
Department of Information Engineering,
Electronics and Telecommunications

Advanced Radiating Systems

Based on Leaky Waves and

Nondiffracting Waves

Walter Fuscaldo

PhD Thesis in Information and Communication Technology
- Applied Electromagnetics -

Supervisor at Rome Supervisor at Rennes

Prof. Alessandro Galli Dr. Mauro Ettorre

Rome, February 27th, 2016





Institut d’Électronique et de

Télécommunications de Rennes

Advanced Radiating Systems

Based on Leaky Waves and

Nondiffracting Waves

Walter Fuscaldo

Thèse de doctorat en Électronique

Directeur à Rome Directeur à Rennes

Prof. Alessandro Galli Dr. Mauro Ettorre

Rome, February 27th, 2016





C O N T E N T S

Abstract xxxiii

Acknowledgments xxxv

Introduction xlv

i reconfigurable leaky-wave antennas for thz far-field
applications 1

1 conventional leaky-wave antennas 3

1.1 Introduction 3

1.2 Leaky-Wave Theory 5

1.2.1 Nature of waves 5

1.2.2 Physical significance of leaky waves 6

1.2.3 Mathematical significance of leaky waves 8

1.2.4 The transverse resonance technique 13

1.2.5 Classification of leaky-wave antennas 17

1.3 1-D Leaky-Wave Antennas 20

1.3.1 Historical examples of 1-D LWAS 20

1.3.2 Radiating properties of 1-D unidirectional
LWAs 22

1.3.3 Radiating properties of 1-D bidirectional LWAs 24

1.4 2-D Leaky-Wave Antennas 26

1.4.1 Historical examples of 2-D LWAS 26

1.4.2 Radiating properties of 2-D LWAs 28

1.4.3 Design rules for dielectric-based 2-D LWAs 29

1.4.4 Motivation for the study of unconventional 2-D
LWAs 30

1.5 Conclusion 32

2 formulas for leaky-wave antennas 33

2.1 Introduction 33

2.2 Formulas for 1-D Unidirectional Leaky-Wave Anten-
nas 35

2.2.1 Analytical framework 35

2.2.2 Fitting procedure 38

2.2.3 Numerical results 42

2.2.4 Comparison with Oliner’s formula 47

2.2.5 Beamwidth evaluation at endfire 51

2.3 Formulas for 1-D Endfire Leaky-Wave Antennas 53

2.3.1 The modified Hansen-Woodyard condition for 1-D
LWAs 53

v



vi Contents

2.3.2 Analytical investigation about the limitations on the
choice of an optimum phase constant 55

2.3.3 Beamwidth and SLL evaluation for endfire 1-D
LWAs 59

2.3.4 Definition of a suitable objective function for taking
into account the ∆θh vs. SLL tradeoff 61

2.3.5 Approximate formulas for the beamwidth and the
sidelobe level 62

2.3.6 Investigation for extremely-efficient endfire leaky-
wave antennas 65

2.4 Formulas for 1-D Bidirectional Leaky-Wave Antennas 69

2.4.1 Beamwidth formulas for uniform and infinite aper-
tures 69

2.4.2 Beamwidth formulas for finite apertures 73

2.5 Conclusion 80

3 reconfigurable leaky-wave antennas 81

3.1 Introduction 81

3.2 Graphene-based Leaky-Wave Antennas 83

3.2.1 Graphene properties 85

3.2.2 Graphene plasmonics 91

3.2.3 Graphene planar waveguide 95

3.2.4 Graphene substrate-superstrate antenna 105

3.2.5 Graphene strip grating antennas 118

3.2.6 Technological aspects 121

3.3 Fabry-Perot Cavities Based on Liquid Crystals 124

3.3.1 Introduction 124

3.3.2 Liquid crystals 125

3.3.3 Electromagnetic model for nematic liquid crys-
tals 126

3.3.4 Tunable THz Fabry-Perot cavity leaky-wave antenna
based on NLCs 130

3.4 Conclusion 139

ii generation of nondiffracting beams and pulses for
near-field applications at millimeter waves 141

4 nondiffracting waves 143

4.1 Introduction 143

4.2 Mathematical framework 145

4.3 Bessel Beams 152

4.3.1 History, definition and properties 152

4.3.2 Potential applications 154

4.3.3 Realizations 155

4.4 X-Waves 158

4.4.1 History, definition and properties 158

4.4.2 Potential applications 160



contents vii

4.4.3 Realizations 161

4.5 Conclusion 164

5 bessel-beam launchers 165

5.1 Introduction 165

5.2 Microwave Bessel-Beam Launchers 166

5.2.1 Theoretical analysis 166

5.2.2 Numerical results 171

5.2.3 Experimental results 173

5.2.4 Millimeter-wave design 175

5.3 Millimeter-wave Bessel-Beam Launchers 178

5.3.1 Design of the structure 179

5.3.2 Numerical validation 186

5.3.3 Prototype 189

5.3.4 Measurements 190

5.3.5 Use of a LRW as an X-wave launcher 194

5.4 Conclusion 196

6 x-wave launchers 197

6.1 Introduction 197

6.2 Zeroth-Order X-Wave Generation Through Finite Aper-
tures 198

6.2.1 Metric of confinement 199

6.2.2 Ideal X-waves 201

6.2.3 Dispersive X-waves 209

6.2.4 Dispersive-finite X-waves 212

6.3 Higher-Order X-Wave Generation Through Finite Aper-
tures 220

6.3.1 Analytical framework 221

6.3.2 Monochromatic higher-order Bessel beams 222

6.3.3 Polychromatic superposition of higher-order Bessel
beams 223

6.3.4 Numerical results 225

6.4 Conclusion 227

a a possible proof about the definition of the pointing an-
gle in lwas 229

b simulation model for the full-wave analysis of graphene-
based lwas 231

bibliography 233

List of Publications 257

List of Awards 261



L I S T O F F I G U R E S

Figure 1.1 (a) A closed and (b) an open region with respect to
the vertical x-axis. In the electric/magnetic case the
boundaries would represent perfect electric/magnetic
conductor (PEC/PMC) walls. 6

Figure 1.2 Ray intepretation of the physical significance of (a) a
forward and (b) a backward leaky wave in a waveg-
uiding structure of finite extent. Within a wedge-
shaped region (highlighted in light blue) limited by
the shadow boundary, the leaky-wave field domi-
nates the near-field region. It is worth noting the ca-
pability of backward leaky waves to focus radiation
in the near field. 7

Figure 1.3 Classification of forward waves in open regions with
respect to their propagating features. When αz = 0
two kinds of waves exist: uniform plane waves
αx = 0, and surface waves αx 6= 0. Surface waves
might be proper of improper, depending on the sign
of αx. When αz 6= 0, physical leaky waves exist only
when αz > 0. Even more interestingly, in order to
describe a radiation mechanism βx > 0, a forward
leaky wave must be improper. 8

Figure 1.4 (a) Real <{k̂z} part and (b) imaginary ={k̂z} part of
k̂z vs. f for a SW mode (black solid line) evolving
in a LW mode (dotted green line), after ‘crossing’
the spectral gap (improper real SW are there repre-
sented with green and black dashed lines) in a typ-
ical GDS covered with a PRS. The nonphysical LW
solution (which is the complex conjugate of the po-
tentially physical one) is represented in dotted black
line. 9

Figure 1.5 The top and bottom sheets (i.e., kz-planes) of the
two-sheeted Riemann surface for kx. The Sommerfeld
branch cuts are represented in blue dashed-dotted
lines. Color styles and line styles are the same of
Fig. 1.4. The arrow indicates the direction for which
the frequency is decreasing. A path of integration, la-
beled as P, is also shown in red solid line on the top
Riemann sheet. 10
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Figure 1.6 The deformation of the path P into P′ (solid red
lines). The LW poles are represented with dotted cir-
cles since they lie on the bottom Riemann sheet and
thus they are not captured during the path deforma-
tion. 11

Figure 1.7 Steepest descent φ-plane. The eight quadrants (from
T1 to T4 for the top sheet and from B1 to B4 for the
bottom sheet) constituting the two sheets are mapped
in a single strip onto the φ-plane. The original path P
(red solid line) is deformed into the SDP (black solid
line) for any angle of observation θ. The extreme SDPs
(ESDPs) are obtained for θ = ±π/2, and are reported
in black and white dashed line for the positive one
(ESDP+) and the negative one (ESDP-), respectively.
Only the poles which lie within ESDP+ and ESDP-

may contribute to the radiated field. 12

Figure 1.8 2-D section and TEN model of (a) a PPW and (b) a
GDS. 14

Figure 1.9 Dispersion diagram k̂z vs. f of a PPW. Dispersion
curves are found for εr = 1 and h = λ0/2 where
λ0 = 300 µm. Evanescent modes kz = −jαz in
dashed lines and guided modes kz = βz ∈ R in solid
lines. Since the structure is not simply-connected, a
TEM mode (black solid line) propagating from DC
frequency is obtained for m = 0 (green lines are for
m = 1 and blue lines are for m = 2, TE-TM modes, re-
spectively). Yellow dots indicates the cutoff frequen-
cies f (m)

c . 15

Figure 1.10 Dispersion diagram k̂z vs. f of a GDS. Dispersion
curves are found for εr = 2.17 and h = λ0/2 where
λ0 = 300µm. The light line kz = k0 sets the bound-
ary between the radiating region (just below, high-
lighted in blue) where leaky waves (β̂z in dashed blue
lines and α̂z in dotted blue lines) may describe radi-
ation, and propagating region (just above, highlighted
in green) where surface waves (β̂z in solid blue lines)
may describe surface propagation. 16

Figure 1.11 Two well-known examples of 1-D LWAs. (a) An ex-
ample of 1-D uniform LWA: the slitted rectangular
waveguide [24]. (b) An example of 1-D quasi-uniform
LWA: the holey waveguide [25]. 20

Figure 1.12 Comparison between the far-field distributions of a
uniform aperture distribution and a leaky aperture
distribution. The directivity of LWAs increases as
long as the leakage rate αz is low. 21
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Figure 1.13 2-D section of a unidirectional LWA with an equiv-
alent magnetic (electric) surface current that mod-
els an aperture field with the typical exponentially-
decaying distribution of forward leaky waves. An
absorber is usually put at the end of the struc-
ture to avoid back-reflection from the forward leaky
wave. 22

Figure 1.14 2-D section of a bidirectional LWA centrally-fed by a
coaxial cable. When the two beams approaches each
other, they merge in a single beam which points ex-
actly at broadside. 25

Figure 1.15 The original ray explanation proposed by von Tren-
tini in [49] for FPC-like antennas. At that time,
these kind of antennas were not recognized as 2-D
LWAs. 26

Figure 1.16 Several examples of different types of PRS. The PRS
consists of a single (a) dielectric layer, (b) a multistack
of alternating dielectric layers, (c) a 2-D periodic ar-
ray of metallic patches, and (d) its complementary
version, i.e., slots in a thin metal plate. 27

Figure 2.1 th vs. a calculated numerically (black solid lines). The
behavior of th has been reported for (a) 0 ≤ a ≤ 1, (b)
0 ≤ a ≤ 3, (c) 0 ≤ a ≤ 10, and (d) 0 ≤ a ≤ 30.
In (b) th has been fit with a cubic spline curve (blue
circles). 38
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ner). 41

Figure 2.4 (a) Asymptotic behavior of th vs. a for the various
fitting functions in the range 0 ≤ a ≤ 3. (b) Abso-
lute percent error (APE) vs. a of the various fitting
functions in the range 0 ≤ a ≤ 3. 41

Figure 2.5 ∆θh vs. er for θ0 = 5◦, 15◦, 45◦, 90◦ (in order
in red, yellow, green, blue) Comparison between
aBW (in solid lines) and eBW (in circles) results for
the evaluation of ∆θh for L = 10λ (top-left corner),
L = 20λ (top-right corner), L = 2λ (bottom-left cor-
ner), L = 100λ (bottom-right corner). 43
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Figure 2.6 ∆θh vs. θ0 for er = 50%, 75%, 90%, 99% (in order
in red, yellow, green, blue). Comparison between
aBW (in solid lines) and eBW (in circles) results for
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ner), L = 100λ (bottom-right corner). 44
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off frequency fc (blue solid line) and relevant value
of β̂z( fc) = α̂z( fc) (red dashed line) as a function
of the normalized distance x0/h1 of the graphene
sheet from the ground plane, for the fundamental TM
mode in the GSS structure. 108

Figure 3.21 Cutoff frequency fc (blue to cyan solid lines) and
relevant value of β̂z( fc) = α̂z( fc) (red to yellow
solid lines) as a function of the distance of the
graphene sheet from the ground plane x0 normal-
ized to the substrate thickness h1, for the funda-
mental TM leaky mode in the GSS. Similar results
are found for the fundamental TE leaky mode. As
the dielectric contrast spans the following values
d1,2 = 2, 5, 10, 20, 50, the curves shade from blue to
cyan and from red to yellow for values of fc and of
α̂z( fc), respectively. 108

Figure 3.22 Normalized phase constants and attenuation con-
stants of the fundamental TM (in black) and TE (in
grey) leaky modes of a GPW (dashed lines) with pa-
rameters as in [114] (i.e., with graphene placed at
the interface between the air and a dielectric layer
at a fixed frequency fc = 0.92 THz) and of the pro-
posed GSS (solid lines) with parameters as in Fig.
3.19, with graphene placed at the optimum position
x0 = 0.82h1 at a fixed frequency fc = 1.132 THz,
as a function of the chemical potential in the range
1 > µc > 0 eV. 110
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Figure 3.23 (a) Illustrative example of the typical conical beam-
scanning feature of a GSS antenna. In (b) and (c),
the radiation patterns normalized to the overall max-
imum (achieved at broadside) vs. elevation angle θ

for the GSS antenna represented in (a), are reported
for the H-plane and E-plane, respectively. Analytical
results are plotted in black solid lines, whereas full-
wave results obtained with the tool CST Microwave
Studio [159] are given by blue circles. The scanning
behavior at a fixed frequency ( fc = 1.132 THz) is
shown for beam maxima at θ = 0◦, 15◦, 30◦, 45◦. The
corresponding chemical potentials are reported in the
legend. 112
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all maximum (achieved at broadside), vs. elevation
angle θ for a GSS antenna (solid lines) with param-
eters as in Fig. 3.22 and for an equivalent GPW
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ing angles θp = sin−1(β̂2

z − α̂2
z)

1/2 = 0◦, 15◦, 30◦, 45◦.
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reported in the legend. 112

Figure 3.25 (a) Efficiency η vs. graphene positions in the sub-
strate x0/h1 (red lines), and directivity at broadside
normalized to its maximum D̄0 (blue lines). Both η

and D̄0 have been calculated at the corresponding
cutoff frequency for each graphene position x0/h1.
The grey dashed line, representing the efficiency of
an equivalent GPW antenna, has been reported for
comparison. (b) The function f vs. x0/h1 of Eq. (3.38)
for different values of w. Color of the lines shades
from blue to red as w ranges from 0 to 1. Colored
dots highlight the positions of the maxima of f as
w ranges from 0 (blue dot) to 1 (red dot). Maxima
are located closer to the interface as the efficiency is
weighted more than the directivity. 114



xx List of Figures

Figure 3.26 Field configurations of the tangential component of
the electric field Ez for the fundamental TM leaky
mode (red line) in a GSS antenna (a) at f = 1.13 THz
when graphene is placed at x0 = 0.82h1 and (b) at
f = 1.00 THz when graphene is placed at the inter-
face x0 = h1. Light grey, dark grey, and white regions
represent the substrate, the superstrate, and the air,
respectively, whereas the black diamonds stand for
the graphene sheet. The x-axis is normalized to the
height of the overall structure h = h1 + h2. 115
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Figure 3.32 Real part of the diagonal terms εii(x, y, z = 0)
vs. xy-plane of the relative permittivity tensor for
Vbias = 0− 7 [V]. First column (i = x), second col-
umn (i = y), and third column (i = z). Starting from
the first row the driving voltage takes the following
values: {0, 1.5, 2, 3, 4, 7} [V]. 127

Figure 3.33 Real part of the off-diagonal terms εij(x, y, z = 0)
vs. xy-plane of the relative permittivity tensor for
Vbias = 0− 7 [V]. First column (i = x, j = y), second
column (i = y, j = z), and third column (i = x, j = z).
Starting from the first row the driving voltage takes
the following values: {0, 1.5, 2, 3, 4, 7} [V]. 128

Figure 3.34 Real part of the diagonal terms εii(x = x0, y = y0, z)
vs. z for Vbias = 0− 7 [V]. First column (i = x),
second column (i = y), and third column (i = z).
Starting from the first row the (x0, y0) position takes
the following values: (0, 0) µm, (54, 54) µm, and
(75, 75) µm. 129
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Figure 3.35 Imaginary part of the diagonal terms
εii(x = x0, y = y0, z) vs. z for Vbias = 0− 7 [V].
First column (i = x), second column (i = y), and
third column (i = z). Starting from the first row
the (x0, y0) position takes the following values:
(0, 0) µm, (54, 54) µm, and (75, 75) µm. 130

Figure 3.36 2-D section view of the proposed device and its
equivalent transmission-line representation. The
NLC layers are biased through a pair of extremely-
thin moderately-conductive polymer films (not re-
ported in the picture), e.g., PEDOT:PSS [99], whose
absorption is neglected here. 131

Figure 3.37 Dispersion curves (β̂z and α̂z vs. f ) of the fundamen-
tal TM leaky mode for (a) Layouts 1, (b) 2, (c) 3, and
(d) 4 (see Table 3.5) when the NLC layer is biased at
V∞ (blue lines) and when is unbiased 0 V (red lines).
Colors gradually shades from blue to red as Vb de-
creases from V∞ to 0 V. 133

Figure 3.38 Radiation patterns predicted considering only the
LW pole contribution (dashed lines) and by means
of reciprocity theorem (solid lines) for (a) Layouts 1,
(b) 2, (c) 3, and (d) 4 (see Table 3.5) when the beam
points at broadside (blue lines) and when is steered
at the maximum pointing angle (red lines). 135

Figure 3.39 Dispersion curves (β̂z and α̂z vs. f ) of the fundamen-
tal TM leaky mode for (a) Layout 2 and (b) Layout 4
(see Table 3.5) in the lossy case, when the NLC layer
is biased at V∞ (blue lines) and when is unbiased 0 V
(red lines). Colors gradually shades from blue to red
as Vb decreases from V∞ to 0 V. 136

Figure 3.40 Radiation patterns for (a) Layout 2 and (b) Layout
4 for radiation at broadside (solid) and at the maxi-
mum pointing angle (dashed). The radiation patterns
have been calculated by means of reciprocity theorem
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of LWA theory (blue). Full-wave simulations with
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Figure 4.1 Wavevectors κ = kρρ̂0 + kz ẑ0 lying on the surface of a
cone with axicon angle θ0. 147
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Figure 4.2 (a) Modulus and (b) phase of a higher-order Bessel
beam of order n = 1 generated by an aperture of
25 cm at 12.5 GHz. The phase follows the typical
spiral path, whereas the modulus exhibits a central
dark spot. 149

Figure 4.3 Intensity distribution of a zeroth-order Bessel func-
tion of the first kind (black solid line) and its enve-
lope (blue dashed line) decaying as ρ−1. 152

Figure 4.4 Contour-plot of a zeroth-order Bessel beam gener-
ated by an (a) infinite aperture and (b) a finite aper-
ture of radius radius ρap = 3λ and with an axicon
angle θ0 = 45◦. 153

Figure 4.5 (a) A sketch of the experimental setup used by J.
Durnin for the first generation of a Bessel beam in
optics [189]. (b) A sketch of the experimental setup
for generation of a Bessel beam through an axicon
lens as presented in [223]. The axicon element al-
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Figure 4.6 (a) 2-D and (b) 3-D plot of the normalized amplitude
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Figure 4.7 (a) A sketch of the experimental setup used by Lu
and Greenleaf for the first generation of X-waves in
acoustics [264]. (b) A sketch of the experimental
setup for the first measurement of the 3-D field dis-
tribution of X-waves in optics [265]. Except for a sys-
tem of converging lenses and a pinhole, the mech-
anism of generation was equal to the one originally
proposed by Durnin [189] for the Bessel beam gener-
ation. 161
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Figure 5.1 Geometrical view of a leaky-wave radial waveguide
of thickness h. A metallic rim is placed at ρ = ρap.
The PRS is represented by a square lattice of metallic
patches. 167

Figure 5.2 The mechanism of generation of a Bessel beam
through the superposition of an inward Hankel wave
and an outward Hankel wave. An outward Hankel
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is then reflected back by the circular metallic rim to
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plane for the proposed LRW at the operating fre-
quency f = 10 GHz. The five nulls are clearly dis-
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sults at z = 0.75λ0 for different φ-cuts. (b) 2D field
distribution over the xy-plane at f = 9.6 GHz at
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at f = 9.6 GHz at y = 0. Courtesy of Mauro Ettorre
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Figure 5.10 αc vs. frequency ( f ). At f = 40 GHz the at-
tenuation constant of the TEM mode propagating
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7 Np/m. 176
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Figure 5.11 Xs vs. f for a homogenized PRS constituted by a
periodic (p = λ0/10) array of double-layered inter-
leaved metallic square patches. The value of the
surface impedance is calculated for different values
of the distance between the patches ranging from
g = 200 µm to g = 50 µm, which is the maximum
tolerance for PCB technology. 177

Figure 5.12 Illustration of the millimeter-wave Bessel-beam
launcher under consideration. The blue arrows show
the outward and inward Hankel waves excited by a
central coaxial probe. The constructive interference of
these cylindrical waves creates the Bessel beam pro-
file. 179

Figure 5.13 (a) Normalized phase constant and (b) normalized
attenuation constant vs. frequency f up to 100 GHz
for the first three TM of a LRW as in Fig. 5.3. The
solid and dashed lines denote the dispersion curves
for the proper and improper modes, respectively. The
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Figure 5.14 Dispersion curves (SW and LW in blue solid and
red dashed lines, respectively) for the design of
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Figure 5.16 Approximation of the tangent function tan(kz1h)
vs. h with (kz1h − nπ) for n = 0, 1, 2 when
kz1 = k0

√
εr − k̂2

ρ with k̂ρ = 0.8. As expected, at
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Figure 5.17 (a) Geometry of the COMSOL model of the proto-
type. The size of the evaluation box is set slighlty
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flections from the PML boundary conditions. (b)
Boundary conditions setting of the COMSOL model
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Rennes, France. Courtesy of Ioannis Iliopoulos [285].
Note that the antenna under test (AUT) shown in the
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Figure 5.24 (a) Measured reflection coefficient (|S11| in dB) and
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Figure 5.26 Measured intensity of Ez along the xy plane at z = λ
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Ez vs. ρ at f = 38.3 GHz at z = 0.5λ0, 0.75λ0,
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shades from blue to cyan as z increases from 0.5 λ

to 2.5 λ. At z = λ the HPBW shows a remarkable
stability with respect to the frequency. 194

Figure 6.1 Definition of a metric of confinement for an X-wave.
A pulse characterized by a transverse spot width Sρ

and a longitudinal spot width Sz is launched through
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Figure 6.3 Weak confinement C(w)
ρ,z vs. ρap/λ0 and θ. The yel-

low hyperbola represents the boundary between the
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∆ω = 0.1, and (d) ∆ω = 0.2 are considered. The
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ρ,z vs. ρap/λ0 and θ. The yellow
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Figure 6.7 Upper-left and lower-left corner: C(w)
ρ,z and C(s)

ρ,z vs.
ρap and θ for FBW = 20%. Upper-right and lower-
right corner: 3-D view of the normalized |χ(ρ, z)|2 vs.
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θ0 = 30◦ for p2). 208

Figure 6.8 Comparison between numerical integrations (red cir-
cles) and approximations (Eqs. (6.29) and (6.17) in
green solid lines and Eqs.6.18 and 6.19 in blue dashed
lines) of (a)-(b) transverse profiles and (c)-(d) longi-
tudinal profiles for a dispersive X-wave in fractional
bandwidths (a)-(c) FBW = 5% and (b)-(d) FBW =

20% centered around f0 = 60 GHz. The result-
ing profiles have been obtained assuming kz0 = 0.2k0,
kz1 = 0.55 · 10−12, and kz2 = 0. Results are reported
over an aperture plane of ρap = 15λ0 and zndr

calculated at f0. Note that ρ′ = kρ0ρ and z′ =

kz0∆ωz/2. 211

Figure 6.9 (a) Prospective view of an RLSA. (b) Brillouin di-
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and (d)), dispersive (second column: (b) and (e)), and
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dispersive-finite UXW, generated with a fractional
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Figure 6.15 Normalized amplitude distribution of Ez vs. x, y at
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Figure B.1 (a) CST unit-cell model of a GSS antenna. In green
and blue the substrate and the superstrate, respec-
tively. The transparency of the materials has been
set in order to make visible the monolayer graphene
within the substrate. The probe for evaluating the
tangential magnetic field Hy at the ground plane
is represented with a blue arrow. (b) Phase-shift
walls have been implemented to emulate an infinitely
transverse uniform structure by means of a periodic
unit cell. 231
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A B S T R A C T

In recent years, microwave, millimeter-wave, and THz applications such
as medical and security imaging, wireless power transfer, and near-field
focusing, just to mention but a few, have gained much attention in the area
of ICT due to their potentially high social impact. On one hand, the need of
highly-directive THz sensors with tunable radiating features in the far-field
region has recently boosted the research activity in the design of flexible,
low-cost and low-profile devices. On the other hand, it is of paramount
importance to focus energy in the near-field region, and thus the generation
of limited-diffraction waves in the microwave and millimeter-wave regime
is a topic of recent increasing interest.

In this context, leaky-wave theory is an elegant and extremely useful for-
malism which allows for describing in a common fashion guiding and radi-
ating phenomena in both the near field and the far field, spanning frequen-
cies from microwaves to optics passing through THz.

In this PhD thesis we aim to exploit the intrinsic versatility of the leaky-
wave approach to design advanced radiating systems for controlling the
far-field radiating features at THz frequencies and for focusing electromag-
netic radiation in the near field at millimeter waves. Specifically, the use of
relatively new materials such as graphene and liquid crystals has been consid-
ered for the design of leaky-wave based radiators, achieving very promis-
ing results in terms of reconfigurability, efficiency, and radiating capabili-
ties. In this context, an original theoretical analysis has provided new gen-
eral formulas for the evaluation of the radiating features (e.g., half-power
beamwidth, sidelobe level, etc.) of leaky-wave antennas. Indeed, the cur-
rent formulations are based on several simplifying hypotheses which do not
allow for an accurate evaluation of the beamwidth in different situations.

In addition to the intriguing reconfigurable capabilities offered by leaky
waves in far-field applications, interesting focusing capabilities can be ob-
tained in the near field. In particular, it is shown that leaky waves can
profitably be used to generate limited-diffraction Bessel beams by means
of narrow-band radiators in the microwave range. Also, the use of higher-
order leaky-wave modes allows for achieving almost the same performance
in the millimeter-wave range, where previous designs were subjected to
severe fabrication issues. Even more interestingly, the limited-diffractive
character of Bessel beams can also be used to generate limited-diffraction
pulses as superpositions of monochromatic Bessel beams over a consider-
able fractional bandwidth. In this context, a novel theoretical framework
has been developed to understand the practical limitations to efficiently
generate limited-diffraction, limited-dispersion pulses, such as X-waves, in
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the microwave/millimeter-wave range. As a result of this investigation, a
class of wideband radiators has been thoroughly analyzed, showing promis-
ing capabilities for the generation of both zeroth-order and higher-order X-
waves. The latter may pave the way for the first localized transmission of
orbital angular momentum in the microwave range.
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E P I G R A P H

Il y a des livres qui ont la force de changer la perception de nôtre vie. La
Vie mode d’emploi c’est l’un de ceux qui ont changé la mienne.

— Georges Perec (“La Vie mode d’emploi”, chap. XXVI, Bartlebooth, 1)

Imaginons un homme dont la fortune n’aurait d’égale que l’indifférence à ce que la fortune
permet généralement, et dont le désir serait, beaucoup plus orgueilleusement, de saisir, de
décrire, d’épuiser, non la totalité du monde - projet que son seul énoncé suffit à ruiner -
mais un fragment constitué de celui-ci: face à l’inextricable incohérence du monde, il s’agira
alors d’accomplir jusqu’au bout un programme, restreint sans doute, mais entier, intact,
irréductible.

Bartlebooth, en d’autres termes, décida un jour que sa vie tout entière serait organisée
autour d’un projet unique dont la nécessité arbitraire n’aurait d’autre fin qu’elle-même. [...]
Elle se développa dans les mois, dans les années qui suivirent, s’articulant autour de trois
principes directeurs:

Le premier fut d’ordre moral: il ne s’agirait pas d’un exploit, d’un record, ni d’un pic
à gravir, ni d’un fond à atteindre. Ce que ferait Bartlebooth ne serait ni spectaculaire ni
héroïque; ce serait simplement, discrètement, un projet, difficile certes, mais non irréalisable,
maîtrisé d’un bout à l’autre et qui, en retour, gouvernerait dans tous ses détails la vie de celui
qui s’y consacrerait.

Le second fut d’ordre logique: excluant tout recours au hasard, l’entreprise ferait fonc-
tionner le temps et l’espace comme des coordonnées abstraites où viendraient s’inscrire avec
une récurrence inéluctable des événements identiques se produisant inexorablement dans leur
lieu, à leur date.

Le troisième, enfin, fut d’ordre esthétique : inutile, sa gratuité étant l’unique garantie de sa
rigueur, le projet se détruirait lui-même au fur et à mesure qu’il s’accomplirait; sa perfection
serait circulaire : une succession d’événements qui, en s’enchaînant, s’annuleraient: parti de
rien, Bartlebooth reviendrait au rien, au travers des transformations précises d’objets finis.

Ainsi s’organisa concrètement un programme que l’on peut énoncer succinctement ainsi:
Pendant dix ans, de 1925 à 1935, Bartlebooth s’initierait à l’art de l’aquarelle.

Pendant vingt ans, de 1935 à 1955, il parcourrait le monde, peignant, à raison d’une
aquarelle tous les quinze jours, cinq cents marines de même format (65 X 50, ou raisin)
représentant des ports de mer. Chaque fois qu’une de ces marines serait achevée, elle serait
envoyée à un artiste spécialisé (Gaspard Winckler) qui la collerait sur une mince plaque de
bois et la découperait en un puzzle de sept cent cinquante pièces.

Pendant vingt ans, de 1955 à 1975, Bartlebooth, revenu en France, reconstituerait, dans
l’ordre, les puzzles ainsi préparés, à raison, de nouveau, d’un puzzle tous les quinze jours.
A mesure que les puzzles seraient réassemblés, les marines seraient“retexturées” de manière
à ce qu’on puisse les décoller de leur support, transportées à l’endroit même où - vingt
ans auparavant - elles avaient été peintes, et plongées dans une solution détersive d’où ne
ressortirait qu’une feuille de papier Whatman, intacte et vierge.

Aucune trace, ainsi, ne resterait de cette opération qui aurait, pendant cinquante ans,

entièrement mobilisé son auteur.
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I N T R O D U C T I O N

This PhD thesis deals with two extremely interesting physical phenom-
ena: leaky waves and nondiffracting waves. This ‘apparent’ distinction has
initially suggested to split this thesis in two parts, the first one dealing with
reconfigurable leaky-wave antennas for far-field THz applications, and the
second one dealing with the design of near-field focusing devices. However,
this apparent distinction will slowly disappear throughout the thesis, unveil-
ing the strong connection between these physical phenomena. The greatest
evidence of this concept will naturally emerge in Chapter 5, where the use
of leaky waves allows for producing a monochromatic nondiffracting wave,
namely a Bessel beam.

It should be stressed that, under the frame of the cotutelle agreement, the
first part and the second part of this thesis have been mainly developed
during the stay of the Author in University of Rome “Sapienza” under the
supervision of Prof. A. Galli, and in University of Rennes 1 under the su-
pervision of Dr. Mauro Ettorre, respectively.

Both parts of the thesis are divided in three chapters. The first chapter of
each part is a useful review of the state of the art and of the fundamental
concepts underlying the topics covered in each part. The following chapters
of each part illustrate the original investigations developed in their respec-
tive contexts.

