS constraints: ∆MMT ≡ TXENMMT , ∆SC ≡ TXENSC ,
and β ≡ βXEN ; and, finally, (iv) measure the resulting energy consumption E∗TOT
of the proposed bandwidth manager at IMAX = ĨMAX (see Eq. (4.23)). The
(aforementioned) memtester in [63] is the application considered in this section and
the implemented migration ordering of the dirtied memory pages is the random one.

The numerical results measured through a campaign of field trials are reported
by Tables 4.2 and 4.3. They embrace a spectrum of application scenarios, which are
characterized by different network bandwidths, memory dirty rates and pre-copy
rounds.

An examination of the results of Tables 4.2 and 4.3 leads to four main con-
clusions. First, in all the carried out field trials, the per-cent energy saving:
(1 − (E∗TOT /EXENTOT ))% of the proposed bandwidth manager over the Xen one is
over 45% and approach 66% under large values of IMAX (see the last rows of Tables
4.2 and 4.3). These noticeable energy gains support the conclusion that the Xen
(heuristic) bandwidth management policy in (4.40) is definitely energy suboptimal.
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On the contrary, the bandwidth management policy developed in this thesis is the
optimal one and, by design, it minimizes the migration-induced energy consumption.
Second, at assigned memory migration and stop-and-copy times, the number of
pre-copy rounds: IXENMAX required by Xen manager to meet the assigned migration
times is, in average, about two times larger than the corresponding ĨMAX one in
(4.23). At this regard, I have numerically tested that about 20% the reported energy
gains are induced by the optimized setting of ĨMAX in (4.23). Third, at fixed w and
R̂ ≡ RXENMAX , increasing values of IXENMAX and ĨMAX lead to increasing values of the
measured energy gains (see the last rows of Tables 4.2 and 4.3). Since larger values of
the pre-copy rounds lead, in turn, to lower values of the resulting stop-and-copy times
(see the second rows of Tables 4.2 and 4.3), I conclude that more noticeable energy
savings are provided by the proposed bandwidth manager under stricter downtimes.
Fourth, the values of the measured energy gains mainly depend on the considered
ratio: (w/R̂) (compare the last rows of Tables 4.2 and 4.3). In the carried out
tests, these gains attain their maxima for values of (w/R̂) ranging over the interval
[0.4, 0.75] (see the last rows of Tables 4.2(a)-4.3(a) and 4.2(b)-4.3(b)). In fact, an
examination of Tables 4.2 and 4.3 points out, that, although both the energies EXENTOT

and E∗TOT consumed by the Xen and the proposed bandwidth managers increase for
increasing (w/R̂), the rate of the energy increment of the Xen bandwidth manager
maximally exceeds the corresponding one of the proposed manager at values of
(w/R̂) around 0.5. However, the attained energy savings maintain larger than 45%
and approach 53%, even for values of (w/R̂) as high as 0.95 (see the last rows of
Tables 4.2(c) and 4.3(c)).
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IXENMAX 7 15 23
TXENSC = ∆SC(s) 1.2x10−1 1.8x10−3 2.6x10−5

TXENMMT = ∆MMT (s) 40.4 57.1 68.1
εXENTOT (J) 23.7 29.3 33.6
ĨMAX 4 8 13
ε∗TOT (J) 12.2 12.4 12.6
Energy saving(%) 48.7% 58.3% 63.7%

(a)

IXENMAX 7 15 19
TXENSC = ∆SC(s) 1.7 2.9x10−1 1.6x10−1

TXENMMT = ∆MMT (s) 41.9 67.9 74.5
εXENTOT (J) 45.3 73.2 79.6
ĨMAX 3 9 12
ε∗TOT (J) 22.3 28.0 28.8
Energy saving(%) 50.7% 61.7% 63.9%

(b)

IXENMAX 7 15 23
TXENSC = ∆SC(s) 4.3 3.5 2.8
TXENMMT = ∆MMT (s) 44.6 79.1 110
εXENTOT (J) 61.4 109.0 151
ĨMAX 3 7 11
ε∗TOT (J) 33.1 54.1 71.3
Energy saving(%) 46.1% 50.2% 52.7%

(c)

Table 4.2. Simulations results comparison
for energy saved: R̂ = RXENMAX = 100
(Mb/s) and M0 = 512 (Mb); (a) w = 40
(Mb/s); (b) w = 75 (Mb/s); (c) w = 95
(Mb/s).

IXENMAX 7 15 23
TXENSC = ∆SC(s) 1.3x10−2 1.9x10−4 2.9x10−6

TXENMMT = ∆MMT (s) 4.56 6.35 7.64
εXENTOT (J) 63.6 78.6 90.2
ĨMAX 4 8 13
ε∗TOT (J) 32.7 32.9 33.2
Energy saving(%) 48.7% 58.3% 63.7%

(a)

IXENMAX 7 15 27
TXENSC = ∆SC(s) 1.9x10−1 5.9x10−2 9.6x10−3

TXENMMT = ∆MMT (s) 4.7 6.7 8.9
εXENTOT (J) 122 177 229
ĨMAX 3 7 14
ε∗TOT (J) 60.0 72.8 77.9
Energy saving(%) 50.7% 58.8% 66%

(b)

IXENMAX 7 15 27
TXENSC = ∆SC(s) 4.7x10−1 3.9x10−1 2.8x10−1

TXENMMT = ∆MMT (s) 4.9 8.8 13.7
εXENTOT (J) 165 292 456
ĨMAX 3 7 13
ε∗TOT (J) 89 146 211
Energy saving(%) 46.0% 50.2% 53.7%

(c)

Table 4.3. Simulations results comparison
for energy saved: R̂ = RXENMAX = 900
(Mb/s) and M0 = 512(Mb); (a) w = 360
(Mb/s); (b) w = 675 (Mb/s); (c) w = 855
(Mb/s).
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4.9.6 Comparative tests under randommigration ordering and real-
world workloads

In order to further validate and refine the above conclusions by considering also
real-world applications, in this section, I report and compare the migration-induced
energy consumptions and stretching of the execution times which are suffered by
the (aforementioned) bzip2, mcf and memcached programs. The test parameters
are those of Table 4.1 and the migration ordering is the random one. Furthermore,
all the reported performance results have been obtained at: M0 = 512 (Mb),
R̂ ≡ RXENMAX = 900 (Mb/s), IXENMAX = 29 and ĨMAX = 14.
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Figure 4.4. Energy consumptions for the application scenario of Section 4.9.6.
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Figure 4.5. Migration-induced average stretching of the execution times(in per-cent) for
the application scenario of Section 4.9.6.

Fig. 4.4 reports the measured average energy consumptions, while Fig. 4.5 shows
the corresponding migration-induced per-cent stretching of the average execution
times, which is formally defined as: ((SDMIG−1)×100) (%). An examination of the
bar plots Figs. 4.4 and 4.5 leads to three main conclusions. First, since the dirty rate
increases by passing from the (read-intensive) bzip2 program to the (write-intensive)
memcached one, the corresponding energy consumptions and execution stretching
also exhibit increasing trends under both the Xen and proposed bandwidth managers
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(see Figs. 4.4 and 4.5). Second, an examination of the bar plots of Fig. 4.4 shows that
the per-cent energy savings of the proposed manager over the Xen one equate 51.1%,
59.2% and 65.4% under the bzip2, mcf and memcached applications, respectively.
This confirms the trend of the previous Section 4.9.5 about the larger energy-gains
offered by the proposed manager under write-intensive applications. Third, the novel
insight which stems from the examination of Fig. 4.5 is that the gaps between the
stretching of the execution times of the Xen and proposed bandwidth managers
are around 2%, 12%, and 45% under the bzip2, mcf and memcached applications,
respectively. This supports the further conclusion that the proposed manager is
capable to significantly reduce the (typically, noticeable) stretching of the execution
times which is usually experienced when write-intensive applications are migrated.

4.9.7 Comparative tests under ordered migration and real-world
trace workloads

Recent contributions point out that, depending on the application to be migrated,
some memory pages may be dirtied more frequently than other ones (see [34] and
references therein).

Hence, the goal of a last set of tests is two-fold. First, I investigate how the
(possibly, available) knowledge of the spectrum: {Pr(m), 0 ≤ m ≤ M̃0 − 1} of the
memory change probabilities (MCPs) of the migrating application could be exploited
by the proposed bandwidth manager, in order to further reduce the resulting energy
consumption. Second, I give insight about the stretching of the total migration
time which is induced by the more or less scattered allocation of the memory of the
migrating VM over the available address space. For this purpose, both random and
ordered migration orderings are tested.

Towards this end, I begin to observe, that the mth MCP: Pr(m) may be profiled
at run-time on the basis of the (previously defined) content {χ(m, i)} of the available
dirty bitmap as in:

Pr(m) =

IMAX∑
i=0

χ(m, i)

 /
M̃0−1∑

l=0

IMAX∑
k=0

χ(l, k)

 , 0 ≤ m ≤ M̃0 − 1. (4.41)

In is enough to implementing Eq. (4.41) at Dom0 of the test Xen hypervisor,
to measured the envelopes of the MCP spectra sketched as in Fig. 4.6 for the
(aforementioned) gap, vortex and eon real-world trace workloads in [64] 5.

5I point out that Fig. 4.6 reports the envelopes of the (profiled) set of probabilities in (4.41)
for the tested applications. Hence, according to (4.41), the memory index m in Fig. 4.6 runs over
the (integer-valued) interval: m = 0, 1, . . . , (M̃0 − 1), in order to guarantee that the corresponding
summation of the probabilities in (4.41) is unit.
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Figure 4.6. Envelopes of the profiled MCP spectra of the: (a) gap; (b) vortex; and, (c)
eon programs. In all cases, M̃0 = 42, 667 (memory page) and w = 720 (Mb/s).

Interestingly, the flat envelop of Fig. 4.6(a) reflects the fact that the gap
application writes at random over the allotted memory space, while the more
sharped envelopes of Figs. 4.6(b) and 4.6(c) point out that both the vortex and eon
applications use the central memory space for supporting write-intensive routines.
Hence, as pointed out, for example, in [34], I may exploit the knowledge of the
(profiled) MCPs in (4.41), in order to migrate the dirtied memory pages with the
highest MCPs at the end of the overall migration process.

In order to measure the actually attained energy reduction, I have simulated like
at the Dom0 of the test Xen hypervisor the random migration (RM) and ordered
migration (OM) schedulers of Tables 4.3(a) and 4.3(b), respectively. In both cases,
the maximum number of migrated memory pages at round#i is limited up to (see
Eq. (3.4)): MAXi , bVi/MSSc, and the (possibly) exceeding dirtied memory
pages are migrated later [34]. The bar plots of Fig. 4.7 report the measured energy
consumptions of the proposed and Xen bandwidth managers under both the RM
and OM schedulers.

An examination of these bar plots leads to three main conclusions.

• First, since the envelop of the MCP spectrum in Fig. 4.6(a) of the gap
program is flat, the resulting energy consumptions of the proposed and Xen
bandwidth managers coincide under both RM and OM schedulers (see the
pairs of leftmost and rightmost bars marked as gap in Fig. 4.7). However, the
energy consumption of the proposed bandwidth manager is 65% less than the
corresponding one of the Xen manager.

• Second, under the vortex application, the energy consumption of the proposed
bandwidth manager equipped with the OM scheduler is about 15% lower than
the corresponding one of the RM scheduler (compare the two leftmost bars
marked as vortex in Fig. 4.7). However, the corresponding energy saving
attained by the Xen manager is limited up to 10% (compare the two rightmost
bars marked as vortex in Fig. 4.7).
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(a) RM scheduler

Set :
∑M̃0
m=1 χ(m,−1) := M̃0;

For i = 0 to i = (IMAX + 1)

{

If ((
∑M̃0
m=1 χ(m, i− 1)) > MAXi);

then { Pick up at random MAXi dirtied pages and migrate them at the planned
migration bandwidth };

else { Migrate all the dirtied pages at the planned migration bandwidth };

}.

(b) OM scheduler

Set :
∑M̃0
m=1 χ(m,−1) := M̃0;

For i = 0 to i = (IMAX + 1)

{

If ((
∑M̃0
m=1 χ(m, i− 1)) > MAXi)

then { Select the MAXi dirtied pages with the lowest MCPs and migrate them at
the planned migration bandwidth };

else { Migrate all the dirtied pages at the planned migration bandwidth };

}.

Table 4.4. Pseudo codes of the implemented: (a) RM and (b) OM schedulers.

• Third, under the eon application, the energy reduction of the proposed band-
width manager equipped with the OM scheduler over the corresponding one
equipped with the RM scheduler approaches 25% (compare the two rightmost
bars marked as eon in Fig. 4.7), while the Xen manager limits its energy
reduction up to 16% (compare the two leftmost bars marked as eon in Fig.
4.7).

This trend is confirmed by the bar plots of Fig. 4.8. They report the corresponding
measured total migration times of the proposed bandwidth manager under the RM
and OM scheduling disciplines.

An examination of the bars marked as RM in Fig. 4.8 points out, under the
RM scheduling, the total migration time (somewhat) decreases by passing from
the gap application to the eon one. This behavior is aligned with the fact that the
memory allocation of the gap application is sparser than the corresponding one of
the eon application (see Fig. 4.6). However, the resulting gap among the leftmost
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Figure 4.7. Energy consumptions for the application scenarios of Section 4.9.7 at: M0 =
512 (Mb), w = 720 (Mb/s), R̂ ≡ RXENMAX = 900 (Mb/s), IXENMAX = 29.
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Figure 4.8. Total migration times of the proposed bandwidth manager for application
scenario of Section 4.9.7 at ∆SC = 0.02 (s) and E∗TOT = 97 (J).

and rightmost bars marked as RM of the Fig. 4.8 is not so substantial and it is
limited up to 2.2%. This conclusion must be, indeed, reconsidered when the OM
scheduling discipline is applied. In fact, a comparison of the leftmost and rightmost
bars marked as OM in Fig. 4.8 unveils that gap among the corresponding total
migration times substantially increases and approaches 28%.

Overall, the net conclusion which stems from the plots of Figs. 4.7 and 4.8 is
that the proposed bandwidth manager is capable to effectively exploit the (possibly,
available) memory change probabilities, in order to reduce both the consumed energy
and the total migration time of applications with “picked” memory allocations.
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4.10 Conclusion to Part I

In this chapter I developed the optimal bandwidth manager for intra-data-center
live VM migration. It minimizes at run-time the communication energy wasted by
the migration of the VM memory under hard QoS constraints on both the migration
time and downtime. A complete conclusion resume for this is provided in Chapter 7.

Hence, the following Part II shows an implementation of my bandwidth manager
for wireless live migration in 5G context application.
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Part II

Part 2: Bandwidth manager for
wireless 5G networks
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CHAPTER 5
LIVE MIGRATION IN WIRELESS FOG COMPUTING FOR

5G NETWORKS

“5G is considered key to the Internet of Things. Billions of sensors
will be built into appliances, security systems, health monitors, door locks,
cars and wearables – from smart-watches to dog collars. Analyst firm
Gartner predicts the number of networked devices will skyrocket from
about 5 billion in 2015 to 25 billion by 2020.
All those sensors producing mountains of data should, in turn, spur
carriers to spend billions upgrading their networks for 5G.”

- Stephen Shankland, CNET

In the above chapters, Part I, I investigated main aspects of live VMs migration
which are directly involved in management of migration bandwidth, then I provided a
solution and demonstrate how my manager guarantee optimal performances for intra
data center live migration. Here, in Part II, I want to show how my approach could
be applied in wireless live migration, in particular in 5G technologies, to improve
significantly the performances. Hence, I show the performance of my approach and
I compare it with some of the main solution in literature.

Live virtual machine migration aims at enabling the dynamic balanced use of the
networking/computing physical resources, so to lead to reduced energy consumption.
In this chapter I analytically characterize and test an optimal bandwidth manager for
live migration of VMs in wireless channel. In the following Section 5.3, I present the
optimal tunable-complexity bandwidth manager (TCBM) for the QoS live migration
of VMs under a wireless channel from smart phone to access point. The goal of my
approach is to minimize the migration-induced communication energy under service
level agreement hard constrains on the total migration time, downtime and overall
available bandwidth.
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In the Chapter 3 I did not introduced the Part II related work to distinguish
between the two application’s scenarios. Hence, in the following, Section 5.1, I
provide the related work for wireless channel live migration bandwidth manager.
In Section 5.1 I introduce the state-of-art for technologies in fifth-generation (5G)
mobile network systems and Fog computing (also called Edge Computing) which
allow application’s migration via wireless channel.

In Fig. 5.1 I illustrate the working application of TCBM wireless live migration
bandwidth manager. In 5G networks a fundamental issue is to provide services
with low latency (1 ms) and high bandwidth capacity, then Fog computing, also
termed edge computing, can address those problems by providing elastic resources
and services to end users at the edge of network.

Fog computing and a new air interface are the key factor to enable low latency
in future 5G systems. Therefore, I deign a three tiers architecture, as show Fig.
5.1, Mobile VMs tier, Fog sites tier and Cloud Data Center tier. The difference
between Fog computing and cloud computing are that the first enables computation
capability to the edge of the network, instead, cloud computing provides resources,
with high computation capabilities, distributed on the core network.

The most important Internet companies in the world (e.g. Amazon, Google,
Microsoft, etc.) are investing on huge data centers infrastructure all over the world
with incredible capacity, but at the same time most important networks operator
(e.g. TIM, AT&T, and so on) are building network infrastructures with growing
computation and storage capabilities in middle of their networks infrastructure.

Fig. 5.1 show the designed architecture for this chapter, the mobile physical
hosts usually is a smart phone, but could be considered a sensor or a plethora of
innovative devices growing in Internet of Things (IoT), or a more powerful hardware
devices like laptop, smart TV, and so on. However, all of them are wireless connected
devices with growing computation requirements.

There are three layers,

• the first, yellow domain, for mobile devices which have limited computing
resources and available energy;

• the second is the Fog sites, in green color, with high responsiveness but limited
computing/storage capacity: base-station, access-point or road-side-unit (RSU)
if we consider vehicular networks;

• and finally, the red one, are the data centers infrastructures with remarkable
computation/storage and energy capability.
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Figure 5.1. Prototype architecture. Mobile virtualized devices, Fog sites and cloud data
centers.

5.1 Related work and reference architecture

Mobile cloud computing (MCC) emerging in the context of 5G has the potential to
overcome resource limitation in the mobile devices (appear as a bottleneck in 5G
applications), which enables many resource-intensive services for mobile users with
the support of mobile big data delivery and cloud-assisted computing [3]. In 5G a
fundamental issue is to provide services with low latency, and Fog computing (FC)
can address those problems by providing elastic resources and services to end users
at the edge of the network.

In the following I illustrate the main technologies that allow the application’s
migration or parts of them from mobile device to a remote site, in which their
capabilities increase. Usually, they use this feature in order to reduce energy
consumption and take advantage of a computing power of remote resource, greater
than that it has available locally.

Here a list of solutions investigated, followed by a description for each of them:

• CloneCloud [67, 68]: is a system that has the ability to automatically transform
mobile device application in such a way that they can run into the cloud;

• VOLARE [69]: is a middelware-based solution which allows context-aware
adaptive cloud service discovery for the mobile devices.
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• Cuckoo [70]: is a computational offloading framework for mobile devices;

• Cloudlet [71]: is a set of widely dispersed and decentralized Internet infras-
tructure components, with non-trivial characteristic to make available for the
nearby mobile devices computing resource and storage resources;

• MAUI [72]: is a system that is able to minimize the energy due to the VM
migration by means of fine-grained offloading.

CloneCloud

CloneCloud [67] is a system that has the ability to automatically transform mo-
bile applications in such a way that they can turn on the cloud. Even if mobile
applications are design to be performed on the smart phone, or as a client-server
model, CloneCloud is designed so that it can offload part of the execution on cloud
resources. In Fig. 5.2 from authors paper [67] is shown the CloneCloud prototype
architecture.

The feature that this system automatically transforms applications and optimizes
the distributed execution, according to the capacity of the device and the cloud,
ensures that developers can design their applications without be aware if they can
be migrated or not.

Figure 5.2. The CloneCloud prototype architecture [67].

To split parts of an application to run locally and remotely, the system uses an
off-line partitioning mechanism, which works without any source code or any special
characters from the local application.

The Fig. 5.3 shows that the partitioning framework is composed by:

• Static Analyzer, which analyzes the application taking into account a variety
of constraints, results in a list of the parts of the application that can be
migrated.
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Figure 5.3. Structure of the partitioning framework of CloneCloud, as in paper [67].

• Dynamic Profiler, which acquires information about the execution time and
the energy cost, in order to giving rise to a cost model.

• Optimization Solver, it receives as input both the result of the static analyzer
that of the dynamic profiler, to choose which parts must be performed locally
and which in remote.

Fig. 5.4 shows how it works the the migration process for a thread through
CloneCloud.

Figure 5.4. Example of migration process in CloneCloud, from [67].

VOLARE

VOLARE [69] is a middleware-based solution which allows context-aware adaptive
cloud service discovery for smart phones. In this scenario, cloud service requests are
dynamically adapts going to monitor resources and the status of the devices.

The middlware of VOLARE is composed by two level,

• service discovery time level
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• and runtime level.

In particular we have that, while at service discovery time VOLARE is responsible
to intercept requests from mobile devices, at runtime it continue to control the
cloud bindings and the context of the device, so that if there are any kind of change,
VOLARE reacts going to look for that service which coincides with the requirements
and starts rebinding.

VOLARE’s architecture is composed by five modules:

1. Context monitoring module,

2. Adaptation module,

3. Service request module,

4. QoS monitoring module,

5. Service binding module.

Figure 5.5. Architecture of VOLARE, from [69].

Cuckoo

Cuckoo [70] is a computation offloading framework for mobile devices, currently
implemented only for Android OS. Given that the computing resources of the cloud
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are not always available when required, Cuckoo has been designed specifically to
solve this problem. At this regard it is had that this framework has the ability to
support both local and remote execution of applications, in such a way that even
when you can not make use of the cloud, applications continue to work. Fig. 5.6
show an overview of Cuckoo’s Android IPC mechanism.