The thesis is outlined as follows:

chapter 1 In this Chapter, a review of leaky-wave theory is presented.
Starting from the fundamental physics underlying leaky waves, the de-
sign methods, and the radiating properties of conventional leaky-wave
antennas are discussed through the analysis of several well-known ex-
amples. The content of this Chapter will serve to understand the pos-
sibilities and limitations offered by conventional leaky-wave antenna
design, thus motivating the study of more advanced techniques and
devices. The two last ones will be the object of Chapter 2 and 3, re-
spectively.

chapter 2 In this Chapter, a novel theoretical framework is laid down to
characterize the radiating properties of 1-D unidirectional and bidirec-
tional leaky-wave antennas even in the endfire case. Starting from the
original formulation early proposed by Oliner in the ’60s, and by pro-
gressively removing all simplifying hypotheses, a more general and
accurate formulation is obtained. Therefore, more accurate and reli-
able formulas are rigorously derived, also showing that Oliner’s re-
sults are approximate limiting cases of this more general formulation.

xlv



xlvi Introduction

This study is a result of a fruitful collaboration with Prof. David R.
Jackson, gained at University of Houston during the last four months
of this PhD.

chapter 3 In this Chapter, the design of several reconfigurable leaky-wave
antennas in the THz range is presented. By exploiting the tunable fea-
tures of relatively new materials such as graphene and liquid crystals
(LC), it is shown that is possible to design either graphene- or LC-
based leaky-wave antennas with fixed-frequency electronical scanning
of the far-field pattern. The performance of both devices is thoroughly
discussed in terms of directivity, efficiency, and pattern reconfigura-
bility by means of ad-hoc customized numerical techniques. Also, the
impact of technological issues inherent to either graphene synthesis, or
multistacked LC-based cells assembly is rigorously assessed, showing
how it affects the overall performance of the proposed THz devices.
Possible workarounds are suggested throughout the Chapter.

chapter 4 In this Chapter, a review of the first experiments about the
generation of nondiffracting waves is presented. A unified mathe-
matical framework is first developed to analyze in a common fashion
monochromatic (beams), and polychromatic (pulses) nondiffracting so-
lutions. A specific focus is devoted to cylindrical solutions, i.e. Bessel
beams and X-shaped pulses, respectively. Most of the current mathe-
matical formulations are based on some simplifying hypotheses that
no longer hold in the microwave regime. Hence, a rigorous applica-
tion of a full-wave analysis is needed for a correct description of the
microwave/millimeter-wave devices discussed in Chapter 5 and 6.

chapter 5 In this Chapter, the analysis, design, prototyping, and mea-
surements of microwave and millimeter-wave Bessel-beam launchers
are presented. As will be shown, the design of a microwave Bessel
beam launcher is based on the excitation of a pair of resonant leaky
modes. Such a design does not allow for frequency-scaling the device
at millimeter waves. Thus, a novel design based on higher-order leaky
modes is here presented. Full-wave simulations and measurements
corroborate the accuracy and the validity of the analysis.

chapter 6 In this Chapter, the possibility to generate X-waves at mi-
crowaves is discussed. The fundamental limitations inherent to the
efficient generation of such waves are addressed under the frame of
an original theoretical framework. Relevant figures of merit are in-
troduced to evaluate and predict the focusing properties of X-waves
through finite aperture in the microwave regime. Rigorous theoreti-
cal and numerical results show the efficient generation of zeroth-order
and higher-order X-waves. These promising results may pave the way
for the first localized transmission of energy and orbital angular mo-
mentum at microwaves.
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1 C O N V E N T I O N A L L E A K Y-W AV E
A N T E N N A S

1.1 introduction

In many sectors of physics, such as acoustics, electromagnetics and optics,
where the transmission of energy is generally described by wave propaga-
tion, the damping of waves is frequently associated to a mechanism of losses
in dissipative systems. In electromagnetics, these losses are commonly at-
tributed to the dissipation of energy in passive media due to ohmic, dielec-
tric, or radiation losses. In particular, when an open region characterized
by a nondissipative medium is considered, (e.g., air-filled open waveguides)
the nature of losses is attributed to radiation. The resulting damped oscil-
lations belong to the category of radio-active states in quantum mechanics,
damped resonances in acoustics, and leaky waves in electromagnetics.

Despite its rather intuitive interpretation, the concept of energy leakage to
explain radiating phenomena has been mainly developed only at the end of
the first half of the last century thanks to the pioneering work of N. Marcu-
vitz [1]. Since then, many engineers applied this concept to design radiating
systems by suitably opening closed waveguides in order to enhance radi-
ation. However, it was only in the ’60s, thanks to the seminal papers of
T. Tamir and A. A. Oliner [2], [3] that the so-called leaky-wave theory was
rigorously set from a mathematical and a physical point of view. The ele-
gant theory exposed in those papers furnished the tools for designing leaky-
wave based radiating systems in an extremely simple and systematic way; a
worthwhile aspect in that era of limited computational resources.

Nowadays, leaky-wave antennas as well as leaky-wave theory, are commonly
recognized as active and promising research areas in both physics and en-
gineering communities. On one hand, leaky-wave theory is used to explain
and interpret different physical phenomena such as Cherenkov radiation [4],
Wood’s anomalies [5], and enhanced transmission [6], [7]. On the other hand,
leaky-wave antennas still represent some of the most promising advanced ra-
diating systems in microwave engineering.

In Section 1.2, we briefly review the fundamentals of leaky-wave physics,
as well as the most important theoretical aspects underlying the design of
conventional leaky-wave antennas (LWAs). This Section 1.2 will allow us to
introduce the well-known classification among the different types of LWAs.
In this context, in Sections 1.3 and 1.4 we specifically focus on the class
of 1-D and 2-D LWAs, respectively. There, the specific radiation properties
characterizing both types of LWAs will be thoroughly reviewed.

3



4 conventional leaky-wave antennas

The recent advances in the theoretical formulations for conventional 1-D
and 2-D LWAs will be the object of Chapter 2, whereas the most recent
investigations on unconventional 2-D LWAs will be the object of Chapter 3.
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1.2 leaky-wave theory

In this Section 1.2 we discuss the fundamentals of leaky-wave physics. Start-
ing from a rigorous mathematical standpoint, the nature of leaky waves will
be clearly revealed in 1.2.1 as a direct consequence of the continuum spectrum
possessed by the solutions of the wave equation in unbounded media. In 1.2.2
the physical significance of leaky waves will be intuitively explained with
the aid of a ‘ray-interpretation’ of the radiating problem. Section 1.2.3 will
set the leaky-wave phenomena in a rigorous mathematical framework. Then,
in 1.2.4 a convenient technique (viz. the transverse resonance technique [8]) to
analyze leaky-wave solutions in waveguiding problems will be thoroughly
discussed by means of two canonical examples: the parallel-plate waveguide
and the grounded dielectric slab. Finally, a possible classification among the
different leaky-wave antennas is suggested in 1.2.5.

1.2.1 Nature of waves

Time-harmonic1 source-free solutions of the scalar wave equation
∇2 f + k2 f = 0 (where k is the propagation constant) are usually distin-
guished between those which exist in closed regions and those which exist
in open regions. With regard to the electromagnetic problem, so elegantly
and concisely expressed by Maxwell’s equations, we will consider regions
of infinite transverse extent along the z-axis, invariant with respect to the
y-axis, and in case bounded along the vertical x-axis (see Fig. 1.1). As a re-
sult of these assumptions the separation relation k2

x + k2
y + k2

z = k2
0 where k0

is the vacuum wavenumber and ki with i = {x, y, z} are the wavenumbers
along the i-axis, takes the simplified form

k2
x + k2

z = k2
0, (1.1)

since ky = 0 due to the invariance along the y-axis (∂/∂y = 0). Moreover,
due to the infinite extent along the z-axis, any solution f (x, z) of the problem
will take the form f (x, z) = m(x)e−jkzz = m(x)e−αzze−jβzz, where m(x) is a
modal function, and αz (related to amplitude variations) and βz (related to
phase variations) are the imaginary and real parts of the generally complex
longitudinal wavenumber kz = βz − jαz.

In closed regions (see Fig. 1.1(a)), the transverse wavenumber is real
kx ∈ R and belongs to a discrete orthogonal complete set of eigenvalues. These
solutions are known as guided waves and their superposition can provide
a complete description of any field2. In addition, evanescent waves may ex-

1 A time-dependence ejωt is tacitly assumed throughout all the PhD thesis. The imaginary unit
is i = −j according to the convention of the engineering community different from the phyiscs
community.

2 More precisely, in lossless closed regions guided waves (<{kz} 6= 0) are described by purely
real kz ∈ R longitudinal wavenumbers, otherwise an imaginary part accounts for losses in the
medium.
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Figure 1.1.: (a) A closed and (b) an open region with respect to the vertical x-axis.
In the electric/magnetic case the boundaries would represent perfect elec-
tric/magnetic conductor (PEC/PMC) walls.

ist whose propagating wavenumber is purely imaginary kz = −jαz, thus
they neither propagate nor contribute to the description of the field. The
formulation of electromagnetic problems in closed regions is at the root of
waveguiding phenomena [9].

In open regions (see Fig. 1.1(b)), a discrete spectrum might exist but a
continuum spectrum must be added to guarantee the completeness of the set
of solutions. The discrete spectrum is characterized by complex transverse
wavenumbers kx = βx − jαx that still belong to a discrete set. In particular,
those eigenvalues for which βz > k0 ∈ R and αx > 0 have a physical
meaning, since they satisfy the Sommerfeld radiation boundary condition at
infinity. These modal solutions (or, equivalently proper waves) are called surface
waves since their eigenvalues describe waves which propagate along the
interface and exponentially decay away from it.

Conversely, the continuum spectrum is characterized by both complex
wavenumbers kx and kz which both belong to an infinite set. Such solu-
tions are generally called spatial waves. However, in the presence of a con-
tinuum spectrum, nonmodal solutions (or, equivalently improper waves) may
exist, which are characterized by a negative attenuation constant αx < 0
and thus they do not satisy the Sommerfeld condition at infinity. A repre-
sentation of the field in terms of nonmodal solutions is called nonspectral
representation, and its physical significance will be investigated in the next
Subsection.

1.2.2 Physical significance of leaky waves

At a first glance, nonmodal solutions in open regions might seem to have
no physical meaning because they would describe an infinite field at infinity.
However, it is possible to prove that when the structure is excited by a finite
source these solutions describe fields that are exponentially growing only
in a limited wedge-shaped region close to the interface [10]–[15], and then
abruptly decay after the so-called shadow boundary (see Fig. 1.2(a)) given by
the equation x = z tan θ0 (θ0 being the angle measured from the vertical
x-axis). Hence, these solutions, known as leaky waves, provide a physical
description of the field that, in the near field, is dominant with respect to
other solutions when |βz| < k0 (see next Subsection). The imaginary part
αz > 0 will account only for radiation losses in lossless regions, otherwise it
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Figure 1.2.: Ray intepretation of the physical significance of (a) a forward and (b) a
backward leaky wave in a waveguiding structure of finite extent. Within a
wedge-shaped region (highlighted in light blue) limited by the shadow
boundary, the leaky-wave field dominates the near-field region. It is
worth noting the capability of backward leaky waves to focus radiation
in the near field.

will take into account losses for both radiation and dielectric/ohmic losses
in the medium.

Considerable physical insight on the problem is gained if one takes a look
at the separation relation (see Eq. (1.1)). By splitting the imaginary and real
parts of Eq. (1.1), the following relation is found:

βzαz = −βxαx. (1.2)

If we generally assume a forward wave βz > 0, several possibilities are found
as conveniently summarized by the scheme in Fig. 1.3. It is worth noting
here that two kind of complex waves may exist: those characterized by αz < 0,
and those characterized by αz > 0. The former will never have physical
meaning since they describe fields that exponentially increase as they prop-
agate along the z-axis. The latter may have physical meaning despite their
nonmodal character. In fact, those with βx < 0 only exist in lossy media,
and they describe waves whose power density flows inside the medium to
compensate for ohmic or dielectric losses. Conversely, those with βx > 0
may exist in lossless media, and they describe waves whose power density
radiates outside the medium. When βz < k0 these waves are called fast
leaky waves (since when βz < k0, then vz

∆
= ω/βz > ω/k0 = c0), and their

presence in an open region is at the root of radiating phenomena3. In the fol-
lowing paragraph the same conclusions will be obtained under the frame of
a rigorous mathematical viewpoint.

As a final remark, we should note the completely different behavior of
backward leaky waves. As is seen from Fig. 1.2(b), the field of a fast leaky wave
is always proper, since it would always describe an exponential decay in

3 Actually, according to Oliner’s viewpoint [2], the term leaky wave should be used to distinguish
complex waves which describe radiation losses, from those complex waves which describe
medium losses [2]. Since proper complex waves may exist in lossless media due to anisotropic
[16] or dispersive [17] media, the term leaky wave accounts for both proper and improper
waves, being the distinction purely formal [2].
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Figure 1.3.: Classification of forward waves in open regions with respect to their
propagating features. When αz = 0 two kinds of waves exist: uniform
plane waves αx = 0, and surface waves αx 6= 0. Surface waves might be
proper of improper, depending on the sign of αx. When αz 6= 0, physical
leaky waves exist only when αz > 0. Even more interestingly, in order
to describe a radiation mechanism βx > 0, a forward leaky wave must
be improper.

the vertical direction. This can also be inferred from the scheme of Fig. 1.3
under the hypothesis βz < 04. However, the most important consequence of
the nature of backward leaky waves is that they describe fields with near-field
focusing features as clearly shown in Fig. 1.2(b). This will have important
consequences that will be carefully analyzed from Chapter 4 to 6.

1.2.3 Mathematical significance of leaky waves

In the previous Subsection we have discussed the physical significance of
leaky waves in the frame of ray-optics interpretation. On this ground, it
has emerged that leaky waves may be physically significant if they are fast
waves, while they are not likely to be physically significant if they are slow
waves. However, it is possible to prove the physical significance of leaky
waves under the frame of a rigorous mathematical theory by analyzing a
guiding structure that is excited by a finite source. Thus, to understand
the mathematical significance of leaky waves, we consider the case of a
grounded dielectric slab (GDS) covered with a lossy partially reflecting sheet
(PRS). This choice is motivated by the fact that, throughout this work, we
frequently analyze radiating devices that are in some way ascribable to those
structures.

As is known [10]–[15], these structures support leaky-wave (LW) modes
that evolve from the well-known surface-wave (SW) modes that exist on the
structure, as the frequency is lowered. In Fig. 1.4(a), the normalized phase
constant (β̂z = βz/k0) is reported as a function of the frequency. As is
seen, as long as f > fc (where fc; β̂z( fc) = 1 is the SW cutoff frequency),
the mode is a slow wave with β̂z ≥ 1 (solid black line). As the frequency
is lowered below fc, the surface-wave mode becomes an improper real SW
mode (dashed black line), and βz > k0 increases with frequency until a

4 In fact, for βz < 0 one would find the following two conditions βx > 0, αx > 0, βx < 0, αx < 0
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Figure 1.4.: (a) Real <{k̂z} part and (b) imaginary ={k̂z} part of k̂z vs. f for a
SW mode (black solid line) evolving in a LW mode (dotted green line),
after ‘crossing’ the spectral gap (improper real SW are there represented
with green and black dashed lines) in a typical GDS covered with a PRS.
The nonphysical LW solution (which is the complex conjugate of the
potentially physical one) is represented in dotted black line.

splitting point frequency fsp is encountered. At this point, the improper real
SW mode merges with another improper real SW mode (dashed green line)
that is never physical, decreases with frequency, and does not evolve from
a proper SW mode.

As the frequency is further lowered, the two improper SW modes coalesce
into two complex modes (dotted green and black lines). This happens at a
frequency f0 < fsp for which βz = k0. The frequency region f0 < f < fc

is usually referred to as the spectral-gap region [18], a term coined by A. A.
Oliner. The first solution is the leaky-wave solution, and is characterized
by a negative imaginary part (see Fig. 1.4(b)), while the second solution is
always regarded as being nonphysical, since its wavenumber corresponds
to a mode that grows exponentially in the direction of propagation z. Note
that, in an ideal lossless PRS this solution would be the complex conjugate of
the leaky-wave one. Here, the presence of the losses in the PRS is considered
because it generally describes the behavior of a graphene sheet as we will
further discuss in 3.2.3.

As the frequency is further lowered, the phase constant of the LW mode
will typically continue to decrease. For a sufficiently low frequency βz ≤ k0

LW mode is then said to have entered into the physical region. However, for
f > fsp the imaginary part of both the improper LWs usually increases in
modulus as f decreases (see Fig. 1.4(b)). In Fig. 1.5, the behavior of kz is
differently represented on the complex kz-plane, which shows the trajectory
of the modes represented in Fig. 1.4. Also shown are the usual Sommer-
feld branch cuts for the wavenumber that emanates from the branch points at
kz = ±k0

5. The SW mode originally ‘living’ on the top sheet (i.e., defined
by the proper choice ={kx} < 0 of kz) falls on the bottom sheet (i.e., defined
by the improper choice ={kx} > 0 of kz) of the two-sheeted Riemann surface

5 It is worth noting that the branch points kz = ±k0 are placed infinitesimally above the real
kz-axis (the medium is assumed to have small losses) so that P does not cross any branch cuts.
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Figure 1.5.: The top and bottom sheets (i.e., kz-planes) of the two-sheeted Riemann sur-
face for kx. The Sommerfeld branch cuts are represented in blue dashed-
dotted lines. Color styles and line styles are the same of Fig. 1.4. The
arrow indicates the direction for which the frequency is decreasing. A
path of integration, labeled as P, is also shown in red solid line on the
top Riemann sheet.

for kx when the branch point kz = k0 is first encountered. The two real im-
proper SW waves merge at the splitting point ksp = kz( fsp) and then leave
the real axis in opposite vertical directions as previously described.

Further insight may be gained by considering the problem of an infinite
electric line source located at the interface between the PRS and air. The
exact electric field in the region x > 0 may be written in the form [2], [19]

Ex(x, z) =
1

2π

∫ +∞

−∞
f (kx)e−jkx xe−jkzzdkz, (1.3)

where f (kx) is an amplitude function which depends on the input
impedance specified at the interface and on the source location. The field as
expressed in Eq. (1.3) is the spectral longitudinal representation of modes in the
form e−jkzz propagating along the vertical x-axis. The path P of integration
stays on the top Riemann sheet and is performed along the entire real kz

axis (see Fig. 1.5). To solve Eq. (1.3), it is convenient to recast the problem in
terms of the transverse spectral representation and then evaluate the integral
with the aid of the steepest-descent method for the asymptotic evaluation of
the radiation integrals [20]. Hence, the original path P is first deformed
into the path P′ along a semicircle at infinity (in the bottom half kz-plane
to account for physical contributions, i.e., ={kz} < 0) and properly detours
around the Sommerfeld branch cuts and the poles of the f (kx) on the real
axis (see Fig. 1.6). Since the path at infinity contributes nothing to the inte-
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Figure 1.6.: The deformation of the path P into P′ (solid red lines). The LW poles
are represented with dotted circles since they lie on the bottom Riemann
sheet and thus they are not captured during the path deformation.

gral due to Jordan’s Lemma [21], by Cauchy’s theorem [22], Eq. (1.3) is recast
as:

Ex(x, z) =
1

2π

∫ +∞

−∞
f (kx)e−jkx xe−jkzz dkz

dkx
dkx + 2π j ∑ Res( f (kx)), (1.4)

where the first term (continuum spectrum) accounts for the integration along
the branch cuts6, whereas the second term (discrete spectrum)7 accounts for
the residue contributions (due to the possible presence of singularities in
f (kx), e.g., SW modes, that are eventually captured during the path defor-
mation over the top Riemann sheet.

However, this mathematical point of view does not allow to understand
the physical significance of leaky waves. Indeed, LW poles will never be
captured by the path of integration since they ‘live’ on the opposite (bottom)
sheet. Nevertheless, if the LW poles are close to the real-axis (i.e., αz ' 0)
their presence may strongly influence the evaluation of the integral. To this
purpose, the steepest-descent representation is customarily employed. Briefly,
it consists in the transformation expressed by the following two equations:

kx = k0 cos φ,

kz = k0 sin φ, (1.5)

where φ = φr + jφj is the complex plane in which the integration is per-
formed. The transformation described by Eq. (1.5) maps the entire two-
sheeted Riemann surface into a strip of the φ-plane as shown in Fig. (1.7). It
is very straightforward to show that the original path P is now described by
φr = ±π/2 for φj ≷ 0. Remarkably, in the φ-plane there are no branch cuts
and the path P is deformed into the so-called steepest descent path (SDP) [20]
(see Fig. 1.7). According to this transformation, if one expresses Eq. (1.4)
in cylindrical coordinates x = ρ cos θ and z = ρ sin θ (where θ is the obser-

6 We recall here that Sommerfeld branch cuts are defined by Eq. (={kx} = 0), thus the integration
is over the entire real kx axis, i.e., −∞ < <{kx} < +∞

7 It is worth noting that the discrete spectrum appears only in the transverse spectral representa-
tion. The longitudinal one involves a continuum spectrum only. The former has therefore the
advantage of exhibiting explicitly the proper modes supported by the structure
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Figure 1.7.: Steepest descent φ-plane. The eight quadrants (from T1 to T4 for the
top sheet and from B1 to B4 for the bottom sheet) constituting the two
sheets are mapped in a single strip onto the φ-plane. The original path P
(red solid line) is deformed into the SDP (black solid line) for any angle
of observation θ. The extreme SDPs (ESDPs) are obtained for θ = ±π/2,
and are reported in black and white dashed line for the positive one
(ESDP+) and the negative one (ESDP-), respectively. Only the poles
which lie within ESDP+ and ESDP- may contribute to the radiated field.

vation angle, measured from the vertical x-axis), the electric field is then
represented by:

Ex(ρ, θ) =
1

2π

∫
SDP

f (φ)e−jk0ρ cos(φ−θ)dφ, (1.6)

where the SDP passes through the saddle point φ = φr = θ and is defined
by [20]:

cos(φr − θ) cosh(φj) = 1. (1.7)

If the pole lies to the left of the SDP, then the total field consists of the
integration along the SDP plus the residue contribution from the pole. If
the pole is to the right of the SDP, there is no residue contribution to the
field. If one denotes as ESDP+ and ESDP- the extreme SDP obtained for
φ = ±π/2, respectively, it is clear that only the poles which lie within ESDP+

and ESDP- may contribute to the radiated field. This finally motivates the
physical significance of LWs in the fast-wave region, i.e., |βz| < k0 (note that
βz = ±k0 for φr = ±π/2 through Eq.(1.5)). The final asymptotic form of
the radiation integral can be then written in the following form:

Ex(ρ, θ) ∼
√

2π

k0ρ
F(θ)e−j(kρρ−π/4)

− j2π ∑
i

Res
[

F(φp,i)e
−jk0 cos(φp,i−θ)

]
H(θ − φp,i), (1.8)
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where φp,i are the loci of the relevant poles, whereas H(·) is the Heaviside
step function. The first term is usually regarded as the space-wave term8.

This result shows that the asymptotic evaluation of the field is discontin-
uous across the angle θ = φp. For θ > φp (within the shadow boundary
region shown in Fig. 1.2) the total field contains a leaky-wave contribution,
and this becomes the dominant field as k0ρ → ∞ due to the 1/

√
ρ decay

of the space-wave term. For θ < φp (beyond the shadow boundary region
shown in Fig. 1.2) the total field does not contain a leaky-wave contribution,
and the total field is equal to the space-wave field and has the usual form of
a cylindrical wave, decaying as 1/

√
ρ.

Moreover it is worth noting that for a LW mode with αz ' 0 the LW
pole is very close to the SDP and thus the corresponding leaky-wave field is
a dominant one on the aperture (interface) out to a considerable distance,
beyond which the field level is very small. This is consistent with the far-
field radiation pattern which comes from a Fourier transform of the aperture
field9. In fact, as long as αz → 0 the leaky-wave aperture field is almost
constant giving rise to a peaked far-field distribution and viceversa.

1.2.4 The transverse resonance technique

In the previous paragraphs we have reviewed the physical and mathemat-
ical significance of the different eigenvalues of the wave equation in both
open and closed regions. Here, we want to show a convenient procedure to
determine these eigenvalues in waveguiding problems.

A ‘standard’ procedure consists of expressing a general solution of
Maxwell’s equations in any homogeneous region of the domain of interest
and then applying the boundary conditions. A nontrivial solution is then
found by enforcing the determinant of the coefficients to 0. The complex
roots of the resulting determinantal equation, which is called dispersion equa-
tion, are the sought eigenvalues. This procedure allows for expressing any
solution of the problem with its eigenvalue (a mode of the waveguide) and
the associated eigenfunction (the modal field)10. However, this procedure can
be lengthy, especially if different media are present in the domain of interest.
If one is interested only in the determination of the eigenvalues (and not in
the determination of the eigenmodes), the transverse resonance technique [8]
may represent a valuable tool.

Indeed, it is well known [1] that the eigenvalues of a waveguide prob-
lem correspond to pole singularities of an appropriate characteristic Green’s
function in the kx complex plane, which represents the voltage (or current)
in a transmission line along one of the transverse directions of the waveg-

8 Actually, for θ ' ±π/2 the space-wave term takes the following form: F′′(±π/2) e−j(k0 |z|−3π/4)√
2π|k0z|3

.

9 This is also consistent with the previous discussion based on the closeness of the pole to the
path of integration P on the top Riemann sheet.

10 The modal field is unique up to a scale factor which is determined as long as the excitation is
fixed.
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(a) (b)

Figure 1.8.: 2-D section and TEN model of (a) a PPW and (b) a GDS.

uide [2], [3], [20]. Within this network formalism, the pole singularities cor-
respond to resonances of the transverse equivalent network (TEN) model,
which can be conveniently calculated using analytical methods.

As a proof-of-concept we apply the transverse resonance technique (TRT) at
two well-known waveguiding problems: the parallel-plate waveguide (PPW)
and the GDS. The reason for the choice of these two specific examples is
motivated by the fact that they represent two limiting cases of a conven-
tional LWA characterized by a GDS covered with a PRS. If the PRS is almost
transparent to radiation (e.g., a small metallic patch printed on a dielectric)
the modes of the structure might be seen as perturbations of those of a
GDS, otherwise if the PRS is almost opaque to radiation (e.g., a small slot
etched on a metallic sheet) they might be seen as perturbations of those of
a PPW. This formal analogy will be extremely helpful in the analysis of the
graphene-based LWAs described in Chapter 3.

Parallel-plate waveguide

In Fig. 1.8(a) the 2-D section of a dielectric-filled PPW (a dielectric of rela-
tive permittivity εr is considered) is reported together with its TEN model.
A transmission-line segment with characteristic impedance Z1 and trans-

verse wavenumber kx1 =
√

k2
0εr − k2

z is terminated at both ends with a sur-
face impedance Zs = 0. The application of the TRT to the TEN model con-
sists of equating to 0 the sum between the input impedance looking down-
ward Zdw and the one looking upward Zup at an arbitrary cross-section:

Zdw + Zup = 0. (1.9)

In this example, a convenient choice of the cross-section is represented by
x = 0− so that Zup = Zs = 0 and Zdw = +jZ1 tan(kx1h), and the zeros of
the dispersion equation are easily found equal to kxm = mπ/h with m ∈ Z

where m is the vertical modal order. As expected, the kx eigenvalues of a
closed region belong to a discrete set.

By means of the separation relation (see Eq. (1.1)), one finds a closed-
form expression for the normalized wavenumber k̂z = kz/k0 (from now on,
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Figure 1.9.: Dispersion diagram k̂z vs. f of a PPW. Dispersion curves are found for
εr = 1 and h = λ0/2 where λ0 = 300 µm. Evanescent modes kz = −jαz
in dashed lines and guided modes kz = βz ∈ R in solid lines. Since
the structure is not simply-connected, a TEM mode (black solid line)
propagating from DC frequency is obtained for m = 0 (green lines are
for m = 1 and blue lines are for m = 2, TE-TM modes, respectively).

Yellow dots indicates the cutoff frequencies f (m)
c .

we refer with a ˆ(·) to wavenumbers normalized to k0) as a function of the
frequency f :

k̂z = ±
√

1− k̂2
xm = ±

√
1−

(
mc0

2h f

)2
= β̂z − jα̂z. (1.10)

As is clear from Eq. (1.10), guided modes are obtained for k̂xm > 1, whereas
evanescent modes are obtained for k̂xm < 1. The frequencies f (m)

c for which
k̂xm = 1 are called cutoff frequencies and are equal to f (m)

c = mc0/2h. All
these aspects can be alternatively inferred by looking at the dispersion dia-
gram reported in Fig. 1.9 as k̂z vs. f .

We recall here that, for a PPW, transverse-electric (TE) and transverse-
magnetic (TM) modes with respect to the xz plane are degenerate modes,
in the sense that they are different eigenmodes sharing the same eigenvalue.
Hence, the dispersion diagram of Fig. 1.9 is equal for both polarizations,
except for the presence of a transverse-electromagnetic (TEM) mode which
originates only from TM modes.

It is worth noting the explicit dependence between the propagating
wavenumber kz and the frequency f in Eq. (1.10). As a matter of fact, the
dependence between kz and f is often expressed by an implicit function, so
that the eigenvalues of the dispersion equation are required to be found by
numerical means. In this sense, the search of the modes of a GDS provides
a valuable example.
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Figure 1.10.: Dispersion diagram k̂z vs. f of a GDS. Dispersion curves are found for
εr = 2.17 and h = λ0/2 where λ0 = 300µm. The light line kz = k0
sets the boundary between the radiating region (just below, highlighted
in blue) where leaky waves (β̂z in dashed blue lines and α̂z in dotted
blue lines) may describe radiation, and propagating region (just above,
highlighted in green) where surface waves (β̂z in solid blue lines) may
describe surface propagation.

Grounded dielectric slab

In Fig. 1.8(b) the 2-D section of a grounded dielectric slab GDS (a dielectric
of relative permittivity εr is considered) is reported together with its TEN
model. A transmission-line segment with characteristic impedance Z1 and

transverse wavenumber kx1 =
√

k2
0εr − k2

z is terminated at the bottom by
Zs = 0 and at the top by the air characteristic impedance Z0. The application
of the TRT to the TEN model provides the following dispersion equation:

Z0 + jZ1 tan(kx1h) = 0. (1.11)

For conciseness’s sake, we limit our attention to TM modes, so that
Z0 = η0k̂x0 and Z1 = k̂x1η0/εr where η0 = 377 Ω is the vacuum impedance

and k̂x0 =
√

1− k̂2
z, and Eq. (1.11) can be recast as:

√
1− k̂z + j

√
εr − k̂z

εr
tan(k0

√
εr − k̂zh) = 0, (1.12)

which is in the form g(k̂z, f ) = 0 where g is a function of the two variables
k̂z and f . Dini’s Theorem (also known as Implicit Function Theorem), guaran-
tees the existence of an implicit function k̂z( f ) which locally maps the zeros
of g in a way that g(k̂z( f ), f ) = 0. However, the theorem does not have a
constructive proof, so a numerical method is usually needed to find such
a mapping. For searching the modes of a GDS it is convenient to use a
Padé-based root-finding algorithm [23], that is an exponentially convergent
procedure that allows for an efficient computation of the complex propaga-
tion wavenumbers for layered structures.
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Since one of the key aspects of the algorithm lies in a correct choice of the
initial points, some insights about the location of the zeros can be gained by
computing the cutoff frequencies f SW

c of the surface wave modes. Evaluat-
ing Eq. (1.12) in the limit for k̂z → 1, it is found:

f (SW)
m =

mc0

2h
√

εr − 1
. (1.13)

From these initial points (i.e., k̂z = 1 for f = f (SW)
m ), it is easy to track both

surface-wave modes (by enforcing αx0 > 011) which exist above the light line
(i.e., k̂z = 1), and leaky-wave modes (by enforcing αx0 < 0) which exist below
the light line, as shown in Fig. 1.10. According to this definition, it is mani-
fest that leaky-wave modes can also be interpreted as analytical continuation
in the complex kz-plane of surface-wave modes. Specifically, they can also
be ‘labeled’ with the same vertical modal order m of the surface waves. In-
terestingly, a quasi-cutoff (or leaky-cutoff ) frequency for leaky modes can be
defined in the limit for k̂z → 0 of Eq. (1.12):

f (LW)
m =

c0

2πh
√

εr
[arctan(j

√
εr) + mπ].. (1.14)

Eq. (1.14) might appear meaningless since it would provide complex-valued
frequencies. This is a direct consequence of the fact that leaky modes in
a GDS will never reach the leaky cutoff condition. A different situation is
encountered when the GDS is loaded with graphene as we will see in Chap-
ter 3.