Figure 5.6. An overview of the Android IPC mechanism of Cuckoo. An activity binds to
a service (1), then it gets a proxy object back from the kernel (2a), while the kernel
sets up the service (2b) containing the stub of the service (2c). Subsequent method
invocations by the activity on the proxy (3) will be routed by the kernel to the stub,
which contains the actual implementation of the methods [70].

Cuckoo was implemented based on the server-client model. The server has the
ability to be able to run on every possible resource that has a JVM (Java Virtual
Machine) installed. The services provided by the Client can be uploaded on the
server so that later they can be run remotely. Once the service is loaded on the
server, this can be used indefinitely.

Cloudlet

Cloudlet is an architecture for mobility-enhanced using small cloud data center that
is located at the edge of the Internet. Fig. 5.7 represents a possible realization of
Cloudlet [71], which can be defined as a set of widely dispersed and decentralized
Internet infrastructure components, with non-trivial characteristic to make available
to its computing resources and storage at the service of nearby devices. Looking
more specifically, a Cloudlet can be seen as a data-center in a box, able to manage
themselves, require little power, access control for setup and Internet connectivity.
Its easy implementation allows its use in different environments, like the office of a
doctor or any commercial space. Observing the Cloudlet inside, you can see that is
very similar to a cluster of multi-core computers.

In order to integrate Cloudlet with WiFi, is presented a solution called tran-
sient customization of Cloudlet infrastructure, which makes use of hardware VM



5.1 Related work and reference architecture 62

Figure 5.7. Cloudlet concept, discussed from Satyanarayanan et al. in [71].

technology.

MAUI

MAUI [72] is a system that enables fine-grained energy-aware offload of mobile
code to the infrastructure. This solution could be used in order to minimize the
energy consumption of mobile devices. In particular, this is a system that is able to
minimize the energy due to the VM migration by means of fine-grained offloading.
This program is made so as to only decide at runtime what methods run remotely;
in this operation takes into account the constraints imposed by the connectivity of
smart phones in order to have the greatest possible energy savings.

Thanks to the portability of the code, MAUI made two versions of a smart
phone application, one of which is run locally on the smart phone, while the other is
processed in the remote infrastructure.

Fig. 5.8 show the high level architecture of MAUI system. Regarding the smart
phone side, MAUI is composed by three modules, namely Solver, Client Proxy and
Profiler ; while at server side MAUI contains four modules that are Solver, Server
Proxy, Profiler and Controller.

My TCBM System’s architecture

In Fig. 5.9 I show a schema of system’s architecture in which I apply tunable
complexity bandwidth manger. In the schema are distinguished three domains: the
mobile devices, Fog sites, and cloud data centers domains. Hence, very reactive-
constrained applications could be retrieved in near-domain Fog site, but to obtain
high performance in terms of computation or storage it is necessary to reach a cloud
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Figure 5.8. High level view of the architecture of Maui, illustrated by Cuervo et al. in [72].

data center structure. A common solution to provide high computation capabilities
for applications/VMs on mobile devices is to be migrated from the mobile domain
to the Fog site. For instance, in Fig. 5.9 I show a virtual machine that is cloned
inside the Fog site through the wireless interface, this will enable the cloned virtual
machine to use Fog site’s resources without drain battery energy of mobile device.

Figure 5.9. An overview of architectural structure of the system.

I already introduced live migration in the above pages, see Chapter 2, hence, this
chapter is organized as follows: in Section 5.3 introduces our tunable-complexity
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bandwidth manager, formulation and solution of the non-convex optimization prob-
lem. Section 5.7 shows our tests and results on this approach. Finally, I present my
conclusion to the Part II of thesis in Section 5.8.

5.1.1 Current approach for bandwidth migration and future appli-
cations

In [30] Clark et al. wrote important consideration in literature about live migration
of virtual machines. They demonstrate that the migration of entire OS instances on
a commodity cluster work with impressive performance and minimal downtimes (as
low as 60ms). And they demonstrate that live migration performances are sufficient
to make it a practical tool for servers running interactive loads. The challenge for
the next few years will be directed to the new technologies oriented to the wireless
connections with low latency (1 ms) with high capacity.

In the following, for clarity, I need to use some recalled equations and figures from
previous chapters in which I considered the intra-data-center channel optimization
bandwidth problem.

As already shown in Chapter 2, in literature there are four main techniques
for VM migration, namely, stop-and-copy migration (SaCM), pre-copy migration
(PeCM), post-copy migration (PoCM) and hybrid migration (HyBM). They trade-off
the total migration time and downtime. In my work I used a pre-copy (push)
approach, and on the basis literature references I eschew a post-copy (pull) approach
which faults in missing pages across the network since this adds a residual dependency
of arbitrarily long duration, as well as providing in general rather poor performance.

Considering the related work, at this time there are not works considering the
bandwidth management during the VMs live migration for wireless channel. This
thesis is the first which considers the bandwidth management both in wired network
environment and wireless networks (in fifth generation network). As described in
Chapter 4, this approach is capable to effectively filter out transient fluctuations of
the average resource utilization and avoid needless migrations [22].

In the following Section 5.3 I describe the implementation of a tunable-complexity
bandwidth manager for live migration in wireless channel.

5.2 Trade-off between migrate and not migrate to the
Fog site

In Section 3.3 I already defined a model for times, network energy and data, in the
following, after a short recall of some formula I model and compare the trade-of
between run the VM application locally and migrate the VM to a remote Fog site.
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In formula, as already shown, the total migration time TTOT (s) is the overall
duration:

TTOT , TPM + TRE + TIP + TSC + TCM + TAT , (5.1)

of the six stages, while the downtime:

TDT , TSC + TCM + TAT , (5.2)

is the time required for the execution of the last three stages.
Memory migration time TMMT , which is defined as in:

TMMT ≡ TMMT (R) , TIP (R) + TSC(R). (5.3)

Hence, TMMT is the time needed for completing the memory transferring of the
migrating VM.

Directly from the reported definitions I have:

Vi , wTi−1 i = 1, ..., (IMAX + 1), (5.4)

with V0 ≡M0, and

Ti ,
Vi
Ri
≡ w

Ri
Ti−1 = M0w

i
i∏

m=0
R−1
m i = 0, ..., (IMAX + 1), (5.5)

with T0 ≡
M0
R0

, so that I also have

TMMT (R) ≡
IMAX+1∑
i=0

Ti = M0

[IMAX+1∑
i=0

wi
( i∏
l=0

R−1
l

)]
, (5.6)

and (see (Eq. 5.5))

TSC(R) ≡ TIMAX+1 = M0w
IMAX+1

IMAX+1∏
m=0

R−1
m . (5.7)

The power (measured in Watt (W )) drawn by a physical network interface card
(NIC) consists of a static (e.g., setup) portion and a dynamic portion, see Section
3.3.2 for other consideration on network energy consumption.

PDYN (R) = K0(R)α, (5.8)

where
K0 , (1/g)(RTT/1.22MSS)α , ((W ) × (s/Mb)α). (5.9)
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In Eq. (5.9), RTT (s) is the average round-trip-time of the available end-to-end
connection, g((W)−1) is the coding gain-to-receive noise power ratio, α > 1 is a
(dimension-less) shaping factor and MSS (Mb) is the maximum size of the utilized
TCP segments [45].

Therefore, since the dynamic energy Ei(J) consumed during the ith round
equates the product: Ei ≡ Ei(R) , PDYN (R) Ti, i = 0, ..., (IMAX + 1), by summing
these products over the round index, I obtain the following expression for the total
communication energy ETOT (J) consumed during the migration process:

ETOT ≡ ESETUP +K0M0R
α−1
0 + θ

{
K0M0(w)IMAX+1(RIMAX+1)α−1

[IMAX∏
k=0

(RK)−1
]

+(1− δ(IMAX))
{IMAX∑

l=1
K0M0(w)l(Rl)α−1

[ l−1∏
m=0

(Rm)−1
]}}

(5.10)

with ESETUP (J) which accounts for the static portion of ETOT .
Likewise, by summing the expressions in (5.4) over the round index, and taking

into account the equation (5.5), I obtain the following closed-form formula for the
total volume VTOT (Mb) of the migrated data:

VTOT ,
IMAX∑
i=0

Vi = M0

[
1 + θ

(IMAX∑
i=1

wi
i∏

m=0
R−1
m

)]
(5.11)

Following to the aforementioned network energy model, and looking to the
architectural overview as in Fig. 5.9, which one is the best choose between migrate
and not migrate the VM to the Fog site?

Purpose of this section is to illustrate in which cases is convenient to run execution
on mobile devices (e.g. smart phone) and in which case it is more appropriate
offloading part of application from mobile device to Fog site (or cloud), in order
to improving performance and saving energy of the mobile device. In particular
migration does not appears to be always the best choice [73], as will be show below.

Without loss of generality, an application can be divided into two parts, one
of which is performed on the mobile system, while the other may be offloaded to
be executed in the remote domain (Fog site/cloud). I denote by sm the speed of
the mobile device and with w the amount of computation for the second part. The
amount of time employed for the execution of w is equal to:

T1 = w

sm
. (5.12)

In case of that the second part is offloaded to the cloud, the input data dd is
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sent to the remote domain at bandwidth B in dd
B

(s) seconds. To simplify the
calculations, I avoid to consider both the time of initial network’s setup and the
time needed to transfer the program to the server.

Indicating with ss the speed of the server, the time for offloading and execute
the second part of the main program is equal to:

T2 = dd
B

+ w

ss
. (5.13)

Observing the formulas (5.12) and (5.13) leads to the first conclusion that the
use of virtualization is convenient for the purposes of increasing performance in case
occurs that T1 > T2:

w

sm
>

dd
B

+ w

ss
=⇒ w ×

( 1
sm
− 1
ss

)
>
dd
B

(5.14)

This formula lends itself to some considerations:

• if w is big, the program requires hard computation;

• if ss is large, the server is very fast;

• if dd is small, a small amount of data is considered;

• if B is large, the bandwidth is large.

In summary, it is that even if the server is very fast, does not seem to be
convenient to migrate in terms of performance until w

sm
<

dd
B
.

Furthermore to increasing the performances, use the technique of migration could
lead to significant energy savings, because it could save you a lot of mobile device
energy battery going to run programs with high energy consumption directly to the
cloud domain. Obviously, also in this case, it is not always convenient to migrate
from mobile system to server.

Let pm be the power of the mobile device. Modifying Eq. (5.12), it can be
obtained the energy to perform task, equal to:

E1 = pm
w

sm
(5.15)

Suppose pc is the power used to transfer data on the network. After sending the
data, the system listen on the network interface and stay in a state of waiting until
the server returns the result of the offloaded computation. In this idle state, the
mobile device consumes a power pi, and then a power consumption equal to:

E2 = pi ×
dd
B

+ pc ×
w

ss
(5.16)
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Comparing the Eq. (5.15) and Eq. (5.16), it is concluded that migration allows
energy savings if E1 > E2:

pm
w

sm
> pi ×

dd
B

+ pc ×
w

ss
=⇒ w ×

(
pm
sm
− pi
ss

)
> pi ×

dd
B
. (5.17)

The Eqs. (5.14) and (5.17), respectively used to ensure high performance and
energy saving during the phase of offloading, are very similar. In particular, use of
offloading to save energy is useful in case of large w (heavy computation) and small
dd (light communication).

In both cases (Eq. (5.14) and Eq. (5.17)), have bandwidth B very higher ease
the satisfaction of the constraints in such a way as to make convenient migrate to
improve performance and save energy.

Table 5.1. Measurements of energy consumption for different part of the device Nokia N95
smart-phone, for wireless data, see [74] by Perrucci et al..

Technology Action Power [mW] Energy [J]

Bluetooth

BT off 12 –
BT on 15 –
BT connected and idle 67 –
BT discovery 223 –
BT receiving 425 –
BT sending 432 –

WiFi
(infrastructure mode)

In connection 868 8.2
In disconnection 135 0.4
Idle 58 –
Idle in power save mode 26 –
Downloading@4.5Mbps 1450 –

WiFi
(ad hoc)

Sending@700 kB/s 1629 –
Receiving 1375 –
Idle 979 –

2G Downloading@44Kbps 500 –
Handover 2G −− > 3G 1389 2.4

3G Downloading@1Mbps 1400 –
Handover 3G −− > 2G 591 2.5

The values of power and energy shown in the Table 5.1 are average values, since
they were obtained by repeating several times the experiments. In particular, for
Bluetooth they have high power consumption in event that the smart-phone trying
to discover another device, or if try to send or receive data. For Bluetooth sending
data is the more expensive operation, in therms of power consumption. With regard
to the WiFi (in infrastructure mode), the operations that imply the greatest waste
of power are obtained in case of connection (turn on WiFi and connect to AP) and
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download, while there is a small waste of energy in case of connection, and a lower
waste of energy in case of disconnection (turned off WiFi and disconnect from AP).
In case of WiFi in ad-hoc mode, two equals smart phone NOKIA N95 are used. In
this case, there is not none energy consumption but the power consumption increases
significantly with respect the scenario WiFi in infrastructure mode. For other results
and further considerations see [74].

5.3 Tunable complexity bandwidth manager, definition
and properties

In this section I introduce the tunable complexity bandwidth management (TCBM).
Let Imax be the number of performed pre-copy rounds, as described in Section 3.2.

A primary goal of our work is to formal define a model overview of how wireless
live migration works. Here I recall some of the formula and concept already defined
in the Chapter 2 about how live migration does works.

Figure 5.10. Pre-copy live migration stages (six stages). Recalled from Chapter 3.

Most important variables are the total migration time TTOT , TDT and TTMT ,
as recalled in the previous section and explained in Chapter 2, see also Fig. 5.10
(already shown in Section 3.2 as Fig. 3.6) in which I provide a graphical illustration
of live migration stages.

{Ri, 0 ≤ i ≤ IMAX + 1 } (5.18)

Let Ri (Mb/s) be the transmission rate used during the third and fourth stages
at the ith round for migrating the VM, that is, the migration bandwidth. However,
I presented a first formulation of the problem considering an optimized but constant
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rate for all the rounds, Ri = R ∀i in Part I. Since, by definition, only TIP and TSC
depend on R, while all the remaining migration times in TTOT and TDT play the
role of constant parameters, in the sequel, I focus on the evaluation of the (already
defined) stop-and-copy time TSC and the resulting memory migration time TMMT .

Since the PeCM technique performs the iterative pre-copy of dirtied memory
bits over consecutive rounds, let Vi (Mb) and Ti (s), i = 0, . . . , (IMAX + 1), be the
volume of the migrated data and the time duration of the ith round, respectively.
By definition, V0 and T0 are the memory size M0 (Mb) of the migrating VM and
the time needed for migrating it during the 0th round, respectively.

Hence, I formalize the tackled tunable-complexity bandwidth manager, as you
can see in Fig. 5.11. In addition to R0 and RIMAX+1 I have Q updated rounds, which
is the number of updated rates with my manager. Then I update Q out of IMAX

rates of the pre-copy rounds evenly spaced by S , IMAX

Q
over the round-index set

{1, 2, 3, . . . , IMAX}.
For this purpose, I perform the partition of the round index set {1, 2, 3, . . . , IMAX}

into Q not overlapping contiguous subsets of size S.

Figure 5.11. Reference framework for the tunable-complexity bandwidth manager. Case
of IMAX = 6 , Q = 3. The rates to be uploaded are: R0, R1, R3, R5 and R7. The rates
to be held are: R2 ≡ R1; R4 ≡ R3; R6 ≡ R5.

The fist rate RjS+1 , j = 0, . . . , (Q − 1) of each subset is updated, while the
remaining (S − 1) rates are set to RjS+1, that is Ri ≡ RjS+1, for i = jS + 2,
jS + 3, . . . , (j + 1)S.

Fig. 5.11 illustrates the framework of the updated and held migration rates for
the dummy case of Q = 3 and IMAX = 6. In this case, the rates R0, R1, R3, R5 and
the rate R7 are the Q+ 2 = 5 migration rates to be updated, while rates R2, R4 and
rate R6 are the (IMAX − Q) = 3 migration rates which are not updated and, by
definition, they equate: R2 ≡ R1; R4 ≡ R3; R6 ≡ R5.
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5.4 Definition and expression of TCBM for QoS live
migration of VMs

In order to formally introduce the TCBM, let IMAX be the number of performed
pre-copy rounds, so that the overall set of (IMAX + 2) migration rates is the (usual)
one (see Fig. 5.11)

Let Q be the integer-valued number of the pre-copy migration rates we decide
to update and let S , IMAX

Q
the resulting integer-valued size of the rate clusters

which assume the same values (see Fig. 5.11).
Formally speaking, Q and S are to be selected according to the following formal

rules:

(i) if IMAX ≥ 1, Q must be integer-valued and falling into the interval:

1 ≤ Q ≤ IMAX (5.19)

Furthermore, Q must be selected so that the resulting ratio:

S ,
IMAX

Q
(5.20)

is also integer-valued;

(ii) if IMAX = 0, the set { R1, R2, . . . , RIMAX
} of the pre-copy rates is the empty

one, so that we must pose:

Q = 1 and S = 0; (5.21)

(iii) if IMAX = −1 and θ = 0 (case of Stop-and-Copy only), we must optimize only
R0, so that we must still pose:

Q = 1 and S = 0; (5.22)

If the above assumptions (5.19)-(5.22) be met, the TCBM is formally defined as
follows:

(i) it updates the following set of (Q+ 2) migration rates:

Ξ , {R0;RjS+1, j = 0, 1, . . . , (Q− 1); RIMAX+1 }; (5.23)

(ii) it sets the remaining (IMAX −Q) migration rates as in:

RjS+1, for i = (jS + 2), (jS + 3), . . . , (j + 1)S, (5.24)
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for any assigned j = 0, 1, 2, . . . , (Q− 1).

Hence, the TCBM partition the set:

{1, 2, . . . , IMAX} (5.25)

of the migration rates which compose the pre-copy phase into Q not overlapping
clusters of S contiguous rates.

Afterwards, the TCBM updates the first rate of each cluster (e.g., the cluster
header: RjS+1; see Eq. (5.23)), and sets all the remaining (S − 1) rates of each
cluster to the cluster header (see Eq. (5.24)). Finally, the TCBM updates R0 and
RIMAX+1, that is, the first and last migration rates (see Eq. (5.23)). Overall, the
TCBM updates only (Q+2) migration rates out of the available (IMAX +2) and, the
furthermore, the updated intermediate Q rates are evenly spaced apart of S , IMAX

Q
steps over the set in (5.25) of the pre-copy round indexes.

5.4.1 Expression of the downtime for the TCBM

The downtime is the time required for the execution of the last three stages of
pre-copy live VM migration widely discussed in subsection 3.2, that are Stop-and-
copy, Commitment and Re-activation. In particular, downtime is the time that
elapses between the stop of the service on the mobile device and the reactivation of
the VM at the destination host.

In the stop-and-copy case (e.g., IMAX = −1 and θ = 0) we still have TDT = M0
R0

.
However, at IMAX ≥ 0 and θ = 1, by introducing the definition positions

(5.23)-(5.24) in the general expression of the downtime

//alsoeq : n28TDT , TIMAX+1 ≡M0 CIMAX+1

((IMAX+1)∏
k=0

R−1
k

)
=

=M0 (w)IMAX+1 1
R0 RIMAX+1

(IMAX∏
k=1

R−1
k

)
=

=M0 (w)IMAX+1 1
R0 RIMAX+1

[ Q−1∏
j=0

( (j+1)S∏
k=jS+1

(RjS+1)−1
)]

=

=M0 (w)IMAX+1 1
R0 RIMAX+1

[ Q−1∏
k=0

( 1
RkS+1

)S ]
. (5.26)
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Overall I have:

TDT =M0

{ 1
R0
δ(1 + IMAX) +

{
(w)(1+IMAX)

( 1
R0 RIMAX+1

)[ Q−1∏
k=0

( 1
RkS+1

)S]}
∗

∗
(

1− δ(1 + IMAX)
)}

, (5.27)

where δ is the delta of Dirac function, that is equal to one only when the argument
is zero, while is equal to zero in the other cases.

The above expression depends only on the (Q+ 2) cluster headers in Eq. (5.23).

5.4.2 Expression of the total migration time for the TCBM

The total migration time represent the sum of all the six stages of the PeCM
technique (see subsection 3.2). In particular it is obtained by adding the duration
of all (IMAX + 2) rounds (as you can see in Fig. 3.7). Since the constraint on the
total migration time is present only for θ = 1, I may directly consider the case of
IMAX ≥ 0.

The general expression is:

TTM ,M0

IMAX+1∑
l=0

(w)l
( l∏
m=0

( 1
Rm

))
, (5.28)

while the expression used for the TCBM is

TTM = M0

{ 1
R0

+ (w)1+IMAX (R0 RIMAX+1)−1
[Q−1∏
m=0

(RmS+1)−S
]
+

+ (1− δ(IMAX)) 1
R0

{Q−1∑
k=0

(k+1)S∑
l=kS+1

(w)l
{
δ(k)(R1)−l+

+ (1− δ(k))
[k−1∏
p=0

(RpS+1)−S
]
(RkS+1)−l+kS

}}}
(5.29)

Also in this case, the above expression depends only on the (Q + 2) cluster
headers in Eq. (5.23) to be optimized. The steps that lead to the formula Eq. (5.29)
are shown in Appendix A.4.

5.4.3 Expression of the energy wasted by the TCBM

In order to express the energy ETOT wasted by the TCBM as a function of the
(Q+ 2) cluster headers in Eq. (5.23), we begin to rewrite the general expression
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ETOT = ESETUP +K0M0R
α−1
0 + θ

[IMAX+1∑
i=1

K0M0CiR
α−1
i

(i−1∏
l=0

R−1
l

)]
(5.30)

in

ETOT ≡ ESETUP +K0M0R
α−1
0 + θ

{
K0M0 (w)IMAX+1 (RIMAX+1)α−1

[IMAX∏
k=0

(Rk)−1
]
+

+ (1− δ(IMAX))
{IMAX∑

l=1
K0M0 (w)l (Rl)α−1

[ l−1∏
m=0

(Rm)−1
]}}

,

(5.31)

where the term (1− δ(IMAX)) accounts for the fact that the corresponding term{
IMAX∑
l=1

K0M0 (w)l (Rl)α−1
[
l−1∏
m=0

(Rm)−1
]}

does not vanish only for IMAX ≥ 1.