In the next paragraph a widely-accepted [10]–[15] classification of LWAs
is provided to introduce the main features of those discussed in Sections 1.3
and 1.4.

1.2.5 Classification of leaky-wave antennas

Leaky-wave antennas are typically classified depending on the geometry
and the operating principle. With respect to the geometry, LWAs are clas-
sified in one-dimensional (1-D) or two-dimensional (2-D) LWAs, depending on
whether the guiding structure is mainly 1-D or 2-D. With respect to the
operating principle they are classified in uniform, quasi-uniform, or periodic.
According to the abovementioned distinctions, the following class of LWAs
are identified.

1-D Uniform LWAs

One-dimensional uniform leaky-wave antennas are 1-D LWAs whose cross-
section remains constant along the direction of propagation, usually the
longitudinal z-axis. A typical example would be the case of a rectangular

11 Note that, whereas the corresponding choice for the square root that defines the wavenumber
in the slab kx1 is immaterial (because the dispersion equations are even functions of kx1), the
two determinations of kx0 provide different dispersion equations.
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waveguide with a longitudinal slit to allow power to gradually leak out the
waveguide. Even though in 1-D uniform LWAs the cross-section should not
change with respect to the z-axis, sometimes the slot is gradually tapered to
improve certain radiating features. In any case, radiation is described only
by the fundamental mode, which is a fast leaky wave.

When fed at one end, the main beam can be scanned in the forward
quadrant (z > 0), from nearly broadside to nearly endfire. The radiation
at exactly broadside and endfire from a 1-D LWAs presents some intrinsic
physical issues as we will readily show in Section 1.3.

1-D Periodic LWAs

One-dimensional periodic leaky-wave antennas are 1-D LWAs whose guid-
ing structure has been periodically modulated along the longitudinal z-axis.
Due to the periodic modulation, the guided wave is represented by an infi-
nite number of space harmonics (Floquet modes), with longitudinal wavenum-
bers kzn = kz0 + 2πn/p where kz0 is the wavenumber of the fundamental
Floquet mode, n is the harmonic order, and p is the period. Although the
fundamental (i.e., n = 0) Floquet mode is usually a slow wave (kz0 > k0)
(and thus it does not radiate), the structure is typically designed so that the
n = −1 harmonic is fast (kz > k0) and thus it radiates.

One of the main advantages of 1-D periodic LWAs with respect to 1-D
uniform LWAs is that the main beam can scan from the backward to the
forward quadrant, despite radiation is generally not good through broad-
side. As is known [10]–[15], the antenna performance generally degrades
when the main beam approaches broadside, due to the presence of an open
stopband of the periodic structure12.

1-D Quasi-Uniform LWAs

One-dimensional quasi-uniform structures are also characterized by a peri-
odic modulation of their geometry along the longitudinal z-axis. However,
in this case, the fundamental mode is a fast leaky wave, as for 1-D uni-
form LWAs. The reason why it is called quasi-uniform is because the period
is electrically small (i.e. p � λ) such that radiation comes only from the
fundamental mode, and not from any of the higher-order (n 6= 0) space har-
monics. As a consequence, the radiation properties of this type of antennas
are more similar to those of 1-D uniform LWAs than those of 1-D periodic
LWAs.

2-D Uniform LWAs

Two-dimensional uniform leaky-wave antennas are partially-open waveg-
uiding structures, which are able to support a cylindrical leaky wave that

12 The issue of poor broadside radiation in periodic LWAs has been intensively investigated in
the literature. The interested reader can find a recent survey in [10].
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radially propagates outward from the source. This type of LWAs can pro-
duce a directive pencil beam at broadside or a conical beam with the cone
axis along the vertical x-axis.

Most of 2-D LWAs are characterized by uniform or quasi-uniform waveg-
uiding structures, and thus radiation is usually described by the fundamen-
tal leaky mode, which is a fast wave. The most known example of 2-D LWAs
is a GDS covered with a PRS.

An interesting aspect of uniform and quasi-uniform LWAs (either of 1-D
or 2-D type) is that they can conveniently be modeled with homogenized
effective materials or surface impedances. For this reason, in the following
Sections 1.3 and 1.4 we will limit the discussion to these types of antennas.
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1.3 1-d leaky-wave antennas

In this Section we limit our attention to 1-D uniform LWAs, since all the
theoretical framework developed in Chapter 2 applies for these two classes
of 1-D LWAs. In 1.3.1 we introduce the first two historical examples of
uniform and quasi-uniform 1-D LWAs. Since both types of antennas scan
only in the forward quadrant, their radiating properties belong to the class
of 1-D unidirectional LWAs. Finally, in 1.3.3 the radiating properties of 1-D
bidirectional LWAs are discussed as a first step towards the study of 2-D
LWAs which will be the object of the next Section 1.4. The theoretical content
of 1.3.2 and 1.3.3 will lay the groundwork for a novel theoretical framework
which will be thoroughly discussed in Chapter 2.

1.3.1 Historical examples of 1-D LWAS

The long history of 1-D uniform LWAs started back to the ’40s when
W. W. Hansen [24] first introduce the slitted rectangular waveguide. As is
shown in Fig. 1.11(a) the antenna consists of a rectangular waveguide with a
longitudinal uniform slot cut along the propagating z-axis. The waveguide
operating with its fundamental TE10, continuously leaks energy from the
slot. However, a rigorous explanation of the mechanism of radiation in
terms of leaky waves appeared only later after the antennas were introduced,
thanks to the works of L. O. Goldstone and A. A. Oliner [26], [27].

Starting from the ’50s various types of 1-D LWAs were proposed, but
most of them were still based on the introduction of long uniform slits into
waveguides to achieve radiation. Since these slits were originally placed in
positions where they strongly perturb the surface current distribution of the
closed waveguides, the leakage rate (measured by the attenuation constant αz

of the relevant leaky mode) of these antennas was usually high, thus produc-
ing beams with poor directivity. This phenomenon can be explained if one
thinks at the typical aperture-field distribution of a leaky-wave antenna (see

Figure 1.11.: Two well-known examples of 1-D LWAs. (a) An example of 1-D uni-
form LWA: the slitted rectangular waveguide [24]. (b) An example of 1-D
quasi-uniform LWA: the holey waveguide [25].
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Figure 1.12.: Comparison between the far-field distributions of a uniform aperture
distribution and a leaky aperture distribution. The directivity of LWAs
increases as long as the leakage rate αz is low.

Fig. 1.12). At a first approximation, the aperture field distribution of a LWA
is characterized by an exponential behavior of the type e−αzze−jβzz. Since,
from Kirchhoff-Huygens principle [28] we know that the far-field distribu-
tion can be seen as a spatial Fourier-Transform of the aperture distribution,
it is clear that peaked distributions in the far field can be achieved as long as
the aperture distribution is uniform, i.e., with low level of the leakage rate
αz (see Fig. 1.12).

One method for reducing the leakage rate in 1-D LWAs was proposed
by J. N. Hines and J. R. Upson [25], in which the long slit was replaced by
a series of closely spaced holes, thereby avoiding cutting the current lines.
This structure was called holey waveguide and it was the first example of a
1-D quasi-uniform LWA. As is shown in Fig. 1.11(b), the holes are closely
spaced (i.e., in the sense that the distance between adjacent elements was
less than the operating wavelength), so that they act in a quasi-uniform
manner.

A more general approach was suggested years later by W. Rotman and
A. A. Oliner [29], who recognized that some open guiding structure did not
radiate due to the symmetry of the current distribution. Only the introduc-
tion of some asymmetry in the design would allow for radiating power in
a leaky-wave fashion. This new approach has led them to the successful
measurements of the so-called asymmetrical trough waveguide antenna [29].

In general, 1-D LWAs became very popular in the microwave community
during the ’60s thanks to their ease of fabrication and design, structural
simplicity, and cost-effectiveness, especially when compared to electrically
long arrays of discrete elements that are expensive, and more difficult to
implement [30]. Recently, 1-D LWAs are living a sort of Renaissance mainly
thanks to the advent of metamaterials [31]. The recent interest in 1-D LWAs
is expressed by the considerable amount of recent publications on the topic
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Figure 1.13.: 2-D section of a unidirectional LWA with an equivalent magnetic (elec-
tric) surface current that models an aperture field with the typical
exponentially-decaying distribution of forward leaky waves. An ab-
sorber is usually put at the end of the structure to avoid back-reflection
from the forward leaky wave.

(e.g., see [10], [15] and Refs. therein). In particular, a growing interest has
been stimulated by 1-D LWAs being able to scan through broadside [32]–
[35], and by 1-D LWAs that either exhibit beam reconfigurability at a fixed
frequency [36]–[40], or exhibit fixed-beam over a wide frequency range [41]–
[44].

In any case, the radiating properties of 1-D uniform LWAs are the same re-
gardless its constituent parameters. However, a distinction should be made
between 1-D unidirectional and bidirectional LWAs, since their radiating fea-
tures are considerably different as we will see in the next paragraphs.

1.3.2 Radiating properties of 1-D unidirectional LWAs

The radiating features of a 1-D unidirectional LWA as the one depicted in
Fig. 1.13 are characterized by a forward leaky-wave which propagates in a
single direction (the z-axis) from the feed (at z = 0) to the end of the struc-
ture (z = L). As we said in the previous paragraph, the far-field distribution
of a 1-D LWA can easily be calculated by taking advantage of the Kirchhoff-
Huygen’s formula [28], i.e., calculating the spatial Fourier transform of the
aperture distribution over a uniform aperture. For a forward leaky wave
the tangential electric-field distribution Ey(0, z) given by an equivalent mag-
netic surface current Ms = e−jkzz (which can model, e.g., a longitudinal slit
along the aperture) is equal to Ey(0, z) = e−jkzz. Its Fourier-Transform over
the aperture plane is given by

AF(θ) =
∫ ∞

−∞
Ey(0, z)e+jk′zzdz =

∫ L/2

−L/2
e−j(kz−k′z)zdz

k′z=k0 cos θ
=

jLe−j(kz−k0 cos θ)L/2 sinc
[

L
2
(kz − k0 cos θ)

]
, (1.15)
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where θ is the angle measured from the z-axis and L is the length of the
antenna. The expression in Eq. 1.15 is usually denoted as Array Factor (AF)
in analogy with 1-D arrays, which can be thought of as a discrete version
of the continuous leaky-wave aperture, in which the attenuation constant αz

has been set to zero.
Taking only the modulus of this expression, and normalizing with respect

to the maximum13, we get the expression:

R(θ) =
|FF(θ)|

max {|FF(θ)|} = sinc
[

L
2
(kz − k0 cos θ)

]
. (1.16)

For electrically long apertures (i.e., L/λ0 � 1, where λ is the operating
wavelength) L→ ∞ and the AF takes the following simplified expression:

AF(θ) =
−j

kz − k0 cos θ
, (1.17)

which reveals that the far-field pattern has a conical shape, with a maximum
at some angle θ0 from the z-axis which is given by:

θ0 = arccos
βz

k0
, (1.18)

whereas the HPBW, defined by the angle difference (in radians) between the
two −3 dB points, is given approximately by

HPBW = 2
αz

k0
csc θ0, (1.19)

which assumes an infinite aperture. Conversely, for finite apertures, A. A.
Oliner [13] found the following formula:

HPBW =
NO

(L/λ0)
csc θ0, (1.20)

where NO is an amplitude factor which depends on both αz and L. Accord-
ing to Oliner [12], [13], for constant-aperture distribution (αz = 0) NO ' 0.88;
for sharply peaked distributions (αz � 0) NO ' 1.25 or more; for a LWA
with a radiating efficiency er = 1− exp (−4αzL) = 90%, NO ' 0.91. As a
middle-of-the-range result, Oliner suggested NO = 1.

Unfortunately, in the current literature there are neither more general nor
more precise formulas for the calculation of the HPBW of a 1-D unidirec-
tional LWAs for arbitrary values of efficiency and lengths of the antenna.
Another evident problem of both Eqs. (1.19) and (1.20) is their singular be-
havior at endfire (θ0 = 0). This would pose unavoidable issues for the
beamwidth evaluation of endfire LWAs [45]–[47].

To this purpose, an original theoretical framework is developed in Chap-
ter 2 in order to derive a general formula for the HPBW of 1-D unidirec-

13 Actually, for this first normalization we have tacitly assumed that the argument of the sinc(·),
function is real, i.e., αz '= 0. In Chapter 2, the radiated power will be renormalized to the
actual maximum.
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tional LWAs. The new formula is of general validity and comprises the old
formulas originally derived by A. A. Oliner as limiting cases.

Similar considerations hold for bidirectional 1-D LWAs as we will readily
see in the next paragraph.

1.3.3 Radiating properties of 1-D bidirectional LWAs

The radiating features of a bidirectional LWA are determined by a leaky
mode which propagate equally in both the positive and negative z-axis, from
a feed at z = 0 to both ends of the structure at z = ±L/2 . Assuming the
same magnetic current source as in the previous paragraph, the AF is now
given by:

AF =
∫ L/2

−L/2
e−jkz |z|e−jk0 sin θzdz, (1.21)

where θ is now the angle measured from the vertical x-axis to the longitudi-
nal axis z (thus θ = 0◦ would correspond to broadside). We can profitably
split the integral in two parts:

AF =
∫ L/2

0
e−jz(kz+k0 sin θ)dz +

∫ L/2

0
e−jz(kz−k0 sin θ)dz, (1.22)

and conveniently define the following dummy variables:w+ = kz + k0 sin θ, w− = kz − k0 sin θ

w+ + w− = 2kz, w+w− = k2
z − k2

0 sin2 θ.
(1.23)

This allows to express Eq. (1.22) as

AF =
∫ L/2

0
e−jzw+

dz +
∫ L/2

0
e−jzw−dz. (1.24)

These simple integrals are known in closed form and yields:

AF = j
w−e−jw+L/2 + w+e−jw−L/2 − w+

w+w−
. (1.25)

By means of (1.23) we get an explicit expression in terms of kz, k0, L and θ:

AF = j
(kz − k0 sin θ)e−j(kz+k0 sin θ) L

2 + (kz + k0 sin θ)e−j(kz−k0 sin θ) L
2 − 2kz

k2
z − k2

0 sin2 θ
.

(1.26)

A 1-D bidirectional LWA would normally produce a pair of conical beams
at θ = ±θ0. Hence, as θ → 0 the two beams approach each other and merge
into a single beam, which has a maximum at broadside (see Fig. 1.14). As
a result, a broadside beam can be produced by a 1-D LWA, differently from
1-D unidirectional LWA.
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Figure 1.14.: 2-D section of a bidirectional LWA centrally-fed by a coaxial cable.
When the two beams approaches each other, they merge in a single
beam which points exactly at broadside.

Again, for L→ ∞ the AF takes the following simplified expression:

AF(θ) =
−2jkz

k2
z − k2

0 sin2 θ
, (1.27)

which reveals that pointing angle is given by the following approximate
formula:

θ0 ' arcsin

√(
βz

k0

)2
−
(

αz

k0

)2
, (1.28)

that for αz/k0 � 1 is the same result of 1-D unidirectional LWAs (see
Eq. (1.18)).

The derivation of the formulas for the HPBW are lenghty and are post-
poned to the next Chapter 2 where they will also be generalized as for the
unidirectional case. However, it is worth to recall that, in the bidirectional
case, the HPBW formulas for scanned beams (i.e., when βz � αz) are the
same of the unidirectional case, whereas, at broadside (i.e., when βz ≤ αz)
they substantially differ. In fact, when βz < αz [48]:

HPBW = 2

√
(β̂2 − α̂2)±

√
2(β̂4 + α̂4), (1.29)

Even more interestingly, when βz = αz (known as the splitting condition14)
the radiated power density is maximized [14], [48]. When β = α, the HPBW
is given by:

HPBW = 2
√

2
αz

k0
. (1.30)

In Chapter 2, we also provide a rigorous demonstration of these formulas
which will result as limiting cases of more general ones.

14 In fact, for β > α a single beam splits into two beams pointing off broadside.
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1.4 2-d leaky-wave antennas

In this Section we discuss the properties of 2-D LWAs because all the
structures introduced in Chapter 3 fall into this category. In a specular way
to the previous Section 1.3 we first review in 1.4.1 some significant histor-
ical examples of 2-D LWAs. In 1.4.2 the radiating properties of 2-D LWAs
are briefly summarized, emphasizing similarities and differences with 1-D
LWAs. In particular, the design rules for two specific types of 2-D LWAs will
be discussed in 1.4.3 due to their wide usage in Chapter 3. Finally, in 1.4.4
the intrinsic limitations inherent to radiation from conventional LWAs are
pointed out, thus motivating the need for the investigation of unconventional
LWAs. This last part will be the object of Chapter 3.

1.4.1 Historical examples of 2-D LWAS

The first historical evidence of the concept of a 2-D LWA is dated back
to the ’50s when G. von Trentini [49] originally proposes a periodic PRS
over a ground plane to achieve directive pencil beams at broadside (see
Fig. 1.15). Inspired by the Fabry-Perot concept, he interpreted the radiation
phenomenon in terms of multiple reflections between the ground plane and
the PRS, and then derived an expression for the resonance condition that
yields maximum radiated power at broadside. For this reason, this spe-
cific type of 2-D LWAs are also called Fabry-Perot Cavity (FPC) LWAs. In
this derivation, he assumes that the PRS consisted of an array of closely
spaced parallel conducting wires oriented parallel to the electric field. Since
the period p of the unit-cell is electrically small (p � λ0), the PRS acts

Figure 1.15.: The original ray explanation proposed by von Trentini in [49] for FPC-
like antennas. At that time, these kind of antennas were not recognized
as 2-D LWAs.
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Figure 1.16.: Several examples of different types of PRS. The PRS consists of a single
(a) dielectric layer, (b) a multistack of alternating dielectric layers, (c)
a 2-D periodic array of metallic patches, and (d) its complementary
version, i.e., slots in a thin metal plate.

as a quasi-uniform reflective surface, where the reflection coefficient of the
fundamental PPW mode determines the characteristics of the antenna. An
alternative way to interpret this phenomenon was later suggested by S. A.
Tretyakov [50], who first introduced the concept of homogenized impedances
for the modeling of PRS characterized by sub-resonant elements (p � λ0

and d� p where d is the edge-to-edge distance between adjacent elements).
A concept that, years later, was successively borrowed by C. L. Holloway et
al. to develop the well-known generalized sheet transition conditions (GSTCs)
for the characterization of metasurfaces [51].

The pioneering work of G. von Trentini laid the foundation for further
work in the area 2-D LWAs, despite it was not appreciated at the time that
this type of structure was actually a 2-D quasi-uniform LWA. Nowadays,
the different types of existing 2-D LWAs mainly consist of a GDS that is
covered with a PRS on top of the dielectric layer (the dielectric layer may
also be air). However, the PRS can take various forms, such as a stack
of one or more dielectric layers, or a metal screen consisting of a periodic
array of slots or patches (see Fig. 1.16). Interestingly, S. A. Tretyakov and
his research group developed very useful homogenization formulas fo such
PRS and more sophisticated topologies [50], [52], [53].

Several examples of such structures have been investigated half a century
later by A. P. Feresidis and J. C. Vardaxoglou [54]. Following von Trentini ray
theory analysis and assuming the structure to have infinite extent, they note
that the antenna would have greater bandwidth if the phase of its PRS were
to linearly increase with frequency. They therefore investigated PRSs loaded
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with several different elements, such as crossed dipoles, patches, rings, and
square loops. They found that dipoles, or square or circular patches (or
their complementary structures), particularly when the elements are densely
packed (d� p), produced slowly variation of the beam with frequency.

Investigations of a uniform 2-D LWA consisting of a dielectric superstrate
layer over a substrate layer were conducted by N. G. Alexópoulos and D. R.
Jackson in the ’80s [55], [56], although this structure was also not initially
recognized as a LWA. It was only in the late ’80s and early ’90s [57], [58]
that A. A. Oliner suggested to his colleagues a leaky-wave interpretation of
the gain enhancement effect.

1.4.2 Radiating properties of 2-D LWAs

One of the main differences between this type of structures and 1-D LWAs
is that the leaky mode is a cylindrical wave, which propagates outward
radially from the source along the interface. The leaky wave then furnishes
a large aperture that in turn produces a narrow radiation beam. A vertical
electric or magnetic dipole (VED or VMD) source launches only a TM or
TE (with respect to the vertical x-axis) leaky wave respectively, which has
no φ variation. This results in an omnidirectional conical beam [58], but
not a broadside beam (the pattern will always have a null at broadside).
A horizontal electric or magnetic dipole (HED or HMD) source launches a
pair of leaky waves, one TM and one TE. The TM leaky wave determines the
E-plane pattern, while the TE leaky wave determines the H-plane pattern
[58]. For a broadside beam these two leaky waves have very nearly the same
phase and attenuation constants, and hence an omnidirectional pencil beam
is created.

A rigorous description of radiation from cylindrical leaky waves can be
found in [58]. Here, we will limit to give some of the most interesting results
of that investigation. In particular, it was found that the pointing angle in a
2-D LWA is still given by Eq. (1.18), although, for this kind of antennas (as
for 1-D bidirectional LWAs), it is usually preferable to express the pointing
angle θ0 as measured from the vertical x-axis, so that Eq. (1.18) reads:

θ0 = arcsin
βz

k0
. (1.31)

The reason for this change of notation is due to the fact that 2-D LWAs are
usually designed to achieve maximum directivity at broadside, i.e., θ = 0
in this new notation. However, when α̂z is not small enough, the pointing
angle is generally given by Eq. (1.28).

Conversely, the beamwidth formulas for 2-D LWAs are very similar to
those of 1-D bidirectional LWAs. However, a distinction should be made
between the case of VED (VMD) sources and HED (HMD) sources. In
the first case, an omnidirectional beam is obtained with a HPBW given by
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Eq. (1.19)15. In the second case, since the beam is no longer azimuthally
independent, we should distinguish the beamwidth with respect to the E-
and the H- plane. In particular, for scanned beam βz � αz it is found that
[58]

HPBWE = 2
αTM

z
k0

csc θ0,

HPBWH = 2
αTE

z
k0

csc θ0, (1.32)

whereas at broadside βz ' αz:

HPBWE = 2
√

2
αTM

z
k0

,

HPBWH = 2
√

2
αTE

z
k0

. (1.33)

From Eqs. 1.32 and Eqs. 1.33 it is manifest the similarity with bidirectional
LWAs. It is also clear that, as the wavenumbers of the two leaky waves
begin to differ, the beamwidths become different in the principal planes.
This typically happens as the scan angle increases.

1.4.3 Design rules for dielectric-based 2-D LWAs

In all PRS-based 2-D LWAs, the PRS is used to create a leaky PPW region,
and the leaky waves are leaky (radiating) versions of the PPW modes that
would be excited by the source in an ideal PPW, which results if the PRS
is replaced by a PEC wall. This point of view allows for a simple design
formula for the thickness of the dielectric layer in order to obtain a beam at
a desired angle θ0 (either a broadside or a conical beam).

For m-th order TM and TE PPW modes the radial wavenumber of an

ideal PPW waveguide would be βz = βTM
z = βTE

z =

√
k2

0εr −
(

mπ
h1

)2
(see

Eq. (1.10)), where h1 is the thickness of the dielectric substrate and εr1 its
relative permittivity.

Using Eq. (1.31) one finds the following design rule

h1 =
mλ0

2
√

εr1 − sin2 θ0
. (1.34)

On the other hand, the location of the source usually has little effect on the
pattern shape, since this is dictated by the leaky-wave phase and attenuation
constants. The phase constant is primarily determined by the thickness of
the dielectric layer, while the attenuation constant is primarily determined
by the properties of the PRS. However, a HMD and a VED sources maximize
the peak power density when they are placed on the ground plane, while a

15 Note that θ0 should be changed according to the new definition.
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VMD and a HED sources do so when they are placed in the middle of the
layer.

Other interesting design rules are found when the PRS under considera-
tion is represented by a cover layer made of a denser dielectric material with
respect to the substrate, as depicted in Fig. 1.11(a). This kind of structures,
commonly known as substrate-superstrate (SS) LWAs, have been extensively
studied by N. G. Alexópoulos and D. R. Jackson [55], [56]. In those works
[55], [56], they showed that the PRS (represented by the superstrate) would
act as a perfectly reflecting layer, when the thickness h2 of the superstrate
(the cover layer) is chosen so that it is an odd multiple of one-quarter of a
wavelength in the vertical direction. This corresponds to the condition

h2 =
(2m− 1)λ

4
√

εr2 − sin2 θ0
. (1.35)

It is clear that Eqs. (1.34) and (1.35) reveal that the design rules for opti-
mizing radiation at broadside (θ0 = 0) with the fundamental (m = 1) TE,
TM leaky modes, suggest to choose thickness of a half- and of a quarter-
wavelength in their respective media for the substrate and the superstrate,
respectively. On the other hand, the use of higher-order modes allows for
thicker layers; a choice that may be beneficial in millimeter-wave design as
we will see in Chapter 5.

Another distinctive feature of SS-LWAs is that the directivity increases as
the permittivity of the superstrate layer increases relative to that of the sub-
strate layer, since the superstrate PRS then acts as a more reflective surface.

To conclude, a different way to increase directivity was proposed in [59].
There, the single superstrate is replaced by a periodic array of such super-
strates, as shown in Fig. 1.11(b). In this structure the PRS consists of a
stack of multiple alternating layers of high permittivity and low permittiv-
ity, whose thicknesses are chosen according to Eq. (1.35). As is shown in
[59], the directivity increases geometrically with the number of superstrate
layers, and thus very directive beams may be obtained using modest values
of superstrate permittivity, provided that several superstrate layers are used.

As a last remark, it is worth noting that the multistack of alternating layers
can be interpreted as a distributed Bragg reflector (DBR) meaning that it is a
periodic electronic bandgap (EBG) structure operating in a stopband. From
this point of view the substrate acts as a defect in the periodic EBG structure
[60]. More interestingly, a leaky-wave explanation of the phenomenon is
provided in [61].

1.4.4 Motivation for the study of unconventional 2-D LWAs

As is manifest from Eqs. (1.31), (1.32) and (1.33) the beam angle and the
beamwidth are frequency sensitive. Indeed, the frequency-scanning behav-
ior is a distinctive feature common to all LWAs. Unfortunately, in most
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of microwave applications this is an undesirable effect since the antenna
radiating performance should not change within a small fractional band-
with centered around the operating frequency. Conversely, it would be
extremenly beneficial for satcom applications to dynamically change certain
radiating properties, such as the pointing angle, at a fixed frequency. This
would allow for avoiding the heavy antenna rotating mechanism that is still
needed to scan the beam in airborne systems as pointed out in [62].

This fundamental aspect has recently boosted the scientific community
in the search of tunable materials which allow for dynamically change the
properties of the PRS in order to achieve beam-steering capability at a fixed
frequency. Over the years a lot of solutions have been proposed, comprising
active impedances [36], [63], [64], ferroelectric and ferromagnetic materials
[62], [65], [66], just to name but a few. In Chapter 3 we will focus on the
extremely intriguing possibilities offered by tunable materials such as liquid
crystals and more recently by graphene.
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1.5 conclusion

In this Chapter we have reviewed the fundamental aspects of leaky-wave
theory. Leaky-wave antennas have been classified in four different cate-
gories depending on the geometry and the operating principle. In partic-
ular, it is seen that 1-D uniform and quasi-uniform leaky-wave antennas
can be treated with the same formalism. Almost the same conclusion holds
for 1-D bidirectional and 2-D leaky-wave antennas. This aspect would be
particularly useful for the analysis proposed in Chapter 2.

Furthermore, a rather useful technique, viz. the Transverse Resonance Tech-
nique has been applied for the analysis of two canonical problems: the
parallel-plate waveguide and the grounded dielectric slab. These two ex-
amples will result to be limiting cases of the graphene-based leaky-wave
antennas described in Chapter 3.



2 F O R M U L A S F O R L E A K Y-W AV E
A N T E N N A S

2.1 introduction

In the previous Chapter 1, we have reviewed the general properties of
different classes of LWAs, spanning from 1-D uniform LWAs to 2-D quasi-
uniform LWAs passing through 1-D periodic LWAs. In this Chapter 2, we
specifically deal with the radiating properties of 1-D uniform or quasi-uniform
LWAs.

As is known, the relevant radiating properties such as the radiation ef-
ficiency, the pointing angle, and the half-power beamwidth (HPBW), have
always been theoretically predicted by means of the old Oliner formulas pro-
vided in Eqs. (1.18), (1.19), and (1.20). These formulas relate the pointing an-
gle and the HPBW to the phase and the attenuation constants of the relevant
leaky-mode responsible for radiation [10]–[14]. However, some limitations
exist on the validity of this HPBW formula. In particular, it is seen that:

i) there is a singularity when the pointing angle (measured from the axis
of propagation) is equal to zero, and hence the formula loses accuracy
as the beam approaches endfire;

ii) the formula is accurate only when the HPBW is small with respect to
the pointing angle;

iii) it is not clear how the amplitude factor NO that appears in Eq. (1.20)
varies with the radiation efficiency [11]–[13].

Recently, several efforts have been made for evaluating the fundamental
properties of 2-D uniform LWAs as well as for 1-D uniform bidirectional LWAs
[48] and 1-D periodic LWAs [34]. However, the current literature still lacks
a thorough derivation of Oliner formulas for 1-D unidirectional LWAs, as
well as an improvement of his original results to overcome the limitations
mentioned above. Such an improvement would allow for extending the
evaluation of HPBW in 1-D LWAs to more general cases, such as radia-
tion near and at endfire, structures with finite apertures, and cases of large
beamwidth.

To this purpose, here we derive for the first time analytical formulas for
the HPBW of 1-D LWAs that can be applied in the most general cases. Re-
markably, no assumptions will be made on the pointing angle or the HPBW,
and the antenna aperture will be arbitrarily large or small. Moreover, a clear

33
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explanation of Oliner formula will directly emerge from this analysis, under
the small beamwidth assumption.

The Chapter is organized as follows. In Section 2.2, a general formula
for the HPBW of a 1-D unidirectional LWA is found. The only assumption
made in this derivation would regard the range of the leaky-weave phase
constant that is limited to 0 ≤ βz < k0. This means that the beam angle
can be anything from broadside down to near endfire. In fact, the theoreti-
cal framework needed for evaluating the radiating features of endfire LWAs
deserves a separate analysis that will be the object of Section 2.3. There, we
will only assume that the beam angle points at endfire, although the leaky-
wave phase constant can take values beyond the ordinary endfire condition
βz > k0. Finally, in Section 2.4 new general formulas are proposed for the
evaluation of the beamwidth of 1-D bidirectional LWAs. This would also
represent the first step towards the development of a forthcoming theoreti-
cal framework able to provide new general formulas for 2-D LWAs.
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2.2 formulas for 1-d unidirectional leaky-
wave antennas

In this Section we aim to find an expression for the beamwidth of 1-D uni-
directional LWAs which accounts for both the attenuation constant and the
length of the aperture. First, in 2.2.1 a theoretical framework is laid down to
derive a simple trascendental equation which implicitly defines the HPBW
as a function of the leakage rate, the length of the antenna, and the pointing
angle for 1-D LWAs with a beam pointing anywhere from broadside to near
endfire. A simpler formula is also proposed which is accurate as long as the
beamwidth is smaller than the pointing angle. It will be shown that Oliner
formula results as a limiting case of this approximate expression.