The final expression for the energy wasted by the TCBM it is shown below

ETOT = ESETUP +K0M0(R0)α−1 + θK0M0(R0)−1
{

(w)1+IMAX (RIMAX+1)α−1 ∗

∗
[Q−1∏
k=0

(RkS+1)−S
]
+(1− δ(IMAX))

{Q−1∑
m=0

{ (m+1)S∑
l=mS+1

(w)l
{
δ(m) (R1)α−l +

+ (1− δ(m))
[m−1∏
p=0

(RpS+1)−S
]
(RmS+1)α+mS−l

}}}}
,

(5.32)

while in Appendix A.4 we show all the steps to get the above equation.

5.4.4 Expression of the constraints on the slowdown and maximum
rate for the TCBM

Then I define here the expression of the constraints on the slowdown and maximum
rate for the manager TCBM. The (Q+ 1) constraints on the slowdown read as in

β w(Ri)−1 − 1 ≤ 0,

for i = 0 and i = jS + 1 , j = 0, 1, . . . , (Q− 1);
(5.33)

while the (Q+ 2) constraints on the allowed maximum rate are
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Ri ≤ R̂ , i = 0 ; i = jS + 1,

for j = 0, 1, . . . , (Q− 1); i = (IMAX + 1),
(5.34)

where R̂ is still given by

R̂ , min{RMAX ; ρMAX RTOT }. (5.35)

In particular, the constraint (5.33) there is only in the case of PeCM and it makes
sure that the pre-copy phase is not carried out to infinity. On the contrary, the
second constraint (5.34) is on the maximum bandwidth allocated to the migration
process at each round.

5.5 Formulation of TCBM non-convex optimization prob-
lem

The TCBM, according to the Eqs. (5.23), (5.27), (5.29), (5.32), (5.33), (5.34) and
(5.35), is the solution of the following non-convex optimization problem to be solved
by our manager (the TCBM). It could be solved as an instance of geometric problem
(solution formulation as an instance of Geometric program is provided in the following
Section 5.5.1):

min
{R0,RjS+1, j=0,1,...,(Q−1);RIMAX+1}

ETOT (5.36)

s.t.

Ψ1 , θ
{( 1

∆TM
TTM

)
−1
}
≤ 0; (5.37)

Ψ2 ,
( 1

∆DT
TDT

)
−1 ≤ 0; (5.38)

Ψ3 , θ
{
β w R−1

i − 1
}
≤ 0, (5.39)

for i = 0; i = jS + 1; j = 0, . . . , (Q− 1);

Ri ≤ R̂, (5.40)

for i = 0; i = jS + 1; j = 0, . . . , (Q− 1); i = IMAX + 1;

where ETOT , TTM and TDT are given by Eqs. (5.32), (5.29) and (5.27), respec-
tively.

Four constraints are considered in the formulation of the TCBM, which capture,
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in turn, the metrics currently adopted for measuring the performance of live migration
techniques [16, 18]. The first two constraints (Eq. (5.37) and Eq. (5.38)) upper limit
the tolerated total migration time and downtime. Constrain (5.39) account the ratio
of the volumes of data migrated over two consecutive rounds falls below a predefined
speed-factor β > 1. It arises from the consideration that, without any stop condition,
the iterative pre-copy stage of the PeCM technique may run indefinitely (see Fig.
3.7 in Section 3.2). Although the stop conditions depend highly on the design of the
considered VMM, in [50] it is pointed out that they should account for the following
two thresholds:

(i) the number of the performed rounds exceeds a pre-defined threshold IMAX ;
and,

(ii) the ratio
(
Vi
Vi+1

)
of the volumes of data migrated over two consecutive rounds

falls below a predefined speed factor β > 1.

Hence, since the constraints in (5.37) and (5.38) and the energy function in Eq.
(5.32) already account for IMAX , an exploitation of Eq. (3.4) allows us to formulate
the β-related constraint as in (5.39). By definition, this third constraint is present
only when the PeCM technique is considered and this motivates the presence of the
θ parameter (see Eq. (3.10)).

Constrain (5.40) upper limit the maximum available rate. Furthermore, the θ
parameter in (5.37) accounts for the fact that, by definition, the total migration
and stop-and-copy times coincide under the SaCM and PoCM techniques. The
fourth constraint accounts for the maximum bandwidth assigned at each round for
the migration process and it is fixed in order to avoid migration-induced traffic
congestion phenomena [16].

The primal variables of the above non-convex problem are the (Q+ 2) cluster
headers in Eq. (5.23). Furthermore, the problem presents (2Q+ 5) constraints, but
the last (Q + 2) constraints in Eq. (5.40) are of box-type and then they may be
managed as implicit constraints. The utilization of the δ(◦) function in Eqs. (5.32),
(5.29) and (5.27) allows the problem formulation in (5.36)-(5.40) to cover also the 2
limit case of IMAX = −1 and IMAX = 0.

Specifically, the stop-and-copy (SoC) case is still obtained by posing in (5.36)-
(5.40):

θ = 0, IMAX = −1, ρMAX RTOT = +∞, Q = 1 and S = 0. (5.41)

Furthermore, at IMAX = 0, we must also pose:
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θ = 1, IMAX = 0, Q = 1 and S = 0. (5.42)

5.5.1 Feasibility conditions for TCBM

The following Proposition 4 formalizes the necessary and sufficient conditions for
the feasibility of the TCBM in (5.36)-(5.40) (see Appendix A.4 for the proof).

Proposition 4. TCBM feasibility conditions
The TCBM is feasible if and only if the following three conditions are simultaneously
met:

θ

{
M0

∆TM

[ 1
R̂

(IMAX + 2) δ
(
w

R̂
− 1

)
+
(1− (w/R̂)IMAX+2

R̂− w

)(
1− δ

(
w

R̂
− 1

))]}
≤ 1;

(5.43)

M0
∆DT

1
R̂

(
w

R̂

)IMAX+1
≤ 1; (5.44)

θβ

(
w

R̂

)
≤ 1, β ≥ 1. (5.45)

Regarding the practical utility of the conditions (5.43)–(5.45), we point out that,
when (and only when) these conditions are met, we are guaranteed that there exists
at least one vector of values of R that satisfies all the constraints in (5.36)–(5.40).
Interestingly, the effects of R̂ and IMAX on the reported feasibility conditions are
formally stressed by the following Proposition 5. �

Proposition 5. IMAX and R̂ effects on the feasibility conditions
The effects of R̂ and IMAX on the reported feasibility conditions are formally
stressed by the following:

(i) At fixed IMAX , all the functions at the left-hand-side (l.h.s) of Eqs. (5.43)-
(5.45) strictly decrease (resp. strictly increase) for increasing values of R̂ (resp.
w).

(ii) At fixed R̂,we have that:

(a) the feasibility condition in (5.45) may be met only if (w/R̂) ≤ 1 at θ = 1;

(b) for increasing values of IMAX , the function at the l.h.s. of Eq. (5.44): (i)
does not vary; (ii) is strictly decreasing; and, (iii) is strictly increasing, at
(w/R̂) = 1, (w/R̂) < 1 and (w/R̂) > 1, respectively;

(c) for increasing values of IMAX , the function at the l.h.s. of Eq. (5.43)
strictly increases, regardless of the values assumed by the ratio (w/R̂). �
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Proof. A direct inspection of Eqs. (5.43)–(5.45) leads to the stated conclusions.

In summary, while increasing values of R̂ always lead to reduced TTM and TDT ,
the effect of IMAX is more questionable. Specifically, TTM always increases for
increasing IMAX , while it is guaranteed that larger values of IMAX lead to lower
downtimes at (w/R̂) < 1. This conclusion leads to three main consequences.

First, in the carried out numerical tests, we limit to the case: (w/R̂) ≤ 1.
Second, at (w/R̂) > 1, it is guaranteed that the downtime increases for increasing

IMAX . Hence, in this case, the stop-and-copy solution (if feasible) is the best one.
Third, at (w/R̂) < 1 we claim that an optimized setting: ĨMAX of IMAX is

obtained by computing the value of IMAX that meets the constraint in (5.44) with
the equality, that is

ĨMAX ≡
⌈ log

(
M0

∆DT R̂

)
log
(
R̂

w

) − 1
⌉
, for (w/R̂) < 1, (5.46)

where d ◦ e is the ceiling function and log is the natural logarithmic. Afterwards, if
ĨMAX ≥ 1, I test the feasibility of the constraint (5.43) at IMAX = ĨMAX . If the
constraint (5.43) is met, ĨMAX is a feasible setting. Otherwise, I select a larger value
of ∆TM and, then, we repeat the calculation of (5.46). Algorithm 1 reports the flow
chart of the described procedure for the optimized setting of IMAX .
Algorithm 1: Pseudo code for the optimized setting of IMAX .
Data: R̂, w
Result: ĨMAX

1 initialization of w/R̂ < 1;
2 repeat
3 compute ĨMAX as in (5.46);
4 if IMAX ≡ ĨMAX meet the feasibility conditions in (5.43) then
5 return ĨMAX ;
6 else
7 select a lower value for w/R̂ < 1;
8 end
9 until IMAX ≡ ĨMAX not meet the feasibility conditions in (5.43);

10 return ĨMAX ;
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5.5.2 A convex form as an instance of Geometric program for
TCBM optimization problem

Since all the (Q + 2) rate variables in (5.23) are non-negative, we introduce the
dummy positions:

R̃i , log(Ri), i = 0; i = jS + 1; j = 0, . . . , (Q− 1); i = (IMAX + 1); (5.47)

so that

Ri = eR̃i , i = 0; i = jS + 1; j = 0, . . . , (Q− 1); i = (IMAX + 1). (5.48)

Furthermore, we collect the (Q+ 2) log-rates in (5.47) in the following (Q+ 2)-
dimensional (column) vector:

−→̃
R , [R̃0, R̃1, R̃S+1 , . . . , R̃(Q−1)S+1, R̃IMAX +1] ∈ (IR)Q+2 (5.49)

and, then, we indicate as:

ETOT (
−→̃
R) = ESETUP +K0M0 e

[(α−1)R̃0] + θK0M0 e
[−R̃0]

{
(w)IMAX+1 ∗

∗ e

[
+(α−1)R̃IMAX+1 − SR̃1 − (1−δ(Q−1))S

(
Q−1∑
k=1

R̃kS+1

)]
+

+ (1− δ(IMAX))
{Q−1∑
m=0

{ (m+1)S∑
l=mS+1

(w)l
{
δ(m)e[(α−l)R̃1] +

+ (1− δ(m)) e

[
(α+mS−l)R̃mS+1−SR̃1−(1−δ(m−1))

(
m−1∑
p=1

R̃pS+1

)]}}}}
,

(5.50)

TDT (
−→̃
R) = M0 e

[−R̃0]
{
δ(1 + IMAX) + (1− δ(1 + IMAX))(w)1+IMAX∗

∗ e

[
−R̃IMAX+1 − SR1 − (1−δ(Q−1))S

(
Q−1∑
k=1

R̃kS+1

)]}
,

(5.51)
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TTM (
−→̃
R) = M0 e

[−R̃0]
{

1 + (w)1+IMAX e

[
−R̃IMAX+1 − SR̃1 − (1−δ(Q−1))S∗

∗ e

(
Q−1∑
k=1

R̃kS+1

)]
+ (1− δ(IMAX))

{Q−1∑
k=0

{ (k+1)S∑
l=kS+1

(w)l
{
δ(k) e[−lR̃1] +

+ (1− δ(k)) ∗ e

[
(kS−l)R̃kS+1 − SR̃1− (1−δ(k−1))S

(
k−1∑
p=1

R̃pS+1

)]}}}}
,

(5.52)

the resulting expressions of the total energy, downtime and total migration time
which are obtained by introducing the positions in (5.48) into the formulas of Eqs.
(5.32), (5.27) and (5.29), respectively.

Hence, the TC problem in (5.36)-(5.40) may be recast in the following equivalent
form:

min−→̃
R

ETOT (
−→̃
R) (5.53)

s.t.

Ψ1(
−→̃
R) , θ

{[ 1
∆TM

TTM (
−→̃
R)
]
−1
}
≤ 0; (5.54)

Ψ2(
−→̃
R) ,

[ 1
∆DT

TDT (
−→̃
R)
]
−1 ≤ 0; (5.55)

Ψ3(
−→̃
R) , θ

[
β w e−R̃i − 1

]
≤ 0, (5.56)

for i = 0; i = jS + 1; j = 0, . . . , (Q− 1);

R̃i ≤ log(R̂), (5.57)

for i = 0; i = jS + 1; j = 0, . . . , (Q− 1); i = IMAX + 1.

The above problem is convex (but, generally, not strictly convex) in the (Q+ 2)
log-rate variables

−→̃
R in (5.49), so that the objective function in (5.53) admits an

unique global minimum value.
Let −→̃

R ∈ (IR)Q+2, (5.58)

the (Q+ 2)-dimensional (possibly, not unique) vector solution of the problem (5.53)-
(5.57). Since, the following Proposition 6 hold:

Proposition 6. Let the feasibility conditions in Eqs. (5.43)-(5.45) be met with
the strict inequality. Hence, the (convex Geometric programming) problem of Eqs.
(5.53)-(5.57) meets the Slater’s conditions.
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Due to its convex form, the box constraints in (5.57) of the TC problem may be
managed as implicit ones through orthogonal projection. Hence, let:

−→
λ , [ λ1 λ2 λ3,0 λ3,1 λ3,(S+1) λ3,(2S+1) . . . λ3,((Q−1)S+1)] ∈ (IR)Q+3 (5.59)

be the nonnegative (Q+3)-dimensional vector of the Lagrange multipliers associated
to the (Q+3) inequality constraints in (5.54)-(5.56). Hence, the Lagrangian function
L(
−→̃
R,
−→
λ ) of the convex problem in (5.53)-(5.57) reads as in:

L(
−→̃
R,
−→
λ ) , ETOT (

−→̃
R ) + λ1θ

{[ 1
∆TM

TTM (
−→̃
R )
]
− 1

}
+

+ λ2

{[ 1
∆DT

TDT (
−→̃
R )
]
− 1

}
+ θ

{
λ3,0

[
β w e−R̃0 − 1

]
+

+
{Q−1∑
m=0

λ3,(mS+1)

[
β w e−R̃Sm+1 − 1

]}}
.

(5.60)

Therefore, the minimization to be carried out is the following one:

max−→
λ≥−→0

{
min

{
−→
R i≤log R̂, i= 0, (S+1), ..., (Q−1)S+1, (IMAX +1)}

{
L(
−→̃
R,
−→
λ )
}}

. (5.61)

The latter may be, in turn, computed by performing the orthogonal projection
on the box sets in (5.61) of the vector which solves the (2Q+ 5)-dimensional vector
gradient of the Lagrangian function in (5.61) performed with respect to both the
primal

−→̃
R and dual −→λ variables in (5.49) and (5.59) respectively, that is:

−→
∇L(
−→̃
R,
−→
λ ) = −→0 (2Q+5)x1. (5.62)

In this sequel, I indicate as {−→̃
R ∗ ,

−→
λ ∗
}

(5.63)

the (2Q+5)-dimensional (possible, not unique) projection solution of the algebric
equations system in (5.62). This solution in (5.63) may be, in turn, iteratively
computed through a suitable set of projected gradient-based primal-dual scalar
iterates. At this regard, we note that, as pointed out in [57, 58], the primal-dual
algorithm is an iterative procedure for solving convex optimization problems, which
applies quasi-Newton methods for updating the primal-dual variables simultaneously
and moving toward the saddle-point of the underlying Lagrangian function at each
iteration. In our framework, the

2Q + 5 (Computation complexity of TCBM) (5.64)
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scalar updating to be carried out at the n-th iterate reads in:

−→̃
R

(n+1)
i =

[−→̃
Ri

(n) − ω
(n)
i ∇R̃i L(

−→̃
R (n) ,

−→
λ (n))
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(0)
i = log(w);

for i = 0; i = jS + 1; j = 0, . . . , (Q− 1); i = (IMAX + 1);
(5.65)
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for i = 0; i = jS + 1; j = 0, 1, . . . , (Q− 1);
(5.67)

where {ω(n)
i , n ≥ 0}, {τni , m ≥ 0} and {Ψ(n)

3i , n ≥ 0} are (2Q + 5) suitable
nonnegative sequences of n-varying step-sizes. The projections in (5.65), (5.66) and
(5.67) account for the box-type constraints in (5.61). The Appendix A details the
analytical expressions of the partial derivatives ∇R̃L(.) and ∇λiL(.).

Regarding the convergence to the global minimum of the primal-dual iterations
of Eqs. (5.65), (5.66) and (5.67), three main remarks are in order.

First, under the feasibility conditions of Proposition 4, the global minimum of
Eqs. (5.53)-(5.57) exist.

Second, due to the strict convexity of the problem in (5.53)-(5.57), the global
minimum is unique (see Theorem 3.4.2 of [49]). Furthermore, the convergence of the
primal-dual iterations of Eqs. (5.65)-(5.67) to the global minimum is guaranteed,
regardless of the adopted starting point and the size of the considered instance of
the optimization problem. Formal proofs of this property of global convergence may
be found, for example, in [57, 49, 59].

Third, in practical application scenarios, the average memory dirty rate w and/or
the round-trip-time dependent K0 parameter in (5.10) may exhibit unpredictable
(possibly, abrupt) time-variations over a same migration session and/or consecu-
tive migration sessions. As detailed in Section 5.7, w may vary due to workload
fluctuations experienced by the migrating VM [50, 49], while congestion-induced
jitters of the round-trip-time RTT of the utilized TCP connection may give arise to
(unpredictable) changes of K0 in (3.9). �

5.5.3 Expressions for the gain sequences of the TCBM

Here I present a new approach for calculating the gain sequences {ω(n)
i }, {τ

(n)
i }

and {Ψ(n)
i } present in Eqs. (5.65), (5.66) and (5.67). These expressions follow the

approach very recently presented in [75] for the computation of the gain sequences of
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the Congestion Control algorithm implemented by the new paradigm of Multi-path
TCP. Shortly, in [75] the Optimal Congestion control problem is formulated as a
primal-dual optimization problem and then solved by a implementing a suitable
set of projected gradient-based iterations (see Eqs. (3),(4) and (6), (7) of [75]).
Hence, the formal approach followed in [75] in the same adopted in my Eqs. (5.61),
(5.62), (5.65)-(5.67). This is the reason why the formal results about the convergence
property and the optimized setting of the gain sequences reported in [75] apply
verbatim to our TCBM optimization problem. Specifically, two main formal results
are relevant in our context.

First, the Theorem 3.3 of [75] proves that is sufficient that each gain sequence
ky(n) for updating the generic variable y(n) is positive and depend only on y(n)
(e.g. it does not depend on the remaining variables to be optimized) in order to
guarantee that the optimal solution of the constrained optimization problem is
globally asymptotically stable, that is, it is reached from any starting point. Proof
of Th. 3.3 is reported in the Appendix C of [75] and relies on the Lypunov function
of Eq. (21) of [75].

Second, a good choice for updating ky(n) is to set it proportional to (y(n))2,
that is ( see section II.B and Eq. (12) of [75]):

ky(n) ∝ 1
2

(
y(n)

)2
, n ≥ 1. (5.68)

Hence, according to these results, I must investigate and implement the following
(2Q+ 5) formulas for the updating of the gain sequences like:
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(5.69)
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for i = 0; i = jS + 1; j = 0, . . . , (Q− 1).
(5.71)

I expect that the optimized value to be used in (5.69)-(5.71) for aMAX is very
larger. However, the tuning of aMAX in (5.69))-(5.71) must be carried out through
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numerical trials.

5.6 Profiling network connection and migrating appli-
cation

In case of implementation my proposed bandwidth manager requires a priori infor-
mation about the power-vs-rate relationship in (3.8) and the memory size and dirty
rate in (3.5). As detailed in the sequel, this information may be acquired on-line
during the first part of the Pre-migration stage by exploiting some commands and
profiling tools already done available by current VMMs [51, 19].

The average round-trip-time (RTT) in (3.9) and the maximum throughput R̂ in
(5.35) of the available TCP connection may be directly measured at the Transport
layer by using, for example, the (standard) Linux iperf command [51]. In order
to profile at runtime the parameters ESETUP , K0 and α in (5.32), we may use the
Xen ifconfig command [51]. It reports the power state of the physical NIC which is
used by the migrating VM. Hence, by issuing the ifconfig command at R = 0 and
R = 1 (Mb/s), may be directly measure ESETUP and K0 respectively. Afterward,
by issuing the ifconfig command at R = R̂, it is possible to measure the total (e.g.,
static-plus-dynamic) power: PTOT (R̂) consumed by the TCP connection at R = R̂.
Hence, since, by definition, we have that:

PDYN (R̂) , R̂EDYN (R̂) ≡ PTOT (R̂)− R̂ESETUP , (5.72)

directly from the relationship in (3.8), I obtain the following closed-form expression
for the α exponent:

α =
log

(
PDYN (R̂)

K0

)
log R̂

≡
log

(
PTOT (R̂)− R̂ESETUP

K0

)
log R̂

. (5.73)

Regarding the profiling of the migrating application, I note that the memory
size M0 of the migrating VM may be measured during the pre-migration stage
through the xen-store command [51]. Afterward, in order to profile at runtime the
corresponding average dirty memory rate w, let M̃0 be the (integer-valued) number of
memory pages of the migrating VM and let m = 0, 1, . . . , (M̃0 − 1), be the (possibly,
relative) corresponding memory address index. Furthermore, let χ(m, i) ∈ {0, 1},
m = 0, 1, . . . , (M̃0 − 1), i = 0, . . . , IMAX , be the binary function which marks the
dirtied/not dirtied state of the mth memory page at the end of the ith round.
Interestingly enough, the spectrum {χ(m, i)} of the dirtied memory pages may be
directly acquired at run-time from the dirty bitmap which the Xen hypervisor makes
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periodically available [51, 19]. Therefore, the resulting dirty memory rate w averaged
over the duration TIP of the iterative pre-copy stage may be directly profiled on-line
through the following relationship:

w =
(

M0

TIP M̃0

) ( M̃0−1∑
m=0

IMAX∑
i=0

χ(m , i)
)

(Mb/s). (5.74)

5.7 Simulation results on TCBM

In this section I provide the results of comparative tests and simulations of the
proposed bandwidth manager TCBM. In the following I discuss some simulations’
results that show the goodness of our TCBM, comparing with the results obtained
from Xen solution and the BMOP (Bandwidth Management Optimization Problem)
manager, see Part I of this thesis, in which, unlike in TCBM software, the initial
rate is held for the entire duration of the VM migration.