However, the beamwidth formula relies on the solution of the aforemen-
tioned transcendental equation in order to obtain a parameter that appears
in the formula. Hence, in 2.2.2 a fitting procedure is used to find an ap-
proximate but very accurate analytical expression for the solution of the
transcendental equation derived in 2.2.1. Different interpolating functions
are adopted and compared each other. Among them a suitable function is
then used to derive a final formula for the beamwidth that is completely in
closed form, and is very general. Numerical results are shown in 2.2.3 to
corroborate the validity of the proposed approach. In 2.2.4 the limitations
of the old formula early proposed by Oliner in the ’60s [10]–[12], [14] are
shown for different situations where the formula is not supposed to have
a good accuracy. Finally, in 2.2.5 the theoretical framework developed in
2.2.1 is extended to the endfire case. This would serve as a preliminary step
towards the analysis proposed in the next Section 2.3.

2.2.1 Analytical framework

In 1.3.2 we have seen that the radiation pattern of a 1-D unidirectional
LWA is expressed by Eq. (1.16), that we report here for convenience:

R(θ) = sinc
[

L
2
(kz − k0 cos θ)

]
. (2.1)

where L is the length of the antenna, kz = β− jα is the complex longitudinal
wavenumber, k0 is the vacuum wavenumber, and θ is the angle measured
from the longitudinal z-axis to the vertical x-axis (see Fig. 1.2).

The aim of this analysis, is to find an accurate formula for the evaluation
of the HPBW in terms of L, β, α, and the pointing angle θ0. To this purpose,
we first expand the sinc(·) function and then express kz in terms of its real
and imaginary part:

R(θ) =
sin
{

L
2 [(β− k0 cos θ)− jα]

}
L
2 [(β− k0 cos θ)− jα]

. (2.2)
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For convenience we define the following normalized variables:

b ∆
= βL/2,

l ∆
= k0L/2,

a ∆
= αL/2,

t(θ) ∆
= b− l cos θ,

(2.3)

so that, the power distribution P(θ) = |R(θ)|2, given by the modulus
squared of Eq. (2.2) can be rewritten with a more compact notation as fol-
lows:

P(θ) =
sin2 t(θ) cosh2 a + cos2 t(θ) sinh2 a

t2(θ) + a2 , (2.4)

Using the fundamental trigonometric identities (viz., cos2 x + sin2 x = 1 and
cosh2 x− sinh2 x = 1, respectively) we can further simplify our expression:

P(t) =
sin2 t(θ)

[
1 + sinh2 a

]
+ cos2 t(θ) sinh2 a

t2(θ) + a2

=
sinh2 a

[
cos2 t(θ) + sin2 t(θ)

]
+ sin2 t(θ)

t2(θ) + a2

=
sin2 t(θ) + sinh2 a

t2(θ) + a2 . (2.5)

Since we are interested in evaluating the HPBW, it is more conve-
nient to have an expression for the normalized power distribution
P̄(θ) = P(θ)/P(θ0) where the pointing angle θ0 is given by Eq. (1.18) which
is equivalent to

b = l cos θ0, (2.6)

through Eq. (2.3). Equation (1.18) and in turn Eq. (2.6) are usually regarded
as being approximate. However, it can be shown that this formula for the
pointing angle is actually exact as long as β ≤ k0 (see the Appendix A for a
proof of this). Using Eq. (2.6) we get

P(θ0) = sinh2 a/a2, (2.7)

and thus P̄(θ) is equal to

P̄(θ) =
1 + sin2 t(θ)/ sinh2 a

1 + t(θ)2/a2 . (2.8)

At this stage, we can find an expression for the HPBW. In mathematical
terms, we are seeking for

∆θh ; P(θ0 + ∆θh) =
1
2

P(θ0), (2.9)
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where ∆θh is the single-sided HPBW. From Eqs. (2.8) and (2.9) it is possible
to get an equation

1 + sin2[t(θ0 + ∆θh)]/ sinh2 a
1 + [t(θ0 + ∆θh)]2/a2 =

1
2

, (2.10)

that relates b, l, a and ∆θh. It is now convenient to define the variable th as

th
∆
= t(θ0 + ∆θh) = b− l cos(θ0 + ∆θh), (2.11)

so that Eq. (2.10) can easily be recast as

(
th
a

)2
− 2

(
sin th
sinh a

)2
− 1 = 0. (2.12)

The left-hand side of Eq. (2.12) is a function of two variables f (a, th) whose
roots, as stated by Dini’s Theorem (see Section 1.2.4) define an implicit func-
tion th(a). The search for an approximate explicit function will be given in
the next Subsection 2.2.2. Once such an expression is found, it is straight-
forward to find a closed-form expression for ∆θh in terms of b, l, and a. In
particular, rearranging the terms of Eq. (2.11) yields

∆θh = arccos
(

b− th(a)
l

)
− θ0, (2.13)

which is the sought general formula1 for the HPBW of 1-D unidirectional
LWAs, obtained without any restricting assumption. This formula is exact
and makes no approximations.

When ∆θh � θ0 (i.e., the HPBW is much less than the pointing angle) it
is possible to find an approximate expression by rearranging the terms of
Eq. (2.11),

th = b− l cos θ0 cos ∆θh − l sin θ0 sin ∆θh

lim
∆θh→0

th = b− l cos θ0 + l sin θ0∆θh,

and using Eq. (2.6):

∆θh '
th(a) csc θ0

l
, (2.14)

which is very similar to the original expressions proposed by Oliner, i.e.,
Eqs. (1.19) and (1.20). Indeed, it can easily be shown that when th(a) is
evaluated for the limiting case of an infinitely long antenna (L → ∞ and in
turn a→ ∞), Eq. (2.14) gives the same result of Eq. (1.19) (we note here that
HPBW = 2∆θh):

lim
a→∞

∆θh '
α

k0
csc θ0. (2.15)

1 We note here that b, a, and l are directly related to β, α, and L through Eq. (2.3).
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Figure 2.1.: th vs. a calculated numerically (black solid lines). The behavior of th has
been reported for (a) 0 ≤ a ≤ 1, (b) 0 ≤ a ≤ 3, (c) 0 ≤ a ≤ 10, and (d)
0 ≤ a ≤ 30. In (b) th has been fit with a cubic spline curve (blue circles).

Conversely, when th(a) is evaluated for the limiting case of a constant (i.e.,
non-attenuated) aperture distribution (a → 0), Eq. (2.14) gives the same
result of Eq. (1.20) (we note here that L/λ = l/π, and NO = 0.88 for a→ 0):

lim
a→0

∆θh '
0.88
2l/π

csc θ0. (2.16)

As a matter of fact, when a→ ∞ Eq. (2.12) reduces to th = a and thus
Eq. (2.14) corresponds to Eq. (2.15), whereas when a→ 0 Eq. (2.12) reduces
to th =

√
2 sin th. This equation can be solved straightforwardly with an

easy fixed-point iteration method. After few steps the root search con-
verges to the value th ' 1.3915 ' 0.886π/2 and thus Eq. (2.14) corresponds
to Eq. (2.16) with good accuracy. A detailed explanation of Oliner results is
postponed to Section 2.2.4.

Since the function th(a) plays a key-role in both Eqs. (2.13) and (2.14),
the following Subsection 2.2.2 is devoted to the search of an approximate
explicit form for th(a) by means of a fitting procedure to describe the roots
defined by Eq. (2.12).

2.2.2 Fitting procedure

In the previous paragraph we have seen that for large arguments of a th(a)
is almost linear with a (th ' a), whereas for small arguments of a, th(a) is
almost constant (th(a) ' 1.3915). However, for arbitrary values of a Eq. (2.12)
needs to be solved. The numerical solution (a simple secant method has
been used) gives the curve reported in Fig. 2.1 for different ranges of a.
As can be seen, the curve is an almost perfectly linear function for large
values of a, whereas it is almost constant for small values of a, as previously
predicted. However, it could be interesting to find an approximate closed-
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Figure 2.2.: Evolution of the third-order polynomial coeffients of the spline interpo-
lation.

form expression which could fit this unknown function for intermediate
values of a.

From now on, the analysis of Eq. (2.12) will be limited to the restricted
range of a ∈ {0, 3}. This choice is motivated by the following consideration.
As is known [11], the radiation efficiency of LWAs is given by the simple
expression:

er = 1− e−2αL = 1− e−4a. (2.17)

Practical LWAs would not reach efficiencies higher than 95%. Hence, we can
safely limit our discussion to values of a comprised in the range a ∈ {0, 3}
at which corresponds, through Eq. (2.17), the following range of efficiencies
er[%] ∈ {0, 99.9994}. In this new light, we can try to fit the zeros of Eq. (2.12).

In order to find a suitable fitting function, we have fit the data with dif-
ferent types of interpolating functions. As a first trial, we have fit the data
with a cubic spline interpolation curve over an extended range 0 ≤ a ≤ 8
(see Fig. 2.1). Since the cubic spline is a piecewise cubic polynomial of the
form a3x3 + a2x2 + a1x + a0, the evolution of the coefficients for each seg-
ment has been reported in Fig. 2.2 to gain more insights about the behavior
of this function. In fact, a thorough analysis of Fig. 2.2 would allow for
understanding which polynomial term is dominant in each region, and also
what kind of function would suitably describe this behavior. We recall here
that the spline approximation, being a piecewise polynomial, does not allow
for a simple closed-form expression.

In particular, Fig. 2.2 revealed us that the quadratic and the cubic terms
are almost negligible with respect to the constant and the linear ones2.
Moreover, the constant term seems to be deactivated by a sigmoid function

2 Actually, the quadratic term is not negligible at all. However, the aim of the fitting is to take
an expression as simple as possible, thus, we neglect the effect of this term. Nevertheless, it is
possible to take it into account (with a consequent higher complexity in the final expression)
using a sigmoid function like those used for the linear and the constant term. This analysis
goes beyond the scope of our analysis, and thus has been omitted.
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whose behavior resembles that of a complementary hyperbolic tangent func-
tion 1− tanh(·), whereas the linear term is activated by a sigmoid function
whose behavior resembles that of a hyperbolic tangent function tanh(·) (see
Fig. 2.2). As a result, the following relevant interpolating functions have
been considered:

a) The hyperbolic tangent function (HTF) fitting with one degree of free-
dom: f (x) = d + x tanh(p1x).

b) The hyperbolic tangent exponential function (HTEF) fitting with two de-
grees of freedom: f (x) = d + x tanhq2(p2x).

c) The mixed hyperbolic tangent function (MHTF) fitting with two degrees
of freedom: f (x) = d(1− tanh(q3x)) + x tanh(p3x).

d) The mixed hyperbolic tangent exponential function MHTEF) fitting with
three degrees of freedom: f (x) = d(1− tanh(q4x)) + x tanhr4(p4x).

e) The mixed hyperbolic tangent exponential function (MHTMEF) fitting with
four degrees of freedom: f (x) = d(1− tanh(q5x))s5 + x tanhr5(p5x).

where p1 and q1, and p2, q2, r2 and s2 are the fitting parameters, whereas d =

1.3915 is found through the spline interpolation when a → 0 (see Fig. 2.2)
and coincides with the value previously obtained for the numerical solution
of Eq. (2.12) in the limit a→ 0.

As can be seen, the HTF takes into account the activation of the linear
term by means of a sigmoid function (tanh(·)), whereas the MHTF takes
into account also the deactivation of the constant term by means of a com-
plementary sigmoid function (1− tanh(·)). This would allow for catching
the asymptotic behavior of th(a). The HTEF and MHTEF, MHTMEF, sim-
ply add further degrees of freedom to the HTF and the MHTF functions,
respectively.

Relevant results have been reported in Figs. 2.3, 2.4 and Table 2.1. In par-
ticular, in Fig. 2.4(a) the behavior of the approximations for large arguments
(80 ≤ a ≤ 100) has been reported to check the asymptotic behavior of the
fitting functions. As can be seen, even if they all predict the correct asymp-
totic behavior (dashed green lines and solid blue lines are overlapped as
well as the yellow circles and solid cyan lines) with sufficient accuracy, only
the MHTF exactly approaches the oblique asymptote given by th ' a.

The values of the fitting parameters (see Table 2.2) have been found after
refining the interpolation formulas in 25 equispaced points in the considered
range, using a weighted least squares (WLS) method [67]. The exact value

Table 2.1.: MAPE for HTF, HETF, MHTF, MHTEF, MHTMEF and spline approxima-
tions.

function HTF HTEF MHTF MHTEF MHTMEF spline

MAPE [%] 0.84 0.19 0.48 0.075 0.074 < 10−5
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corner), 0 ≤ a ≤ 1 (bottom-right corner), and 0 ≤ a ≤ 3 (bottom-left cor-
ner).
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Figure 2.4.: (a) Asymptotic behavior of th vs. a for the various fitting functions in
the range 0 ≤ a ≤ 3. (b) Absolute percent error (APE) vs. a of the
various fitting functions in the range 0 ≤ a ≤ 3.

of the fitting parameters will depend on the weighting function used in the
WLS method, and the values suggested in Table 2.2 have been found after
some numerical experimentations.

Hence, in the next paragraphs we will show results for: i) MHTMEF
which shows the lowest mean absolute percent error (MAPE ' 0.07%), and
ii) MHTF which catches the correct asymptotic behavior and shows a mod-
erate MAPE ' 0.48% (see Table 2.1).

For readability purposes, we refer to MHTF and MHTMEF with the
acronyms F1 and F2, respectively.

F1 : th(a) = d(1− tanh(q1a)) + a tanh(p1a), (2.18)

F2 : th(a) = d(1− tanh(q2a))s2 + a tanhr2(p2a), (2.19)
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Table 2.2.: Values of the fitting parameters for HTF, HTEF, MHTF, MHTEF, and
MHTMEF functions.

function pi qi ri si

HTF 0.194 none none none

HTEF 0.220 1.159 none none

MHTF 0.208 0.021 none none

MHTEF 0.229 -0.020 1.301 none

MHTMEF 0.227 -0.015 1.301 1.320

With regard to the beamwidth formula, we choose the F1 because of its
simplicity. In fact, using Table 2.2, the explicit expression for th(a) becomes:

th(a) = 1.3915(1− tanh(0.021a)) + a tanh(0.21a). (2.20)

Thus, Eq. (2.13) combined with Eq. (2.20) defines the sought general for-
mula for the evaluation of the beamwidth in terms of the leakage rate, the
length of the antenna, and the pointing angle. Therefore, the final formula
for the single-sided beamwidth takes the following form:

∆θh = arccos
(

b− 1.3915[1− tanh(0.021a)]
l

− a tanh(0.21a)
l

)
− θ0. (2.21)

2.2.3 Numerical results

The following acronyms will be adopted throughout this Section: eBW
(exact beamwidth) and aBW (approximate beamwidth) refer to the use of
Eqs. (2.13) and (2.14), respectively, when the exact value of th is used (found
from Eq. (2.12)). The term eFiBW, i ∈ {1, 2} (exact fit beamwidth) refers to
the approximate analytical formulas for ∆θh obtained by means of either F1

(for i = 1) or F2 (for i = 2) for the approximation of th in Eq. (2.13).

Numerical results are shown for comparing the performance of eBW equa-
tion with aBW equation for l = 2π, 10π, 20π, and 100π. This would cor-
respond, through the well-known relation k0 = 2π/λ and definitions of
Eq. (2.3), to antenna lengths of L = 2λ, 10λ, 20λ, and 100λ. In particular,
the single-sided beamwidth ∆θh is reported as a function of the efficiency er

(note that er is related to a through Eq. (2.17)) for different pointing angles
θ0 = 5◦, 15◦, 45◦, 90◦ in Fig. 2.5, and as a function of the pointing angle θ0

for different efficiencies er = 50%, 75%, 90%, 99% in Fig. 2.6.

It is worth to stress here that the aBW equation coincides with Oliner’s
formula in the limit of large er. Therefore, the comparison between aBW
and eBW should reveal the need of a new formula for the correct prediction
of the beamwidth when θ0 is close to endfire, especially for large values
of er and small values of L. Note also that the comparison between aBW



2.2 formulas for 1-d unidirectional leaky-wave antennas 43

and eBW does not introduce any error from the fitting formulas F1 and F2,
proposed in Eqs. (2.18) and (2.19).

As expected, ∆θh decreases as L and θ0 increase. In Fig. 2.5, it is also
evident that ∆θh slowly increases when er increases as long as er < 90%
and provided that θ0 is not too small, whereas in Fig. 2.6 the divergence of
the aBW formula when θ0 approaches endfire (θ0 = 0) is clearly shown. In
Fig. 2.5 the aBW (in circles) is in practice overlapped with the eBW (solid
line) only for broadside (in blue) and θ0 = 45◦ (in green). Furthermore,
in Fig. 2.6 it is noticed that the agreement between the eBW and the aBW
formulas improves as θ0 increases.

This behavior can be further highlighted by evaluating the absolute per-
cent error (APE) defined as 100 · |aBW− eBW|/|eBW|. For the sake of com-
pleteness, in Figs. 2.7 and 2.8, the APE is reported for the same cases in
Figs. 2.5 and 2.6. The agreement is good as long as θ0 > θm(L), where
θm is the minimum angle for which an ‘acceptable’ agreement between the
aBW and the eBW (APE is less than 5%) is guaranteed. It is seen that θm is
approximately equal to θm = 65◦, 35◦, 25◦, 10◦ for L = 2λ, 10λ, 20λ, 100λ,
respectively, for all the efficiencies (see the dashed black lines).

A different way to represent this result is reported in Fig. 2.9 where the
APE between aBW and eBW has been plotted as a contour plot of a two-
valued function of er and θ0 for L = 2λ, 10λ, 20λ, and 100λ. This rep-
resentation clearly reveals that the APE is almost constant with respect to
the efficiency (except for very high efficiencies), but highly depends on θ0,
abruptly increasing as the pointing angle exceeds θm(L). Finally, the APE
defined as 100 · |eFiBW− eBW|/|eBW| has been reported in Figs. 2.10(a)
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Figure 2.5.: ∆θh vs. er for θ0 = 5◦, 15◦, 45◦, 90◦ (in order in red, yellow, green, blue)
Comparison between aBW (in solid lines) and eBW (in circles) results for
the evaluation of ∆θh for L = 10λ (top-left corner), L = 20λ (top-right
corner), L = 2λ (bottom-left corner), L = 100λ (bottom-right corner).
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Figure 2.6.: ∆θh vs. θ0 for er = 50%, 75%, 90%, 99% (in order in red, yellow, green,
blue). Comparison between aBW (in solid lines) and eBW (in circles)
results for the evaluation of ∆θh for L = 10λ (top-left corner), L = 20λ
(top-right corner), L = 2λ (bottom-left corner), L = 100λ (bottom-right
corner).
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Figure 2.7.: APE (calculated as 100 · |aBW− eBW|/|eBW|) vs. er for θ0 =
5◦, 15◦, 45◦, 90◦ (in order in red, yellow, green, blue) for L = 10λ (top-
left corner), L = 20λ (top-right corner), L = 2λ (bottom-left corner),
L = 100λ (bottom-right corner).

and (b) for L = 10λ in order to assess the accuracy of both the F1 and F2 for-
mulas. (Only one result is shown since the accuracy of the fitting procedure
is almost independent on L.) As shown, both the F1 and F2 results exhibit a
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Figure 2.8.: APE vs. θ0 for er = 50%, 75%, 90%, 99% (in order in red, yellow, green,
blue) for L = 10λ (top-left corner), L = 20λ (top-right corner), L = 2λ
(bottom-left corner), L = 100λ (bottom-right corner). In black dashed
lines the location of θm defined as the minimum θ0 for which the APE is
less than 5%.
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Figure 2.9.: APE (calculated as 100 · |aBW− eBW|/|eBW|) vs. θ0 and er. White
dashed lines highlight the boundaries set by θm.

maximum APE usually lower than 0.5% and 0.1%, respectively (see also the
considerations on the error in 2.2.2). Figure 2.10(a) shows that the accuracy
of both F1 and F2 slightly depends on θ0, being the APE a slowly-increasing
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function of θ0. Interestingly, the dependence on er is quite different for the
F1 and F2 as revealed by Fig. 2.10(b). In particular, both F1 and F2 exhibit
multiple local maxima and minima with respect to er. However, the global
maximum for F1 is lower than 0.8% and is attained for er = 99.9994% which
is already an unfeasible value for any 1-D LWA. Note that the APE of the F1

result does not diverge for er → 100% as might appear from the plot with
the scale shown, since its asymptotic behavior is correct as shown in 2.2.2
(see Fig. 2.4(a)).

It is also worth to remark that the location of the maxima and minima for
the F1 and the F2 function merely depends on the choice of the weights in
the WLS method [67] used for retrieving the fitting parameters. However,
for any choice of the weights the resulting MAPE would be almost the same.
Here, our choice has led to an acceptable trade-off among the location of
the maximum APE and the value of the MAPE. Nevertheless, an optimum
choice of the weights in order to minimize the variance of the APE with
respect to er is worth of being investigated, but it is beyond the scope of this
PhD thesis.

For the sake of completeness, in Fig. 2.11 the APE between eF1BW and
eBW for L = 2λ, 10λ, 20λ, and 100λ has been reported as has been done in
Fig. 2.9 for the APE between aBW and eBW. Figure 2.11 confirms that the
antenna length L has a negligible effect on the fitting procedure. Also, it
is noted that, except for er → 100%, in the region of worst approximation
(around 65% < er < 85%) the APE never exceeds 0.4%.

As a final comment, it is noted that the improvement of the accuracy given
by the F2 formula is paid at the expense of a more complicated expression
for ∆θh. Thus, for applications in which an accuracy of the order of 0.5% for
the beamwidth evaluation is acceptable, the F1 function is a good choice.

0 30 60 90
0

0.2

0.4

0.6

0.8

1
L=10λ

θ0[deg]

A
P
E

 

 

−−−   F
2

__ F
1

50%

75%

90%

99%

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(b)

L=10λ

er[%]

A
P
E

 

 

5°

15°

45°

90°

Figure 2.10.: (a) APE (calculated as 100 · |eFiBW− eBW|/|eBW|) vs. θ0 for er =
50%, 75%, 90%, 99% (in order in red, yellow, green, blue) and (b) APE
vs. er for θ0 = 5◦, 15◦, 45◦, 90◦ (in order in red, yellow, green, blue).
The eFiBW is calculated using either the F1 (solid lines) or the F2
(dashed lines) formulas. Results are shown only for L = 10λ.
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Figure 2.11.: APE (calculated as 100 · |eBW − eF1BW|/|eBW|) vs. θ0 and er.

2.2.4 Comparison with Oliner’s formula

In this paragraph, we aim to compare our results with those obtained
by Oliner (see 1.3.2). There, the beamwidth HPBW was estimated with
Eq. (1.20) that we report here for convenience (from now on referred as
Oliner Beamwidth or OBW):

HPBW =
NO

(L/λ) sin θ0
, (2.22)

where NO is a factor that, according to Oliner, depends on both a and l.
Note that there is still no demonstration about the nature of the values
assumed by NO. Here, we will prove how such values can easily be deter-
mined through Eq. (2.14). We start by expressing Eq. (2.22) in the following
manner:

∆θh =
πNO

2l sin θ0
, (2.23)

so that NO:

NO =
2∆θhl sin θ0

π
' 2

th
π

. (2.24)

Now, for a constant aperture distribution we can simply consider the expres-
sion of th for small arguments (a→ 0, and in turn er → 0) which is given by
Eq. (2.15) and yields th = 1.3915 at which corresponds NO = 0.886 that is in
very good agreement with the value suggested by Oliner (viz., 0.88 see 1.3.2).
For a leaky-wave distribution such that er = 0.9 we have (through Eq. (2.17))
a = 4 ln(1/1− er) ' 0.5756. If we put this value in one of our fitting func-
tions, e.g. F1, we get th ' 1.456 at which corresponds NO = 0.927 that is
again in good agreement with the value suggested by Oliner (viz., 0.91 see
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Figure 2.12.: P̄(θ) vs. θ (in linear scale) for different values of θ0 and er.

1.3.2). However, these empirical values (obtained for L = 10λ) are accu-
rate as long as we are not approaching endfire. Also, Oliner chose NO = 1
as a middle-of-the-range result [13], probably considering efficiencies up
to 99.99%. In fact, it will readily be shown that, when higher efficiencies
are considered, the factor NO should be further increased. To this purpose,
in Table 2.3 we have reported the value of NO given by Eq. (2.24) when
∆θh is given by the eF1BW for er ∈ {50%, 75%, 90%, 95%, 99%, 99.9994} and
θ0 ∈ {90◦, 60◦, 30◦, 15◦, 10◦, 5◦} for L = 10λ3.

Also, in Fig. 2.12 the corresponding radiation patterns for the cases ana-
lyzed in Table 2.3 have been reported for verifying the consistency of the
results. As is seen, when the pointing angle approaches endfire (θ0 = 0), the
standard definition of beamwidth loses sense, since the left side of the main-
lobe may not go down −3 dB. In this case, the double-sided beamwidth
(HPBW) is no longer given by the double of the single-sided beamwidth
(∆θh). Actually, in this case a general definition of HPBW still lacks. One

3 Note that for θ0 = 0, Eq. (2.24) becomes meaningless.

Table 2.3.: Values of NO to have the exact beamwidhth evaluation.
PPPPPPPPer[%]

θ0[
◦] 90 60 30 15 10 5

50 0.8899 0.8771 0.8308 0.7102 0.5997 0.3918

75 0.9010 0.8879 0.8405 0.7176 0.6053 0.3949

90 0.9269 0.9131 0.8632 0.7348 0.6184 0.4022

95 0.9550 0.9404 0.8876 0.7532 0.6324 0.4099

99 1.0474 1.0298 0.9674 0.8126 0.6775 0.4348

99.9994 1.8933 1.8376 1.6600 1.2990 1.0359 0.6274
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Figure 2.13.: P̄(θ) vs. θ (in linear scale) for different values of θ0 when er = 90%.
Lighter colored region represent the estimation of the single-sided
beamwidth when using Oliner’s formula. The red solid line is reported
for helping the reader to find the half-power value value.

possibility is to calculate the value of the normalized power distribution at
endfire (P̄(0)); if this value is less than 0.5 we can still use HPBW = 2∆θh as
a very good estimation of the double-sided beamwidth, otherwise we can
take HPBW = θ0 + ∆θh as a reasonable estimation of the beamwidth4. In
other words:

HPBW =

2∆θh if P̄(0) < 1/2

θ0 + ∆θh elsewhere,
(2.25)

where P̄(0) can simply be evaluated once b, a, and l are known:

P̄(0) =
sin2(b− l) + sinh2 a

(b− l)2 + a2 . (2.26)

However, the definition of a single-sided beamwidth ∆θh as the one de-
fined by the eF1BW (Eq. 2.21) still holds. This result has been highlighted
in Fig. 2.13 for θ0 ∈ {60◦, 45◦, 30◦, 15◦, 5◦} when er = 90% and L = 10λ. In
this case, we know that according to Oliner, NO = 0.91. Hence, we have
calculated ∆θh using the OBW formula for NO = 0.91 (see lightly colored
areas in Fig. 2.13) and compared with the eBW prediction (see fully colored
areas in Fig. 2.13). As we expected, the accuracy of the OBW formula breaks
down as θ0 approaches to endfire, whereas the eF1BW always predicts the
correct ∆θh.

4 Note that, in practical cases, beyond the endfire there would be the ground plane.
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Table 2.4.: Evaluation of OBW, eBW and APE in the range 5◦ ≤ θ0 ≤ 90◦ for er =
90% and antenna lengths L = 10λ and L = 20λ.

θp[◦]

L Method 90 60 30 15 10 5

10λ

OBW [◦] 2.61 3.01 5.21 10.07 15.01 29.91

eBW [◦] 2.64 3.01 4.92 8.09 10.16 13.18

APE [%] 1.34 0.15 5.91 24.36 47.70 126.99

20λ

OBW [◦] 1.30 1.50 2.61 5.04 7.51 14.96

eBW [◦] 1.32 1.51 2.54 4.46 5.90 8.31

APE [%] 1.31 0.56 2.46 12.92 27.30 80.00

This result is quantitatively summarized in Table 2.4, where the single-
sided beamwidth has been calculated with the same parameters of Fig. 2.13

but for two practical antenna lengths (namely, L = 10λ and L = 20λ)
when er = 90%. The APE between the two formulas has been calculated as
APE = 100 · |OBW− eBW|/|eBW|. As expected the OBW formula is quite
accurate near broadside, but fails as θ0 approaches endfire. This is because
the Oliner formula is consistent with the narrow beamwidth approximation
of Eq. (2.14), and, as already demonstrated, this approximation loses accu-
racy as we approach endfire.

Finally, in Table 2.5 the factor NO has been calculated again
for er ∈ {50%, 75%, 90%, 95%, 99%, 99.9994%} and θ0 ∈ {90◦, 5◦} through
Eq. (2.24) with ∆θh given by the eF1BW for L = 102λ, 104λ, 106λ. Even
if these antenna lengths are unfeasible, the results clearly show how the
Oliner’s formula is correct in the asymptotic limit of an infinite aperture.
As is clearly shown from the values of the last two columns of Table 2.4,
NO no longer depends on the pointing angle as soon as L > 106λ. Also,
looking at the third row of Table 2.5, it may be inferred that the value of
0.91 that Oliner obtained for er = 90% was found as a middle-of-the-range
result for antenna lengths of the order of 103λ. In that case, not shown here
for brevity, one would obtain a variation of NO in the range 0.9266÷ 0.9001
whose mean value is 0.9134.

Table 2.5.: Variation of NO in the range 5◦ ≤ θ0 ≤ 90◦ and for er = 50%÷ 99.9994%
antenna lengths L = 102λ, 104λ, 106λ.

L = 102λ L = 104λ L = 106λ
PPPPPPPPer[%]

θ0[
◦] 90 5 90 5 90 5

50 0.8896 0.7199 0.8896 0.8870 0.8896 0.8896

75 0.9007 0.7274 0.9007 0.8980 0.9007 0.9007

90 0.9266 0.7449 0.9266 0.9238 0.9266 0.9266

95 0.9547 0.7637 0.9546 0.9517 0.9546 0.9546

99 1.0469 0.8244 1.0469 1.0433 1.0469 1.0468

99.9994 1.8905 1.3204 1.8904 1.7859 1.8904 1.8789
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2.2.5 Beamwidth evaluation at endfire

In this last paragraph we exclusively deal with the endfire case since it
is known [45], [68] that, when θ0 = 0, the relation β = k0 cos θ0 = k0 does
not allow for maximizing directivity at endfire. Hence, at endfire, cases for
which β > k0 deserve a separate analysis. Here, starting from Eq. (2.5), that
is rather general, we conveniently express θ = θ0 +∆θh so that in the endfire
case (θ0 = 0) Eq. (2.5) can simply be recast as follows:

P(θ) =
sin2[b− l cos(∆θh)] + sinh2 a

[b− l cos(∆θh)]2 + a2 . (2.27)

From here, it is useful to define the following variables:
td

∆
= b− l cos ∆θ,

th
∆
= b− l cos ∆θh,

t0
∆
= b− l,

(2.28)

so that Eq. (2.27) takes the compact form

P(θ) =
sin2 td + sinh2 a

t2
d + a2

, (2.29)

and according to the definition of beamwidth ∆θh (see Eq. (2.3)) and
Eq. (2.28), we can then write:

P(∆θh) =
sin2 th + sinh2 a

t2
h + a2

=
1
2

P(0). (2.30)

Differently from the analysis of the previous paragraph, as long as we as-
sume that β 6= k0 the calculation for P(0)5 is different from the one given in
Eq. (2.7) and assume the more general form:

P(0) =
sin2 t0 + sinh2 a

t2
0 + a2

. (2.31)

Thus, using Eq. (2.31) in Eq. (2.30) yields:

2
sin2 th + sinh2 a

t2
h + a2

=
sin2 t + sinh2 a

t2 + a2

2

(
sin2 th

sinh2 a
+ 1

)
=

(
t2
h

a2 + 1

)(
a2

sinh2 a

)(
sin2 t + sinh2 a

t2 + a2

)
. (2.32)

5 Note that the discussion given in the Appendix ensures that even if β 6= k0 the pointing angle
is always given by the relation β = k0
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For convenience we now define a new variable ξ(a, t0), function of both a
and t0 (for readability purposes we will omit the dependencies using the
symbol ξ := ξ(a, t0)):

ξ =

(
a2

sinh2 a

)(
sin2 t0 + sinh2 a

t2
0 + a2

)
. (2.33)

Then Eq. (2.32) can be rewritten with a more compact notation as follows:

2

(
sin2 th

sinh2 a
+ 1

)
=

(
t2
h

a2 + 1

)
ξ

2
sin2 th

sinh2 a
+ 2 = ξ

t2
h

a2 + ξ

ξ
t2
h

a2 − 2
sin2 th

sinh2 a
− 1− (1− ξ) = 0. (2.34)

The very interesting aspect of Eq. (2.34) in the current form is that can easily
be connected to Eq. (2.12) in the limit ξ → 1; thus Eq. (2.34) can be seen as
a perturbation of Eq. (2.12) through the function ξ(a, t0). Also, it is woth
noting that for small argument of t, Eq. (2.33) takes the more compact form:

lim
t→0

ξ =
1 + (t csch a)2

1 + (t/a)2 . (2.35)

Equation (2.34) together with Eq. (2.33) define the most general solution to
the problem of the beamwidth evaluation in 1-D unidirectional LWAs even
at endfire when β > k0 is used to improve endfire directivity. However, the
roots of Eq. (2.34) now depend not only on a but also on t0, which does
not lead to a simple approximate analytic formula as the one proposed in
Eq. (2.20). In the next Section 2.3 we will specifically deal with the radiating
features of endfire LWAs.
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2.3 formulas for 1-d endfire leaky-wave
antennas

In this Section, the radiating performance of 1-D endfire LWAs is dis-
cussed in terms of single-sided beamwidth6 and sidelobe level (SLL). Spe-
cific interest is devoted to those endfire LWAs whose phase constant is given
by the Hansen-Woodyard condition [68] for maximizing directivity at endfire.
Therefore, in 2.3.1 the original Hansen-Woodyard that applies for endfire
antennas arrays is reviewed. Then, a modified version that applies for 1-D
endfire LWAs [45] is briefly outlined.

On this basis, in 2.3.2, a limitation on the maximum value of the phase con-
stant is first derived as a function of the radiation efficiency. Although the
beamwidth becomes increasingly narrow as the phase constant increases in
the region β > k0, the SLL also increases, and eventually a point is reached
at which the level of the first sidelobe equals that of the main beam. As
for grating lobes in antenna arrays, when these multiple maxima appear, the
antenna radiates the field in one or more unintended directions. As a con-
sequence, a definition beam angle, or equivalently pointing angle, is not
unique, and in turn the beamwidth is no longer well-defined.

In 2.3.3 numerical results show the beamwidth and sidelobe level for dif-
ferent phase constants and efficiencies, and a tradeoff is established based
on the maximum SLL that can be accepted. A suitable objective function is
defined in 2.3.4 to handle this tradeoff. In addition, as has been done in Sec-
tion 2.2 for 1-D unidirectional LWAs, approximate closed-form expressions
are reported in 2.3.5, which express the beamwidth and sidelobe level as
functions of the phase constant and efficiency. These formulas are accurate
for the practical range of radiation efficiencies normally encountered, where
the efficiency er (due to a load termination) is less than 95%. The nature of
the beam changes when the aperture becomes very large, corresponding to
very high radiation efficiencies.

To this purpose, in Section 2.3.6, a separate analysis for the case of an
infinite aperture is discussed. A separate formula, which is exact, is derived
for the beamwidth in the infinite aperture case, when the beam is scanned
to or beyond ordinary endfire. In this case there are no sidelobes, and the
beamwidth is only a function of the phase and attenuation constants. This
result is appropriate for cases where the radiation efficiency is very high
and there are thus no sidelobes in the pattern.

2.3.1 The modified Hansen-Woodyard condition for 1-D LWAs

It is well known that for continuous antenna arrays, as well as for 1-D
LWAs, the pointing angle θ0 and the phase constant β are related through
β = k0 cos θ0, where k0 is the wavenumber in vacuum. As a matter of fact,

6 Note that, at endfire, a definition of double-sided beamwidth would not be well-posed.
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Figure 2.14.: An example of a 1-D LWA. A leaky mode is excited at the source loca-
tion z = 0. The metallic top wall of a rectangular waveguide is replaced
by a partially reflecting screen to allow the propagating mode to leak
out along the z-axis. The antenna is terminated with a matched load
at z = L.

this relation is exact as long as β ≤ k0. When β ≥ k0 the beam points
at endfire (θ0 = 0). Interestingly, W. W. Hansen and J. R. Woodyard have
shown that a particular value of β allows for improving directivity at endfire
[68]. In particular, they found that the optimum condition for maximizing
directivity at endfire is given by the so-called Hansen-Woodyard condition
(HW condition) [68]

β = k0 +
2.94

L
, (2.36)

where L is the length of the antenna (see Fig. 2.14). Since β = k0 (i.e., θ0 = 0)
corresponds to the ordinary endfire condition (OE condition), it is seen that
the phase shift (∆β) given by

∆β =
2.94

L
, (2.37)

represents the perturbation of the OE condition to achieve maximum direc-
tivity at endfire for antenna arrays.

This condition applies only for antenna arrays with a constant aperture
distribution. However, it has recently been demonstrated [45] that a modi-
fied version of Eq. (2.37) can suitably be applied to endfire 1-D LWAs (see
Fig. 2.14 for an example), which are equivalent to antenna arrays with an
exponentially-decaying aperture distribution of the form exp(−jkzz) where
kz = β− jα is the complex longitudinal wavenumber, and α is the attenua-
tion constant (or leakage constant). This new condition is known as modified
Hansen-Woodyard condition (mHW condition) and it states that

∆β =
τ

L
, (2.38)

where τ is a parameter that depends on the radiation efficiency er of the an-
tenna due to load termination [45]. In Table 2.6 some relevant values of
τ have been reported for several different efficiencies er when a 1-D LWA
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Table 2.6.: Values of τ for different antenna efficiencies er.

er[%] 0 % 70% 90% 95%

τ 2.93 2.82 2.62 2.50

of length L = 20λ (at which correspond l = 20π) is considered7. As is
shown, as long as er increases (and hence the aperture is no longer uniform
as assumed in [68]), the difference between τ and the value predicted by the
Hansen-Woodyard condition gets greater.

The above condition gives the phase constant necessary for achieving the
maximum directivity from a 1-D LWA. This does not imply however a min-
imum beamwidth. In the next paragraphs we explore the beamwidth prop-
erties of a 1-D LWA when the beam is scanned beyond ordinary endfire
(β > k0) showing that beamwidths smaller than in the Hansen-Woodyard
condition are possible, but at the expense of an increased sidelobe level
(SLL). To this purpose, we first mathematically prove that a maximum value
of β exists beyond which the beamwidth is no longer well defined. In par-
ticular, when β > βmax the first sidelobe reaches the same amplitude of
the main beam, thus it is no longer possible to define a unique single-sided
beamwidth.

2.3.2 Analytical investigation about the limitations on the choice of an
optimum phase constant

In this paragraph we show the existing limitations on the choice of a value
of β such that the beamwdith is minimized. In particular, it is shown that in
order to have a well-defined single-sided beamwdith, then k0 ≤ β ≤ βmax.

The maximum value of the phase constant βmax is defined as that which
causes the level of the first sidelobe to equal that of the main beam8.

Our discussion starts from Eq. (2.5), that we rewrite here in the following
form:

P(θ) =
sin2[b− l cos(θ)] + sinh2a

[b− l cos(θ)]2 + a2 . (2.39)

To simplify our discussion, we start from the particular case of a constant
(i.e. non.attenuated) aperture distribution a = 0 (and in turn er = 0), i.e.:

P(θ) =
sin2[b− l cos(θ)]
[b− l cos(θ)]2

. (2.40)

7 Actually, the length of the antenna L should not affect the results.
8 Note that the pattern calculation is based solely on the traveling-wave field on the aperture, and

ignores any non-ideal effects such as diffraction from edges, radiation from discontinuities, etc..
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In this case, the radiated power at endfire is

P(0) =
sin2(b− l)
(b− l)2 . (2.41)

When the OE condition holds (i.e., β = k0), b = l and in turn P(0) = 1
so that the normalized radiated power P̄(θ) = P(θ)/P(0) will exhibit a
single absolute maximum at endfire, whereas the second local maximum
(commonly known as the first sidelobe) attains the value of ζ = 0.0472 (cor-
responding to −13.26 dB). In order to find the location of the first sidelobe
θSL, it is more convenient to define the variable

y ∆
= b− l cos θ, (2.42)

so that Eq. (2.39) can easily be recast as follows:

P(θ) =
sin2 y

y2 , (2.43)

and ySL = b− l cos(θSL) is given by the first non-trivial root of:

ySL cos ySL = sin ySL, (2.44)

which is obtained by differentiating with respect to y Eq. (2.43) and set-
ting it to 0. The application of a simple root-finding algorithm gives the
value ySL = 1.43π (slightly less than 3π/2). When b = l, from Eq. (2.43),
ySL = l[1− cos(θSL], then:

θSL = arccos
(

1− ySL

l

)
, (2.45)

that for l = 10π gives θSL ' 31◦ as shown in Fig. 2.15 (see red dashed line).

However, when the mHW condition applies, or more generally when the
beam is scanned beyond OE, β > k0 and in turn b > l. In this case, it is
convenient to define a perturbation ∆b from b = l such that b = l + ∆b. The
perturbation ∆b is related to the parameter τ in Eq. (2.38) as ∆b = τ/2. The
normalized radiated power is then given by Eq. (2.43) with

y ∆
= l + ∆b− l cos θ. (2.46)

The pattern as a function of y is shifted by ∆b with respect to the pattern
obtained when the OE condition applies, i.e., for b = l. Thus, there exists
a particular value ∆bmax such that P(0) = ζ. In this case, the intensity of
the normalized radiated power P̄(θ) = P(θ)/P(0) would be the same for
θ = 0 and for a value θ = θSL that depends on ∆bmax. Now, having P̄(θ)
two main lobes, the definition of beamwidth and pointing angle θ0 are no
longer well-posed. Clearly, it is not practical to scan beyond this point.
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Figure 2.15.: P̄(θ) vs. θ (in dB scale) for er = 0%, l = 10π, b = l (solid blue line)
and b = l + ∆bmax (solid green line), respectively. The first sidelobe for
b = l occurs around θSL ' 31◦ (dashed blue lines). When b = l +∆bmax
the first sidelobe (dashed green line) reaches the same intensity of the
main lobe.

In order to find θSL we first evaluate ∆bmax. Hence, from Eq. (2.46) evalu-
ated at θ = 0, ∆bmax is given by the first root of the following equation:

sin2 ∆bmax

∆b2
max

− ζ = 0

⇒ sin2 ∆bmax = ζ∆b2
max, (2.47)

which gives ∆bmax = 0.813π ' 2.5541. Then, from Eq. (2.46) θSL is given by:

θSL = arccos
(

1− ySL − ∆bmax

l

)
, (2.48)

where ySL is still given by ySL in Eq. (2.44) since they define the roots of the
same equation. Clearly, for ∆bmax = 0 Eq. (2.48) reduces to Eq. (2.45), being
the latter a limiting case of the former. Finally, the correctness of Eq. (2.48)
has been assessed for l = 10π, θSL ' 20◦ as shown in Fig. 2.15 (see blue
dashed line).

This analysis can be extended to the complex case, i.e., when a 6= 0 and
in turn er 6= 0. In this case, when ∆b = 0, P(0) = sinh2 a/a2 6= 1 and
ζ 6= 0.0472. More precisely, the sidelobe level ζ depends now on a, being
ζ(a)|a=0 = ζ(0) = 0.0472 its limiting case. This would be the only difference
with respect to the case er = 0. Once ζ is replaced with ζ(a) the search of
∆bmax when er 6= 0 follows as above, but leads to a more general equation:

sin2 ∆bmax + sinh2 a = ζ(a)(∆b2
max + a2), (2.49)

whose roots will give a different ∆bmax for each value of a and in turn of er.
This is clearly shown in Table 2.7 where the values of ∆bmax as a function
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Table 2.7.: Values of ∆bmax for different antenna efficiencies er.

er[%] 0% 50% 75% 90% 95% 99%

∆bmax 2.5541 2.5698 2.6232 2.7552 2.9185 6.2298

of er has been reported for er ∈ {0, 0.5, 0.75, 0.90, 0.95, 0.99}. Note that, for
a→ 0, Eq. (2.49) reduces to Eq. (2.47), since ζ(0) = ζ.

Another useful validation of our analytical results is given in Fig. (2.16),
where the normalized power distributions for b = l (solid blue lines) and for
b = l + ∆bmax (dashed grey lines) have been reported for the same values
of er used in Table 2.7, considering L = 10λ (l = 10π). Though the results
reported in Table 2.7 do not depend on l, the patterns obviously depend on
l, being more directive as l increases.

As is clearly shown, the ordinary endfire patterns (the one with b = l) ex-
hibit one main lobe, whereas their shifted versions (those with b = l +∆bmax)
exhibit two main lobes with the same intensity, thus leading to an ambigu-
ous definition of beamwidth and θ0. Interestingly, when er = 99% the first
sidelobe is incorporated by the main lobe and is seen as a turning point
rather than a maximum. As a consequence, the first sidelobe is revealed
farther with respect to the previous cases, thus justifying the higher value
achieved by ∆bmax in Table 2.7.

It is worth here to remark that our analysis allows for predicting the point-
ing angle of the second peak, the beamwdith of the main peak, and the
sidelobe level (SLL) when k0 ≤ β ≤ βmax by means of simple and fast nu-
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Figure 2.16.: P̄(θ) vs. θ (in dB scale) for er ∈ {0%, 50%, 75%, 90%, 95%, 99%}, l =
10π, b = l (solid blue line) and b = l + ∆bmax (dashed grey line),
respectively.



2.3 formulas for 1-d endfire leaky-wave antennas 59

0 5 10 15 20 25
−20

−15

−10

−5

0

θ[◦]

P̄ (θ) [dB] e
r
=85.8%

(a) (b)

Figure 2.17.: (a) P̄(θ) vs. θ for er = 85.8%, l = 20π, when ∆b = 0 (blue line) and
∆b = 1.47 (green line). (b) Fig. 4 of Reference [45] reported here for
convenience. Case 1 and Case 2 perfectly match the blue and green
curves, respectively.

merical methods9. Note also that the definition of ∆b is equivalent to the
one of τ/2 provided in [45], which is independent of the antenna length L.
As expected, the value of τ/2 provided in [45] for maximizing directivity at
endfire are always less than ∆bmax. Some relevant examples will be shown
in the next Subsection 2.3.3.

2.3.3 Beamwidth and SLL evaluation for endfire 1-D LWAs

In this paragraph the beamwidth and the SLL of 1D-LWAs radiating at
endfire are evaluated for the relevant case of an antenna with length L = 10λ

for er ∈ {0.1, 0.5, 0.75, 0.90, 0.95, 0.99} when different values of ∆b are ap-
plied.

First, in order to have a thorough comparison with available results which
can be found in literature, the normalized radiation patterns have been re-
ported in Fig. 2.17 for ∆b = 0 (OE condition) and for ∆b = 1.47 (HW condi-
tion) when L = 20λ and er = 85.8% as has been done in Fig. 4 in [45]. As
is shown, there is a perfect agreement between our pattern and Case 1 and
Case 2 of [45]. Specifically, the SLL is −12.64 dB10 for the OE condition and
−9.56 dB for the HW condition, whereas the beamwidth is 12.24◦ and 7.42◦,
respectively. Thus, the improvement in terms of directivity and beamwidth
given by the HW condition is paid at the expense of a worst SLL.

Now that we have assessed our theoretical framework through the com-
parison with literature results, we can extend our investigation to more rel-
evant examples. In order to limit our analysis only to meaningful cases we
have decided to use values of ∆b < min

er
{∆bmax} = 2.5541. In particular,

9 We note here that βmax is related to ∆bmax through βmax = k0 + 2∆bmax/L
10 Note that the SLL is −13.26 dB only when er = 0%
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Figure 2.18.: P̄(θ) vs. θ for er ∈ {0%, 75%, 90%, 95%}, l = 10π, ∆b = 0 (red line),
∆b = 0.8 (green line), ∆b = 1.6 (blue line), and ∆b = 2.4 (black line)
respectively.

in Fig. 2.18 the normalized radiation patterns are shown for L = 10λ when
∆bmax = 0, 0.8, 1.6, 2.4.

The related figures of merit, viz., ∆θh and SLL, have been reported in
Table 2.8. As is seen, as ∆b increases the beamwidth gets narrower, but the
SLL gets higher, achieving unacceptable values for ∆b = 2.4. This behavior
is more pronounced for lower efficiencies, but generally both the SLL and
the beamwidth increase as the efficiency increases.

As we previously pointed out in Section 2.3.1, the results of Table 2.8 cor-
roborate our initial guess about the existence of a tradeoff between the min-
imum beamwidth that we can achieve by increasing ∆b and the maximum

Table 2.8.: Figures of Merit (FoM), namely ∆θh and SLL, for different values of ∆b
and different antenna efficiencies er, for L = 10λ.

er[%]

∆b FoM 0 75 90 95

0

∆θh [◦] 17.12 17.24 17.47 17.70

SLL [dB] -13.26 -12.92 -12.36 -11.80

0.8
∆θh [◦] 12.77 12.94 13.23 13.54

SLL [dB] -12.31 -12.00 -11.48 -10.95

1.6
∆θh [◦] 9.49 9.75 10.19 10.67

SLL [dB] -9.17 -8.98 -8.64 -8.29

2.4
∆θh [◦] 6.44 7.16 8.33 9.51

SLL [dB] -2.25 -2.70 -3.21 -3.52
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Figure 2.19.: ∆θh and SLL vs. b for er ∈ {0%, 50%, 75%, 90%, 95%}, L = 10λ.

SLL that we can accept. To this purpose, in the following Subsection 2.3.4
an extended analysis about the performance of an endfire 1-D LWA will be
reported by expressing the beamwidth and the SLL as functions of ∆b and er

for an antenna length of L = 10λ. Finally a suitable objective function will
be defined in order to find a quasi-optimum design for endfire 1-D LWAs,
taking into account the beamwidth and the SLL as relevant figures of merit.

2.3.4 Definition of a suitable objective function for taking into account the
∆θh vs. SLL tradeoff

Here we aim to extend the analysis developed in the previous Sub-
section 2.3.3, showing some relevant FoM of endfire 1-D LWAs, namely
the beamwidth and the SLL, as a function of ∆b when L = 10λ and
er ∈ {0, 0.75, 0.90, 0.95}. Results are shown in a unified plot in Fig. 2.19.
Two major points should be stressed:

i) The behavior of ∆θh vs. ∆b looks similar to the one reported in [45] for
2kLF(u, v) vs. u, where F(u, v) is a useful FoM inversely proportional
to the directivity D0 and u and v are convenient variables equivalent
to our ∆b and a, respectively. This is exactly what we expect from
theory, since the beamwidth is also inversely proportional to directiv-
ity through the approximated relation D0 ' 4π/2∆θh [11], and u is
directly proportional to b.

ii) As pointed out in Subsection 2.3.3, for higher values of ∆b the
beamwidth decreases whereas the SLL increases.

As regards point ii), a tradeoff is dictated by the beamwidth and the SLL.
Thus, an optimization procedure for the design of endfire 1-D LWAs should
take into account such a tradeoff. To this purpose, we suggest the definition
of the following objective function, obtained as a convex combination of ∆θh

and SLL:
g(∆b) = w · S̃LL(∆b) + (1− w) · ∆̃θh(∆b), (2.50)
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Figure 2.20.: The optimizing function vs. ∆b for er ∈ {0%, 75%, 90%, 95%, 99%},
and for w = 0, 0.25, 0.5, 0.75, 1 when L = 10λ. Obviously, the extreme
cases w = 0 and w = 1 would lead to the same b which minimizes the
beamwidth and the SLL, respectively.

where 0 ≤ w ≤ 1 is a weight coefficient, and the tilde (·̃) identifies the
normalization to the maximum for both the FoM. Once the efficiency er and
the antenna length L are fixed, the minimization of g(∆b) would lead to a
quasi-optimum design in terms of ∆θh and SLL subjected to the weight w
assigned by the antenna designer. In fact, the minimization of g(·) leads to
the minimization of both ∆θh and SLL.

In Fig. 2.20, g(∆b) has been reported for er ∈ {0, 0.75, 0.90, 0.95}, and for
w = 0, 0.25, 0.5, 0.75, 1 when L = 10λ. On one hand, the extreme cases
w = 0 and w = 1 would lead to the same ∆b which minimizes the ∆θh and
the SLL, respectively. On the other hand, the intermediate choices lead to
intermediate conditions which would better match the constraints required
to the antenna designer. However, the results reported so far have been
obtained considering an antenna length of L = 10λ. In the next paragraph,
a different approach is proposed to extend the results to any antenna length.
Even more interestingly, a general approximate closed formula is derived to
evaluate both ∆θh and SLL of endfire LWAs.

2.3.5 Approximate formulas for the beamwidth and the sidelobe level

To extend the results to any antenna length, we define a normalized
beamwidth as ∆θh = ∆θh

√
0.5L/λ. This is a convenient normalization for

endfire 1-D LWAs, since the beamwidth varies as the square root of the an-
tenna length, instead of varying with the antenna length (see Eq. (1.20)) as
it does for 1-D LWAs scanned to an angle θ0 > 0 [69]. With this normaliza-
tion, results are shown in a unified plot in Fig. 2.19 where the normalized
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Figure 2.21.: ∆θh and SLL vs. ∆b for er = 0%, 75%, 90%, 95%. The magenta dot
indicates the value of ∆b for which the SLL improves as er increases.

beamwidth ∆θh and the SLL have been reported as functions of ∆b in the
range 0 ≤ ∆b ≤ 2.4, for er = 0, 0.75, 0.90, 0.95. An inspection of Fig. 2.19

reveals two major points. First, it is seen that for practical cases (i.e., for
er < 95%) and when 1.2 < ∆b < 1.4, it is possible to narrow the beamwidth
and simultaneously not exceed the value of −10 dB for the SLL (which is
a reasonable threshold value). Note that this range of values for ∆b is al-
most the same suggested in [45] for maximizing the directivity at endfire,
since the mHW condition results in a SLL of roughly -10 dB [45]. This is
an alternative criterion to handle the ∆θh vs. SLL tradeoff with respect to
the one proposed in 2.3.4 through the objective function g(·) (see Eq. (2.50)).
Second, there exists a specific value of ∆b ' 2.1 beyond which the SLL de-
creases rather than increases as the efficiency gets higher (see the magenta
dot in Fig. 2.19). This motivates the opposite trend previously noticed in the
last row of Table 2.8.

From Fig. 2.21 it appears that a 2nd-order polynomial interpolation for
both ∆θh and SLL as functions of ∆b may provide sufficiently accurate re-
sults. However, such an interpolation should also take into account the
dependence on er and in turn on a. This would suggest to search for a fam-
ily of a-parametric fitting functions of ∆θh(∆b; a) and SLL(∆b; a) which both
belong to the same class of functions with respect to ∆b. For any value of a
this class of functions would be characterized by a different set of parame-
ters which depends only on a. It would then be possible to fit the parameters
as functions of ∆b and a. This would result in two final parametric formulas
∆θh(∆b; a) and SLL(∆b; a):

∆θh(∆b; a) = v0(a) + v1(a)∆b + v2(a)∆b2 (2.51)

SLL(∆b; a) = w0(a) + w1(a)∆b + w2(a)∆b2, (2.52)

where now the fitting parameters vi(a) = vi,0 + vi,1a and wi(a) = wi,0 +wi,1a
for i = {0, 1, 2} both depends on a. In this way, we have obtained our
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Figure 2.22.: (a) ∆θh and (b) SLL vs. ∆b in the range 0 ≤ ∆b ≤ 2.4. A family of
a-parametric curves (solid lines) shading from blue to red is generated
for a going from 0 to 0.8. Fitting curves are reported in circles in both
figures.

desired a-parametric functions which belongs to the same class of functions
with respect to a. These first results have been reported in Fig. 2.22(a) and
(b) for ∆θh and SLL, respectively, where a has been varied from 0 to 0.8, thus
covering efficiencies up to 95%. Also the behavior of the coefficients vi,j(a)
and wi,j(a) has been reported in Fig. 2.23(a) and (b), respectively. As is clear,
a first-order polynomial expression for the coefficients would be sufficient
to accurately interpolate such functions, as corroborated by the remarkable
agreement between the fit curves (circles) and the original ones (solid lines)
(see Fig. 2.22). A slight disagreement is observed for increasing values of a
(see red lines in Fig. 2.22)11, but can be mitigated by increasing the order of
the interpolating polynomials. Here, we decided to still use the first-order
approximation to reduce the complexity of the final formula. Thus, the
final interpolating functions are represented by Eqs. (2.51) and (2.52) with
parametric coefficients in Table 2.9.

Remarkably, the proposed Eqs. (2.51) and (2.52), with parameters as in
Table 2.9, provide a useful tool for evaluating the beamwidth and SLL for

11 Such an effect is due to the nonlinear behavior of ∆θh vs. ∆b for er = 0.95 as is evident from
Fig. 2.21 (see the solid black line).
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Figure 2.23.: (a) vi and (b) wi vs a for i = 0, 1, 2 (in order blue, green, and red solid
lines) and their linear interpolations (dashed lines).



2.3 formulas for 1-d endfire leaky-wave antennas 65

Table 2.9.: Fitting parameters for ∆θh and SLL.

i 0 1 2

j 0 1 0 1 0 1

vi,j 0.933 0.048 -0.304 -0.039 0.026 0.036

wi,j -13.12 1.39 -1.20 1.08 2.312 -0.89

endfire 1-D LWAs of any length and for efficiencies up to er = 95%, with a
MAPE on the order of 1% for each formula (the APE as a function of a and
∆b is not reported here for the sake of conciseness). A discussion about the
behavior of endfire 1-D LWAs with er > 95% is given in the next paragraph.

2.3.6 Investigation for extremely-efficient endfire leaky-wave antennas

As a last investigation, we focused our attention on the evaluation of the
∆bmax parameter for extremely efficient 1-D LWAs, i.e., er > 99%. Results
are shown in Fig. 2.24 for an antenna length of L = 10λ for four differ-
ent values of radiation efficiency, namely er ∈ {99%, 99.5%, 99.95%, 100%}.
Note that with er = 100% is meant an asymptotic value of the efficiency that
approaches 100% up to value whose difference between 100% is less than
10−10. As is seen, for an extremely efficient 1-D LWA the definition of a
∆bmax is immaterial. Indeed, as can be inferred from general theory, as long
as the efficiency gets higher, the sidelobe level tends to decrease and the
pattern assumes almost a uniform distribution without any sidelobes. As
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Figure 2.24.: P̄(θ) vs. θ (in dB scale) for L = 10λ for er ∈
{99%, 99.5%, 99.9%, 99.95%, 99.99%, 100%}, b = l (blue line)
and b = l + ∆bmax (grey line), respectively. A blue dot highlights the
location of the first sidelobe encountered from the main lobe for b = l.
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Figure 2.25.: P̄(θ) vs. θ (in dB scale) for (a) L = 1λ, (b) L = 5λ, (c) L = 100λ,
(d) L = 1000λ for er ∈ {99%, 99.5%, 99.95%, 100%}, b = l (blue line)
and b = l + ∆bmax (grey line), respectively. A blue dot highlights the
location of the first sidelobe encountered from the main lobe for b = l.

a consequence, the definition of ∆bmax is no longer useful for neither the
design nor the optimization of these particular class of endfire 1-D LWAs.

Moreover, similar results have been reported in Fig. 2.25 for different an-
tenna lengths, namely L = 1λ, 5λ, 100λ, 1000λ, to highlight the effect of L in
the beamwidth. On one hand, for extremely short antennas (see Figs. 2.25(a)
and (b)) the radiation patterns show a unique big main lobe without ex-
hibiting any sidelobes. On the other hand, for extremely long antennas, the
beamwidth gets narrower and narrower, approaching to 0. Some insights
on this last behavior can be gained if we look at the expression for the
beamwidth under the hypothesis L → ∞. For convenience, we report here
Eqs. (2.30) and (2.33) obtained in 2.2.5:

ξ
(b− l cos ∆θh)

2

a2 − 2
sin2(b− l cos ∆θh)

sinh2 a
− 1− (1− ξ) = 0, (2.53)

where:

ξ =

[
a2

sinh2 a

] [
sin2(b− l) + sinh2 a

(b− l)2 + a2

]
. (2.54)

Hence, if L→ ∞, then a, b, and l go to infinity. Since | sin(·)| ≤ 1 then:

ξ ' a2

(b− l)2 + a2 , (2.55)
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and

(b− l cos ∆θh)
2

(b− l)2 + a2 − 2 +
a2

(b− l)2 + a2 = 0 (2.56)

⇒ (b− l)2 + a2

(b− l cos ∆θh)2 + a2 =
1
2

, (2.57)

and with simple algebraic manipulations we get:

l2 cos2 ∆θh − 2bl cos ∆θh − (b2 + 2l2 − 4bl + a2) = 0. (2.58)

From here, it is straightforward to get a simple analytic closed formula for
∆θh as a function of b, a, and l. In fact, if we define x = cos ∆θh, we get a
quadratic equation whose roots are given by:

x =
b
l
± 1

l

√
2(b− l)2 + a2, (2.59)

so that

∆θh = arccos
(

b
l
± 1

l

√
2(b− l)2 + a2

)
, (2.60)

which is the sought formula for the beamwidth for endfire extremely long
1-D LWAs. However, a suitable definition of the following variables:

∆b = b− l,

∆β̂ = ∆b/l,

β̂ = b/l,

α̂ = a/l,

(2.61)

allows us to recast Eq. (2.60) as follows:

∆θh = arccos
(

1 + ∆β̂±
√

2∆β̂2 + α̂2
)

. (2.62)

Note that, since the domain of the arccos(·) is limited between -1 and 1,
we must choose the negative determination of the square root, so our final
formula would be:

∆θh = arccos
(

1 + ∆β̂−
√

2∆β̂2 + α̂2
)

, (2.63)

which has some reminiscences of Eq. (1.29) (see Section 2.4), i.e., the
beamwidth formula for a broadside beam (β < α) of 1-D bidirectional
LWAs. Radiation from this class of antennas will be the object of the next
Section 2.4.

Note also that, when the attenuation constant is zero, the beamwidth
depends solely on the phase constant. In this case, after some manipulation
Eq. (2.63) implies that the beamwidth is proportional to ∆β̂. Conversely,
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when α̂ 6= 0 and β = k0, the beamwidth is proportional to α̂. In particular,
for a given value of α̂, the narrowest beam is obtained by maximizing12 the
term in parentheses with respect to ∆β̂:

∂

∂∆β̂

(
1 + ∆β̂−

√
2∆β̂2 + α̂2

)
= 0

1− 2∆β̂√
2∆β̂2 + α̂2

= 0.. (2.64)

After some manipulations the following condition is found:

∆β̂ =
α̂√
2

, (2.65)

with a corresponding minimum beamwdith of:

∆θ
(min)
h = arccos

(
1− α̂/

√
2
)

. (2.66)

Since there are no sidelobes in the infinite aperture case, this condition will
also maximize13 the directivity. On the other hand, for a given value of ∆β̂,
the beamwidth continuously decreases as α̂ decreases.

12 Recall that the condition ∆θh = 0◦ is obtained when arg arccos(·) = 1 which corresponds to the
condition ∆β̂2 = −α̂2/2 that is never possible.

13 A study of the sign of Eq. (2.64) confirms that Eq. (2.65) is actually a maximum.
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2.4 formulas for 1-d bidirectional leaky-
wave antennas

In the previous Sections 2.2 and 2.3, we have found new approximate
closed-form expressions for evaluating the beamwidth of 1-D unidirectional
LWAs. Differently from previous existing formulations [10]–[14] based on
some simplifying hypotheses regarding the antenna length and the beam
size, the new formulas are rather general.

However, the endfire case has been analyzed apart in Section 2.3 from
conventional 1-D unidirectional LWAs. This is because radiation at endfire
involves several aspects that cannot be addressed with the same theoretical
framework developed in Section 2.2. Such a consideration is even more
true for 1-D bidirectional LWAs whose underlying physics is substantially
different from 1-D unidirectional LWAs, being more similar to the one of
2-D LWAs.