Therefore, goal of this paragraphs is to provide range of values of the input
data in order to perform evaluation and performance comparisons on wireless
TCPNewReno-over-IP based application scenario.

Specifically, the reported data refer to the average parameters of typical wireless
IEEE 802.11b, 3G-UTRAN and 4G-LTE connections. I anticipated that the reported
data are in agreement with most relevant literature [74] for 3G-UTRAN and [76] for
4G-LTE.

After noting that ĨMAX refers to our optimized setting of the allowed pre-copy
rounds, typically values for the tested VMs are:

1 ≤ ĨMAX ≤ 29, (5.75)

where ĨMAX = 29 is the Xen’s default setting.
All simulations have been carried out in three different application scenarios,

i.e., the scenario in which the mobile device migrates to the access point by 3G; the
scenario in which the mobile device migrates with the use of the 4G; and finally the
scenario where migration is performed by making use of WiFi. In the following I
present the parameter’s values used in the three application scenarios.

Maximum throughput at the Transport Layer rate RMAX is:

RMAX ∈


0.9 × 2 (Mb/s) for 3G cellular,

0.9 × 11 (Mb/s) for IEEE 802.11.b,

0.9 × 50 (Mb/s) for 4G− LTE,

(5.76)
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where RMAX (Mb/s) is the maximum throughput at the Transport Layer.
The static (i.e., rate independent) part of the overall energy consumption of the

considered connection ESETUP is:

ESETUP ∈


3.25 (J) for 3G cellular;

5.9 (J) for IEEE 802.11.b;

5.1 (J) for 4G− LTE.

(5.77)

About the dynamic power-vs-rate relationship, I note that this relationship for
TCP-based end-to-end connections working in the Congestion Avoidance state (e.g.,
in the steady-state) is well captured by the following α-power formula:

PDYN (R) = K0 (R)α, (Watt) (5.78)

where R (in (Mb/s)) is the TCP throughput and

K0 = 1
g

(
RTT

1.22MSS

)α
,

(
Watt×

(
s

Mb

)α)
. (5.79)

The corresponding dynamic part EDYN (J) of the energy consumed by the connection
is given by EDYN , (PDYN (R)/R) ≡ K0 (R)α−1. Hence, the case α = 2 corresponds
to the linear energy-vs-rate relationship.

In (5.79) RTT (s) is the average round-trip-time of the TCP connection, g
((Watt)−1) is the coding gain-to-receive noise power ratio, and MSS is the corre-
sponding Maximum Segment Size.

In my simulations MSS equates the size of an overall missed memory page, that
is

MSS = 1000(Byte)× 8 = 0.008(Mb). (5.80)

Furthermore, RTT in (5.79) depends on the spatial coverage and traffic congestion
of the considered TCP connection. In our tests, I have:

RTT ∈


250× 10−3 (s) for 3G cellular;

25× 10−3 (s) for IEEE 802.11.b;

35× 10−3 (s) for 4G− LTE.

(5.81)

Finally, the actual value of K0 in (5.78) depends on the considered transmission
medium and technology adopted at the Physical Layer through the gain g in (5.79).
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In my simulations I have experienced the following (average) values in upload:

K0

(
Watt×

(
s

Mb

)α)
∈


1.8× 10−1 (s) for 3G cellular;

5× 10−2 (s) for IEEE 802.11.b;

9× 10−2 (s) for 4G− LTE.

(5.82)

The values in (5.82) are the ones utilized in the numerical tests. These values
are in agreement with the following experiences, as you can see in [76] and [77]:

(i) IEEE 802.11b NICs typically consume 0.1 (µJ) per bit, i.e., 0.1 (J) per Mb of
transferred bulk data;

(ii) 3G connections are 3.65 times more energy expensive than WiFi ones in
uploading [77];

(iii) uploading of bulk data over 4G-LTE connections is about 1.8 times more
energy expensive than the WiFi case [76].

5.7.1 Benchmark Xen bandwidth management

The currently implemented Xen hypervisor adopts a pre-copy heuristic bandwidth
management policy, which operates on a best effort basis, while attempting to
shorten the final stop-and-copy time [19, 30]. The rationale behind this Xen policy
is that, in principle, the stop-and-copy time may be reduced by monotonically
increasing the migration bandwidth over consecutive rounds [30]. For this purpose,
the Xen hypervisor uses pre-assigned minimum: RXENMIN (Mb/s), and maximum:
RXENMAX (Mb/s) bandwidth thresholds, in order to bound the migration bandwidth
during the pre-copy stage (see Section 5.3 of [30]). Specifically, the Xen migration
bandwidth RXEN equates: RXENMIN (Mb/s) at round#0, and, then, it increases
in each subsequent round by a constant term: ∆RXEN (Mb/s), so to reach the
maximum value: RXEN = RXENMAX at the last round: round#(IMAX +1) (see Section
5.3 of [30]).

In the carried out tests, I have implemented this benchmark policy by setting:

∆RXEN = (RXENMAX − w)
(IXENMAX + 1)

, (5.83)

and

RXENi = w + i∆RXEN ,

i = 0, . . . , (IXENMAX + 1).
(5.84)
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Finally, I point out that, on the basis of the recent surveys in [16], Chapter 3 of
[19] and Chapter 17 of [25], this is the only bandwidth management policy currently
considered by both academy and industry for VM migration. And, on basis of my
knowledge, this is also the bandwidth policy currently implemented by Xen, KVM
and VMware commercial hypervisors [19].

5.7.2 How to choose the best value of Q parameter

In this section, I describe the results and considerations relating to the imple-
mentation of bandwidth manager for the QoS of the live migration of VMs. In
particular, TCBM is a solution which represents a good compromise between low
energy consumption and low implementation complexity. With LIV-MIG I refer
to the bandwidth manager BMOP as in Chapter 4. It is recalled that, unlike the
method implemented in I (where one optimized rate is calculated and in each round
is used the same rate), the TCBM manager is characterized from the fact that on
IMAX + 2 slots available, in addition to the rate R0 and RIMAX+1, are updated only
Q other rate. I have to take into account the fact that Q must be a divisor of IMAX .
For this reason is of crucial importance, for my purposes, to choose accurately the
integer value to give to the variable Q.
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Figure 5.12. (a) Trend of energy in 3G scenario for Xen manager, LIV-MIG manager and
our bandwidth manager TCBM, with IMAX = 12 and Q = 1, 2, 3, 4, 6, 12. The parame-
ters used in this case are: K3G

0 = 0.18((W )× (s/Mb)α); R̂ ≡ R3G
MAX = 1.8(Mb/s); α =

2; E3G
SETUP = 3.25(J); aMAX = 0.0001; M0 = 256(Mb); w = 0.18(Mb/s); ∆TM =

2770(s); ∆DT = 7.53 × 10−7(s). (b) Trend of the time due to the variation of Q for
Tunable complexity bandwidth manager.

An examination of the Figs. 5.12, 5.13 and 5.14 leads to four main conclusion.
First, stands out immediately evident that in both three scenarios, migrate

through the TCBM makes sure that the energy curve turns out to be always below
the curves obtained through Xen and LIV-MIG (see Chapter 4) manager. In
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(a) Trend of energy in 4G scenario
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Figure 5.13. (a) Trend of energy in 4G scenario for Xen manager, LIV-MIG manager and
our bandwidth manager TCBM, with IMAX = 12 and Q = 1, 2, 3, 4, 6, 12. The parame-
ters used in this case are: K4G

0 = 0.09((W )× (s/Mb)α); R̂ ≡ R3G
MAX = 1.8(Mb/s); α =

2; E4G
SETUP = 5.1(J); aMAX = 0.0001; M0 = 256(Mb); w = 0.18(Mb/s); ∆TM =

2770(s); ∆DT = 7.53× 10−7(s). (b) Trend of the time due to the variation of Q for our
Tunable complexity bandwidth manager.
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(a) Trend of energy in WiFi scenario
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Figure 5.14. (a) Trend of energy in WiFi scenario for Xen manager, LIV-MIG manager and
our bandwidth manager TCBM, with IMAX = 12 and Q = 1, 2, 3, 4, 6, 12. The parame-
ters used in this case are: KWiFi

0 = 0.05((W )×(s/Mb)α); R̂ ≡ R3G
MAX = 1.8(Mb/s); α =

2; EWiFi
SETUP = 5.9(J); aMAX = 0.0001; M0 = 256(Mb); w = 0.18(Mb/s); ∆TM =

2770(s); ∆DT = 7.53 × 10−7(s). (b) Trend of the time due to the variation of Q for
Tunable complexity bandwidth manager.

particular, TCBM has been developed to improve the performance of LIV-MIG in
the case where α = 2, since in these conditions the bandwidth manager implemented
in [78] assumes a constant behavior and energy consumption much higher than Xen.
Regarding the constraints on downtime, total migration time, maximum available
migration bandwidth R̂ and the value of the memory dirty rate of the migrated VM
w, in all three scenarios were taken equal to those of 3G, so as to achieve comparable
results (seen that the 3G appears to be the worst case scenario with respect 4G and
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WiFi). Regarding the other parameters such as K0 and ESETUP , each scenario uses
its own values, which are listed at the beginning of previous Section 5.7.

Second, looking the Figs. 5.12(a), 5.13(a), 5.14(a) and 5.15, we can see that to
the growth of Q, the energy (except in LIV-MIG,where always remained constant)
tends to decrease to stabilize since the early values of Q. For this reason, I decided
to choose values of Q very low (i.e., Q = 1, 2). In particular, in the next tests I
decided to work with Q = 1. Do not forget that working with Q = 1 does not mean
to have a single update rate, but rather we must remember that my method updates
Q+ 2 rates, because R0 and RIMAX+1 are always updated in case of migration.
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Figure 5.15. Trend of energy for the three scenarios 3G, 4G and WiFi, implemented by the
TCBM; with IMAX = 12 and Q = 1, 2, 3, 4, 6, 12 and with respect the results obtained
using Xen and LIV-MIG manager.

Third, in Figs. 5.12(b), 5.13(b) and 5.14(b) are shown the timing of the tests
performed on the three application scenarios, with respect to all values of Q. In
all three cases, I have that to growing of Q, increases the time that my bandwidth
manager uses to migrate from mobile devices to base station, but times continue to
grow linearly.

Fourth, even if the energy setup of WiFi results to be higher than 4G and in turn
the energy setup of 4G turns out to be greater than that of 3G, given the energy
formula (5.50) of TCBM, I have that the is energy consumptions of WiFi have to
be the best, followed by the 4G and ultimately 3G. This result is due to the fact
that as regards the energy calculation, come into play the parameter K0 (the effects
of which were discussed in Section 5.3); then it appears that KWiFi

0 ≥ K4G
0 ≥ K3G

0 .
The following is a summary graph of the curves of energy of all three scenarios
compared.
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Figure 5.16. Time evolutions (in the n index) of the energy consumption of the proposed
bandwidth manager, case of time-varying w, at: (a) R̂ = 1.8(Mb/s), M0 = 256(Mb), β =
2, ∆TM = 1460 (s), ∆DT = 0.14 (s), for 3G scenario; (b) R̂ = 45 (Mb/s), M0 =
256 (Mb), β = 2.33, ∆TM = 58.6 (s), ∆DT = 5.61 × 10−3 (s), for 4G scenario; (c)
R̂ = 9.9 (Mb/s), M0 = 256 (Mb), β = 2.33, ∆TM = 266 (s), ∆DT = 2.55× 10−2 (s), for
WiFi scenario.

5.7.3 Tracking capabilities under contention phenomena

Real-world applications may vary the produced traffics over the time [47] and, then,
it may be of interest to test how the proposed bandwidth manager reacts when the
workload offered by the migrating VM changes unexpectedly.

As pointed out in [16], memory contention phenomena and/or network congestions
may produce abrupt (typically, unpredictable) time-variations of the parameters w
(dirtied memory) and or K0 (network status)

Hence, in order to evaluate the tracking capabilities of the proposed adaptive
bandwidth manager in Eqs. (5.65)-(5.67) and its sensitivity to the parameters aMAX

in Eqs. (5.69)-(5.71), in Fig. 5.16, I report the measured behaviors of the energy
sequence: {E∗(n)

TOT , n ≥ 0} when, due to memory contention phenomena, the memory
dirty rate w of the running memtester application abruptly varies.

An examination to the plots of Fig. 5.16 and Fig. 5.17 supports the three
following main conclusions.
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Figure 5.17. Time evolutions (in the n index) of the energy consumption of the pro-
posed bandwidth manager, case of time-varying K0, at: (a) R̂ = 1.8 (Mb/s), M0 =
256 (Mb), β = 2, ∆TM = 1460 (s), ∆DT = 0.14 (s), for 3G scenario; (b) R̂ =
45 (Mb/s), M0 = 256 (Mb), β = 2.33, ∆TM = 58.6 (s), ∆DT = 5.61 × 10−3 (s), for
4G scenario; (c) R̂ = 9.9 (Mb/s), M0 = 256 (Mb), β = 2.33, ∆TM = 266 (s), ∆DT =
2.55× 10−2 (s), for WiFi scenario.

• First, according to the fact that the energy function increases for increasing w
and/or K0, all the plots of Fig. 5.16 and Fig. 5.17 scale up at n = 30 and,
then, scale down at n = 60.

• Second, the proposed bandwidth manager quickly reacts to abrupt unpre-
dicted time variations of the migrating application and/or underlying network
connections.

• Third, while virtually indistinguishable plots are obtained for aMAX ranging
over the interval [5×10−2, 5×10−3] in case of time-varying K0 (see. Fig. 5.17),
the same results is not obtained in case of time-varying w (see. Fig. 5.17).
This phenomenon is due to the fact that while K0 is a multiplicative constant
in the formula of the energy, w, in addition to a profound impact on energy,
causes that our TCBM uses more iterations to go from transient-states to the
steady-states. Precisely, it is showed that, the decrease of aMAX increases the
number of iterations that are used by the software to return to the equilibrium
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state.

For this reason I prefer to work with aMAX high, over the interval [0.5, 0.05], in
such a way that (in a maximum of six or seven iterations), the software reacts well
to variations of w.

Overall, from the outset, I conclude that the proposed adaptive bandwidth
manager is robust with respect to the actual tuning of aMAX , at least for values of
aMAX ranging over the the interval [0.5, 0.05], in order to exhibits the best trade-off
among the contrasting requirements of short transient-states and stable steady-states.

5.7.4 Comparative energy simulations under random migration or-
dering and synthetic workload

The benchmark bandwidth management policy of the Xen hypervisor of Section
5.7.2 does not guarantee, by design, minimum energy consumptions and does not
enforce QoS constraints on the resulting memory migration and stop-and-copy
times. Furthermore, differently from ĨMAX , in (5.46), the maximum number of
allowed rounds: IXENMAX is fixed by the Xen hypervisor in an application-oblivious
way (typically, IXENMAX ≤ 29; see [51, 19]). Hence, in order to carry out fair energy
comparisons, in the carried out field trials, I proceed as follows:

(i) set IXENMAX and RXENMAX ;

(ii) measure the resulting Xen energy consumption EXENTOT , speed-up factor βXEN ,
total migration time TXENTM , downtime TXENDT ;

(iii) enforce R̂ ≡ RXENMAX , together with the QoS constraints: ∆TM ≡ TXENTM ,
∆DT ≡ TXENDT , and β ≡ βXEN ;

(iv) measure the resulting energy consumption E∗TOT of the proposed bandwidth
manager at IMAX = ĨMAX . (see Eq. (5.46)).

The memtester [63] is the application, on the basis of which, I implement my
simulations in this section and the implemented migration ordering of the dirtied
memory pages is the random one.

The numerical results measured through a campaign of simulations developed
for the three considered scenarios (3G, 4G and WiFi) as reported in Table 5.2, Table
5.3, Table 5.4, Table 5.5, Table 5.6 and Table 5.7. This application scenarios are
characterized by different initialization values, but from the same ratio (w/R̂) and
from the same values of α and M0. The other parameters are characteristics of each
mobile scenario.
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Table 5.2. Scenario 3G with M0 = 256(Mb); α = 2; K0 = 0.18; ESETUP = 3.25(J); and

(a)
(
w

R̂

)
= 0.33 and R̂ = 0.33×RXENMAX = 0.55(Mb/s);

IXENMAX 6 14 25
TXENDT = ∆DT (s) 1.85 6.41× 10−3 2.67× 10−6

TXENTM = ∆TM (s) 1210 1670 2140
β 1.97 2.06 2.09
EXENTOT (J) 138 156 178
ELIV_MIG
TOT (J) 122 123 123

Q 1 1 1
ETCBMTOT (J) 104.22 104.62 104.62
Energy save respect XEN (%) 24.5 32.9 41.2
Energy save respect LIV_MIG (%) 14.57 14.9 14.9

Table 5.3. Scenario 3G with M0 = 256(Mb); α = 2; K0 = 0.18; ESETUP = 3.25(J); and

(b)
(
w

R̂

)
= 0.11 and R̂ = 0.11×RXENMAX = 0.2(Mb/s);

IXENMAX 6 14 25
TXENDT = ∆DT (s) 0.0155 1.14× 10−7 1.05× 10−14

TXENTM = ∆TM (s) 2110 2740 3400
β 4.43 4.69 4.85
EXENTOT (J) 51 50.5 48.7
ELIV_MIG
TOT (J) 96.6 96.6 96.6

Q 1 1 1
ETCBMTOT (J) 45.69 46.76 46.51
Energy saved vs. XEN (%) 10.4 7.4 4.5
Energy saved vs. LIV_MIG (%) 52.7 51.6 51.8

The tables below cited show the energy values obtained through simulations for
Xen, the bandwidth management policy developed in the Part I of this thesis, and
the Tunable-complexity bandwidth manager, widely discussed in Section 5.3.

An examination of the results of these simulations data leads to two main
conclusion.

First, in all the simulations the percent energy saving:

• (1− (E∗TOT /EXENTOT ))% of the proposed bandwidth manager over the Xen one
is between 3% (minimum value of energy saving) for (w/R̂) = 0.11 and
IMAX = 25, to 44.4% (maximum value of energy saving) for (w/R̂) = 0.33
and IMAX = 25 (see Tables 5.2, 5.4, 5.6);

• (1− (E∗TOT /E
LIVM IG
TOT ))% of the proposed bandwidth manager over the BMOP

(Bandwidth Management Optimization Problem, see Part I and paper [78])
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Table 5.4. Scenario 4G with parameters M0 = 256(Mb); α = 2; K0 = 0.09; ESETUP =

5.1(J); and (a)
(
w

R̂

)
= 0.33 and R̂ = 0.33×RXENMAX = 14.85(Mb/s);

IXENMAX 6 14 25
TXENDT = ∆DT (s) 0.103 5.42× 10−4 4.03× 10−7

TXENTM = ∆TM (s) 46.9 65.2 83.6
β 1.87 1.95 1.98
EXENTOT (J) 1880 2150 2470
ELIV_MIG
TOT (J) 1550 1550 1550
Q 1 1 1
ETCBMTOT (J) 1366 1373 1373
Energy saved vs. XEN (%) 27.3 36.1 44.4
Energy saved vs. LIV_MIG (%) 11.8 11.4 11.4

Table 5.5. Scenario 4G (b) with parameters: M0 = 256(Mb); α = 2; K0 = 0.09; ESETUP =

5.1(J); and (b)
(
w

R̂

)
= 0.11 and R̂ = 0.11×RXENMAX = 4.95(Mb/s);

IXENMAX 6 14 25
TXENDT = ∆DT (s) 5.9× 10−4 4.07× 10−9 3.4× 10−16

TXENTM = ∆TM (s) 84.9 110 137
β 4.47 4.78 4.89
EXENTOT (J) 632 624 602
ELIV_MIG
TOT (J) 1170 1170 1170
Q 1 1 1
ETCBMTOT (J) 531.7 545.25 541.8
Energy saved vs. XEN (%) 15.8 12.6 10
Energy saved vs. LIV_MIG (%) 54.5 53.4 53.7

is between 11.2% (minimum value of energy saving) for (w/R̂) = 0.33 and
IMAX = 6, to 54.5% (maximum value of energy saving) for (w/R̂) = 0.11 and
IMAX = 6 (see Tables 5.3, 5.5, 5.7).

In all scenarios, TCBM appears to be the best one from the point of view of energy
saving. These noticeable energy gains support the conclusion that the bandwidth
management policy developed in this thesis is the optimal one, and, by design, it
minimizes the migration-induced energy consumption.

Second, the values of the measured energy gains mainly depend on the considered
ratio: (w/R̂). In particular, in these tests only values of (w/R̂) ≤ 0.33 are considered,
because, if and only if this constraint is satisfies, the Xen (heuristic) bandwidth
management policy presents decreasing values of energy for increasing values of
IMAX . Hence, under this condition, it make sense to compare our bandwidth
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Table 5.6. Scenario WiFi (a) with M0 = 256(Mb); α = 2; K0 = 0.05; ESETUP = 5.9(J);

(a)
(
w

R̂

)
= 0.33 and R̂ = 0.33×RXENMAX = 3.267(Mb/s);

IXENMAX 6 14 25
TXENDT = ∆DT (s) 0.468 2.46× 10−3 1.83× 10−6

TXENTM = ∆TM (s) 213 296 380
β 1.87 1.95 1.98
EXENTOT (J) 229 267 302
ELIV_MIG
TOT (J) 194 195 195

Q 1 1 1
ETCBMTOT (J) 172.3 173.2 173.2
Energy saved vs. XEN (%) 24.7 35.1 42.6
Energy saved vs. LIV_MIG (%) 11.2 11.2 11.2

Table 5.7. Scenario WiFi (b) with M0 = 256(Mb); α = 2; K0 = 0.05; ESETUP = 5.9(J);

(b)
(
w

R̂

)
= 0.11 and R̂ = 0.11×RXENMAX = 1.089(Mb/s);

IXENMAX 6 14 25
TXENDT = ∆DT (s) 2.68× 10−3 1.85× 10−8 1.55× 10−15

TXENTM = ∆TM (s) 386 501 622
β 4.47 4.78 4.89
EXENTOT (J) 77.2 76.3 73.6
ELIV_MIG
TOT (J) 148 148 148

Q 1 1 1
ETCBMTOT (J) 70.26 71.9 71.5
Energy saved vs. XEN (%) 9 5.7 3
Energy saved vs. LIV_MIG (%) 52.5 51.4 51.7

manager with Xen and BMOP.
In the carried out tests, is reported that, while the TCBM in each scenario

presents a constant gain with respect to the optimization method described in
Chapter 4 and [78], from the comparison with Xen comes out that the percentage of
energy saving tends to decrease (for increase of IMAX) when the ratio (w/R̂) < 0.33;
on the contrary the percentage of energy saving tends to increase when the ratio
(w/R̂) = 0.33.