In this Section, we aim to find an expression for the bidirectional case. In
2.4.1 we first derive closed-form expressions for the infinite aperture case.
The same theoretical framework is then used in 2.4.2 to derive approximate
formulas for the beamwidth which account also for the finiteness of the
aperture. Since for scanned beams the beamwidth of a finite aperture is still
well approximated by the formulas derived in Section 2.2, the beamwidth
formula is derived only for broadside beams. Interestingly, the phase con-
stant β can be anything from 0 to α (note that β = α is the splitting condition
[48]).

The results of this Section 2.4 represents a first significant step towards the
characterization of the radiating features of 2-D LWAs when the finiteness
of the aperture is taken into account.

2.4.1 Beamwidth formulas for uniform and infinite apertures

The first step for the evaluation of the beamwidth of 2-D LWAs should
be the analysis of 1-D bidirectional LWAs. In fact, the physics underlying
1-D bidirectional LWAs and 2-D LWAs is formally the same. However, 1-D
bidirectional LWAs are easier to be analyzed due to the simpler expression
that describes the resulting radiation pattern. Here, we start our analysis
considering Eq. 1.26 that is reported here for convenience:

AF = j
(kz − k0 sin θ)e−j(kz+k0 sin θ)L/2 + (kz + k0 sin θ)e−j(kz−k0 sin θ)L/2 − 2kz

k2
z − k2

0 sin2 θ
,

(2.67)

where θ is the angle, measured from the vertical x-axis to the longitudinal
z-axis. It is worth noting that this definition of θ is the complementary of
the definition provided in the previous Sections 2.2 and 2.3 for 1-D unidi-
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rectional LWAs. This choice is motivated by the fact that 1-D bidirectional
LWAs, as well as 2-D LWAs, are mainly designed for operating at broadside
that with this definition of θ would correspond to θ = 0◦. Other convenient
definitions of variables are the following:

p = kzL/2 = βL/2− jαL/2 = b− ja,

l = k0L/2,

t = l sin θ,

(2.68)

which allow for expressing Eq. (2.67) as:

AF = −j
L
2
(p− t)e−j(p+t) + (p + t)e−j(p−t) − 2p

p2 − t2 , (2.69)

or even simpler

AF = j
[

L
t2 − p2

] [
p− e−jp(p cos t + jt sin t)

]
, (2.70)

so that the power distribution P(θ) = |AF|2 reads:

P(θ) =
L2

|t2 − p2|2
∣∣∣p− e−jp(p cos t + jt sin t)

∣∣∣2 . (2.71)

Since we are interested in LWAs radiating at broadside, it would be useful to
normalize the power distribution to the power radiated at broadside (θ = 0◦)
that is equal to

P(0) =
L2

|p|2
∣∣∣1− e−jp

∣∣∣2 (2.72)

or

P(0) =
4L2

|p|2 |sin(p/2)|2 e−a, p ∈ C. (2.73)

Hence, the normalized power distribution P̄(θ) = P(θ)/P(0) yields:

P̄(θ) =
|p|2

|p2 − t2|2

∣∣p− e−jp(p cos t + jt sin t)
∣∣2 ea

4| sin(p/2)|2 . (2.74)

By means of Eq. (2.74) the one-sided half-power beamwidth ∆θh can easily
be found solving the roots of the following equation:

P̄(∆θh) =
|p|2

|p2 − t2
h|2

∣∣p− e−jp(p cos th + jth sin th)
∣∣2 ea

4| sin(p/2)|2 =
1
2

, (2.75)

where th = l sin(∆θh). It is worth here to stress that we will always assume
that ∆θh is small so that th = l∆θh. Moreover, since we are evaluating the
normalized radiation pattern at broadside it is assumed that b ≤ a. However
we will distinguish between cases for which b = a and those for which b 6= a.
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Evaluation of the beamwidth when b = a

It is well known that when b = a (and in turn p = (1− j)a) the radiated
power density at broadside is maximized [48]. To prove the correctness of
Eq. (2.75), let us check the expressions in the limit for a → 0 (which would
correspond to uniform apertures) and for a→ ∞ (which would correspond
to infinitely large apertures). Hence, for a→ 0:

lim
a→0

P̄(∆θh)
p→0, sin x'x

=
|p|2
|th|4

t2
h sin2 th

4|p/2|2 =
1
2

t2
h = 2 sin2 th, (2.76)

which is the same result given by Eq. (2.12) for a→ 0 that gives th = 1.3915
(see 2.2.1) and thus

∆θh =
1.3915

l
' 0.44

L/λ
. (2.77)

Conversely, for a→ ∞ we get:

lim
a→∞

P̄(∆θh) =
|p|4

|p2 − t2
h|2

ea

4| sin(p/2)|2 =
1
2

.

(2.78)

Note that:

lim
a→∞

sin(p/2) =
ej(1−j)a/2 − e−j(1−j)a/2

2

lim
a→∞
| sin(p/2)|2 =

ea

4
, (2.79)

so that

lim
a→∞

P̄(∆θh) =
|p|4

|p2 − t2
h|2

=
1
2

,

(2.80)

but since p = (1− j)a we have:

|p| =
√

2a,

p2 = −2ja2, (2.81)

and Eq. (2.78) simplifies as:

lim
a→∞

P̄(∆θh) =
4a4

t4
h + 4a4

=
1
2

,

(2.82)
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and finally

th =
√

2a, (2.83)

which gives

∆θh =
√

2
a
l
=
√

2
α

k0
, (2.84)

according to the result found in literature for 2-D LWAs [11].

Evaluation of the beamwidth when b 6= a

Now that the correctness of Eq. (2.74) has been assessed, the second step
would consider the possibility to extend the results even when b 6= a. How-
ever, since we are interested in broadside radiation (for scanned beams, the
beamwidth of 1-D bidirectional LWAs is the same as 1-D unidirectional
LWAs provided that α � k0) we would consider b ≤ a. Here, it is use-
ful to define the ratio

r =
b
a
< 1, (2.85)

so that we can express p as p = a(r− j). With this new definition, it is quite
obvious that the result for the limit a → 0 would remain the same as for
b = a. Conversely, for a→ ∞, Eq. (2.81) now reads:

|p| = a
√

r2 + 1

p2 = a2(r2 − 1− 2jr). (2.86)

As a consequence Eq. (2.79) can easily be recast as:

2|p|4 = |p2 − t2
h|

2

2a4(r2 + 1)2 = |r2a”− a2 − t2
h − 2ja2r|2|. (2.87)

After some algebra we get the following quadratic equation for φh = t2
h:

φ2
h − 2a2(r2 − 1)φh − a4(r4 + 2r2 + 1), (2.88)

whose roots give:

φh = a2
[
(r2 − 1)±

√
2(r4 + 1)

]
, (2.89)

and consequently

th = a

√
(r2 − 1)±

√
2(r4 + 1). (2.90)
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The substitution of r = b/a and the choice of the positive determination
of the square root (which corresponds to consider the right-side of the
beamwidth with respect to the pointing angle) yields

th = a

√
(b2 − a2) +

√
2(b4 + a4), (2.91)

from which we get the sought expression for ∆θh:

∆θh =

√
(β̂2 − α̂2)±

√
2(β̂4 + α̂4), (2.92)

which is the well-known expression for the beamwidth of 2-D LWAs in the
limit of infinite aperture (see Eq. (1.29)).

2.4.2 Beamwidth formulas for finite apertures

In the previous paragraph 2.4.1 it has been proven that, in the asymptotic
limit of infinite apertures, the beamwidth formulas for 1-D bidirectional
LWAs coincide with those of 2-D LWAs. In this Section, we aim to extend
the previous results for finite LWAs. This would require the numerical so-
lution of Eq. (2.75). However, it is in authors’ belief that, under certain
conditions, it should be possible to find a fitting procedure as has already
been done in 2.2.2 and 2.3.5, for obtaining an approximate analytic formula
for the evaluation of the beamwidth of 1-D bidirectional LWAs which takes
into account the finiteness of the aperture. Starting from Eq. (2.75), simple
algebra lead us to the following transcendental equation:

2|p|2
∣∣∣p− ejp(p cos th + jth sin th)

∣∣∣2 − ∣∣∣p2 − t2
h

∣∣∣ ∣∣∣1− e−jp
∣∣∣2 = 0, (2.93)

where p = r(a − j) and th = l sin ∆θh. As is clear, Eq. (2.93) defines a
function f (a, r, l, ∆θh) = 0 of the two variables, a and ∆θh, and the two
parameters l and r. Again, as has already been pointed out, Dini’s Theo-
rem guarantees the existence of an implicit function ∆θh(a; r, l) such that
f (∆θh(a; r, l), a) = 0 where l and r are parameters. Hence, a suitable fitting
procedure onto the roots of Eq. (2.93) should give us the sought expression.
It is worth here to remark that, in order to reduce the space of the parame-
ters, we will actually search for an implicit function th(a; r) for any fixed r.
In such a way, the function will no longer depends on l and the beamwdith
∆θh will easily be expressed in terms of th(a; r) through:

∆θh(a; r, l) = arcsin
(

th(a; r)
l

)
. (2.94)

In Fig. 2.26 the behavior of th as a function of a (see Fig. 2.26(a)) and
r (see Fig. 2.26(b)) has been reported for parametric variations of r and a,
respectively. Note that r has been limited to the range 0 ≤ r ≤ 1 since
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Figure 2.26.: (a) th vs. a. A family of curves shading from blue to red is generated for
r going from 0 to 1. The black solid line represent the result obtained
through Eq. (2.12). (b) th vs. r. A family of curves shading from blue
to red are generated for a going from 0 to 10.

we are interested only in broadside radiation, whereas the range of a widely
covers any practical efficiency for LWAs. As is seen, the parameter r strongly
affects the behavior of th(a) (see Fig. 2.26(a)), so that it would not be possible
to find a unique fitting function for th(a). However, the behavior of th(r) (see
Fig. 2.26(b)) seems to be much simpler than th(a). This fact would suggest to
search for a family of r-parametric fitting functions of th(a; r) which belong
to the same class of functions with respect to a. This is the same kind of
problem encountered in 2.3.5.

As a first guess, due to the similarity with the old fitting formula pro-
vided in 2.2.2 (see black dashed line in Fig. 2.27(a)) we used the following
interpolating function:

th(a; r) = 1.3915 + w1(r)a tanh(w2(r)a), (2.95)

where now the coefficients w1 and w2 both depends on r14. In this way, we
have obtained our desired r-parametric functions. These first results have
been reported in Fig. 2.27(a). Also the behavior of the coefficients w1(r) and
w2(r) has been reported in Fig. 2.27(b). As is clear, a second-order polyno-
mial function would be sufficient to accurately interpolate such functions, as
corroborated by the remarkable agreement between the fit curves (dashed
lines) and the original ones (solid lines). The final interpolating function
would thus be represented by Eq. (2.95) with parametric coefficients:

w1(r) = w11 + w12r + w13r2,

w2(r) = w21 + w22r + w23r2, (2.96)

14 Note that Eq (2.95) is basically the HTF function described in 2.2.2.
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Figure 2.27.: (a) th vs. a. A family of curves (solid lines) shading from blue to red
is generated for r going from 0 to 1. The fitting curves are reported in
circles. (b) w1 vs. r (blue solid line) and w2 vs. r (green solid line). The
corresponding interpolations are reported in dashed lines.

where the coefficients wij for i = 1, 2 and j = 1, 2, 3 have been reported in
Table 2.10. Finally, the resulting interpolation has been reported in Fig. 2.28.
As can be seen, the second fitting procedure introduce negligible error with
respect to the previous one that shows a good accuracy except for the range
a ∈ {1.5, 2.5}.

This is clearly seen in Fig. 2.29 where the APE is reported before (see
left panel of Fig. 2.29) and after (see right panel of Fig. 2.29) the fitting of
the coefficients. In both cases, the region that is less accurate (APE ' 18%)
corresponds to a ∈ {1.5, 2.5}, whereas the MAPE is around 2%

A thorough inspection of Fig. 2.26(a) convinced us that a more suitable
class of interpolating functions would be the following one:

th(a; r) = 1.3915 + 0.25a(1− tanh a) + w1(r)a tanh[w2(r)(a− w3(r))].
(2.97)

The reason why we came to this conclusion is because th(a; r) seems to be
characterized by two linear functions with different slopes that are smoothly
joint at a certain point within the delicate region a ∈ {1.5, 2.5}which depends
on r. As a consequence the first complementary hyperbolic tangent is used
to reduce the effect of the first linear function, whereas the second hyper-
bolic tangent is used to enhance the second linear function. In particular
w1 is used for tuning the slope, w2 is used for tuning the hardness of the

Table 2.10.: Values of the fitting coefficients for w1(r) and w2(r).

wij j = 1 j = 2 j = 3

(i=1) 0.511 0.084 0.693

(i=2) 0.195 -0.056 0.135
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Figure 2.28.: th vs. a. A family of curves (solid lines) shading from blue to red is
generated for r going from 0 to 1. The fitting curves are reported in
circles.

enhancement, and w3 is used for tuning the locus of the joint between the
linear functions.

These first results have been reported in Fig. 2.30(a). Also the behavior of
the coefficients w1(r) and w2(r) has been reported in Fig. 2.30(b). As is clear,
a second-order polynomial function would be sufficient to accurately inter-
polate only w1 and w2. For w3 we used an arctan(·) function. This choice
gave very accurate results, as corroborated by the remarkable agreement
between the fit curves (dashed lines) and the ideal ones (solid lines). The
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Figure 2.29.: Contour plot of APE vs. a and r. Left panel: APE is calculated after
the first fitting procedure (see Fig. 2.27). Right panel: APE is calculated
after the second (last) fitting procedure (see Fig. 2.28).
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Figure 2.30.: (a) th vs. a. A family of curves (solid lines) shading from blue to red
is generated for r going from 0 to 1. The fitting curves are reported in
circles. (b) w1 vs. r (blue solid line), w2 vs. r (green solid line), and
w3 (red solid line). The corresponding interpolations are reported in
dashed lines.

final interpolating function would be thus represented by Eq. (2.95) with
parametric coefficients:

w1(r) = w11 + w12r + w13r2,

w2(r) = w21 + w22r + w23r2,

w3(r) = w31 + w32r arctan(w33r + w34), (2.98)

where the coefficients wij for i = 1, 2, 3 and j = 1, 2, 3, 4 have been reported
in Table 2.11.

Again, the resulting interpolation has been reported in Fig. 2.31. As
can be seen, the second fitting procedure introduce negligible error with
respect to the previous one that shows a good accuracy except for the range
1.5 ≤ a ≤ 2.5.

This is clearly seen in Fig. 2.32 where the APE is reported before (see left
panel of Fig. 2.32) and after the fitting of the coefficients (see right panel
of Fig. 2.32). In both cases, the region that is less accurate (APE ' 8.8%)
corresponds to a ∈ {1.5, 2.5}, whereas the MAPE is around 0.9%.

Table 2.11.: Values of the fitting coefficients for w1(r), w2(r) and w3(r).

wij j = 1 j = 2 j = 3 j = 4

(i=1) 0.572 -0.072 0.767 0

(i=2) 0.111 0.104 0.149 0

(i=3) -0.676 1.248 3.989 -1.3
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Figure 2.31.: th vs. a. A family of curves (solid lines) shading from blue to red is
generated for r going from 0 to 1. The fitting curves are reported in
circles.

As a final remark, it should be stressed that the considerable improvement
in terms of APE of the last interpolation (the APE is reduced of about a half)
is paid only at the expense of the complexity of the expression.
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Figure 2.32.: Contour plot of APE vs. a and r. Left panel: APE is calculated after
the first fitting procedure (see Fig. 2.30). Right panel: APE is calculated
after the second (last) fitting procedure (see Fig. 2.31).
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The final formula for the single-sided beamwidth of 1-D bidirectional
LWAs is then:

∆θh(a; r, l) = arcsin
(

1.3915 + 0.25a(1− tanh a) + w1(r)a tanh[w2(r)(a− w3(r))]
l

)
,

with
w1(r) = 0.572− 0.072r + 0.767r2,

w2(r) = 0.111 + 0.104r + 0.149r2,

w3(r) = −0.676 + 1.248r arctan(3.989r− 1.3).

(2.99)



80 formulas for leaky-wave antennas

2.5 conclusion

In this Chapter a general formula for the evaluation of the beamwidth of
1-D unidirectional LWAs which accounts for both the attenuation constant
and the length of the aperture, has been presented. Previous formulas can
now be derived as a special case of the new general formula that is accurate
for any combination of phase constant, attenuation constant, and aperture
length. This means that the beam can be pointed to any angle in space,
down to where endfire is first encountered. However, when the beam is
scanned beyond ordinary endfire, these new formulas no longer hold.

The radiating features of endfire leaky-wave antennas are then described
with a different formulation. Simple approximate formulas (exact closed-
form expressions are found in the infinite aperture case) for the beamwidth
and sidelobe level are found, which account for both the antenna length
and the radiation efficiency. In fact, as the phase constant increases and the
beam scans beyond ordinary endfire, the beamwidth continuously decreases
as the phase constant increases, but the sidelobe level also correspondingly
increases. A tradeoff between beamwidth and sidelobe level is then estab-
lished.

Finally, a more accurate beamwidth formula is found for 1-D bidirectional
leaky-wave antennas. In this case, the beamwidth of scanned beams is equal
to the one of 1-D unidirectional LWAs, whereas it substantially differs at
broadside. As a consequence an approximate formula (an exact one is again
derived in the infinite aperture case) is derived only for broadside beams
taking into account the dependence of both the phase constant and the effi-
ciency. This analysis represents a significant step towards the development
of more accurate formulas for the evaluation of the beamwidth in 2-D leaky-
wave antennas.



3 R E C O N F I G U R A B L E L E A K Y-
W AV E A N T E N N A S

3.1 introduction

In the last decade, the concept of Transformation Optics (TO), introduced
for the first time in 2006 by J. B. Pendry [70] (for which he won the Kavli
Prize in Nanoscience in 2014), has strongly boosted the research activity
in metamaterials [31]. Their use has been promoted in [70] for practically
achieving a considerable control of the electromagnetic fields. In principle,
the uncommon features exhibited by metamaterials would allow for the
realization of intriguing applications such as electromagnetic cloaking [71] and
metasurfing, i.e., addressing electromagnetic waves on metasurfaces [72], as
well as reconfigurable LWAs [73].

Although different designs of metasurfaces exist in the microwave range
[72], [74], [75], only few implementations have been proposed in the tera-
hertz (THz) range [76], [77], i.e., that part of the spectrum that nominally
goes from 300 GHz to 3 THz [78]. In recent years, a lot of efforts (see, e.g.,
[79], [80] and Refs. therein) have been made in order to close as much as pos-
sible the well-known THz gap [81], [82] by designing efficient THz sources
and sensors. These elements leverage components from both microwaves
and optics [83], [84]. As a result, there is still a high demand of efficient
sensors, especially for medical and security applications [78], [85]. Such an
interest is motivated by the various applications offered by THz radiation in
several interdisciplinary fields, such as molecular spectroscopy, astrophysics,
security screening, high-resolution imaging, drug detection, THz free-space
communication [86]–[88].

In the last years, we have witnessed the exponential development of effi-
cient optical and terahertz (THz) devices by means of cutting-edge materials
such as black phosphorous [89], molybdenum disulphide MoS2 [90], graphene [91],
and liquid crystals [92], [93]. In this Chapter we specifically deal with the op-
portunities offered by graphene and liquid crystals. In fact, the possibility
to dynamically tune both the electronic and the optical properties of these
materials through the application of a control voltage has allowed for the
design of reconfigurable THz devices. On one hand, it has recently been
demonstrated that LCs can profitably be used for the realization of THz
composite free-space materials [94]–[98] as well as guided-wave THz phase
shifters [99]–[102]. On the other hand, recent works have considered the use
of a graphene sheet as a frequency selective surface for the design of recon-
figurable radiating elements [103]–[116]. However, in the current literature,

81
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very few works have considered the possibility of designing reconfigurable
THz LWAs by employing either liquid crystals or graphene sheets.

In Section 3.2, we thoroughly analyze the radiating properties of
graphene-based LWAs based on ordinary (i.e. non-plasmonic) leaky waves in
the THz range. In Section 3.3, the design of a THz Fabry-Perot Cavity (FPC)
LWA based on liquid crystals is discussed from both a theoretical point of
view and a technological perspective. It is worth noting that the proposed
structures can be seen as advanced versions of the unconventional 2-D LWAs
previously mentioned in 1.4.4.
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3.2 graphene-based leaky-wave antennas

The pioneering experiments on graphene led by A. K. Geim and K. S.
Novoselov [117] have paved the way to the application of this promising
material in a multitude of scenarios including integrated technologies, es-
pecially at THz frequencies. In this frequency range, graphene shows inter-
esting properties, because its surface conductivity (which completely char-
acterizes its electromagnetic properties, due to the mono-atomic layer struc-
ture) becomes mostly reactive [118], [119] and hence can support plasmonic
propagation [120]. Moreover, surface plasmon polariton (SPP) waves sup-
ported by graphene may have a guided wavelength much shorter than the
wavelength of plane waves in free space, thus resulting in a tight transverse
confinement of the SPP field [121], [122], especially if compared to SPP prop-
agation along ordinary metal surfaces. However, the most intriguing feature
of graphene is perhaps the possibility of dynamically tuning its conductivity
through the application of an electrostatic bias field, which lays the ground
for the development of reconfigurable THz devices.

Despite all these excellent properties, graphene was initially considered
mainly as an alternative to post-silicon transistors [123] rather than as a
material for antennas and other passive devices. Specifically in antenna ap-
plications, graphene was first employed as a parasitic layer of a THz dipole
antenna array radiating around 1 THz [124]. Also, the propagation of SPPs
along an infinite graphene sheet was theoretically derived [118], [119], [125],
and the first study on graphene used as an actual antenna radiator was pre-
sented in [106]. There, it was shown that graphene allows for the realization
of miniaturized resonant and reconfigurable THz antennas with good effi-
ciency, compared to the small electrical size, and good direct matching, as
required by most of the present THz communication and sensing devices.
Over the years [103]–[116], other works have further investigated the possi-
bilities of graphene in antenna design.

Most of these works [103]–[111] consider the radiation mechanism
through the excitation of a transverse-magnetic (TM) SPP. Interestingly, in
[103], [104] a sheet of graphene is sinusoidally modulated by applying a
DC bias to a polysilicon layer located beneath it, in order to control its sur-
face reactance; this allows for coupling the SPP with the n = −1 harmonic
which is in the fast-wave region and thus radiates as a leaky-wave mode. Such
plasmonic leaky waves allows for achieving the beam-steering capability at a
fixed frequency. However, the well-known relatively high losses experienced
by SPPs over graphene limit the efficiencies of these LWAs to values on the
order of 20% [103]–[106]. To the author’s best knowledge, only recently
[113] a non-plasmonic graphene-based LWA has been proposed. There, a pat-
terned graphene sheet is used to enhance the tunability of a high-impedance
surface that acts as a ground plane in a 2-D LWA. However, the directivity
of the proposed antenna is rather low [113].
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As a matter of fact, it has recently been shown [126], [127] that fundamen-
tal limits exist on the efficiency of any reconfigurable graphene antenna.
However, we note that the fundamental role of the graphene losses in af-
fecting the performance of such kind of radiators, in terms of theoretical
radiation efficiency, directivity, and pattern reconfigurability has not been
yet properly analyzed in detail. Most importantly, a thorough investigation
of dissipation losses and radiation efficiencies of THz graphene antennas
based both on plasmonic and non-plasmonic field configurations has never
been considered in the literature. Only very recently [128], the aspect of
radiative losses in the class of composite right/left-handed (CRLH) leaky-
wave graphene devices has gained specific attention, especially in connec-
tion with the graphene quality.

In this Section, we focus our investigation on FPC-LWAs, whose radiation
mechanism is based on the excitation of ordinary (i.e., non-plasmonic) leaky
waves which exhibit a sinusoidal transverse modal profile [114], [115], and
compare them with those of graphene antennas based on the excitation of
SPPs either in bound or leaky propagation regimes [103], [104], [106]. The
ultimate goal is to assess the true limitations of these devices and ascertain
the benefits of designing graphene THz antennas whose radiation mecha-
nism is based on non-plasmonic leaky waves.

The Section is organized as follows. In 3.2.1 the electronic and physi-
cal properties of graphene are briefly reviewed. In particular, the validity
of Kubo formula [129], [130] is compared with more sophisticated mod-
els which take into account the spatially-dispersive nature of graphene. A
specific focus is devoted to the impact of graphene quality in graphene
ohmic losses. In 3.2.2 the role of plasmonic losses in graphene-based struc-
tures is rigorously discussed, showing how it affects the performance of
graphene THz antennas based on SPPs. This motivates the employment of
non-plasmonic leaky-waves in 2-D LWAs.

In 3.2.3 and 3.2.4 we present a thorough dispersive, modal, and radiative
analysis of two novel graphene-based 2-D LWAs: the Graphene Planar Waveg-
uide (GPW) [114] and the Graphene Substrate-Superstrate (GSS) antenna [115].
The non-negligible ohmic losses of graphene in the THz range are shown
here to determine a design trade-off between efficiency, directivity, and an-
gular reconfigurability of the radiation pattern. With particular reference
to radiation efficiency, the substrate-superstrate configuration (e.g., [115]) is
shown to provide additional desirable degrees of freedom with respect to
other solutions [103], [104], [106], [114].

In 3.2.5 some preliminary results are reported, considering the possibility
to use patterned graphene metasurfaces [113], [131], and thus add further
degrees of freedom in the antenna slab. Specifically, a Graphene-Strip Grating
(GSG) antenna has been considered as a perturbation of the GPW. Finally, in
3.2.6 considerations about the technological implementation of the proposed
devices are carefully addressed, taking into account all the limitations im-
posed by THz technology and graphene synthesis as well.
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3.2.1 Graphene properties

Graphene, a one-atom thick layer of carbon atoms arranged in a honey-
comb lattice, has been the subject of intense research in the last few years,
after the production of the first isolated flakes in 2004 [132], because of its
exceptional electronic transport properties [117], [133]. Graphene has a tri-
angular unit cell with a basis of two atoms with lattice constant a = 1.42 Å
(see Fig. 3.1(a)) and is a zero-bandgap material, with electron wavefunctions
exhibiting pseudospin and linear dispersion around the chemical potential
at the corners (K points) of the first Brillouin zone (see Fig. 3.1(b)). Conse-
quently, the linear dispersion of the energy allows for evaluating the Fermi
velocity as vF = h̄−1∂E/∂k where the energy is given by E = (3h̄ta/2)|k|
in the tight-binding model approximation [91], [134], [135], and where t is
the first nearest-neighbor tight-binding parameter. As a result, charge carri-
ers act as mass-less, chiral relativistic Dirac fermions with a constant Fermi
velocity vF = 3at/2 ' 106m/s at low energies.

On one hand, this produces a number of unusual features, typically ob-
served only in the context of quantum electrodynamics. On the other hand,
the resulting low electron effective mass and long scattering lengths lead to
very high carrier mobilities, with room-temperature values having orders of
magnitude as high as 200 000 cm2V−1s−1 [136]. Graphene is thus emerging
as a very attractive candidate for the realization of nanoelectronic circuits
[91], such as optoelectronic RF mixers [137], fast-switching transistors [138]
just to mention but a few.

Figure 3.1.: (a) The hexagonal lattice of a graphene monolayer. The unit cell of
graphene with lattice constant a has two carbon atoms per unit cell, A
and B. (b) Electronic dispersion (energy vs. kx and ky) obtained in the
frame of the tight-binding model [91]. Note the conical shape (linear dis-
persion) of the diagram in proximity of the K points of the firs Brillouin
zone of graphene. Around the K points the Fermi velocity. The figure is
a concession of [91].
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Graphene conductivity: Kubo formalism

The theory of graphene opens to a lot of other exceptional and unique
thermal, electrical, physical, and mechanical properties, whose discussion
goes beyond the scope of this PhD thesis. From an antenna engineer-
ing point of view, one extremely interesting aspect of graphene theory is
that, due to its infinitesimal thickness, a graphene monolayer is adequately
treated as a metasurface whose homogenized surface conductivity (neglect-
ing nonlocal effects [139], [140]) can be derived in scalar form by means
of the Kubo formalism [129], [130]. In this frame, graphene conductivity
σ = σintra + σinter is described by its intraband σintra and interband σinter con-
tributions given by the following expressions:

σintra =
2q2

e kBT
πh̄2(τ−1 + jω)

ln
[

2 cosh
(

µc

2kBT

)]
, (3.1)

σinter = −j
q2

e
4πh̄

ln
(

2|µc| − (ω− jτ−1h̄)
|µc| − (ω + jτ−1h̄)

)
, hyp.: kBT � |µc|, h̄ω, (3.2)

where ω = 2π f is the angular frequency is assumed throughout the paper),
−qe is the electron charge, kB is the Boltzmann constant, and h̄ is the re-
duced Planck constant, τ is the relaxation time (related to the scattering rate
Γ through Γ = 1/(2τ)), µc is the chemical potential (which is equivalent to
the Fermi level EF).

Clearly, σ is strongly affected by the values of µc which is in turn related
to the electrostatic bias E0. In fact, if one considers a graphene sheet embed-
ded in a medium of relative permittivity εr, the normal component of the
displacement vector field Dn = ε0εrE = ρs should be equal to the surface
charge (on either side of the graphene sheet) which is given by ρs = nsqe/2.
Due to the ambipolar electric field-effect [117], the 2-D surface-charge density
ns takes contributions from both negative and positive charge carriers, i.e.,
electrons and holes, respectively. As a consequence ns = |n− p|, where n and
p are the electron and hole carrier densities, respectively, whose expressions
are [141]:

n =
2
π

(
kBT
h̄vF

)2
J1(+µc), (3.3)

p =
2
π

(
kBT
h̄vF

)2
J1(−µc), (3.4)

with

J1(µc) =
1

(kBT)2

∫ ∞

0
E(1 + exp [(E − µc)/(kBT)])−1dE . (3.5)

Combining Eqs. (3.3) and (3.4) in ns we finally have:

ns =
2

πh̄2v2
F

∫ ∞

0
E [ fd(E)− fd(E + 2µc)]dE , (3.6)
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Figure 3.2.: E0 vs. µc in the range 0 ≤ µc ≤ 1 eV, obtained from 3.8, for εr = 1 (air).

where fD(E) is the Fermi-Dirac distribution:

fD(E) = (1 + exp [(E − µc)/(kBT)])−1. (3.7)

With these definitions at hand, E0 is expressed as a function of the chemical
potential µc through the following integral equation:

E0 =
qe

πε0εr h̄2v2
F

∫ ∞

0
E [ fd(E)− fd(E + 2µc)]dE . (3.8)

Hence, E0 can be directly obtained for a given chemical potential µc, by nu-
merically solving the integral on the right-hand side of Eq. (3.8) [119]. The
relation E0 vs. µc has been reported in Fig. (3.2) in the range 0 ≤ µc ≤ 1 eV
for a suspended graphene sheet (i.e., εr = 1). As is shown, the maximum
absolute value of the chemical potential that can be obtained with electro-
static field on the order of several V/nm (typically used in experiments1) is
around 1 eV. It should be noted that such an electrostatic field is rather high
and is generally above the voltage breakdown of most of common dielectric
materials [143]. This aspect will be further exacerbated in 3.2.6.

In the context of antenna engineering the ambipolar electric-field effect is
one of the most exceptional aspects of graphene theory, since it reveals that
the application of a bias voltage allows for changing the conductivity of
graphene even at fixed frequency, thus opening the possibility of designing
reconfigurable LWAs.

Graphene conductivity: non-local model

As is known [119], in the low THz band and for sufficiently low values of
the longitudinal wavenumber kz, spatial-dispersion effects can generally be
neglected. When such hypotheses are not fulfilled (e.g., extremely confined
SPP for which kz � k0), a non-local spatially dispersive conductivity model
[139] has to be taken into account. As is shown in [139], [140], graphene
conductivity is generally described by a non-local dyadic conductivity of

1 In recent experiments, bias voltages Vb on the order of 100 V have been applied across a
grounded dielectric slab covered with a graphene sheet [142]. In that case, a slab of quartz
(εr = 3.8) of thickness t = 300 µm was considered. Thus, for typical bias voltages in the range
of 0− 100 V, E0 = Vg/t would be in the range 0− 1 V/nm.
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graphene which, in spectral domain and polar coordinates, assumes the
following form:

σ =

[
σρ 0
0 σφ

]
, (3.9)

where σρ and σφ are functions of the radial wavenumber kρ only (hence
graphene is isotropic) and are given by

σρ =
vF

2πγD(1− χ) + vFχ
σφ, (3.10)

σφ = γ
2πα

v2
Fk2

ρ

(1− χ), (3.11)

where

γ =
jq2

e kBT
π2h̄2 ln

{
2
[

1 + cosh
(

µc

kBT

)]}
, γD = −j

vF
2πωτ

,

χ =

√
1−

v2
Fk2

ρ

α2 , α = ω + jτ−1. (3.12)

In Figs. 3.3(a) and (b), the expressions of σρ and σφ have been calculated in
the range 0.3 ≤ f ≤ 3 THz for an unbiased graphene sheet (µc = 0) when
kρ = k0 and kρ = 200k0, respectively, and compared with the expression
of σ given by Kubo formula (see Eqs. (3.1) and (3.2)). As expected, a non-
negligible difference is seen only for very high values of kρ for which the
values of σρ and σφ start to differ. In any case, σ (given by Kubo formula) is
always an underestimation of both σρ and σφ.

The non-local model may result useful, for particularly accurate simu-
lations of graphene, as well as dispersion analysis of extremely confined
(kρ � k0) SPP propagating along graphene sheets. Some results will be
shown further in this Section.
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Figure 3.3.: Real part (in red) and imaginary part (in blue) of the graphene surface
conductivity as a function of the frequency. Comparison between the
expressions of the non-local model, i.e., σρ (circles) and σφ (in squares),
and the Kubo formula σ (solid line). Results are shown for µc = 0 eV
and (a) kρ = k0, (b) kρ = 200k0.
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Figure 3.4.: Comparison between σ = σintra + σinter (solid lines) and σintra (dashed
lines) in the low THz range 0.3 ≤ f ≤ 3 THz for µc = 0.1 eV and τ =
3 ps. The agreement remains good for reasonable values of µc and τ.

Graphene conductivity: analysis of Kubo model

In the low THz range, i.e., for 0.3 ≤ f ≤ 1 [THz] and at room temperature,
i.e., T = 300 K σintra � σinter [118], [119], thus σ ' σintra (see Fig. 3.4). This
means that σ is sufficiently well described by a Drude-like expression, by
retaining only the intraband contributions, thus expressing σ as a complex-
valued scalar function of the chemical potential µc, the frequency f , and
the relaxation time τ. Since in this Chapter we always fulfill the hypothesis
of low THz and room temperature, from now on we will always assume
σ := σintra so that:

σ = σR − jσJ =
2q2

e kBT
(τ−1 + jω)πh̄2 ln

[
cosh

(
µc

2kBT

)]
, (3.13)

where σR and -σJ expressed in Siemens S are the conductance and the sus-
ceptance of graphene equivalent admittance, respectively. The behavior of
both σR and σJ as functions of the frequency f and the chemical potential µc

in the range |µc| < 1 eV at f = 1 THz, and in the range 0.3 < f < 3 THz for
µc ranging from 0 to 1 eV are reported in Fig. 3.5. In all these results, τ has
always be assumed equal to 3 ps. However, τ is never known a priori since
it mainly depends on the quality of the graphene sample; in the current
literature various values in the range 0.01− 10 ps have been assumed [112].

It is worth here to stress that, despite the existence of sophisticated mod-
els [144], [145] which account for the impact of phonon-scattering, grain
boundaries and impurities, etc. on graphene quality (either represented by
its charge carrier mobility µ, or represented by its relaxation time τ), the
latter strongly varies sample by sample, depending also on the adopted syn-
thesis technique [146]. Thus, a thorough analysis of graphene conductivity
should take into account the variability of the relaxation time within a suit-
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Figure 3.5.: (a) Graphene surface conductivity vs. chemical potential in the range
−1 to 1 eV at the frequency for frequency raising from 0.3 THz to 3 THz
(colors shade from blue to cyan for σJ and from red to yellow for σR,
respectively). (b) Graphene surface conductivity vs. frequency in the
band 0.3-3 THz for chemical potential raising from 0 to 1 eV (colors
shade from blue to cyan for σJ and from red to yellow for σR, respec-
tively).

able range of values provided by experimental data. The interested reader
can refer to the recent detailed survey proposed in [147].

In this frame, in order to make our analysis as general as possible, we
have considered values of τ ranging from 0 ps to 3 ps (which is the highest
value of τ that one can hope for pristine graphene [119]), rather than limit
our study to one specific value. Clearly, when the frequency f is fixed, σ

depends only on µc and τ. In Fig. 3.6 the values of σR (in colors) and σJ (in
black and white), at f = 1 THz, have been reported as functions of τ and
µc. As it can be expected, the resistive part of graphene conductivity (σR)
increases as µc increases and τ decreases (note that the graphene quality is
worse for lower values of τ), whereas its reactive part (σJ) increases as τ and
µc both increase. This behavior was already commented in [114], where it
was emphasized that, for high values of µc, σ becomes mostly reactive, so

Figure 3.6.: (a) Graphene Re[σ] and Im[σ] vs. τ at f = 1 THz for µc ranging from
0 eV to 1 eV. Re[σ] and Im[σ] curves gradually shade from red to blue
and from gray to black, respectively, as µc increases from 0 eV to 1 eV.
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that graphene can be switched from a bad to a good conductor when µc is
raised in the range 0 eV to 1 eV. However, from Fig. 3.6 we now notice that
also the ohmic losses increase for high values of µc. Hence, biased graphene,
even if of good quality (high values of τ), behaves as a good conductor with
non-negligible ohmic losses in the considered THz range.

In the next Subsection, this behavior is more deeply discussed in con-
nection with the dissipation losses of an SPP expressed by the nor-
malized attenuation constant α̂SPP of the normalized SPP wavenumber
k̂SPP = β̂SPP − jα̂SPP = kSPP/k0 (k0 being the wavenumber in vacuum). In
the next, wavenumbers normalized to k0 will always be identified with a
hat (·̂).

3.2.2 Graphene plasmonics

As is known [121], an SPP-wave supported by a graphene sheet is char-
acterized by a phase constant much larger than the free-space wavenumber,
thus resulting in a transversely evanescent and thus highly-confined surface
wave. Both the propagation wavenumber k̂SPP and the modal configuration
of the SPP directly depend on σ. For the simplest case of a conducting
graphene sheet suspended in vacuum (this is also a good approximation for
a graphene sheet in air above a ground plane at a distance greater than half
the wavelength in the substrate [104]), k̂SPP can be calculated in closed form
[120], [121]. In this case the normalized plasmonic wavenumber k̂SPP reads:

k̂SPP =

√
1− 4

(σζ0)2 , (3.14)

where ζ0 ' 377 Ω is the characteristic impedance of vacuum.
In particular, with the aid of some algebraic manipulations, it is possible

to derive an exact formula for the dissipation losses, expressed by α̂SPP as a
function of σR and σJ :

β̂SPP =

[
σR cos

(
1
2

arctan
Π
∆

)
− σJ sin

(
1
2

arctan
Π
∆

) ]
(∆2 + Π2)

1
4

σ2
R + σ2

J
, (3.15)

α̂SPP = −
[

σJ cos
(

1
2

arctan
Π
∆

)
+ σR sin

(
1
2

arctan
Π
∆

) ]
(∆2 + Π2)

1
4

σ2
R + σ2

J
,

(3.16)

where ∆ = σ2
R − σ2

J − 4/ζ2
0 and Π = −2σRσJ .

Graphene plasmonic losses

In Fig. 3.7, the value of α̂SPP, calculated using Eq. (3.16), is represented as
a greyscale map in the complex-conductivity plane for approximately the
same range of values achieved by σR and σJ in Fig. 3.6. Furthermore, the
paths followed by the complex-valued surface conductivity of graphene in
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Figure 3.7.: Intensity of plasmonic dissipation losses α̂SPP in the range [0, 1] in the
σ complex plane. The dynamic range of α̂SPP has been saturated to val-
ues greater than 1 for readability purposes. The paths followed by the
graphene surface conductivity in the complex plane have been reported
for values of f ranging from 0.75 THz to 1.25 THz (size of the symbols
increases), τ ranging from 0.1 ps to 3 ps (symbols change shape in the
following order: ◦,×,O, ∗) and µc ranging from 0.25 eV to 1 eV (color
of the symbol change in the following order: red, green, blue, and yel-
low). The black region represents the area characterized by the highest
dissipation losses and is attained by graphene samples with both lower
µc and τ.

the complex-conductivity plane, when frequency ranges from 0.75 THz (the
smallest size of the symbols) to 1.25 THz (the largest size of the symbols)
are represented for values of µc from 0.25 eV to 1 eV (using different colors)
and for values of τ from 0.1 ps to 3 ps (using different symbols). Note that
τ = 0.1 ps is a typical value for graphene on SiO2 substrate [128].

Since the black region in Fig. 3.7 represents the values of the complex-
conductivity leading to the highest dissipation losses, it is manifest that:

i) When frequency increases from 0.75 THz to 1.25 THz (following each
colored symbol from its smallest size to the biggest one), the graphene
surface conductivity moves to the region of highest dissipation losses,
for any chemical potential (color) or relaxation time (symbol), i.e., for
any biasing status or graphene quality. It is also evident that the vari-
ation of σ with frequency increases by increasing µc.

ii) When µc increases (following the color style of each symbol of any size
in the following order: red, green, blue, and yellow), the graphene sur-
face conductivity moves from the region of highest dissipation losses
to regions of lowest ones, approximately following a radial line with
respect to the origin of the complex-conductivity plane. The slope of
this line depends on the value of τ and f .
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iii) When τ increases (following the symbol style of each color of any size
in the following order: ◦,×,O, ∗) the graphene surface conductivity
moves from the region of highest dissipation losses to regions of lowest
ones, approximately following an arc of circumference centered at the
origin and whose radius depends on the value of µc and f .

The operating conditions of most graphene THz antennas based on SPPs
found in the literature [103], [104], [106] are such that τ ' 1 ps and
µc ' 0.5 eV at frequency of f ' 1 THz. From Fig. 3.7, this choice would lead
to α̂SPP ' 0.1 in agreement with the values found in [104]2. The resulting
dissipation losses are the most important limiting factor for the radiation
efficiency η of graphene THz antennas based on SPPs, which are typically
lower than 20% [103], [104], [106]. A similar result has recently been em-
phasized in [148] in connection with the use of silver patches in optical
nanoantennas.

Plasmonic figures of merit

So far, we have considered the quantity α̂SPP = αSPP/k0 = αSPPλ0/2π

as a figure of merit (FoM) for the dissipation losses of the SPP since we
are dealing with antenna applications, where the relevant dimensions are
typically related to the free-space wavelength λ0. However, a measure of the
quality of surface plasmons in waveguiding structures (such as, e.g., nano-
interconnects, nano-resonators, Bragg gratings etc.) is given by different
FoM. In [149], three figures of merit have been proposed as benefit-to-cost
ratios (where the benefit is represented by confinement and the cost is the
attenuation). Specifically, we focus on the M2 and the M3 FoM which are
defined as:

M2 =(β̂SPP − 1)/α̂SPP, (3.17)

M3 =β̂SPP/(2πα̂SPP), (3.18)

M2 gives a direct measure of the confinement of an SPP for 1-D and 2-D
structures, whereas M3 is strictly related to the quality factor Q [149]. In
Figs. 3.8(a) and (b), M2 and M3 are reported, respectively, as functions of
σR and σJ for an SPP propagating along a conductive sheet. As is seen,
both M2 and M3 considerably improve for rather low values of σR and suffi-
ciently high values of σJ . This clearly emphasizes that the use of SPP along
graphene sheets is of potential interest for future applications only for suffi-
ciently high values of τ and µc, for which graphene shows a relatively high
σJ and a moderate σR (see Fig. 3.6). As a final remark, it is worth here to

2 In [104], the propagation of an SPP along a graphene sheet (with parameters τ = 1 ps and
µc = 0.436 eV) over a quartz (SiO2) substrate (εrs = 3.8) at f = 2 THz was considered. From
Fig. 3.6 we get σR ' 3 mS and σJ ' 7 mS at f = 1 THz, which gives rise through Eq. (3.16)
to α̂spp ' 0.08 (see Fig. 3.7). According to [107], αspp linearly depends on f and on a scaling
factor S = (εrs + 1)/2. As a result, α̂spp does not depend on f , but it should be scaled by a
factor S = 2.4 (since we are considering a half-space of air), which gives α̂spp ' 0.2, as is found
in [104], thus corroborating the validity of our analysis.
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Figure 3.8.: SPP figures of merit: (a) M2 = (β̂SPP − 1)/α̂SPP and (b) M3 =
β̂SPP/(2πα̂SPP) vs. σR and σJ in the dynamic range shown in Fig. 3.5(a).
The former (Fig. 3.8(a)) gives a measure of the confinement of a
suspended SPP for 1-D and 2-D waveguide structures. The latter
(Fig. 3.8(b)) is strictly connected to the quality factor Q [149].

note that Eqs. (3.15) and (3.16), allow for deriving closed-form analytical
expressions for the evaluation of both M2 and M3. Hence, Eqs. (3.15) and
(3.16) as well as Figs. 3.6 and 3.7, may provide a useful tool for the design of
plasmonic-based devices either for antenna applications or for guided-wave
structures. (Note that Fig. 3.7 is specifically related to graphene plasmonic
losses, but Eq. (3.16) can be used for any metasurface whose surface admit-
tance σ is known).

Leaky-waves vs. surface plasmons

As is seen, dissipation losses in SPP-based THz antennas may lead to very
low efficiencies. To overcome these limitations, we consider now the prop-
agation of the ordinary, non-plasmonic, fundamental TE-TM3 leaky mode
pair inside a GPW [114]. (A thorough dispersive and modal analysis of the
GPW is postponed to Subsection 3.2.3).

Considerable physical insight can be gained by evaluating and comparing
the modal field configuration for both the fundamental TM leaky mode and
the SPP mode supported by a GPW; these have been computed by means
of a standard field-matching procedure [150] and are shown in Fig. 3.9(b)
for the GPW structure described in Fig. 3.9(a) (parameters are: µc = 1 eV,
f = 0.92 THz, h = 77 µm, and εr = 3.8). On one hand, the SPP modal con-
figuration is highly confined in proximity of the graphene sheet where the
electric field is maximum. This means that the graphene surface conductiv-
ity strongly affects the modal fields and in turn radiation (we recall that we
are considering a biased graphene sheet at 1 eV); at the same time, graphene
ohmic losses impact more so that the efficiency is lower. On the other hand,
the LW mode configuration resembles the one of the fundamental TM mode
of a parallel-plate waveguide (PPW), i.e., an ordinary mode with sinusoidal
transverse variation and a maximum on the middle plane of the antenna

3 Throughout the Chapter we will refer with the acronyms TE (TM) to transverse electric (mag-
netic) fields with respect to the xz-plane (see Fig. 3.9).
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(a) (b)

Figure 3.9.: (a) 2-D sketch of the GPW structure (εr1 = 3.8). The biasing scheme
is not reported. (b) Normalized field configurations of the tangential
component of the electric field Ez at f = 0.92 THz for the fundamental
TM leaky mode (red line) and the SPP (blue line) in a GPW antenna.
Grey and white regions represent the substrate and the air, respectively,
whereas the black diamonds stand for the graphene sheeet. The x-axis
is normalized to the height of the substrate h1.

cavity. As a consequence, the variation of the graphene surface conductivity
may have a reduced impact on the radiating features. At the same time the
graphene ohmic losses impact less and in turn efficiency should be signif-
icantly higher. Such considerations motivate the use of antennas based on
ordinary leaky waves rather than those based on SPPs (either in guided or
leaky regimes), for designing efficient reconfigurable graphene-based THz
antennas.

3.2.3 Graphene planar waveguide

The structure of the GPW considered here is shown in Fig. 3.10 along with
the relevant transverse equivalent network (TEN) [9], [151]. It consists of a
dielectric-filled PPW where the lower plate is assumed first a perfectly elec-
tric conducting (PEC) plane, whereas the upper plate is a graphene plane
that acts as a partially reflecting sheet (PRS) in order to allow for radiation
and exhibit reconfigurability properties (see Section 1.4). An extremely-thin
moderately-conductive polymer films, e.g., PEDOT:PSS [99], [152], is used
as a gate electrode to control graphene conductivity, but it is safely neglected
in the equivalent transmission-line model due to its extremely thin profile
and moderate losses [104], [153]. In this idealized structure we have as-
sumed several simplifying hypotheses. In particular, we have considered a
two-dimensional structure independent of y and laterally infinite, in which
the ground plane is treated as an ideal conductor characterized by an infinite
value of the conductivity and the substrate has no dielectric losses. More
accurate models will be treated at the end of this Subsection 3.2.3, where
it will be shown that the introduction of either realistic losses or non-local
conductivity models (see 3.2.1) do not significantly affect the results of our
analysis.
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Figure 3.10.: 2-D sketch, TEN model, and ABCD-matrix representation of a GPW
antenna.

Dispersion analysis

The dispersion equation for modes propagating along the considered
GPW is obtained by enforcing the condition of resonance on the relevant
transverse equivalent network (TEN) model (see Fig. 3.10), where the equiv-
alent admittances in air Y0 and inside the slab Y1 for TE and TM modes have
the following expressions:

YTM
0 =

ωε0

kx0
, YTM

1 =
ωε0εr1

kx1
, (3.19)

YTE
0 =

kx0

ωµ0
, YTE

1 =
kx1

ωµ0
, (3.20)

where kx0 =
√

k2
0 − k2

z and kx1 =
√

k2
0εr1 − k2

z are the transverse wavenum-
bers in air and in the dielectric, respectively, and kz = βz− jαz is the complex
longitudinal wavenumber, with βz and αz the relevant phase and attenua-
tion (or leakage) constants, respectively.

The resulting dispersion equation for TE modes is√
1− k̂2

z + σζ0 − j
√

εr1 − k̂2
z cot

(
k0h1

√
εr1 − k̂2

z

)
= 0, (3.21)

whereas for TM modes is(√
1− k̂2

z

)−1
+ σζ0− jεr1

(√
εr1 − k̂2

z

)−1
cot
(

k0h1

√
εr1 − k̂2

z

)
= 0, (3.22)

where h1 is the thickness of the slab. In Figs. 3.11(a)-(b) and (c)-(d)
Eqs. (3.21) and (3.22) have been solved (see 1.2.4), respectively, in the range
0.25− 2 THz and for different bias conditions, searching for both surface-
wave (SW) and leaky-wave (LW) modes. The waveguide is assumed to
be filled with a dielectric medium with εr1 = 3.8 (quartz) and thickness
h1 = (λ/2

√
εr1) ' 77 µm at f = 1 THz. The obtained dispersion behav-

iors are then compared with those of an equivalent grounded dielectric slab
(GDS), where the graphene sheet has been removed, and with those of an
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Figure 3.11.: Dispersion curves of SWs and LWs within the band 0.25− 2 THz for a
GDS (blue lines), a GPW (red lines), a BGPW (green lines), and a PPW
(gray lines). In dashed lines improper waves, in solid lines proper
waves. In (a) β̂z, in (b) α̂z for TE modes, and in (c) β̂z, in (d) α̂z for TM
modes.

equivalent PPW, where the graphene sheet has been substituted by a per-
fectly conducting metal plate.

Since graphene at low THz frequencies and for low values of µc is almost
transparent to radiation (its reactance |σJ | ' σR being rather low, see Fig. 3.5),
the unbiased GPW (henceforth referred to as GPW) can be seen as a pertur-
bation of the GDS. Conversely, for sufficiently high values of µc graphene
is almost opaque to radiation (its reactance |σJ | � σR being rather high, see
Fig. 3.5), and thus the biased GPW (henceforth referred as BGPW) can be
seen as a perturbation of a PPW. Results shown in Fig. 3.11 confirm how
the dispersion curves of the GPW are only slightly different from those of
the GDS. As can be seen, in both the TE and TM cases the propagating
modes exhibit the well-known transition regions between bound and leaky
regimes typical of dielectric-based open guiding structures [154], [155]. Un-
fortunately, LWs of the GPW are not suitable for efficient radiation here,
because they exhibit a very high leakage rate [2] especially at low frequency,
where the splitting condition (β̂z = α̂z) is met (see Section 1.3).

On the other hand, the LW modes of the BGPW are shifted closer to the
PPW ones, thus exhibiting a moderate leakage rate at the splitting condition.
This is a direct consequence of the behavior of σ as a function of the chemical
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Figure 3.12.: Dispersion curves of SWs and LWs within the band 0.25 − 1.5 THz
for three different values of the chemical potential. In dashed red line
improper leaky poles, in dashed blue line improper non-physical poles,
in solid red line SWs for the fundamental TM mode and in solid blue
line the remaining SWs. In (a) β̂z, in (b) α̂z for TE modes, and in (c) β̂z,
in (d) α̂z for TM modes.

potential. Indeed, we have previously seen that for low level of µc graphene
is almost transparent to radiation, getting more opaque for increasing values
of µc. Hence, it is worth to inspect the behavior of the complex modes
supported by the GPW for intermediate values of µc.

To this purpose, the dispersion curves of TE and TM fundamental modes
for three different values of µc = 0, 0.2, 1 eV are shown in Fig. 3.12 in order
to describe in more detail the nature of improper and proper complex so-
lutions in lossy GPW and to highlight the effect of increasing the bias. As
concerns improper leaky modes, we note that the introduction of a (lossy)
graphene sheet causes the generation of an improper complex pair of solu-
tions4, the leaky-wave solution, i.e., with αx < 0 and αz > 0 (see red dashed
lines in Fig. 3.12), and one with no physical meaning, i.e., αx < 0 and αz < 0
(see blue dashed lines in Fig. 3.12). The leaky-wave solution is physical when
0 < β̂z < 1 and can hence contribute to radiation, if properly excited (see
1.2.3). We remind that the leaky-wave solution corresponds to a pole of
the Green’s function of the waveguide: the LW is physical when the pole
is captured by the relevant steepest-descent path (SDP) [2]. Furthermore,

4 As it happens for a GDS covered with a lossy PRS (here represented by a graphene sheet), as
already commented in 1.2.3.



3.2 graphene-based leaky-wave antennas 99

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
0

0.2

0.4

0.6

0.8

1

f [THz]

β̂z or α̂z

µc [eV]
0.50 0.75 1.00

TE
1

TM
2

(a)

0.20.40.60.81
0

0.2

0.4

0.6

0.8

1

µc [eV]

β̂z or α̂z

 

 

TE
1

TM
2

(b)

Figure 3.13.: Dispersion curves of the TE1, TM2 fundamental LWs (a) within the
band 0.75− 1.1 THz for µc = 0.5, 0.75, 1 eV, and (b) within the range
0.2 ≤ µc ≤ 1 eV for f = 0.92 THz. In (a) β̂z and α̂z are both represented
in dashed lines for the TE1 mode and in solid lines for the TM2. In (b)
β̂z and α̂z are represented in solid lines and dashed lines, respectively,
for both modes.

as concerns the nonphysical improper complex solution, by increasing fre-
quency it becomes proper complex and reaches the cutoff condition of the
corresponding surface waves (see blue solid lines in Fig. 3.12(a), or red solid
lines in Fig. 3.12(c)). This kind of evolution of the complex wavenumbers
below cutoff is common to all the SW higher-order modes in both TE and
TM cases, as already extensively commented in 1.2.3.

Finally, specific attention is devoted to the behavior of the fundamental TE
improper complex solution of the GPW (the TE1 mode) as µc increases. As
is well known, for the fundamental TE mode of the GDS (blue dashed line
in Fig. 3.11), there exists only a real improper pole below cutoff (whereas
for the high-order modes a complex pair exists). However, we observe in
Fig. 3.12(a) that as µc increases up to 1 eV the fundamental TE improper
complex solution with αz < 0 gradually joins that with αz > 0 (a solution
that never exists in a GDS and that is of no interest in a GPW). Furthermore,
the latter becomes a fast (and physical) leaky mode in the frequency range
0.5− 0.75 THz.

The main results introduced by the application of the bias are better
shown in Fig. 3.13 where the dispersion curves for the fundamental TE
and TM LWs have been reported in (a) for three significant values of the
chemical potential as frequency varies from 0.75 to 1.1 THz, and in (b) for a
fixed frequency ( f = 0.92 THz) as chemical potential varies from 0.2 to 1 eV.
We recall here that the pointing angle θp and the half-power beamwidth
∆θ of a 2-D LWA are simply related to the normalized LW wavenumber
k̂z = β̂z− jα̂z, through Eqs. (1.28) and (1.32)-(1.33), respectively. Considering
now Fig. 3.13(a), it is clear that the radiative behavior over frequency asso-
ciated with the fundamental LWs improves for higher values of µc since the
leakage rate reaches lower values for both the TE and TM cases. Consider-
ing Fig. 3.13(b), we remark that the frequency of f = 0.92 THz corresponds
to the splitting condition for both TE and TM LWs when a bias of 1 eV is ap-



100 reconfigurable leaky-wave antennas

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

10

20

30

40

f [THz]

β̂z

 

 
µc= 0 [eV]
µc= 1 [eV]

(a)

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.5

1

1.5

f [THz]

α̂z

 

 
µc= 0 [eV]
µc= 1 [eV]

(b)

Figure 3.14.: Dispersion curves of (a) β̂z, (b) α̂z for the plasmonic mode SPP. Lines
become brighter (red to yellow, and blue to cyan) as µc increases from
0 to 1 eV. Note that as µc approaches 1 eV the SPP mode approaches
the PPW TEM mode.

plied (as can be seen by inspection of Fig. 3.13(a)). Here, the beam scanning
over chemical potential follows an optimal quasi-linear behavior for both TE
and TM modes, thus corroborating once more the tunable features of such
kind of LW radiation.

As concerns plasmonic propagation, it is worth mentioning that in the TM
case a SPP mode propagates in both the GPW and the BGPW, as it always oc-
curs between a dielectric (with relative permittivity εr), non-absorbing half
space with Re[εr] > 0 and an adjacent conducting interface with Re[εr] < 0
[120]. The dispersion curves of this mode are shown in Fig. 3.14 for the
GPW with a chemical potential that varies almost continuously from 0 to 1
eV.

Loss effects

A remark about ohmic and dielectric losses at THz frequencies is useful.
In fact, in all the results shown above, the effects of losses have been always
neglected in both the dielectric substrate and the metalization. We have then
computed the dispersion curves of the fundamental LWs considering a more
realistic model of quartz, with a complex permittivity characterized by a real
part Re[εr1] = 3.852 and a loss tangent tan δ = 0.0141 at f = 1 THz [156]. On
the other hand, ohmic losses have also taken into account for a metalization
of gold (see Fig. 3.15(a)) using two different models. The first model is
related to the approximate Leontovich boundary condition [157], assuming
a thick layer of gold with respect to the skin depth (see Fig. 3.15(c)). The
equivalent admittance is then given by the formula

Yabc =
1

1 + j

√
σm

πµ0 f
, (3.23)

where σm ' 44 [µΩm]−1 is the bulk conductivity of gold at 1 THz [158]. This
value is used in place of the short circuit of the TEN model of Fig. 3.15(b).
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Figure 3.15.: (a) 2-D section of the structure and its transverse equivalent networks:
(b) using the lossless model, (c) using the approximate Leontovich
boundary condition, and (d) using the transition boundary condition.

The second model does not assume a metal thickness t much larger than
the skin depth; however, since in any case t � λ, the metal layer can be
modeled through a transition boundary condition (see Fig. 3.15(c)). The
admittance is given by the formula

Ytbc = σmt, (3.24)

where t = 150 nm is the thickness of the layer, and σm ' 30 [µΩm]−1 is
now a thin-film conductivity which is accordingly reduced of a factor 0.69
[158]. Since the skin depth of gold at f = 1 THz, δgold ' 127.4 nm is slightly
shorter than the thickness of the layer, the short circuit represented in Fig.
3.15(b) is now replaced by an equivalent admittance given by Eq. (3.24) con-
nected to a semi-infinite transmission line of Fig. 3.23(d). In Figs. 3.16(a)
and 3.16(b) it is clearly shown that the effect of losses is quite negligible in
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Figure 3.16.: Effects of the introduction of losses and spatial dispersion in the curves
of the fundamental LWs in the band 0.9− 0.95 THz for (a) TE and (b)
TM modes. The red and green-blue lines consider the effect of dielec-
tric losses and ohmic losses, respectively. The yellow ones consider
the effect of a spatially dispersive model in addition to dielectric and
ohmic losses.
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Figure 3.17.: (a) Illustrative example of the typical scannable conical beam-scanning
feature of a GPW antenna. In (b) and (c), the radiation patterns nor-
malized to the overall maximum (achieved at broadside) vs. elevation
angle θ for the GPW antenna represented in (a), are reported for the
H-plane and E-plane, respectively. Analytical results are plotted in
black solid lines, whereas full-wave results obtained with the tool CST
Microwave Studio [159] are given by blue circles. The scanning be-
havior at a fixed frequency ( fc = 0.922) is shown for beam maxima
at θp = 0◦, 15◦, 30◦, 45◦. The corresponding chemical potentials are
reported in the legend.

both TE and TM cases, and hence the ideal model previously investigated
can be considered as a good approximation of more realistic conditions.

Effects of spatial dispersion

Furthermore, a spatially dispersive conductivity model of biased
graphene (see Section 3.2.1) has been considered in order to assess the accu-
racy of Kubo formula. The longitudinal (σρ) conductivity (Eq. (3.10)) affects
TM fields, whereas the transverse (σφ) one (Eq. (3.11)) affects TE fields (Eφ

is the only non-null electric field component of a TE mode with respect to
the xz-plane). Therefore the value of σ in the Eqs. (3.21), (3.22) is respec-
tively replaced by σφ and σρ, where we have used kρ = kz. The resulting
dispersion curves are shown in Figs. 3.16(a) and Fig. 3.16(b) where they
are compared with those obtained by using the Kubo formula for both the
lossless and lossy case. As it can be seen, spatial dispersion has a negligible
impact on the modal properties of the leaky modes (physical leaky waves
are characterized by βz < k0 and αz ≤ βz, hence |kz| is of the order of k0

and therefore spatial dispersion can be ignored [140]). As a consequence,
the beam scanning over frequency and over chemical potential is almost the
same, thus confirming the effectiveness of Kubo formula for a first qualita-
tive description of the radiating properties of this kind of structures. In the
light of these results, throughout this Section 3.2 (if not differently stated)
we will always assume i) a graphene scalar conductivity model as described
in Eq. (3.13), ii) ideal lossless dielectric layers, and iii) a perfectly conducting
ground plane.
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Radiative analysis

Finally, the far-field expressions of the GPW are calculated using the TEN
model (see Fig. 3.10), and with the aid of the reciprocity theorem [114],
[160], considering a horizontal magnetic dipole (HMD) directed along the
y-axis (see Fig. 3.17(a)) as a source. As has been discussed in Section 1.4,
for scanned beams the TE leaky mode primarily determines the radiation
features in the H-plane (xy-plane), whereas the TM leaky mode determines
those in the E-plane (xz-plane). For broadside patterns, both TE and TM
leaky modes are required for achieving a directive (pencil) beam [48], [57],
[58]. After some calculations it is found that on the H-plane (TE leaky mode)
the far-field expression F(θ) reads:

F(θ) = −j
k0

4π
cos θ

2YTE
sc cos(kx1hs) sec(kx1h1)

(σ + YTE
0 + YTE

sc )
, (3.25)

where Ym
sc = −jYm

1 cot(kx1h1) with m ∈ {TE, TM} (depending on the polar-
ization) is the short-circuit admittance seen from the graphene-slab interface
(x = h−1 ), and hs is the distance of the source with respect to the ground
plane. The expression for the E-plane pattern can be obtained by suppress-
ing in Eq. (3.25) the factor cos θ and replacing the TE admittances with the
TM ones:

F(θ) = −j
k0

4π

2YTM
sc cos(kx1hs) sec(kx1h1)

(σ + YTM
0 + YTM

sc )
. (3.26)

In the present form it is easy to recognize that the denominator of the
Green’s functions in Eqs. (3.25)-(3.26) correspond to the dispersion equa-
tions defined in Eqs. (3.21)-(3.22), whose zeros (and in turn the poles of
Eqs. (3.25-(3.26)) represent the resonant frequencies of the system [1], [20]. We
also note that the intensity of the radiation pattern over both planes is max-
imized when the source is placed on the ground plane hs = 0. This location
is quite convenient, since a HMD source can be used to model a slot etched
in the ground plane and back-illuminated by a coeherent THz source as a
quantum cascade laser (QCL) or a photomixer [83].