5.7.5 Comparative simulations under random migration ordering
and real-world workloads

In order to further validate and refine the above conclusions by considering also
real-world applications, in this section we report and compare the migration-induced
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Figure 5.18. Energy consumptions obtained by simulating bzip2, mcf and memcached in :
(a) 3G scenario; (b) 4G scenario; (c) WiFi scenario.

energy consumptions which are suffered by the bzip2, mcf and memcached programs,
also in this case each simulation is carried out for each of the three scenarios (3G,
4G and WiFi) by which the mobile device can migrate to the base station or Fog
site. The test parameters are reported, in Appendix A.8, in Tables A.1, A.1 and
Table A.1.

In all the experiments, RMAX was chosen equal to the value of RMAX of 3G
(which turns out to be smaller, than those in the 4G and WiFi), in such a way to
have the comparisons in a consistent manner.

The Figures 5.18 show the results of the tests.
An examination of the bar plots of Fig.5.18 leads to two main conclusion.
First, since the dirty rate increases by passing from the (read-intensive) bzip2

program to the (write-intensive) memcached one, the corresponding energy consump-
tions also exhibit increasing trends under both the Xen, LIV-MIG Chapter 4 and
proposed bandwidth managers.

Second, in all cases, the energy consumption relating to the migration by applying
our method appears to be lower than both Xen and LIV-MIG manager. In particular,
the percent energy saved of the proposed manager over the Xen and the LIV-MIG
under the bzip2, mcf and memcached, for each application scenarios are reported in
Table 5.8.

Table 5.8. Percent energy saved of the TCBM manager over Xen and LIV-MIG managers.

Parameter description bzip2 mcf memc.

3G Energy saving resp. Xen(%) 28.1 41.92 44.74
En. saving resp. LIV-MIG(%) 32.8 11.15 6.67

4G Energy saving resp. Xen(%) 60.5 69.21 70.84
En. saving respect LIV-MIG(%) 63.17 52.86 50.76

WiFi Energy saving resp. Xen(%) 75.04 81.33 82.46
En. saving resp. LIV-MIG(%) 76.67 71.41 70.37

This confirms the trend of the previous Section 5.7.4 about the large energy-gains
offered by the proposed manager under write-intensive applications.
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5.8 Conclusion to Part II

In this chapter I presented a novel approach for bandwidth management in live
migration virtual machine on wireless application context which is an extension of
my manger LIV-MIG and outperform the others considered approaches. My results
show a significant improvement with respect to the currently used approach in most
relevant implementation architecture for live virtual machines migration.
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CHAPTER 6
CRITICAL ASSESSMENT AND FUTURE WORK

Unlike in past years, nowadays we have smart phones and mobile devices in general
(e.g. laptop) that have multiple radio interfaces, such as WiFi and 4G and/or
3G. In the event that these NICs allow the connection to the Internet, then the
mobile device is defined to be multi-homed, this means that the device has different
IP addresses and can connect simultaneously to the Internet in different location.
Although at first glance multi-homing seems to be very interesting, we can not
disregard the fact that neither TCP nor UDP support its implementation in an
optimal manner. The situation can become destructive in the case of mobile device,
in which the battery life is a key parameter for the client that wants to buy a new
smart phone. Multi-path TCP is proposed as solution to the problem of shift session
active on different path (see. [79, 80, 75]).

6.1 VM migration under single-path TCP and multi-
path EWTCP

The main objective of MPTCP is to allow the simultaneous use of different network
paths to a single TCP connection, but it can be further used for shift a connection
from one location to another. Consider the following energy model of the interfaces
of your device. It can be considered three states: transmission energy, if the data
are transmitted; high stand-by energy, following the end of data transmission, and
the state of low energy, which occurs when the stand-by phase ends [81].

Let us suppose we have a WiFi interface and 3G interface, and suppose further
that they have the same consumption of idle phase. In the case of continuous shift
from one interface to another (due to changes in throughput), when the device steps
from 3G to WiFi, the stand-by energy of 3G is added to the energy that WiFi uses
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for the transmission phase, and vice versa. Therefore, in the case of very frequent
fluctuations of the throughput, even if each of them were chosen the best path, you
would have a huge waste of energy relative to the ever more frequent phases of
stand-by of the two interfaces. On the basis of these observations, we illustrate a
case in which to turn on simultaneously the two NICs of a smart phone could be
more efficient from the point of view of energy saving compared to using only one.
In particular, the purpose of this chapter is to evaluate ETOT of migration of our
TCBM and Xen under single-path TCP and under multi-path EWTCP [79], so that
we can numerically prove the goodness of the previous assumption.

The reference scenario is that of a radio connection 5G from a mobile device to
your AP (Access Point), which acts like Fog site. The mobile device is equipped
with two NICs (Network Interface Cards), the WiFi 802.11b and the 4G.

In the case of single-path TCP, the two NICs are turned on separately and used
separately, while in the case of EWTCP the two NICs are turned on simultaneously
and used simultaneously. Hence, the solutions single-path have a lower ESETUP
(which depend on the single NIC used), while the solution EWTCP has ESETUP
which is the sum of the energies of setup: E4G

SETUP + EWiFi
SETUP of the two NICs used

simultaneously.

6.2 Goodput-vs-Power in multi-path TCP working in
the Congestion Avoidance state

The key criterion for calculating the average goodput of a TCP connection (or sub-
connection) in the state of Congestion Avoidance is the following: at full performance,
the size w (measured in segments size (MSS (byte)) of the congestion window must
not vary. Hence, (1− pLOSS)× Iw = pLOSS ×Dw, where:

• pLOSS is the average rate of the lost segments of the considered flow, in steady
state;

• Iw is the average rate of increase of the events;

• Dw is the average decrease of w.

Considering that pLOSS ≤ 1 in the state of Congestion Avoidance, the previous
becomes:

Iw = pLOSS ×Dw. (6.1)

With reference to a multi-path TCP connection, we place:

• R , set of routes that use the connection, |R| ≥ 1;
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• wTOT ,
∑
r∈R

wr (segments);

• RTT , average round-trip-time of r-th subflow;

• R
TOT

,
∑
r∈R

Rr = total goodput of the multi-path TCP connection (Mbit/s);

• Rr(Mbit/s) , goodput of r-th subflow;

• Pr(Watt) , power required to transfer/receive the r-th subflow;

• P TOT ,
∑
r∈R

Pr = total power needed to support the entire connection multi-

path (Watt).

6.2.1 Single-path TCP Reno

In this case we have that:

P TOT ≡ P = K0(R)α, α ≥ 1 (Watt); (6.2)

RTOT ≡ R (Mbit/s). (6.3)

6.2.2 Multi-path EWTCP

This version uses simultaneously all paths available. In particular, we obtained

P TOT ,
∑
r∈R

Pr ≡ a(R1, . . . , RN )
{∑
r∈R

Kr(Rr)c
}
, (Watt); (6.4)

where we have that:

a(R1, . . . , RN ) ≡ 1; (6.5)

Kr , [(RTT r
√

Ωr)/(MSS
√

2a)]α, where MSS is measured in (Mbit); (6.6)

c , α = 2
m

; (6.7)

RTOT ,
∑
s∈R

Rs, (Mbit/s). (6.8)

The relationship in Eq.(6.4) between P tot and {Rs, s ∈ R} is not monomial
neither posynomial so that, the problem of VM migration is no longer Geometric.
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However, it is not convex and the type of convexity depends on the type of multi-path
TCP considered, in our case multi-path EWTCP.

At this regard, we note specifically that in the problem of the migration of VM
we have that:

• the power P is the total power on N ≥ 1 paths, that is

P ≡ P TOT ,
∑
r∈R

Pr (Watt); (6.9)

• the migration rate Ri at i-th round, i = 0, . . . , (IMAX +1) should be considered
as the total rate on N paths of migration to the i-th round, i.e.

Ri ≡ RTOTi ,
∑
r∈R

R
(i)
r , i = 0, . . . , (IMAX + 1). (6.10)

So, if we want to continue to use the framework already developed for the
single-path TCP, we have to find a case in which, even in case of multipath TCP,
the relationship from P TOT ,

∑
r∈R

Pr and RTOT ,
∑
r∈R

Rr is monomial:

P TOT = K0(RTOT )α, α ≥ 1, (Watt) (6.11)

with RTOT measured in (Mb/s) and K0 measured in
(

Watt

(Mbit/s)α
)
.

This is what we will do in the next section.

6.3 Total power-vs-total throughput monomial relation-
ship in the case of Equal-Balanced multi-path TCP

Given Eqs. (6.9) and (6.10); is R the set of end-to-end routes that make up the
considered multi-path TCP connection; and is N the number of routes that compose
the TCP connection, with N ≥ 1.

Then, the following result is worth.

Proposition 7. We assume that all N ≥ 1 routes available carry the same through-
put, i.e. we assume that:

R1 = R2 = R3 = · · · = RN ≡ R (Mbit/s) (6.12)

where R (Mbit/s) is the throughput for-path.
Under the assumption (6.12), we have that:
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a) RTOT is equal to:

RTOT ,
∑
r∈R

Rr ≡ NR (Mbit/s); (6.13)

b) in all the considered cases of single-path TCP and multi-path EWTCP, the
relation from total power (Eq. (6.9)) and total throughput (Eq. (6.13)) is
monomial and takes the common form of Eq. (6.11);

c) the value of K0 depends on the type of single-path or multi-path TCP consid-
ered. Directly placing (6.12) in formal expressions (6.4) and (6.5), we get the
following explicit expressions of Ko at Eq. (6.11) for the two considered cases:

K0 =
(
RTT

MSS

√
Ω
2

)α
, α , 2/m ≥ 1,

for single− path TCP Reno;
(6.14)

K0 =
( 1
MSS

√
2a N

)α[ N∑
r=1

(RTT r
√

Ωr)α
]
, α , 2/m ≥ 1, a ≥ 1,

for EWTCP ;
(6.15)

with RTOT (Mb/s), K0

(
Watt

(Mbit/s)α
)
, P TOT (Watt), RTT (s), MSS (Mbit),

Ω ((Watt)
2
α ).

Because the Eqs. (6.11) and (6.15) are apply only under the assumption (6.13), we
ask what is the sufficient conditions so that the considered multi-path EWTCP,
actually satisfy the condition (6.13). At this regard, the following condition apply
sufficient.

Proposition 8. The sufficient condition that ensure that multi-path EWTCP meets
the condition (6.13), is:

RTT r
√

Ωr ≡ cost, ∀ r = 1, 2, . . . , N. (6.16)

6.4 Additional considerations on multi-path EWTCP

The solution multi-path TCP equal-balanced considered, has a diversity gain due to
multi-path, and is reflected on the fact that K0 in Eq. (6.15) decreases like 1

Nα−1
to growing of N . It is worth the following proposition.
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Proposition 9. Suppose to put a = 1 in Eq. (6.15). Then, the corresponding value
of K0 decreases as 1

Nα−1 for N growing, i.e.:

K0 ∝ θ
( 1
Nα−1

)
. (6.17)

Proof. The proof is obtained for inspection of the corresponding expression of K0

given in Eq. (6.15)

The effect of increase (decrease) a is, in all cases, to increase (decrease) the
additive increment of each congestion windows {wr, r ∈ R} to the reception of an
ACK on route r-th. That is, for every ACK received on the route r-th, {wr increases
additively by an amount that depends on the type of TCP, but considered that, in
any case is proportional to a. This can lead to multi-path versions of TCP that
are "not friendly" with the single-path TCP but, as we shall see, provides a gain of
multi-path that can more than offset the overhead power due to the use interfaces
simultaneously. In the following, we focus on EWTCP with a = 1 in Eq. (6.15), in
order to reduce to Eq. (6.14) when N = 1.

In addition, we will choose the parameters RTT and Ω of the two network WiFi
and 4G so that the condition is satisfied:

RTTWiFi

√
ΩWiFi ≡ RTT 4G

√
Ω4G (6.18)

so that the EWTCP considered actually fairly balanced RTOT on the two paths
available. The condition (6.18) is almost always satisfied in practice (see [79]).

The choice of EWTCP to represent the multi-path TCP is due to the fact that
the evidence given in [79], have already shown that, among the various multi-path
TCP considered, the EWTCP is the one that best leads in the mobile-wireless
environment.The following table shows the parameters for connections WiFi and 4G
to simulate. I note explicitly that the parameters of Table 6.1 meet Eq. (6.18) and

Table 6.1. Parameters of the two radio connections of tests. In particular, 0.9 is the
maximum efficiency (i.e., minimum overhead) due to the TCP+IP+MAC header’s
lengths.

IEEE 802.11b (WiFi) 4G
α 2 2

MSS (Mbit) 0.008 0.008
RMAX (Mbit/s) 0.9× 11(Mb/s) 0.9× 50(Mb/s)

RTT (s) 25× 10−3 35× 10−3

Ω(Watt) 10−2 5.1× 10−3

ESETUP (J) 5.9 5.1
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then, by construction, the corresponding EWTCP balance equally the total flow
RTOT which gives rise, on both WiFi and 4G available connections.

6.5 Definition of the simulation setup for comparisons

The purpose of this set of simulations is to compare the energy consumption of
ET OT (J) of our TCBM to vary of M0, Q, ∆TM , ∆DT and IMAX on the three types
of connections that now we will define.

a) Single-path TCP New Reno connection under WiFi: On the basis
of the values of Tab. 6.1 and using the Eq. (6.14) for the calculation of
the corresponding K0, this test scenario is characterized by the following
parameters of the TCP connection:

KWiFi
0 = 5× 10−2

(
Watt

(Mb/s)2

)
;

RWiFi
MAX = 0.9× 11(Mb/s);

α = 2;

EWiFi
SETUP = 5.9(J).

(6.19)

b) Single-path TCP New Reno connection under 4G:

On the basis of the values of Tab. 6.1 and using the Eq. (6.14) for the
calculation of the corresponding K0, this test scenario is characterized by the
following parameters of the TCP connection:

K4G
0 = 5× 10−2

(
Watt

(Mb/s)2

)
;

R4G
MAX = 0.9× 50(Mb/s);

α = 2;

E4G
SETUP = 5.1(J).

(6.20)

c) Multi-path EWTCP connection that uses simultaneously and in a
balanced way both links 4G and WiFi:

On the basis of the values of Tab. 6.1 and using the Eq. (6.15) with N = 2
and a = 1 for the calculation of the corresponding K0, this test scenario is
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characterized by the following parameters of dual-path TCP connection:

KEWTCP
0 = 25× 10−3

(
Watt

(Mb/s)2

)
;

REWTCP
MAX = 2min {RWiFi

MAX ; R4G
MAX} = 2× 9.9(Mb/s);

α = 2;

EEWTCP
SETUP = EWiFi

SETUP + E4G
SETUP = 11(J).

(6.21)

About the three scenarios now defined, note the following.
First,the purpose of the comparisons is to ascertain if it is energetically more

convenient migrate using only the WiFi (case a) or only the 4G connection (case b)
or both connections simultaneously, multi-path EWTCP (case c).

Second, because EWTCP uses both connections in parallel, EEWTCP
SETUP is the

summation (and therefore larger) of EWiFi
SETUP and E4G

SETUP . On the other hand,
because EWTCP can balance the total flow on the two links available thus reducing
the level of congestion, KEWTCP

0 is half of the corresponding KWiFi
0 and K4G

0 .
Third, because EWTCP distributes evenly the total flow RTOT between the two
links available, the maximum value of RTOT of EWTCP can not be greater than
twice the smallest of the maximum flows of the two links.

6.6 Simulation results and conclusions

The results shown below are made by implementing in all three cases (a, b, c of
Section 6.5) our TCBM, for various values of IMAX , M0, Q, ∆TM , ∆DT , obviously
after having checked the feasibility of all three cases (Eqs. (5.43)-(5.45)). Even if
EEWTCP
SETUP is equal to the sum of EWiFi

SETUP and E4G
SETUP , while KEWTCP

0 is equal to
half of the corresponding KWiFi

0 and K4G
0 , I expect that the energy saving due to

the smaller KEWTCP
0 is greater then the energy increase induced by EEWTCP

SETUP .
So, I expect that the simulated results of TCBM confirm the following hierarchy,

EEWTCP
SETUP < min

{
EWiFi
TOT ; E4G

TOT

}
(6.22)

with the inequality more closer for greater M0 and smaller values of ∆TM and ∆TM

(always ensuring the feasibility of the cases a, b, c).
The Tables 6.2, 6.3, 6.4 show the results obtained from TCBM, in the case where

migration is performed by using only WiFi connection, or only 4G, or in the case in
which are used simultaneously both connections WiFi and 4G. Now we can make
some observations. First of all, is immediately evident that the energy consumed
during the migration phase, except in the last case of table 6.2, appears to be always
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Table 6.2. Results of simulation of scenarios with: (a) M0 = 64(Mb) and ∆DT = 0.2(s).

w

RMAX
∆TM (s) IMAX E4G

TOT (J) EWiFi
TOT (J) EEWTCP

TOT (J) Gain4G(%) GainWiFi(%)
0.1 7.2 1 73.95 40.93 32 56.76 21.82
0.2 8.1 2 119.11 45.3 39.01 67.25 13.89
0.3 9.17 2 171.43 50.68 49.88 70.9 1.6
0.35 9.89 3 197.64 54.29 54.48 72 -0.53

Table 6.3. Results of simulation of scenarios with: (b) M0 = 128(Mb) and ∆DT = 0.2(s).

w

RMAX
∆TM (s) IMAX E4G

TOT (J) EWiFi
TOT (J) EEWTCP

TOT (J) Gain4G(%) GainWiFi(%)
0.1 14.36 1 157.2 76.13 53.87 65.73 29.24
0.2 16.14 2 244.5 84.86 68.34 72.05 19.47
0.3 18.43 3 344.27 96.03 88.06 74.42 8.3
0.35 19.8 3 398.75 102.38 100.58 74.7 1.75

Table 6.4. Results of simulation of scenarios with: (c) M0 = 256(Mb) and ∆DT = 0.2(s).

w

RMAX
∆TM (s) IMAX E4G

TOT (J) EWiFi
TOT (J) EEWTCP

TOT (J) Gain4G(%) GainWiFi(%)
0.1 29 2 271.55 145.52 95.45 64.85 34
0.2 32.4 3 475.75 163.88 124.53 73.82 24
0.3 37 4 689.96 186.51 164.47 76.16 11.82
0.35 39.71 4 801.99 200.28 189.73 76.3 5.26
0.4 43.1 5 915.75 216.48 212.55 76.79 1.8

less than energy consumed which is obtained by using separately or WiFi, or 4G, in
agreement with the Eq. (6.22), as we hoped.

Second, the table shows that while the increasing of IMAX , the gain of the
EWTCP increases with respect to 4G, in the same time decreases compared to the
WiFi. Because R4G

MAX turns out to be much greater than RWiFi
MAX , you get a result

that the multi-path EWTCP has an REWTCP
MAX = 2×RWiFi

MAX . It appears that 4G go
worse in all cases, but this is not really true, since the value of energy is distorted
by the fact that, unlike the WiFi and EWTCP (until w/RMAX remains low, equal
to 0.4 in the best case of tables below), 4G satisfies the constraint on the total
migration, but uses it for a period of time so short that accordingly to meet the
other constraints of feasibility, waste a lot of energy during the migration.

In conclusion, the results show that for low values of the ratio w/RMAX (at
the most equal to w/RMAX = 0.4 in case of M0 = 256(Mb)) there are cases where
it is more convenient to use together both NICs WiFi and 4G instead of keeping
turned on only one of the two NICs. This is the most important result from the
application of multi-path EWTCP to the problem of migration between smart phone
and AP, because it could seem absurd to think that keeping alight both the WiFi
adapter that 4G, the smart phone consume less than if it is on one or the other
NIC. Obviously these results are obtained in particular operating conditions, such
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as to have the same rate on both paths (see Eq. (6.18)), in addition to all the other
assumptions made in the preceding Sections 6.3 - 6.5.
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CHAPTER 7
SUMMARY CONCLUSION

In this thesis I developed an optimal bandwidth manager for live migration of
virtual machines (LIV-MIG), in Part I I presented the intra-data-center network
bandwidth manager for live migration of virtual machine, hence in Part II I provided
an extension of my bandwidth manager for wireless live migration, with tunable-
complexity capabilities, for future’s 5G technologies.

In Part I I developed the optimal bandwidth manager for intra-data-center live
VM migration. It minimizes at run-time the communication energy wasted by the
migration of the VM memory under hard QoS constraints on both the migration
time and downtime. After implementing it atop a wired test-bed, I measured
and compared its energy performance through extensive simulations and tests by
considering synthetic and real-world workloads, as well as random and ordered
migration scheduling disciplines. The carried out simulations and tests highlight that
the average energy saving of the proposed bandwidth manager over the corresponding
state-of-the-art Xen one is over 40% and approaches 66% under strict constraints on
the tolerated downtimes. Interestingly, the measured per-migration CPU slow-down
induced by its implementation is, in average, limited up to 1.5−2%, while the
measured average stretching of the execution times of the migrated applications is
under 20%.

In second part of this thesis I developed the optimal tunable-complexity band-
width manager (TCBM) for live VM migration from mobile device to access point
(AP)/Fog site.

First because right now there are no mobile devices capable to migrate, and
second, because APs are usually only used as a point to access to Internet, and they
do not have any kind of computing capability. Which it is assumed that will be
introduced only with the birth of the new mobile technology 5G.
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In particular, my TCBM minimizes at run-time the communication energy
wasted by the migration of the VM memory under hard QoS constraints on both
the migration time and downtime. After implementing it atop a wireless test-bed, I
measured its energy performance compared to Xen and LIV-IMG manager, through
extensive simulations by considering synthetic and real-world workloads, in the three
scenarios of 3G, 4G and WiFi. As reported in Chapter 5, all the tests carried out
show the goodness of our bandwidth manager compared to XEN and LIV-MIG, in
any scenario in which they were made the simulations. Hence we obtained a more
efficient use of the available bandwidth and, at the same time, a considerable energy
saving.

Therefore, in the following I considered the critical assessment and possible future
work about my thesis distinguishing the two part of this work.

Regarding hints for future research in Part I, I point out that the reported BMOP
formulation of Eqs. (4.6), (4.7) may apply verbatim to live VM migration over WAN
connections, provided that the adopted power-rate function in (3.8), setup energy
in (3.11) and round-trip-time in (3.9) are suitable modeled. In fact, I stress that,
from a networking perspective, guaranteeing seamless migration of IP-addressed
VMs over WANs poses quite specific challenges. First, in NAS-equipped LAN
environments, it suffices that, during the stop-and-copy phase, the destination server
broadcasts an unsolicited ARP reply message, in order to advertise all the LAN
interfaces that the IP address of the migrated VM has been moved to a new server.
However, more challenging is to attain seamless traffic redirection when the VM
migrates over different subnets [27]. Therefore, extending the actual implementation
of the proposed bandwidth manager to WAN environments for the support of
inter-data-center VM migration is a research topic currently investigated by the
authors.

Second, the network topologies of WAN environments are not controlled by the
data-center’s designer, so that high bisection bandwidths are no longer guaranteed.
Hence, in WAN environments, the performance effects of TCP re-transmissions
cannot be longer neglected and multi-path TCP may become an appealing option,
in order to attain end-to-end load balancing. As a consequence, the generalization
of the power model of Eqs. (3.8) and (3.9) and the resolution of the resulting
bandwidth management problem under multi-path TCP over WAN connections
are additional hints for future research. Towards this end, the performance results
recently presented in [82] and [83] may provide a good starting point.

Hence, concerning the future work about Part II, relative to bandwidth man-
agement for wireless channel, I firstly analyzed the phenomenon of multi-path TCP.
Later, I realized a version of my TCBM able to work even in case the multi-path
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TCP, and more particularly in its version EWTCP, that is best suited to work in a
wireless-mobile environment. The comparison of the case Single-path with multi-path
EWTCP (both implemented according to our TCBM) get a truly amazing result,
but this case should be extended in future work. We have that to migrate from
mobile devices to Fog site, under appropriate operating conditions (first of all that
both paths have the same rate), is more advantageous in terms of energy saving keep
lit simultaneously both network cards (and hence two energies of idle etc.) than
take turned on only one of the two.

Regarding hints for future research, I point out that with the advent of 5G
technology, the implementation of the software on mobile devices could be done in
order to make them aware to decide whether to use a single or multiple network
interface to migrate, depending on the conditions of the surrounding environment,
so as to obtain significant energy savings.
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APPENDIX A
APPENDIX

A.1 Proof of Proposition 1

After observing that the condition: R ≤ R̂ is necessary and sufficient for meeting
the constraint in (4.5), I begin to prove the sufficiency of the conditions in (4.20)-
(4.22). Specifically, since the functions: Ψi(R), i = 1, 2, 3, in (4.1)-(4.3) decrease for
increasing R, it suffices that the corresponding constraints in (4.1)-(4.3) are met at
R = R̂. Hence, posing R = R̂ in (4.2) and (4.3) directly leads to Eqs. (4.21) and
(4.22), respectively. Furthermore, after observing that:

IMAX+1∑
i=0

(w/R̂)i =


IMAX + 2, for (w/R̂) = 1,

[
1−(w/R̂)IMAX+2

1−(w/R̂)

]
, for (w/R̂) 6= 1,

(A.1)

I directly arrive at the condition in Eq. (4.20).
The proof of the necessary part is by contradiction. Hence, let us assume that at

least one of the conditions in (4.1)-(4.3) fails at R = R̂. So, being the Ψ-functions
in (4.1)-(4.3) decreasing for increasing R, in order to meet the failing constraint, I
would set: R > R̂, that, in turn, would lead to violate the constraint in (4.5). This
proves that the conditions in (4.20)-(4.22) are also necessary for the feasibility of
the BMOP.

A.2 Proof of Proposition 2

In order to test that the convex problem in (4.24), (4.25) meets the Slater’s qual-
ification, it suffices to prove that there exists a feasible solution R̃∗ at which the
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box constraint in (4.25) is met with the equality, while the remaining nonlinear
constraints: Ψi(R̃) ≤ 0, i = 1, 2, 3, are fulfilled with the strict inequality [56]. To
this end, let us assume that all the feasibility conditions in (4.20)-(4.22) are met
with the strict inequality. Hence, R = R̃ in (4.4) is a feasible solution of the problem
in (4.6), (4.7). Furthermore, since the conditions in (4.20), (4.21) and (4.22) are
the constraints in (4.1), (4.2) and (4.3) evaluated at R = R̂, I deduce that all the
constraints in (4.1)-(4.3) are met with the strict inequality at R = R̂. Therefore,
since the exponential transformation is strictly increasing and, then, inequality
preserving, I conclude that: R̃∗ , log R̂ is a feasible solution of the problem in (4.24),
(4.25) which meets all the nonlinear constraints: Ψi(R̃) ≤ 0, i = 1, 2, 3, in (4.25)
with the strict inequality.

A.3 Expressions of the gradients of the Lagrangian func-
tion

The scalar gradients of the Lagrangian function in Eq. (4.26) assume the following
expressions:

∇
R̃
L =K0M0e

(α−1)R̃

(α− 1) + θ

IMAX+1∑
i=1

(α− 1− i)
( w
eR̃

)i
− θλ1

(
M0

∆MMT

)
e−R̃

IMAX+1∑
i=0

(1 + i)
( w
eR̃

)i
− λ2

(
M0

∆SC

)
(IMAX + 2)e−R̃

( w
eR̃

)IMAX+1
− θλ3β

( w
eR̃

)
;

(A.2)

∇λ1L = θ

e−R̃ ( M0
∆MMT

)IMAX+1∑
i=0

( w
eR̃

)i− 1

 ; (A.3)

∇λ2L =
[
e−R̃

(
M0

∆SC

)( w
eR̃

)IMAX+1
]
− 1; (A.4)

∇λ3L = θ

[
β w e−R̃ − 1

]
; (A.5)
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A.4 Development of the final expression of the TMT for
the TCBM

In the following I develop the final expression of the total migration time (TMT) for
the tunable complexity bandwidth manager (TCBM) developed in Section 5.3.

Let’s start from

TTM = M0

{ 1
R0

+ 1
M0

TDT + (1− δ(IMAX))
{IMAX∑

l=1
(w)l

[ l∏
m=0

( 1
Rm

)]}}
, (A.6)

with TDT given by eq. (5.27) at IMAX 6= −1.
Now, for each l = 1, . . . , IMAX , with IMAX ≥ 1, I have that:

l∏
m=0

( 1
Rm

)
= 1
R0 (R1R2 . . . RS) (RS+1RS+2 . . . R2S)(R2S+1R2S+2 . . . R3S) . . . Rl−1Rl

=

= 1
R0 (R1)S (RS+1)S (RS+2)S Rl−1 Rl

, l = 1, . . . , IMAX .

(A.7)

The number of factors in eq (A.7) which are raised to the S exponent depends
on the values actually assumed by l∈{1, . . . , IMAX} and S. Hence, in order to
properly express the rate product at the denominator of eq. (A.7) in terms of
the corresponding cluster-header rates {RjS+1 , j = 0, . . . , (Q− 1)} (see (5.23)), I
develop the summation in eq. (A.6) as in:

IMAX∑
l=1

(w)l
[ l∏
m=0

(Rm)−1
]
=

Q−1∑
k=0

(k+1)S∑
l=kS+1

(w)l
[ l∏
m=0

(Rm)−1
]
. (A.8)

Now, for l ∈ [kS + 1, (k + 1)S], the inner product may be expressed in terms of
the cluster headers in eq. (5.23) as in:

l∏
m=0

(Rm)−1 ≡


(R0 R

l
1)−1 , for l ∈ [1, S]; k = 0

1
R0

[
k−1∏
p=0

(RpS+1)−S
](
RkS+1

)−l+kS
, for l ∈ [kS + 1, (k + 1)S]; k ≥ 0

(A.9)
so that

l∏
m=0

(Rm)−1 = 1
R0

{
δ(k)(R1)−l + (1− δ(k))

[k−1∏
p=0

(RpS+1)−S
]
(RkS+1)−l+kS

}
,

for l ∈ [kS + 1, (k + 1)S]; k = 0, 1, . . . , (Q− 1).
(A.10)
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Hence, by inserting eq. (A.10) into eq. (A.8) I obtain:

IMAX∑
l=1

(w)l
[ l∏
m=0

(Rm)−1
]
= 1
R0

Q−1∑
k=0

(k+1)S∑
l=kS+1

(w)l
{
δ(k)(R1)−l + (1− δ(k))

[k−1∏
p=0

(RpS+1)−S
]

∗(RkS+1)−l+kS
}

(A.11)

Finally, after introducing eq. (A.11) and eq. (5.27) into eq. (A.6) I obtain the
following final expression for TTM :

TTM = M0

{ 1
R0

+ wIMAX+1 (R0 RIMAX+1)−1
[Q−1∏
m=0

(RmS+1)−S
]
+

+(1− δ(IMAX)) 1
R0

{Q−1∑
k=0

(k+1)S∑
l=kS+1

(w)l
{
δ(k)(R−l1 )+

+(1− δ(k))
[k−1∏
p=0

(RpS+1)−S
]
(RkS+1)−l+kS

}}}
(A.12)

A.5 Development of the expression of the energy wasted
by the TCBM

In the following I develop the final expression for the energy wasted by the tunable
complexity bandwidth manager.

According to eq. (5.26), the first rate-product in eq. (5.31) equates:

IMAX∏
k=0

(Rk)−1 = 1
R0

[Q−1∏
k=0

(RkS+1)−S
]
. (A.13)

Furthermore, the single summation over the l-index may be (once a time) equivalently
rewritten as the following nested double summation:

IMAX∑
l=1

K0M0 (w)l (Rl)α−1
[ l−1∏
m=0

(Rm)−1
]
≡

Q−1∑
m=0

(m+1)S∑
l=mS+1

K0M0(w)l(Rl)α−1 ∗
[ l−1∏
k=0

(Rk)−1
]
=

= (since all rates {Rl,mS + 1 ≤ l ≤ (m+ 1)S}

are mapped into: RmS+1; see eq. ((5.24))) =

=
Q−1∑
m=0

(RmS+1)α−1K0M0

{ (m+1)S∑
l=mS+1

(w)l
[ l−1∏
k=0

(Rk)−1
]}

(A.14)
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Now, as in eq. (A.10) (with l replaced by (l − 1)) I have that:

l−1∏
k=0

(Rk)−1 =


(R0 R

l−1
1 )−1 , for l ∈ [1, S]

1
R0

[
m−1∏
p=0

(RpS+1)−S
]
(RmS+1)mS+1−l, for l ∈ [mS + 1; (m+ 1)S] ; m ≥ 1

(A.15)
so that

l−1∏
k=0

(Rk)−1 = 1
R0

{
δ(m)(R1)1−l + (1− δ(m))

[m−1∏
p=0

(RpS+1)−S
]
(RmS+1)mS+1−l

}
,

for l ∈ [mS + 1; (m+ 1)S] ; m = 0, 1, . . . , (Q− 1).
(A.16)

Hence, after inserting eq. (A.16) in (A.14) I obtain:

IMAX∑
l=1

K0M0 (w)l (Rl)α−1
[ l−1∏
m=0

(Rm)−1
]
≡ K0M0(R0)−1

{Q−1∑
m=0

(m+1)S∑
l=mS+1

(w)l{δ(m)(R1)α−l+

+(1− δ(m))
[m−1∏
p=0

(RpS+1)−S
]
(RmS+1)α+mS−l

}}}
(A.17)

Finally, after inserting eq. (A.17) into eq.(5.31), I arrive at the final expression
for the energy wasted by the TCBM (see eq. (5.32))

A.6 Proof of Proposition 4

After observing that the condition: Ri ≤ R̂ is necessary and sufficient for meeting
the constraint in (5.40), I begin to prove the sufficiency of the conditions in (5.43)-
(5.45). Specifically, since the functions: Ψi , i = 1, 2, 3, in (5.37)-(5.39) decrease
when at least one of the bandwidths {Ri, i = 0, 1, . . . , IMAX + 1} increase, it
suffices that the corresponding constraints in (5.37)-(5.39) are met when all the
bandwidths simultaneously assume the maximum allowed value, that is, at Ri ≡
R̂, i = 0, 1, . . . , IMAX + 1. Hence, posing Ri = R̂ in (5.38) and (5.39) directly leads
to Eqs. (5.44) and (5.45), respectively.

Furthermore, after observing that:

IMAX+1∑
i=0

(
w

R̂

)i
≡


IMAX + 2 , for (w/R̂) = 1,
1− (w/R̂)IMAX+2

1− (w/R̂)
, for (w/R̂) 6= 1,

(A.18)

I directly arrive at the condition in Eq. (5.43).



A.7 Expressions of gradients in Lagrangian function 118

The proof of the necessary part is by contradiction. Hence, let us assume that at
least one of the conditions in (5.37)-(5.39) fails at Ri = R̂. So, being the Ψ-functions
in (5.37)-(5.39) decreasing for increasing Ri, in order to meet the failing constraint,
I would set: Ri > R̂, that, in turn, would lead to violate the constraint in (5.40).
This proves that the conditions in (5.43)-(5.45) are also necessary for the feasibility
of the TCBM.

A.7 Expressions of gradients in Lagrangian function

The scalar gradients of the Lagrangian function in Eq. (5.60) assume the following
expressions:

∇R̃0
L =

(
∂ETOT
∂R̃0

)
− θ λ1

1
∆TM

TTM − λ2
1

∆DT
TDT − θ λ3,0 β w e

[−R̃0]; (A.19)

where:

∂ETOT
∂R̃0

=(α− 1)K0M0 e
[(α−1)R̃0] − θK0M0 e

[−R̃0]
{

(w)1+IMAX e

[
(α−1)R̃IMAX+1 − SR̃1− (1−δ(Q−1))S

(
Q−1∑
k=1

R̃kS+1

)]
+

+(1− δ(IMAX))
{Q−1∑
m=0

{ (m+1)S∑
l=mS+1

(w)l
{
δ(m) e[(α−l)R̃1] +

+(1− δ(m)) e

[
(α+mS−l)R̃mS+1 − SR̃1 − (1−δ(m−1))

(
m−1∑
p=1

R̃pS+1

)]}}}}
.

(A.20)

∇R̃1
L =

(
∂ETOT
∂R̃1

)
+ θ λ1

∆TM

(
∂TTM

∂R̃1

)
+ λ2

∆DT

(
∂TDT

∂R̃1

)
− λ3,1 β w e

[−R̃1]; (A.21)
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where:

∂TTM

∂R̃1
=−M0 e

[−R̃0]
{

+ S(w)1+IMAX e

[
−R̃IMAX+1 − SR̃1 − (1−δ(Q−1))S

(
Q−1∑
k=1

R̃kS+1

)]
+

+ (1− δ(IMAX))
{Q−1∑
k=0

{ (k+1)S∑
l=kS+1

(w)l
{
δ(k) l e[−lR̃1] + (1− δ(k))S∗

∗ e

[
(kS−l)R̃kS+1 − SR̃1 − (1−δ(k−1))S

(
k−1∑
p=1

R̃pS+1

)]}}}}
;

(A.22)

∂TDT

∂R̃1
= −SM0e

[−R̃0](w)1+IMAX (1−δ(1+IMAX))e

[
−R̃IMAX +1 − SR̃1 − (1−δ(Q−1))S

(
Q−1∑
k=1

R̃kS+1

)]
.

(A.23)

∂ETOT
∂R̃1

=− θK0M0e
[−R̃0]

{
S(w)1+IMAX e

[
(α−1)R̃IMAX +1 − SR̃1 − (1−δ(Q−1)) S

(
Q−1∑
k=1

R̃kS+1

)]
+

+ (1− δ(IMAX))
{Q−1∑
k=0

{ (m+1)S∑
l=mS+1

(w)l
{

(l − α) δ(m) e[(α−l)R̃1] + S(1− δ(m))∗

∗ e

[
(α+mS−l)R̃mS+1 − SR̃1 − (1−δ(m−1))

(
m−1∑
p=1

R̃pS+1

)]}}}}
.

(A.24)

∇R̃jS+1
L =

(
∂ETOT
∂R̃jS+1

)
+ θ λ1

∆TM

(
∂TTM

∂R̃jS+1

)
+ λ2

∆DT

(
∂TDT

∂R̃jS+1

)
− λ3,(jS+1) β w e

[−R̃jS+1] ,

for j = 1, 2, . . . , (Q− 1);
(A.25)

where:

∂TDT

∂R̃jS+1
=− S(1− δ(Q− 1))M0 e

[−R̃0] (w)1+IMAX (1− δ(1 + IMAX))∗

∗ e

[
−R̃IMAX +1 − SR̃1 − (1−δ(Q−1))S

(
Q−1∑
k=1

R̃kS+1

)]
, forj = 1, 2, . . . , (Q− 1);

(A.26)
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∂TTM

∂R̃jS+1
=M0e

[R̃0]
{
− (w)1+IMAX S(1− δ(Q− 1))∗

∗ e

[
−R̃IMAX +1 − SR̃1 − (1−δ(Q−1))S

(
Q−1∑
k=1

R̃kS+1

)]
+

+ (1− δ(IMAX))
{Q−1∑
k=j

{ (k+1)S∑
l=kS+1

(w)l
{
δ(k − j)(jS − l) ∗

∗ e

[
(jS−l)R̃jS+1−SR̃1−(1−δ(k−1))S

(
j−1∑
p=1

R̃pS+1

)]
−

− (1− δ(k − j))S(1− δ(k − 1)) e

[
(kS−l)R̃kS+1−SR̃1−(1−δ(k−1))S

(
k−1∑
p=1

R̃pS+1

)]}}}}
,

for j = 1, 2, . . . , (Q− 1);
(A.27)

∂ETOT
∂R̃jS+1

= θK0M0 e
[R̃0]
{

− (1− δ(Q− 1)) S ∗ e

[
(α−1)R̃IMAX +1 − SR̃1 − (1−δ(Q−1))S

(
Q−1∑
k=1

R̃kS+1

)]
+ (1− δ(IMAX))∗

∗
{Q−1∑
m=j

{ (m+1)S∑
l=mS+1

(w)l(1− δ(m))
{
δ(m− j)(α+ jS − l) ∗

∗ e

[
(α+jS−l)R̃jS+1−SR̃1−(1−δ(m−1))

(
j−1∑
p=1

R̃pS+1

)]
− (1− δ(m− j))(1− δ(m− 1)) ∗

∗ e

[
(α+mS−l)R̃mS+1−SR̃1−(1−δ(m−1))S

(
m−1∑
p=1

R̃pS+1

)]}}}}
,

for j = 1, 2, . . . , (Q− 1).
(A.28)

∇R̃IMAX +1
L =

(
∂ETOT

∂R̃IMAX +1

)
+ θ λ1

∆TM

(
∂TTM

∂R̃IMAX +1

)
+ λ2

∆DT

(
∂TDT

∂R̃IMAX +1

)
; (A.29)

where:

∂TTM

∂R̃IMAX +1
= −M0(w)1+IMAX e[−R̃0] e

[
−R̃IMAX +1−SR̃1−(1−δ(Q−1))S

(
Q−1∑
k=1

R̃kS+1

)]
; (A.30)
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∂TDT

∂R̃IMAX +1
= −M0 e

[−R̃0] (w)1+IMAX (1− δ(1 + IMAX)) ∗

∗ e

[
−R̃IMAX +1−SR̃1−(1−δ(Q−1))S

(
Q−1∑
k=1

R̃kS+1

)]
;

(A.31)

∂ETOT
∂R̃IMAX +1

= θK0 (w)1+IMAX M0 e
[−R̃0] (α− 1)∗

∗ e

[
−(α−1)R̃IMAX +1−SR̃1−(1−δ(Q−1))S

(
Q−1∑
k=1

R̃kS+1

)]
.

(A.32)

∇λ1L = θ

{(
TTM
∆TM

)
− 1
}

; (A.33)

∇λ2L =
{(

TDT
∆DT

)
− 1
}

; (A.34)

∇λ3,0L = θ

{
βw e[−R̃0] − 1

}
; (A.35)

∇λ3,1L = θ

{
βw e[−R̃1] − 1

}
; (A.36)

∇λ3,(jS+1)L = θ

{
βw e[−R̃3(jS+1)] − 1

}
; for j = 1, 2, . . . , (Q− 1). (A.37)

A.8 Profiled parameter for simulation scenarios

In the following the tables with profiled parameter for simulation scenario in:

• Table A.1 for 3G scenario,

• Table A.2 for 4G scenario,

• Table A.3 for WiFi scenario.
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Table A.1. Profiled parameter for simulations in 3G scenario

3G SCENARIO

Program Parameter Value

bzip2

(w/R̂) 0.2
w 0.36 (Mb/s)

R̂ ≡ RXENMAX 1.8 (Mb/s)
M0 256 (Mb)
IXENMAX 23
α 2
K0 0.18 ((W )× (s/Mb)α)

ESETUP 3.25 (J)

mcf

(w/R̂) 0.333
w 0.5994 (Mb/s)

R̂ ≡ RXENMAX 1.8 (Mb/s)
M0 256 (Mb)
IXENMAX 23
α 2
K0 0.18 ((W )× (s/Mb)α)
Q 1

ESETUP 3.25 (J)

memcached

(w/R̂) 0.37
w 0.666 (Mb/s)

R̂ ≡ RXENMAX 1.8 (Mb/s)
M0 256 (Mb)
IXENMAX 23
α 2
K0 0.18 ((W )× (s/Mb)α)
Q 1

ESETUP 3.25 (J)



A.8 Profiled parameter for simulation scenarios 123

Table A.2. Profiled parameter for simulations in 4G scenario

4G SCENARIO

Program Parameter Value

bzip2

(w/R̂) 0.2
w 0.36 (Mb/s)

R̂ ≡ R3G
MAX 1.8 (Mb/s)

M0 256 (Mb)
IXENMAX 23
α 2
K0 0.09 ((W )× (s/Mb)α)

ESETUP 5.1 (J)

mcf

(w/R̂) 0.333
w 0.5994 (Mb/s)

R̂ ≡ R3G
MAX 1.8 (Mb/s)

M0 256 (Mb)
IXENMAX 23
α 2
K0 0.09 ((W )× (s/Mb)α)
Q 1

ESETUP 5.1 (J)

memcached

(w/R̂) 0.37
w 0.666 (Mb/s)

R̂ ≡ R3G
MAX 1.8 (Mb/s)

M0 256 (Mb)
IXENMAX 23
α 2
K0 0.09 ((W )× (s/Mb)α)
Q 1

ESETUP 5.1 (J)
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Table A.3. Profiled parameter for simulations in WiFi scenario

WiFi SCENARIO

Program Parameter Value

bzip2

(w/R̂) 0.2
w 0.36 (Mb/s)

R̂ ≡ R3G
MAX 1.8 (Mb/s)

M0 256 (Mb)
IXENMAX 23
α 2
K0 0.05 ((W )× (s/Mb)α)

ESETUP 5.9 (J)

mcf

(w/R̂) 0.333
w 0.5994 (Mb/s)

R̂ ≡ RXENMAX 1.8 (Mb/s)
M0 256 (Mb)
IXENMAX 23
α 2
K0 0.05 ((W )× (s/Mb)α)
Q 1

ESETUP 5.9 (J)

memcached

(w/R̂) 0.37
w 0.666 (Mb/s)

R̂ ≡ RXENMAX 1.8 (Mb/s)
M0 256 (Mb)
IXENMAX 23
α 2
K0 0.05 ((W )× (s/Mb)α)
Q 1

ESETUP 5.9 (J)





126

BIBLIOGRAPHY

[1] G. J. Popek, R. P. Goldberg, Formal requirements for virtualizable third
generation architectures, Communications of the ACM 17 (7) (1974) 412–421.
doi:10.1145/957195.808061.
URL http://doi.acm.org/10.1145/361011.361073

[2] S. Barbarossa, S. Sardellitti, P. Di Lorenzo, Communicating While Computing:
Distributed mobile cloud computing over 5G heterogeneous networks, IEEE
Signal Processing Magazine 31 (6) (2014) 45–55. arXiv:arXiv:1105.3232v1,
doi:10.1109/MSP.2014.2334709.
URL http://ieeexplore.ieee.org/document/6923537/

[3] M. Chen, Y. Zhang, Y. Li, S. Mao, V. C. Leung, EMC: Emotion-aware mobile
cloud computing in 5G, IEEE Network 29 (2) (2015) 32–38. doi:10.1109/

MNET.2015.7064900.
URL http://ieeexplore.ieee.org/document/7064900/

[4] Amazon elastic compute cloud (amazon ec2).
URL http://aws.amazon.com/ec2/

[5] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clusters,
Communications of the ACM 51 (1) (2008) 107. arXiv:10.1.1.163.5292,
doi:10.1145/1327452.1327492.
URL http://portal.acm.org/citation.cfm?doid=1327452.1327492

[6] P. T. Metaxas, P. T. Metaxas, How Google Works , World 6 (6) (2006) 9–10.
URL http://www.howgoogleworks.net

[7] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, M. F. Zhani, Data Center Network Virtualization: A

http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
http://dx.doi.org/10.1145/957195.808061
http://doi.acm.org/10.1145/361011.361073
http://ieeexplore.ieee.org/document/6923537/
http://ieeexplore.ieee.org/document/6923537/
http://arxiv.org/abs/arXiv:1105.3232v1
http://dx.doi.org/10.1109/MSP.2014.2334709
http://ieeexplore.ieee.org/document/6923537/
http://ieeexplore.ieee.org/document/7064900/
http://ieeexplore.ieee.org/document/7064900/
http://dx.doi.org/10.1109/MNET.2015.7064900
http://dx.doi.org/10.1109/MNET.2015.7064900
http://ieeexplore.ieee.org/document/7064900/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://portal.acm.org/citation.cfm?doid=1327452.1327492
http://arxiv.org/abs/10.1.1.163.5292
http://dx.doi.org/10.1145/1327452.1327492
http://portal.acm.org/citation.cfm?doid=1327452.1327492
http://www.howgoogleworks.net
http://www.howgoogleworks.net
http://ieeexplore.ieee.org/document/6308765/
http://ieeexplore.ieee.org/document/6308765/


Bibliography 127

Survey, IEEE Communications Surveys & Tutorials 15 (2) (2013) 909–928.
doi:10.1109/SURV.2012.090512.00043.
URL http://ieeexplore.ieee.org/document/6308765/

[8] K. Bilal, S. U. R. Malik, O. Khalid, A. Hameed, E. Alvarez, V. Wi-
jaysekara, R. Irfan, S. Shrestha, D. Dwivedy, M. Ali, U. Shahid Khan,
A. Abbas, N. Jalil, S. U. Khan, A taxonomy and survey on Green Data
Center Networks, Future Generation Computer Systems 36 (2014) 189–208.
doi:10.1016/j.future.2013.07.006.
URL http://www.sciencedirect.com/science/article/pii/

S0167739X13001519

[9] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, S. Sengupta, VL2, ACM SIGCOMM Computer Communication
Review 39 (4) (2009) 51. doi:10.1145/1594977.1592576.
URL http://portal.acm.org/citation.cfm?doid=1594977.1592576

[10] C. E. Leiserson, Fat-trees: Universal networks for hardware-efficient super-
computing, IEEE Transactions on Computers C-34 (10) (1985) 892–901.
doi:10.1109/TC.1985.6312192.
URL http://ieeexplore.ieee.org/document/6312192/

[11] L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy, I. Stoica, A cost
comparison of datacenter network architectures, in: Proceedings of the 6th
International COnference, Vol. 6 of Co-NEXT ’10, ACM, New York, NY, USA,
2010, pp. 1–12. doi:10.1145/1921168.1921189.
URL http://doi.acm.org/10.1145/1921168.1921189

[12] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, S. Lu,
BCube, ACM SIGCOMM Computer Communication Review 39 (4) (2009) 63.
doi:10.1145/1594977.1592577.
URL http://portal.acm.org/citation.cfm?doid=1594977.1592577

[13] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, Dcell, in: Proceedings of
the ACM SIGCOMM 2008 conference on Data communication - SIGCOMM
’08, SIGCOMM ’08, ACM Press, New York, New York, USA, 2008, p. 75.
doi:10.1145/1402958.1402968.
URL http://portal.acm.org/citation.cfm?doid=1402958.1402968

[14] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center
network architecture, in: ACM SIGCOMM Computer Communication Review,

http://ieeexplore.ieee.org/document/6308765/
http://ieeexplore.ieee.org/document/6308765/
http://dx.doi.org/10.1109/SURV.2012.090512.00043
http://ieeexplore.ieee.org/document/6308765/
http://www.sciencedirect.com/science/article/pii/S0167739X13001519
http://www.sciencedirect.com/science/article/pii/S0167739X13001519
http://dx.doi.org/10.1016/j.future.2013.07.006
http://www.sciencedirect.com/science/article/pii/S0167739X13001519
http://www.sciencedirect.com/science/article/pii/S0167739X13001519
http://portal.acm.org/citation.cfm?doid=1594977.1592576
http://dx.doi.org/10.1145/1594977.1592576
http://portal.acm.org/citation.cfm?doid=1594977.1592576
http://ieeexplore.ieee.org/document/6312192/
http://ieeexplore.ieee.org/document/6312192/
http://dx.doi.org/10.1109/TC.1985.6312192
http://ieeexplore.ieee.org/document/6312192/
http://doi.acm.org/10.1145/1921168.1921189
http://doi.acm.org/10.1145/1921168.1921189
http://dx.doi.org/10.1145/1921168.1921189
http://doi.acm.org/10.1145/1921168.1921189
http://portal.acm.org/citation.cfm?doid=1594977.1592577
http://dx.doi.org/10.1145/1594977.1592577
http://portal.acm.org/citation.cfm?doid=1594977.1592577
http://portal.acm.org/citation.cfm?doid=1402958.1402968
http://dx.doi.org/10.1145/1402958.1402968
http://portal.acm.org/citation.cfm?doid=1402958.1402968
http://portal.acm.org/citation.cfm?doid=1402946.1402967
http://portal.acm.org/citation.cfm?doid=1402946.1402967


Bibliography 128

Vol. 38, ACM, 2008, p. 63. doi:10.1145/1402946.1402967.
URL http://portal.acm.org/citation.cfm?doid=1402946.1402967

[15] M. Portnoy, Virtualization essentials, John Wiley & Sons, 2012.

[16] F. Xu, F. Liu, H. Jin, A. V. Vasilakos, Managing Performance Overhead of
Virtual Machines in Cloud Computing: A Survey, State of the Art, and Future
Directions, Proceedings of the IEEE 102 (1) (2014) 11–31. doi:10.1109/JPROC.

2013.2287711.

[17] W. Voorsluys, J. Broberg, S. Venugopal, R. Buyya, Cost of virtual machine live
migration in clouds: A performance evaluation, in: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Vol. 5931 LNCS, Cloud Computing, Beijing, China,
2009, pp. 254–265. arXiv:1109.4974, doi:10.1007/978-3-642-10665-1_23.

[18] Y. Wu, M. Zhao, Performance Modeling of Virtual Machine Live Migration, in:
IEEE International Conference on Cloud Computing (CLOUD), IEEE, 2011,
pp. 492–499. doi:10.1109/CLOUD.2011.109.

[19] S. Froberg, Distributed and cloud computing from parallel processing to the
internet of things by Kai Hwang, Geoffry C. Fox, and Jack J. Dongarra, Vol. 38,
Morgan Kaufmann, 2013. doi:10.1145/2439976.2439991.
URL http://dl.acm.org/citation.cfm?doid=2439976.2439991

[20] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, H. Liu, Energy proportional
datacenter networks, in: ACM SIGARCH Computer Architecture News, Vol. 38,
ACM SIGARCH Computer Architecture News, 2010, p. 338. doi:10.1145/

1816038.1816004.
URL http://dl.acm.org/citation.cfm?doid=1816038.1816004

[21] A. Verma, P. Ahuja, A. Neogi, p{M}apper: Power and Migration Cost Aware
Application Placement in Virtualized Systems, in: Proceedings of the 9th
ACM/IFIP/USENIX International Conference on Middleware, New York, NY,
USA, 2008, pp. 243–264.

[22] T. Wood, P. J. Shenoy, A. Venkataramani, M. S. Yousif, Black-box and gray-box
strategies for virtual machine migration, in: NSDI, 4th USENIX Symposium
on Networked Systems Design and Implementation, Vol. 7, Cambridge, USA,
2007, pp. 229–242.

[23] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuris-
tics for efficient management of data centers for Cloud computing, Future

http://dx.doi.org/10.1145/1402946.1402967
http://portal.acm.org/citation.cfm?doid=1402946.1402967
http://dx.doi.org/10.1109/JPROC.2013.2287711
http://dx.doi.org/10.1109/JPROC.2013.2287711
http://arxiv.org/abs/1109.4974
http://dx.doi.org/10.1007/978-3-642-10665-1_23
http://dx.doi.org/10.1109/CLOUD.2011.109
http://dl.acm.org/citation.cfm?doid=2439976.2439991
http://dl.acm.org/citation.cfm?doid=2439976.2439991
http://dx.doi.org/10.1145/2439976.2439991
http://dl.acm.org/citation.cfm?doid=2439976.2439991
http://dl.acm.org/citation.cfm?doid=1816038.1816004
http://dl.acm.org/citation.cfm?doid=1816038.1816004
http://dx.doi.org/10.1145/1816038.1816004
http://dx.doi.org/10.1145/1816038.1816004
http://dl.acm.org/citation.cfm?doid=1816038.1816004
http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1016/j.future.2011.04.017


Bibliography 129

Generation Computer Systems 28 (5) (2012) 755–768. doi:10.1016/j.future.

2011.04.017.
URL http://dx.doi.org/10.1016/j.future.2011.04.017

[24] M. Mishra, A. Sahoo, On theory of vm placement: Anomalies in existing
methodologies and their mitigation using a novel vector based approach, in:
Proceedings - 2011 IEEE 4th International Conference on Cloud Computing,
CLOUD 2011, 2011, pp. 275–282. doi:10.1109/CLOUD.2011.38.

[25] R. Boutaba, Q. Zhang, M. F. Zhani, Virtual Machine Migration in
Cloud Computing Environments, Vol. i, IGI Global, 2014. doi:10.4018/

978-1-4666-4522-6.ch017.
URL http://dx.doi.org/10.4018/978-1-4666-4522-6.ch017

[26] C. Takemura, L. S. Crawford, The book of Xen: a practical guide for the system
administrator, 1st Edition, No Starch Press, San Francisco, CA, USA, 2010.

[27] M. Mishra, A. Das, P. Kulkarni, A. Sahoo, Dynamic resource management using
virtual machine migrations, IEEE Communications Magazine 50 (9) (2012)
34–40. doi:10.1109/MCOM.2012.6295709.
URL http://dx.doi.org/10.1109/MCOM.2012.6295709

[28] H. Liu, H. Jin, C.-Z. Xu, X. Liao, Performance and energy modeling for live
migration of virtual machines, Hpdc’11 16 (2) (2011) 249–264. doi:10.1007/

s10586-011-0194-3.
URL http://link.springer.com/10.1007/s10586-011-0194-3

[29] G. Soni, M. Kalra, Comparative Study of Live Virtual Machine Migration
Techniques in Cloud, International Journal of Computer Applications 84 (14)
(2013) 19–25. doi:10.5120/14643-2919.

[30] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
A. Warfield, Live migration of virtual machines, in: NSDI’05 Proceedings of the
2nd conference on Symposium on Networked Systems Design & Implementation,
Vol. 2, USENIX Association, 2005, pp. 273–286. arXiv:1601.03854, doi:

10.1145/1251203.1251223.
URL http://dl.acm.org/citation.cfm?id=1251203.1251223

[31] P. Svärd, B. Hudzia, J. Tordsson, E. Elmroth, Evaluation of delta compression
techniques for efficient live migration of large virtual machines, ACM SIGPLAN
Notices 46 (7) (2011) 111. doi:10.1145/2007477.1952698.

http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1109/CLOUD.2011.38
http://dx.doi.org/10.4018/978-1-4666-4522-6.ch017
http://dx.doi.org/10.4018/978-1-4666-4522-6.ch017
http://dx.doi.org/10.4018/978-1-4666-4522-6.ch017
http://dx.doi.org/10.4018/978-1-4666-4522-6.ch017
http://dx.doi.org/10.4018/978-1-4666-4522-6.ch017
http://dx.doi.org/10.1109/MCOM.2012.6295709
http://dx.doi.org/10.1109/MCOM.2012.6295709
http://dx.doi.org/10.1109/MCOM.2012.6295709
http://dx.doi.org/10.1109/MCOM.2012.6295709
http://link.springer.com/10.1007/s10586-011-0194-3
http://link.springer.com/10.1007/s10586-011-0194-3
http://dx.doi.org/10.1007/s10586-011-0194-3
http://dx.doi.org/10.1007/s10586-011-0194-3
http://link.springer.com/10.1007/s10586-011-0194-3
http://dx.doi.org/10.5120/14643-2919
http://dl.acm.org/citation.cfm?id=1251203.1251223
http://arxiv.org/abs/1601.03854
http://dx.doi.org/10.1145/1251203.1251223
http://dx.doi.org/10.1145/1251203.1251223
http://dl.acm.org/citation.cfm?id=1251203.1251223
http://dx.doi.org/10.1145/2007477.1952698


Bibliography 130

[32] H. Liu, H. Jin, X. Liao, L. Hu, C. Yu, Live migration of virtual machine based on
full system trace and replay, in: Proceedings of the 18th {ACM} international
symposium on High performance distributed computing, New York, USA, 2009,
pp. 101–110. doi:10.1145/1551609.1551630.

[33] X. Zhang, Z. Huo, J. Ma, D. Meng, Exploiting Data Deduplication to Accelerate
Live Virtual Machine Migration, in: 2010 IEEE International Conference on
Cluster Computing, IEEE, Crete, Greece, 2010, pp. 88–96. doi:10.1109/

CLUSTER.2010.17.
URL http://ieeexplore.ieee.org/document/5600319/

[34] F. F. Moghaddam, M. Cheriet, Decreasing live virtual machine migration down-
time using a memory page selection based on memory change PDF, in: 2010
International Conference on Networking, Sensing and Control, ICNSC 2010,
Chicago, USA, 2010, pp. 355–359. doi:10.1109/ICNSC.2010.5461517.

[35] M. R. Hines, K. Gopalan, Post-copy based live virtual machine migration
using adaptive pre-paging and dynamic self-ballooning, in: Proceedings of the
2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments - VEE ’09, ACM Press, New York, New York, USA, 2009, p. 51.
doi:10.1145/1508293.1508301.
URL http://portal.acm.org/citation.cfm?doid=1508293.1508301

[36] H. Liu, H. Jin, X. Liao, L. Hu, C. Yu, Live migration of virtual machine based on
full system trace and replay, in: Proceedings of the 18th {ACM} international
symposium on High performance distributed computing, ACM HPDC’09, New
York, USA, 2009, pp. 101–110. doi:10.1145/1551609.1551630.

[37] T. Hirofuchi, H. Nakada, S. Itoh, S. Sekiguchi, Reactive consolidation of vir-
tual machines enabled by postcopy live migration, in: Proceedings of the
5th international workshop on Virtualization technologies in distributed com-
puting - VTDC ’11, ACM Press, New York, New York, USA, 2011, p. 11.
doi:10.1145/1996121.1996125.
URL http://portal.acm.org/citation.cfm?doid=1996121.1996125

[38] P. Lu, A. Barbalace, B. Ravindran, HSG-LM: hybrid-copy speculative guest
OS live migration without hypervisor, in: Proceedings of the 6th International
Systems and Storage Conference on - SYSTOR ’13, New York, USA, 2013, p. 1.
doi:10.1145/2485732.2485736.
URL http://dl.acm.org/citation.cfm?doid=2485732.2485736

http://dx.doi.org/10.1145/1551609.1551630
http://ieeexplore.ieee.org/document/5600319/
http://ieeexplore.ieee.org/document/5600319/
http://dx.doi.org/10.1109/CLUSTER.2010.17
http://dx.doi.org/10.1109/CLUSTER.2010.17
http://ieeexplore.ieee.org/document/5600319/
http://dx.doi.org/10.1109/ICNSC.2010.5461517
http://portal.acm.org/citation.cfm?doid=1508293.1508301
http://portal.acm.org/citation.cfm?doid=1508293.1508301
http://dx.doi.org/10.1145/1508293.1508301
http://portal.acm.org/citation.cfm?doid=1508293.1508301
http://dx.doi.org/10.1145/1551609.1551630
http://portal.acm.org/citation.cfm?doid=1996121.1996125
http://portal.acm.org/citation.cfm?doid=1996121.1996125
http://dx.doi.org/10.1145/1996121.1996125
http://portal.acm.org/citation.cfm?doid=1996121.1996125
http://dl.acm.org/citation.cfm?doid=2485732.2485736
http://dl.acm.org/citation.cfm?doid=2485732.2485736
http://dx.doi.org/10.1145/2485732.2485736
http://dl.acm.org/citation.cfm?doid=2485732.2485736


Bibliography 131

[39] L. Hu, J. Zhao, G. Xu, Y. Ding, J. Chu, HMDC: Live virtual machine migration
based on hybrid memory copy and delta compression, Applied Mathematics and
Information Sciences 7 (2 L) (2013) 639–646. doi:10.12785/amis/072L38.

[40] Y. L. Min, F. Rawson, T. Bletsch, V. W. Freeh, PADD: Power-aware domain dis-
tribution, in: Proceedings - International Conference on Distributed Computing
Systems, Montreal, Canada, 2009, pp. 239–247. doi:10.1109/ICDCS.2009.47.

[41] E. Baccarelli, M. Biagi, Power-Allocation Policy and Optimized Design of
Multiple-Antenna Systems With Imperfect Channel Estimation, IEEE Transac-
tions on Vehicular Technology 53 (1) (2004) 136–145. doi:10.1109/TVT.2003.

822025.
URL http://ieeexplore.ieee.org/document/1262136/

[42] E. Baccarelli, M. Biagi, R. Bruno, M. Conti, E. Gregori, Broadband Wireless
Access Networks: A Roadmap on Emerging Trends and Standards, John Wiley
& Sons, Ltd, Chichester, UK, 2005. doi:10.1002/0470022515.ch14.
URL http://doi.wiley.com/10.1002/0470022515.ch14

[43] E. Baccarelli, M. Biagi, A Novel Self-Pilot-Based Transmit-Receive Architecture
for Multipath-Impaired UWB Systems, IEEE Transactions on Communications
52 (6) (2004) 891–895. doi:10.1109/TCOMM.2004.829525.
URL http://ieeexplore.ieee.org/document/1306613/

[44] M. Harchol-Balter, Performance Modeling and Design of Computer Systems
Queuing Theory in Action, Cambridge University Press, 2013.

[45] L. Wang, F. Zhang, J. Arjona Aroca, A. V. Vasilakos, K. Zheng, C. Hou, D. Li,
Z. Liu, GreenDCN: a general framework for achieving energy efficiency in data
center networks, Selected Areas in Communications, IEEE Journal on 32 (1)
(2014) 4–15.

[46] E. Baccarelli, M. Biagi, C. Pelizzoni, N. Cordeschi, F. Garzia, When does
interference not reduce capacity in multi-antenna networks?, in: IEEE 6th
Workshop on Signal Processing Advances in Wireless Communications, 2005.,
IEEE, IEEE, 2005, pp. 298–302. doi:10.1109/SPAWC.2005.1505920.
URL http://ieeexplore.ieee.org/document/1505920/

[47] N. Cordeschi, M. Shojafar, D. Amendola, E. Baccarelli, Energy-efficient adaptive
networked datacenters for the QoS support of real-time applications, The Journal
of Supercomputing 71 (2) (2015) 448–478. doi:10.1007/s11227-014-1305-8.
URL http://link.springer.com/10.1007/s11227-014-1305-8

http://dx.doi.org/10.12785/amis/072L38
http://dx.doi.org/10.1109/ICDCS.2009.47
http://ieeexplore.ieee.org/document/1262136/
http://ieeexplore.ieee.org/document/1262136/
http://dx.doi.org/10.1109/TVT.2003.822025
http://dx.doi.org/10.1109/TVT.2003.822025
http://ieeexplore.ieee.org/document/1262136/
http://doi.wiley.com/10.1002/0470022515.ch14
http://doi.wiley.com/10.1002/0470022515.ch14
http://dx.doi.org/10.1002/0470022515.ch14
http://doi.wiley.com/10.1002/0470022515.ch14
http://ieeexplore.ieee.org/document/1306613/
http://ieeexplore.ieee.org/document/1306613/
http://dx.doi.org/10.1109/TCOMM.2004.829525
http://ieeexplore.ieee.org/document/1306613/
http://ieeexplore.ieee.org/document/1505920/
http://ieeexplore.ieee.org/document/1505920/
http://dx.doi.org/10.1109/SPAWC.2005.1505920
http://ieeexplore.ieee.org/document/1505920/
http://link.springer.com/10.1007/s11227-014-1305-8
http://link.springer.com/10.1007/s11227-014-1305-8
http://dx.doi.org/10.1007/s11227-014-1305-8
http://link.springer.com/10.1007/s11227-014-1305-8


Bibliography 132

[48] E. Baccarelli, M. Biagi, C. Pelizzoni, N. Cordeschi, Maximum-Rate Node
Selection for Power-Limited Multiantenna Relay Backbones, IEEE Transactions
on Mobile Computing 8 (6) (2009) 807–820. doi:10.1109/TMC.2008.171.
URL http://ieeexplore.ieee.org/document/4731258/

[49] D. Breitgand, G. Kutiel, D. Raz, Cost-aware live migration of services in the
cloud, in: Proceedings of the 3rd Annual Haifa Experimental Systems Conference
on - SYSTOR ’10, New York, USA, 2010, p. 1. doi:10.1145/1815695.1815709.
URL http://dl.acm.org/citation.cfm?id=1815695.1815709

[50] K. Z. Ibrahim, S. Hofmeyr, C. Iancu, E. Roman, Optimized pre-copy live
migration for memory intensive applications, in: Proceedings of 2011 Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis on - SC ’11, ACM Press, New York, New York, USA, 2011, p. 1.
doi:10.1145/2063384.2063437.
URL http://dl.acm.org/citation.cfm?doid=2063384.2063437

[51] D. Chisnall, The Definitive Guide to the Xen Hypervisor, first ed., Prentice
Hall, 2007.

[52] B. Fitzpatrick, Distributed caching with memcached, in: Linux Journal, Vol.
2004, Linux Journal, 2004, p. 5.

[53] S. Fu, Failure-aware resource management for high-availability computing
clusters with distributed virtual machines, Journal of Parallel and Distributed
Computing 70 (4) (2010) 384–393. doi:10.1016/j.jpdc.2010.01.002.
URL http://linkinghub.elsevier.com/retrieve/pii/

S0743731510000031

[54] S. Fu, C.-Z. Xu, Exploring event correlation for failure prediction in coalitions
of clusters, in: Proceedings of the 2007 ACM/IEEE conference on Super-
computing - SC ’07, ACM Press, New York, New York, USA, 2007, p. 1.
doi:10.1145/1362622.1362678.
URL http://doi.acm.org/10.1145/1362622.1362678http://portal.acm.

org/citation.cfm?doid=1362622.1362678

[55] T. C. Bressoud, F. B. Schneider, Hypervisor-based fault tolerance, ACM Trans-
actions on Computer Systems 14 (1) (1996) 80–107. doi:10.1145/225535.

225538.
URL http://portal.acm.org/citation.cfm?doid=225535.225538

http://ieeexplore.ieee.org/document/4731258/
http://ieeexplore.ieee.org/document/4731258/
http://dx.doi.org/10.1109/TMC.2008.171
http://ieeexplore.ieee.org/document/4731258/
http://dl.acm.org/citation.cfm?id=1815695.1815709
http://dl.acm.org/citation.cfm?id=1815695.1815709
http://dx.doi.org/10.1145/1815695.1815709
http://dl.acm.org/citation.cfm?id=1815695.1815709
http://dl.acm.org/citation.cfm?doid=2063384.2063437
http://dl.acm.org/citation.cfm?doid=2063384.2063437
http://dx.doi.org/10.1145/2063384.2063437
http://dl.acm.org/citation.cfm?doid=2063384.2063437
http://linkinghub.elsevier.com/retrieve/pii/S0743731510000031
http://linkinghub.elsevier.com/retrieve/pii/S0743731510000031
http://dx.doi.org/10.1016/j.jpdc.2010.01.002
http://linkinghub.elsevier.com/retrieve/pii/S0743731510000031
http://linkinghub.elsevier.com/retrieve/pii/S0743731510000031
http://doi.acm.org/10.1145/1362622.1362678 http://portal.acm.org/citation.cfm?doid=1362622.1362678
http://doi.acm.org/10.1145/1362622.1362678 http://portal.acm.org/citation.cfm?doid=1362622.1362678
http://dx.doi.org/10.1145/1362622.1362678
http://doi.acm.org/10.1145/1362622.1362678 http://portal.acm.org/citation.cfm?doid=1362622.1362678
http://doi.acm.org/10.1145/1362622.1362678 http://portal.acm.org/citation.cfm?doid=1362622.1362678
http://portal.acm.org/citation.cfm?doid=225535.225538
http://dx.doi.org/10.1145/225535.225538
http://dx.doi.org/10.1145/225535.225538
http://portal.acm.org/citation.cfm?doid=225535.225538


Bibliography 133

[56] M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear Programming, John
Wiley & Sons, Inc., Hoboken, NJ, USA, 2006. doi:10.1002/0471787779.
URL http://doi.wiley.com/10.1002/0471787779

[57] D. S. Lun, N. Ratnakar, M. M??dard, R. Koetter, D. R. Karger, T. Ho,
E. Ahmed, F. Zhao, Minimum-cost multicast over coded packet networks, IEEE
Transactions on Information Theory 52 (6) (2006) 2608–2623. arXiv:0503064,
doi:10.1109/TIT.2006.874523.

[58] R. Srikant, The Mathematics of Internet Congestion Control, Vol. 50, Springer
Science & Business Media, 2004. doi:10.1109/TAC.2004.841398.

[59] J. Zhang, D. Zheng, M. Chiang, The Impact of Stochastic Noisy Feedback on
Distributed Network Utility Maximization, IEEE Transactions on Information
Theory 54 (2) (2008) 645–665. doi:10.1109/TIT.2007.913572.

[60] H. Kushner, J. Yang, Analysis of adaptive step-size SA algorithms for parameter
tracking, IEEE Transactions on Automatic Control 40 (8) (1995) 1403–1410.
doi:10.1109/9.402231.
URL http://ieeexplore.ieee.org/document/402231/

[61] A. Motivation, Exploiting Hidden Convexity For Flexible And Robust Resource
Allocation In Cellular Networks, in: INFOCOM 2007. 26th IEEE International
Conference on Computer Communications. IEEE, IEEE, 2007, pp. 964–972.

[62] D. Henrion, J.-B. Lasserre, Solving nonconvex optimization problems, IEEE Con-
trol Systems Magazine 24 (3) (2004) 72–83. doi:10.1109/MCS.2004.1299534.
URL http://dx.doi.org/10.1109/MCS.2004.1299534

[63] Memtester - memory diagnostic tool.
URL http://pyropus.ca/software/memtester.

[64] Spec cpu2000. standard performance evaluation corporation.
URL http://www.spec.org/cpu2000/CINT2000

[65] J. L. Henning, SPEC CPU2006 benchmark descriptions, ACM SIGARCH
Computer Architecture News 34 (4) (2006) 1–17. arXiv:arXiv:1011.1669v3,
doi:10.1145/1186736.1186737.
URL http://portal.acm.org/citation.cfm?doid=1186736.1186737

[66] Memaslap.
URL http://docs.libmemcached.org/bin/memaslap

http://doi.wiley.com/10.1002/0471787779
http://dx.doi.org/10.1002/0471787779
http://doi.wiley.com/10.1002/0471787779
http://arxiv.org/abs/0503064
http://dx.doi.org/10.1109/TIT.2006.874523
http://dx.doi.org/10.1109/TAC.2004.841398
http://dx.doi.org/10.1109/TIT.2007.913572
http://ieeexplore.ieee.org/document/402231/
http://ieeexplore.ieee.org/document/402231/
http://dx.doi.org/10.1109/9.402231
http://ieeexplore.ieee.org/document/402231/
http://dx.doi.org/10.1109/MCS.2004.1299534
http://dx.doi.org/10.1109/MCS.2004.1299534
http://dx.doi.org/10.1109/MCS.2004.1299534
http://pyropus.ca/software/memtester.
http://pyropus.ca/software/memtester.
http://www.spec.org/cpu2000/CINT2000
http://www.spec.org/cpu2000/CINT2000
http://portal.acm.org/citation.cfm?doid=1186736.1186737
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1145/1186736.1186737
http://portal.acm.org/citation.cfm?doid=1186736.1186737
http://docs.libmemcached.org/bin/memaslap
http://docs.libmemcached.org/bin/memaslap


Bibliography 134

[67] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, CloneCloud: Elastic execu-
tion between mobile device and cloud, in: Proceedings of the sixth conference
on Computer systems - EuroSys ’11, ACM, ACM Press, New York, New York,
USA, 2011, p. 301. doi:10.1145/1966445.1966473.
URL http://portal.acm.org/citation.cfm?doid=1966445.1966473

[68] M. Schüring, Mobile cloud computing – open issues and solutions, in: 15th
Twente Student Conference on IT, 2011.

[69] P. Papakos, L. Capra, D. S. Rosenblum, Volare: context-aware adaptive cloud
service discovery for mobile systems, in: Proceedings of the 9th International
Workshop on Adaptive and Reflective Middleware - ARM ’10, ACM, 2010, pp.
32–38. doi:10.1145/1891701.1891706.
URL http://portal.acm.org/citation.cfm?doid=1891701.1891706

[70] R. Kemp, N. Palmer, T. Kielmann, H. Bal, Cuckoo: A Computation Offloading
Framework for Smartphones, in: Mobile Computing, Applications, . . . , Springer,
2012, pp. 59–79. doi:10.1007/978-3-642-29336-8_4.
URL http://dx.doi.org/10.1007/978-3-642-29336-8_4

[71] M. Satyanarayanan, P. Bahl, R. Cáceres, N. Davies, The case for VM-based
cloudlets in mobile computing, IEEE Pervasive Computing 8 (4) (2009) 14–23.
doi:10.1109/MPRV.2009.82.

[72] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
P. Bahl, MAUI: Making smartphones last longer with code offload, in: Proceed-
ings of the 8th international conference on Mobile systems, applications, and
services - MobiSys ’10, Vol. 17, ACM, ACM Press, New York, New York, USA,
2010, p. 49. doi:10.1145/1814433.1814441.
URL http://portal.acm.org/citation.cfm?doid=1814433.1814441

[73] K. Kumar, J. Liu, Y.-H. Lu, B. Bhargava, A Survey of Computation Offloading
for Mobile Systems, Mobile Networks and Applications 18 (1) (2013) 129–140.
doi:10.1007/s11036-012-0368-0.
URL http://dx.doi.org/10.1007/s11036-012-0368-0http://link.

springer.com/10.1007/s11036-012-0368-0

[74] G. P. Perrucci, F. H. P. Fitzek, J. Widmer, Q. Wei, W. Kellerer, Survey on En-
ergy Consumption Entities on Mobile Phone Platform, in: Mobile Applications
and Services, IEEE Vehicular Technology Conference (VTC) - Spring. IEEE,
Budapest, Hungary., IEEE, 2011, pp. 1–6.

http://portal.acm.org/citation.cfm?doid=1966445.1966473
http://portal.acm.org/citation.cfm?doid=1966445.1966473
http://dx.doi.org/10.1145/1966445.1966473
http://portal.acm.org/citation.cfm?doid=1966445.1966473
http://portal.acm.org/citation.cfm?doid=1891701.1891706
http://portal.acm.org/citation.cfm?doid=1891701.1891706
http://dx.doi.org/10.1145/1891701.1891706
http://portal.acm.org/citation.cfm?doid=1891701.1891706
http://dx.doi.org/10.1007/978-3-642-29336-8_4
http://dx.doi.org/10.1007/978-3-642-29336-8_4
http://dx.doi.org/10.1007/978-3-642-29336-8_4
http://dx.doi.org/10.1007/978-3-642-29336-8_4
http://dx.doi.org/10.1109/MPRV.2009.82
http://portal.acm.org/citation.cfm?doid=1814433.1814441
http://dx.doi.org/10.1145/1814433.1814441
http://portal.acm.org/citation.cfm?doid=1814433.1814441
http://dx.doi.org/10.1007/s11036-012-0368-0 http://link.springer.com/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1007/s11036-012-0368-0 http://link.springer.com/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1007/s11036-012-0368-0 http://link.springer.com/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1007/s11036-012-0368-0 http://link.springer.com/10.1007/s11036-012-0368-0


Bibliography 135

[75] Q. Peng, A. Walid, J. Hwang, S. H. Low, Multipath TCP: Analysis, Design,
and Implementation, IEEE/ACM Transactions on Networking 24 (1) (2016)
596–609. arXiv:1308.3119, doi:10.1109/TNET.2014.2379698.
URL http://ieeexplore.ieee.org/document/7000573/

[76] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, A close
examination of performance and power characteristics of 4G LTE networks, in:
Proceedings of the 10th international conference on Mobile systems, applications,
and services - MobiSys ’12, ACM, ACM Press, New York, New York, USA,
2012, p. 225. doi:10.1145/2307636.2307658.
URL http://dl.acm.org/citation.cfm?doid=2307636.2307658

[77] N. Balasubramanian, A. Balasubramanian, A. Venkataramani, Energy consump-
tion in mobile phones, in: Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement conference - IMC ’09, ACM, ACM Press, New York,
New York, USA, 2009, p. 280. doi:10.1145/1644893.1644927.
URL http://dx.doi.org/10.1145/1644893.1644927

[78] E. Baccarelli, D. Amendola, N. Cordeschi, Minimum-energy bandwidth man-
agement for QoS live migration of virtual machines, Computer Networks 93
(2015) 1–22. doi:10.1016/j.comnet.2015.10.006.
URL http://dx.doi.org/10.1016/j.comnet.2015.10.006

[79] D. Wischik, C. Raiciu, Design, implementation and evaluation of congestion
control for multipath TCP, in: . . . and Implementation, Vol. 11, 2011, pp. pp.
1260–1271.
URL http://static.usenix.org/event/nsdi11/tech/full{_}papers/

Wischik.pdf

[80] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure,
M. Handley, How Hard Can It Be? Designing and Implementing a Deployable
Multipath TCP., in: NSDI’12 Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, no. 1, USENIX, San Jose, CA,
2012, pp. 29–42.
URL http://elf.cs.pub.ro/soa/res/lectures/mptcp-nsdi12.pdf

[81] C. Pluntke, L. Eggert, N. Kiukkonen, Saving mobile device energy with multi-
path TCP, in: ACM Proceedings of the sixth international workshop on Mo-
biArch - MobiArch ’11, ACM, 2011, pp. 1–6. doi:10.1145/1999916.1999918.

[82] N. Cordeschi, V. Polli, E. Baccarelli, Interference Management for Multiple
Multicasts with Joint Distributed Source/Channel/Network Coding, IEEE

http://ieeexplore.ieee.org/document/7000573/
http://ieeexplore.ieee.org/document/7000573/
http://arxiv.org/abs/1308.3119
http://dx.doi.org/10.1109/TNET.2014.2379698
http://ieeexplore.ieee.org/document/7000573/
http://dl.acm.org/citation.cfm?doid=2307636.2307658
http://dl.acm.org/citation.cfm?doid=2307636.2307658
http://dx.doi.org/10.1145/2307636.2307658
http://dl.acm.org/citation.cfm?doid=2307636.2307658
http://dx.doi.org/10.1145/1644893.1644927
http://dx.doi.org/10.1145/1644893.1644927
http://dx.doi.org/10.1145/1644893.1644927
http://dx.doi.org/10.1145/1644893.1644927
http://dx.doi.org/10.1016/j.comnet.2015.10.006
http://dx.doi.org/10.1016/j.comnet.2015.10.006
http://dx.doi.org/10.1016/j.comnet.2015.10.006
http://dx.doi.org/10.1016/j.comnet.2015.10.006
http://static.usenix.org/event/nsdi11/tech/full{_}papers/Wischik.pdf
http://static.usenix.org/event/nsdi11/tech/full{_}papers/Wischik.pdf
http://static.usenix.org/event/nsdi11/tech/full{_}papers/Wischik.pdf
http://static.usenix.org/event/nsdi11/tech/full{_}papers/Wischik.pdf
http://elf.cs.pub.ro/soa/res/lectures/mptcp-nsdi12.pdf
http://elf.cs.pub.ro/soa/res/lectures/mptcp-nsdi12.pdf
http://elf.cs.pub.ro/soa/res/lectures/mptcp-nsdi12.pdf
http://dx.doi.org/10.1145/1999916.1999918
http://ieeexplore.ieee.org/document/6668863/
http://ieeexplore.ieee.org/document/6668863/


Bibliography 136

Transactions on Communications 61 (12) (2013) 5176–5183. doi:10.1109/

TCOMM.2013.111113.120904.
URL http://ieeexplore.ieee.org/document/6668863/

[83] Y. Xu, B. Leong, D. Seah, A. Razeen, mPath: High-Bandwidth Data Transfers
with Massively Multipath Source Routing, IEEE Transactions on Parallel and
Distributed Systems 24 (10) (2013) 2046–2059. doi:10.1109/TPDS.2012.298.
URL http://ieeexplore.ieee.org/document/6336741/

http://dx.doi.org/10.1109/TCOMM.2013.111113.120904
http://dx.doi.org/10.1109/TCOMM.2013.111113.120904
http://ieeexplore.ieee.org/document/6668863/
http://ieeexplore.ieee.org/document/6336741/
http://ieeexplore.ieee.org/document/6336741/
http://dx.doi.org/10.1109/TPDS.2012.298
http://ieeexplore.ieee.org/document/6336741/

	Introduction
	Data Center Virtualization
	Data center architectures
	Background
	Reference scenario and tackled problem
	Reference technology live migration: Xen Migration

	Related Work
	Current approach to live migration of VMs
	Pre-copy live migration (PeCM)
	Migration times and network energy
	Modeling the bandwidth-dependent migration times
	Network energy consumption


	I Part 1: Bandwidth manager in intra-data-center networks
	Minimum Energy Bandwidth Manager in Intra-Data-Center Networks
	QoS bandwidth management optimization problem
	Generalization of the problem
	Limiting the tolerated migration-induced slowdown

	Migration failure-vs.- memory migration time
	VM migration-vs.-VM replication
	Feasibility conditions of the BMOP
	On the optimized setting of IMAX
	Optimal bandwidth management
	Adaptive primal-dual iterations

	Implementation aspects: profiling tasks and implementation scalability
	Simulations result
	Test applications and test-bed profiling
	The benchmark Xen bandwidth management
	Tests on the tracking capabilities under contention phenomena
	Validation tests on I"0365IMAX
	Comparative energy tests under random migration ordering and synthetic workload
	Comparative tests under random migration ordering and real-world workloads
	Comparative tests under ordered migration and real-world trace workloads

	Conclusion to Part I


	II Part 2: Bandwidth manager for wireless 5G networks
	Live migration in wireless Fog computing for 5G networks
	Related work and reference architecture
	Current approach for bandwidth migration and future applications

	Trade-off between migrate and not migrate to the Fog site
	Tunable complexity bandwidth manager, definition and properties
	Definition and expression of TCBM for QoS live migration of VMs
	Expression of the downtime for the TCBM
	Expression of the total migration time for the TCBM
	Expression of the energy wasted by the TCBM
	Expression of the constraints on the slowdown and maximum rate for the TCBM

	Formulation of TCBM non-convex optimization problem
	Feasibility conditions for TCBM
	A convex form as an instance of Geometric program for TCBM optimization problem
	Expressions for the gain sequences of the TCBM

	Profiling network connection and migrating application
	Simulation results on TCBM
	Benchmark Xen bandwidth management
	How to choose the best value of Q parameter
	Tracking capabilities under contention phenomena
	Comparative energy simulations under random migration ordering and synthetic workload
	Comparative simulations under random migration ordering and real-world workloads

	Conclusion to Part II

	Critical Assessment and Future Work
	VM migration under single-path TCP and multi-path EWTCP
	Goodput-vs-Power in multi-path TCP working in the Congestion Avoidance state
	Single-path TCP Reno
	Multi-path EWTCP

	Total power-vs-total throughput monomial relationship in the case of Equal-Balanced multi-path TCP
	Additional considerations on multi-path EWTCP
	Definition of the simulation setup for comparisons
	Simulation results and conclusions

	Summary Conclusion
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Expressions of the gradients of the Lagrangian function
	Development of the final expression of the TMT for the TCBM
	Development of the expression of the energy wasted by the TCBM
	Proof of Proposition 4
	Expressions of gradients in Lagrangian function
	Profiled parameter for simulation scenarios