The results of our TEN approach (i.e., Eqs. (3.25)-(3.26) have been fully
validated for different values of µc (and corresponding pointing angles) by
means of the electromagnetic CAD tool CST Microwave Studio [159] (details
on the relevant implementation are provided in Appendix B): the agreement
between our approach and CAD is remarkable (see Figs. 3.17(b) and (c) for
the H- and E-plane, respectively).

As expected, the pointing angle is reached at almost the same bias over
both planes (see Fig. 3.17(b)-(c), since both the phase and the attenuation
constants are equally affected. It is worth here to notice that the equalization
of the TM, TE leaky-wave phase constants allows for both frequency- and
bias-scanning (as can also be inferred from Figs. 3.13(a) and (b), respectively)
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for a considerable range of the elevation angle with a nearly circular conical
scanned beam [114], [161].

Power analysis

Nevertheless, it is important to evaluate the theoretical radiation efficiency
in terms of the ratio η = Prad/(Prad + Pg + PL) where Prad is the power radi-
ated in space, Pg is the power dissipated along the graphene sheet, and PL

is the power dissipated at the antenna termination [10], [162]. As is typical
[11], these structures are assumed to be electrically large in the transverse
plane so that PL is negligible, thus η reduces to η = Prad/(Prad + Pg). (Note
that practical dimensions of such antennas are on the order of several hun-
dreds of µm as shown in [104], [114]).

The quantities Prad and Pg have been evaluated using the TEN model
and the ABCD-matrix representation [157] as in Fig. 3.10, where the ABCD
parameters of the transmission matrices T1 and T2 are given by:

T1 =

[
A1 B1

C1 D1

]
=

[
cos(kx1x0) jY1 sin(kx1h1)

j(Y1)
−1 sin(kx1h1) cos(kx1h1)

]
, (3.27)

T2 =

[
A2 B2

C2 D2

]
=

[
1 0
σ 1

]
. (3.28)

with m ∈ {TE, TM}.

When power density is maximized at broadside, i.e., when the splitting
condition β̂z ' α̂z is met (this would happen at f = 0.92 THz with α̂z ' 0.24,
for the TM mode when µc = 1 eV), one would obtain η ' 70% which is
quite above any graphene THz LWA based on plasmonic leaky waves [103]–
[106], thus motivating the use of ordinary leaky wave in the design of THz
graphene-based LWAs. This improved efficiency is paid at the expense of
a just slightly reduced reconfigurability, as can be seen by comparing the
dynamic range of µc that is needed to scan an angular range of 45◦ (from
Fig. 3.17 it is seen that µc scans a range from 1 eV to 0.5 eV) with the one
reported in [104] (there, µc scans a range from 1 eV to 0.6 eV).

A concluding remark on the performance of the GPW antenna concerns
the obtained directivity. As is seen in Figs. 3.17(b) and (c), the HPBW is
rather large on both planes, thus directivity is rather low. This is mainly
due to the relatively high values attained by the normalized attenuation
constant α̂z (see Eqs. (1.32)-(1.33). To improve directivity, an innovative GSS
antenna has recently been proposed in [115]. In the following Subsection,
we present the dispersive, radiative, and power analysis of such a novel
antenna, and compare its performance with respect to the GPW.
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Figure 3.18.: 2-D sketch, TEN model, and ABCD-matrix representation of a GSS
antenna.

3.2.4 Graphene substrate-superstrate antenna

The GSS structure proposed here basically consists of a GDS (relative
permittivity εr1, thickness h1) covered with a high-permittivity dielectric
superstrate (relative permittivity εr2, thickness h2) and hosting a graphene
sheet located at x = x0, with 0 < x0 ≤ h1 (see Fig. 3.18 for the details).

The GSS can be thought as a perturbation of a substrate-superstrate (SS)
antenna. As seen in Section 1.4, in a conventional SS antenna it is possible to
maximize the gain at a given pointing angle θp (measured from broadside)
and for an operating frequency f0 when the layer thicknesses are chosen ac-
cording to Eqs. (1.34)-(1.35) for the fundamental (m = 1) TE-TM leaky-mode

pair, i.e., as h1 = (λ1/2)/
√

1− sin2 θp/εr1, h2 = (λ2/4)/
√

1− sin2 θp/εr2,
where λ1,2 are the wavelengths inside the dielectric layers. Under these con-
ditions the antenna acts as a Fabry-Perot cavity where the superstrate has
the role of a PRS; a dominant TE/TM leaky mode pair can be shown to exist
in the modal spectrum of the structure, whose attenuation constant can be
made very small (and hence the antenna very directive) by selecting layers
with a high dielectric contrast (i.e., with εr2/εr1 >> 1) [57].

However, the introduction of a graphene monolayer inside the substrate
poses the question to find an optimum location (in terms of maximization of
directivity at broadside) in which to locate the graphene sheet to efficiently
perturb the SS structure. Clearly, when x0 = h1

5, the interaction between the
electric field and graphene is expected to be low, whereas when x0 = h1/2
the interaction is expected to be high as is manifest from Fig. 3.9. However,
it is not clear if the position of maximum interaction would provide the max-
imization of directivity at broadside. To this purpose, a rigorous numerical
analysis is presented here to find such an optimum position. It should be

5 In this case, the GSS is equivalent to the GPW except for the introduction of the cover layer (i.e.,
the superstrate).
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noted that, in the innovative solution presented here, the introduction of a
tunable element (as it is graphene) in the cavity of a SS antenna would al-
low for achieving fixed-frequency directive beam scanning, a feature that is
never possible in a conventional SS configuration. We note that this distinc-
tive feature is highly desirable in Multiple Input Multiple Output (MIMO)
THz communications and in security and safety applications as well

As for the GPW, a standard TEN model has been used for the modal
analysis of this structure (see Fig. 3.18), with transmission-line wavenum-

bers kx,i =
√

εr,ik2
0 − k2

z and characteristic admittances YTE
i = kx,i/ωµ0,

YTM
i = ωε0εr,i/kx,i (indices i = 0, 1, 2 refer to air region, substrate, and su-

perstrate, respectively). Assuming that the graphene layer is located inside
the substrate, the dispersion equation for both TE and TM modes reads:

σ− jYm
1 cot(kx1x0) + Ym

in1 = 0, (3.29)

where m = {TE, TM}; x1 = h1 − x0 is the distance of the graphene
sheet from the substrate-superstrate interface; Ym

in1 is the input admittance
at x = x+0 looking upwards, given by

Ym
in1 = Ym

1
Ym

in2 cos(kx1x1) + jYm
1 sin(kx1x1)

Ym
1 cos(kx1x1) + jYm

in2 sin(kx1x1)
, (3.30)

in terms of the input admittance Ym
in2 at x = h1 looking upwards:

Ym
in2 = Ym

2
Ym

0 cos(kx2h2) + jYm
2 sin(kx2h2)

Ym
2 cos(kx2h2) + jYm

0 sin(kx2h2)
. (3.31)

The same TEN can also be used to calculate the far field of a GSS excited by
a HMD source according to reciprocity theorem, as has been done for the
GPW.

Design method

Ideally, the graphene sheet should be placed at a suitable position where
it is capable of i) significantly affecting the normalized LW phase constant
β̂z, in order to produce useful beam-angle reconfigurability; ii) minimiz-
ing the normalized LW attenuation constant α̂z, in order also to improve
the antenna directivity. Since the horizontal electric field of the dominant
leaky modes has a null on the ground plane (x = 0) and a minimum at the
substrate-superstrate interface (x = h1), these two locations give rise to zero
or negligible graphene/SS interaction, respectively; an optimal position x0 is
thus expected to exist in-between (0 < x0 < h1). Such optimum position has
rigorously been determined here with a numerical analysis, by deriving the
complex roots kz from Eq. 3.29 as a function of frequency for any given x0

and searching for a minimum value of the normalized attenuation constant
α̂z at the cutoff frequency fc where the TM mode radiates at broadside, i.e.,
where β̂z ' α̂z [48] (note that, by increasing frequency above cutoff, the LW
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Figure 3.19.: (a) The dispersion curve (β̂z and α̂z vs. f in black solid and dashed
lines, respectively) of the fundamental TM leaky mode of the unper-
turbed SS is reported in the frequency range 0.75 ≤ f ≤ 1.25 THz. On
the same plot the values of the splitting condition (β̂z = α̂z) are shown
for different positions of the graphene sheet starting from the inter-
face x0/h1 = 1 to the ground plane x0/h1 = 0. The color of the dots
shades from red to blue as the graphene sheet moves from x0/h1 = 1
to x0/h1 = 0. An optimum position is found at f = 1.132 THz for
x0/h1 = 0.82 (black dot). Note that the frequency fc at which splitting
condition occurs ranges approximately from 1 THz to 1.5 THz. (b) Cut-
off frequency fc (blue solid line) and relevant value of β̂z( fc) = α̂z( fc)
(red dashed line) as a function of the normalized distance x0/h1 of the
graphene sheet from the ground plane, for the fundamental TM mode
in the GSS structure.

attenuation constant typically decreases). We note here that in 2D-LWAs
the directivity is straightforwardly related to the normalized attenuation
constant α̂z. In particular, for directive antennas the half-power beamwidth
∆θBW is given by ∆θBW ' 2α̂z/ cos θ for θ 6= 0 and ∆θBW ' 2

√
2α̂z for

θ = 0 (see Section 1.3). Thus, the directivity at broadside (θ = 0) can be
approximated by the following formula D0 ' 4π/∆θ2

BW ' 0.5π/α̂2
z .

For all the numerical results presented here (if not differently stated), a
quartz (SiO2) substrate (εr1 = 3.8) of thickness h1 = 77 µm and a hafnium-
oxide (HfO2) superstrate (εr2 = 25) of thickness h2 = 15 µm are considered,
loaded with a graphene sheet biased with a chemical potential µc = 1 eV (a
value for which graphene behaves as a good conductor at low THz frequen-
cies [114]).

In Fig. 3.19(a), we have reported the dispersion curve of the fundamental
TM leaky mode of the unperturbed SS and the splitting condition6 for the
GSS when the graphene sheet position x0 ranges from h1 (red dot) to 0 (blue
dot). As expected the TM dispersion curves of the leaky modes of the GSS
for x0 = h1 are very similar to those of the unperturbed SS. More interest-
ingly, it is seen that a position x0 exists for which α̂z is actually minimized.
This can be easier inferred from Fig. 3.19(b), where the cutoff frequency fc

and the relevant value of β̂z( fc) = α̂z( fc) are reported for the same condi-
tions of Fig. 3.19(a). As is shown, β̂z ' α̂z attains a minimum value of about
0.148 when x0 = 0.82h1 at fc = 1.132 THz. Moreover, as the graphene sheet

6 For readability purposes we do not have reported the dispersion curves for any value of
x0 = h1, but only the splitting condition.
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Figure 3.20.: (a) The dispersion curve (β̂z and α̂z vs. f in black solid and dashed
lines, respectively) of the fundamental TE leaky mode of the unper-
turbed SS is reported in the frequency range 0.75 ≤ f ≤ 1.25 THz. An
optimum position is found at f = 1.148 THz for x0/h1 = 0.805 (black
dot). Note that the frequency fc at which splitting condition occurs
ranges approximately from 1 THz to 1.5 THz. (b) Cutoff frequency
fc (blue solid line) and relevant value of β̂z( fc) = α̂z( fc) (red dashed
line) as a function of the normalized distance x0/h1 of the graphene
sheet from the ground plane, for the fundamental TM mode in the GSS
structure.

is moved towards the middle of the substrate, the cutoff frequency is shifted
upwards with a maximum in the position x0 = 0.5h1, where the horizontal
electric field is maximum and hence the graphene sheet strongly perturbs
the structure.

For the fundamental TE leaky mode very similar results are found (see
Fig. 3.20(a)-(b)). Specifically, the minimum condition (β̂z ' α̂z ' 0.140) is
now reached when x0 = 0.805h1 at fc = 1.148 THz. However, the region
of minimum α̂z is rather flat, so that the optimum condition for the antenna
directivity at broadside for a given polarization would be a quasi-optimum
condition for the other polarization. In the following, we will ‘arbitrarily’
consider an optimized GSS with respect to the TM polarization.

Figure 3.21.: Cutoff frequency fc (blue to cyan solid lines) and relevant value of
β̂z( fc) = α̂z( fc) (red to yellow solid lines) as a function of the distance
of the graphene sheet from the ground plane x0 normalized to the
substrate thickness h1, for the fundamental TM leaky mode in the GSS.
Similar results are found for the fundamental TE leaky mode. As the
dielectric contrast spans the following values d1,2 = 2, 5, 10, 20, 50, the
curves shade from blue to cyan and from red to yellow for values of fc
and of α̂z( fc), respectively.
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It is seen that, when graphene is placed at an optimum location x0 = xopt,
the SS is efficiently perturbed, since the layered structure formed by the
graphene sheet, by the portion of substrate of height x1, and by the super-
strate behaves as a highly reflective surface. As a consequence, the TE and
TM fundamental LWs of the modified structure have lower leakage con-
stants if compared to those of an equivalent unperturbed SS (attained at
x0 = 0 in Fig. 3.19), or to those of an equivalent GPW [114], as we expressly
see from the radiative analysis. It is worth here to remark that the position
of graphene has been chosen in order to minimize radiation losses at broad-
side (cutoff condition), thus we can even more expect that this minimization
still works for greater pointing angles [57].

It is worth noting that these optimum values generally depend on the SS
dielectric contrast d1,2 = εr2/εr1. Thus, the particular values of xopt = 0.82h1

and fopt = 1.132 THz for the fundamental TM mode, are related to the
choice d1,2 ' 6 made in this work. However, in Fig. 3.21 it is shown
that, when different dielectric contrasts are considered, this minimum condi-
tion still exists but is less pronounced and achieved for graphene positions
shifted towards the interface between the layers, as d1,2 increases. This is
exactly what we expect from theory, since, for a higher d1,2, cover effects
[163] dominate over graphene effects. Generally, xopt and fopt are nonlinear
monotonic limited increasing and decreasing functions of d1,2 ∈ (1, ∞), re-
spectively. Consequently, it is convenient to place graphene in a position
where it weakly interacts with the tangential electric fields (we recall here
that in a standard SS antenna the tangential electric field has a minimum at
the interface between the layers).

In the next paragraph the GSS with the graphene placed in the optimum
location previously described (i.e., for d1,2 ' 6) will be further investigated.
Particularly, the possibility to obtain beam-scanning over bias at a fixed
frequency will be addressed.

Dispersion analysis

We will focus here on the interesting dispersion and radiation behaviors
of the fundamental LWs (TE1 and TM2) of the optimized GSS, i.e., with
the graphene sheet located at the optimum position x0 = 0.82h1 and the
frequency fixed at the cutoff value fc = 1.132 THz for the fundamental TM
leaky mode, as the chemical potential is decreased from the starting value
of 1 eV to 0 eV (unbiased graphene).

In Fig. 3.22, the normalized phase β̂z and attenuation α̂z constants of the
fundamental TE and TM LWs are plotted as a function of the chemical poten-
tial µc for the optimized GSS configuration (solid lines) and compared with
those of an equivalent GPW configuration [114] (dashed lines), i.e., when
the superstrate cover is removed from the GSS and the graphene sheet is
replaced at the interface with the air (in this configuration the frequency
is fixed at fc = 0.92 THz corresponding to the cutoff frequency of the fun-
damental TM leaky mode supported by the GPW, as shown in [114]). As
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Figure 3.22.: Normalized phase constants and attenuation constants of the funda-
mental TM (in black) and TE (in grey) leaky modes of a GPW (dashed
lines) with parameters as in [114] (i.e., with graphene placed at the
interface between the air and a dielectric layer at a fixed frequency
fc = 0.92 THz) and of the proposed GSS (solid lines) with parame-
ters as in Fig. 3.19, with graphene placed at the optimum position
x0 = 0.82h1 at a fixed frequency fc = 1.132 THz, as a function of the
chemical potential in the range 1 > µc > 0 eV.

can be seen, both the TE and TM leaky modes of the GSS show two very
interesting features: i) the phase constants follow an optimal quasi-linear
behavior over the whole µc bias range, i.e., from 1 eV to 0 eV, ii) the atten-
uation constants exhibit a mild variation, remaining consistently under the
value of α̂z ' 0.15, considerably smaller than those in the GPW case (see
Fig. 3.22). The former feature, related to β̂z, enables for having a finer linear
tuning sensitivity over a considerable range of chemical potentials, namely
from 1 eV to 0 eV, thus allowing an accurate control of the beam-scanning
process. As a matter of fact, the β̂z of the GSS fundamental leaky modes
ranges from 0.15 to 1 over a bias that ranges from 1 eV to 0 eV, whereas for
the GPW fundamental leaky modes it ranges from 0.25 to 1 over a bias that
ranges from 1 eV to 0.35 eV. The latter feature, related to α̂z, enables for hav-
ing a desirable quasi-constant narrow beamwidth over the whole scanning
region. Notably, the superstrate cover is beneficial in order to achieve lower
leakage rates, thus strongly improving directivity. Indeed, the normalized
attenuation constant of a GSS never exceeds the value of 0.15, whereas for
a GPW the attenuation constant of the TM fundamental leaky mode can
attain values above 0.3.

Even more interestingly, the almost perfect equalization of the TE and
TM LW phase constants (essentially related to the fact that the equivalent
admittance σ of the graphene sheet is the same for both polarizations) im-
plies that the pointing angle is almost the same for both modes when bias
is fixed. By exciting the antenna with a pair of simple sources (e.g., electric
and magnetic dipoles) it is then possible to achieve dual or reconfigurable
polarizations.
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As we can expect from [114], both modes follow an optimal quasi-linear
behavior. Furthermore, the fundamental leaky modes of the GSS have a finer
tuning sensitivity and lower leakage-rates with respect to previous designs
[114], thus justifying the higher complexity of the structure.

Radiative analysis

As has been done for the GPW, the far-field expression of the magnetic
field radiated on the H-plane for a GSS, considering a HMD source directed
along the y-axis, is found:

F(θ) =
−jko

4π
cos θ

2YTE
in3

(YTE
in3 + YTE)

0

·
YTE

sc2

(YTE
sc2 + σ)

· cos(kx1hs)

cos(kx1h1)
M, (3.32)

with

YTE
sc2 = −jYTE

1 cot(kx1ξh1), ξ = x0/h1,

YTE
in3 = YTE

2
YTE

in2 cos(kx2h2) + jYTE
2 sin(kx2h2)

YTE
2 cos(kx2h2) + jYTE

in2 sin(kx2h2)
, (3.33)

YTE
in2 = YTE

1
YTE

in1 cos(kx1(1− ξ)h1) + jYTE
1 sin(kx1(1− ξ)h1)

YTE
1 cos(kx1(1− ξ)h1) + jYTE

in1 sin(kx1(1− ξ)h1)
,

YTE
in1 = σ + YTE

cc ,

M = cos(kx1h1) + jσYTE
1 sin(kx1h1)−

j sin(kx1h1) + σYTE
1 cos(kx1h1)

YTE
1 YTE

in3
.

It is straightforward to verify that for ξ = 1 (i.e., when the graphene sheet
is placed at the substrate-superstrate interface) and h2 = 0 (i.e., without the
superstrate), Eq. (3.32) coincides with Eq. (3.25). (The expression for the
E-plane can be obtained as previously described).

Both full-wave simulations (CST) and analytical results for the ra-
diation patterns (see Figs. 3.23(b)-(c)) confirm that the optimized GSS
shows substantially improved directivities with respect to GPW solu-
tions (see Figs. 3.17(b)-(c)) for all the considered pointing angles (θp =

0◦, 15◦, 30◦, 45◦). Note that the obtained directivities of both the GPW and
GSS are comparable with those obtained for the graphene-based SPP anten-
nas proposed in [104], [107]. The beam-scanning behavior is obtained at a
fixed frequency by just lowering the bias voltage (the relation between the
chemical potential and the bias voltage is expressed by Eq. (3.8)) to decrease
the graphene chemical potential from 1 eV to 0.3 eV for the GSS and from
1 eV to 0.5 eV for the GPW, corresponding to initial and final pointing an-
gles on H-plane θp = 0◦ and θp = 45◦, respectively. For further angles the
radiation patterns start to widen on both planes, as predicted from the dis-
persion analysis shown in Fig. 3.22. Moreover, the radiation patterns have a
quasi-constant beamwidth over the considered angular range from 0◦ to 45◦,
as can be predicted by looking at the slowly-varying leakage rates shown in
Fig. 3.22.
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Figure 3.23.: (a) Illustrative example of the typical conical beam-scanning feature
of a GSS antenna. In (b) and (c), the radiation patterns normalized
to the overall maximum (achieved at broadside) vs. elevation an-
gle θ for the GSS antenna represented in (a), are reported for the H-
plane and E-plane, respectively. Analytical results are plotted in black
solid lines, whereas full-wave results obtained with the tool CST Mi-
crowave Studio [159] are given by blue circles. The scanning behavior
at a fixed frequency ( fc = 1.132 THz) is shown for beam maxima at
θ = 0◦, 15◦, 30◦, 45◦. The corresponding chemical potentials are re-
ported in the legend.

Finally, quantitative comparisons between the beam features of the GSS
and of the equivalent GPW and SS are presented either graphically in
Fig. 3.24 for the H-plane, or tabularly for both planes in Table 3.1 and Ta-
ble 3.2 (note that all the reported values have been rounded to the second
decimal place). As is manifest from Fig. 3.24, the GSS patterns are rather
narrower than those of the GPW for any pointing angle. This aspect is also
corroborated by the numerical results of Table 3.1 where bias-scanning pro-
cess at fixed frequency is considered, and the HPBW on both H-plane and
E-plane of the GSS is compared to that of a GPW for pointing angles and

Figure 3.24.: H-plane radiation patterns, normalized to the overall maximum
(achieved at broadside), vs. elevation angle θ for a GSS antenna (solid
lines) with parameters as in Fig. 3.22 and for an equivalent GPW
(dashed lines), excited by a HMD placed on the ground plane. The
scanning behavior at a fixed frequency ( fc = 1.132 THz for the GSS
and fc = 0.92 THz for the GPW) is shown for four theoretical point-
ing angles θp = sin−1(β̂2

z − α̂2
z)

1/2 = 0◦, 15◦, 30◦, 45◦. The chemical
potentials for the GPW and the GSS are reported in the legend.
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Table 3.1.: HPBW on H(E)-planes for different bias-scanned pointing angles of GSS
and GPW antennas at fixed frequency.

HPBW [◦] on H(E)-plane at µc [eV]

θp[◦] GSS GPW

0 22.46(24.19) at 1.00 35.55(39.03) at 1.00

15 8.87(10.46) at 0.85 21.33(25.85) at 0.89

30 6.80(10.50) at 0.55 18.36(27.95) at 0.68

45 6.75(16.75) at 0.30 20.20(35.27) at 0.50

Table 3.2.: HPBW on both H(E)-planes for different frequency-scanned pointing an-
gles of GSS, GPW (at fixed µc = 1 eV), and SS antennas.

HPBW [◦] on H(E)-plane at f [THz]

θp[◦] GSS GPW SS

0 22.46(24.19) at 1.14 35.55(39.03) at 0.92 44.62(45.15) at 1.00

15 7.80(9.13) at 1.15 18.37(22.34) at 0.93 28.84(35.30) at 1.01

30 4.36(6.27) at 1.18 11.02(16.45) at 0.95 16.61(24.53) at 1.03

45 3.17(7.02) at 1.22 8.10(17.30) at 0.99 11.22(24.21) at 1.06

related chemical potentials according to the values reported in Eq. (3.24).
These results highlight that the introduction of a cover superstrate in a GPW
can significantly improve the directivity over the whole considered angular
range. From these results, however, it is not manifest whether the introduc-
tion of graphene is beneficial in an equivalent conventional SS configuration.
It is worth noting here that in a conventional SS LWA (i.e., without graphene)
the beam scanning property can be achieved only by changing the frequency.
A comparison similar to the one shown in Table 3.1 is then reported in Ta-
ble 3.2 for the GSS, for an equivalent GPW, and for an equivalent SS (equal
to the GSS without the graphene sheet) when a frequency-scanning process
is considered (for the graphene-based devices the chemical potential has
been fixed at µc = 1 eV). From this last comparison, it is noticeable that
the GSS configuration exhibits a significantly higher directivity with respect
to both SS and GPW configurations, thus corroborating the interest in such
GSS reconfigurable THz LWAs.

Power analysis

As for the GPW antenna, it is important to evaluate the theoretical radia-
tion efficiency η of the GSS antenna. Following the same procedure outlined
in the previous subsection, Pg and Prad have been evaluated using the TEN
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model and the ABCD-matrix representation as in Fig. 3.18, where the ABCD
parameters of the transmission matrices T1, T2, T3, and T4 are given by:

T1 =

[
A1 B1

C1 D1

]
=

[
cos(kx1x0) jY1 sin(kx1x0)

j(Y1)
−1 sin(kx1x0) cos(kx1x0)

]
, (3.34)

T2 =

[
A2 B2

C2 D2

]
=

[
1 0
σ 1

]
, (3.35)

T3 =

[
A3 B3

C3 D3

]
=

[
cos(kx1x1) jY1 sin(kx1x1)

j(Y1)
−1 sin(kx1x1) cos(kx1x0)

]
, (3.36)

T4 =

[
A4 B4

C4 D4

]
=

[
cos(kx2x2) jY2 sin(kx2x2)

j(Y2)
−1 sin(kx2x2) cos(kx2x2)

]
. (3.37)

In [115] it has been shown that the directivity at broadside is a non-linear
function of the graphene position x0. As it can be inferred from the ex-
pressions of the ABCD parameters, η is also a non-linear function of the
graphene position x0, thus in Fig. 3.25(a) the values of the efficiency η (red
line) and of the directivity at broadside (blue line) normalized to its maxi-
mum D̄0 = D0/Dmax (Dmax being the maximum value of D0 with respect
to x0) have been reported for graphene positions ranging from the ground
plane (x0 = 0) to the substrate-superstrate interface (x0 = h1). As is shown,
the maximum directivity does not correspond to a maximum of the effi-
ciency, thus the optimal position for the directivity, i.e., x0 = 0.82h1, does not
lead to the best configuration in terms of efficiency.
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Figure 3.25.: (a) Efficiency η vs. graphene positions in the substrate x0/h1 (red lines),
and directivity at broadside normalized to its maximum D̄0 (blue lines).
Both η and D̄0 have been calculated at the corresponding cutoff fre-
quency for each graphene position x0/h1. The grey dashed line, repre-
senting the efficiency of an equivalent GPW antenna, has been reported
for comparison. (b) The function f vs. x0/h1 of Eq. (3.38) for different
values of w. Color of the lines shades from blue to red as w ranges
from 0 to 1. Colored dots highlight the positions of the maxima of f as
w ranges from 0 (blue dot) to 1 (red dot). Maxima are located closer to
the interface as the efficiency is weighted more than the directivity.
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(a) (b)

Figure 3.26.: Field configurations of the tangential component of the electric field Ez
for the fundamental TM leaky mode (red line) in a GSS antenna (a) at
f = 1.13 THz when graphene is placed at x0 = 0.82h1 and (b) at f =
1.00 THz when graphene is placed at the interface x0 = h1. Light grey,
dark grey, and white regions represent the substrate, the superstrate,
and the air, respectively, whereas the black diamonds stand for the
graphene sheet. The x-axis is normalized to the height of the overall
structure h = h1 + h2.

In order to take into account both the directivity and the radiation effi-
ciency in the design process of such LWAs, we have therefore defined a
suitable function:

f (x0/h1) = w(η(x0/h1)) + (1− w)D̄0(x0/h1) (3.38)

where w ∈ [0, 1] ⊂ R is an arbitrary parameter which represents the weight
given to the efficiency. Note that f (x0/h1) is a convex combination of
η(x0/h1) and D̄0(x0/h1), thus maximizing this function would lead to max-
imizing the efficiency for w → 1 or to maximizing the directivity at broad-
side for w → 0. In Fig. 3.25(b) the function f (x0/h1) is represented for
intermediate values of w between 0 and 1. The curves shade from blue to
red as w increases from 0 to 1. As is seen, the maximum condition (small
colored dots in Fig. 3.25(b)) shifts toward positions x0 in the proximity of
the substrate-superstrate interface (positions too close to the ground plane
have not been considered for practical considerations) when w increases; in
fact, the efficiency of the GSS antenna is improved when the electric field
weakly interacts with the graphene sheet.

This physical explanation is also corroborated by the modal configuration
of the tangential component of the electric field Ez of the fundamental TM
leaky mode in a GSS reported in Fig. 3.26. As is shown, the intensity of the
electric field at the graphene position is stronger when graphene is placed
at x0 = 0.82h1 (see Fig. 3.26(a)) than when graphene is placed at x0 = h1

(see Fig. 3.26(b)). Consequently, the position x0 = 0.9h1 (see Fig. 3.25(b))
would lead to both efficiencies η and normalized directivities at broadside
D̄0 almost equal to 80%, thus representing a very good trade-off for the
antenna design. It is worth noting that this position is correctly predicted
by the maximum condition of Eq. (3.38) when w = 0.5 (see small green
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Table 3.3.: Comparison of efficiency η, directivity at broadside D0 and reconfigura-
bility ∆θ (scanning angular range) for GPW and GSS antennas, for differ-
ent quality (τ) of the graphene sheet.

τ [ps] x0/h1 fc [THz] D0 [dB] η[%] ∆θ [◦]

GPW

3.0 1.000 0.923 14.07 70 90

1.0 1.000 0.926 12.11 43 90(*)

0.5 1.000 0.928 10.34 29 90(*)

GSS

3.0 0.820 1.132 18.56 55 70

1.0 0.910 1.045 16.16 60 37

0.5 0.940 1.024 14.84 63 28

dot in Fig. 3.25(b)), i.e., when the same weight is given to η and D̄0 in the
maximization of Eq. (3.38).

Finally, calculations of efficiency and directivity have also been performed
considering τ = 0.5 ps and τ = 1 ps in order to show the significant
impact of the graphene quality on the performance of both GPW and GSS
antennas. The choice of these particular values of τ is motivated by the fact
that τ = 1 ps is the value used in [103], [104], [106], whereas τ = 0.5 ps
seems to be the best value one can hope to achieve for a graphene flake
at room temperature when deposited on impurity-free substrates like SiO2

[76], [147]. A comparison of the values of efficiency, η, of directivity D0 in
dB, and of reconfigurability, given in terms of the angular range ∆θ that can
be scanned with a bias variation of 1 eV, is reported in Table 3.3 for three
different values of τ, namely 0.5 ps, 1 ps and 3 ps, for both the GPW and the
GSS antennas, when in the latter x0/h1 is chosen to maximize directivity at
broadside.

As is shown, the directivity D0 and the reconfigurability ∆θ of both GPW
and GSS antennas worsen as the quality of graphene (i.e., τ) decreases. How-
ever, the efficiency of the GSS antenna counterintuitively improves as τ de-
creases. This behavior can readily be explained by noting the different po-
sitions assumed by the graphene sheet inside the substrate. As it can be
seen, when τ decreases, the position which leads the GSS antenna to the
configuration that exhibits the maximum directivity at broadside shifts to-
ward the interface where the interaction with the tangential electric field is
weaker and thus the efficiency becomes higher. Conversely, the reconfigura-
bility is considerably reduced, as confirmed by the abrupt decrease of ∆θ

as τ decreases as well. This is mainly due to the fact that, for lower values
of τ, graphene ohmic losses are no longer negligible and thus a weaker in-
teraction is preferred for maximizing the directivity, but at the expense of a
reduced reconfigurability. Note that the asterisk (*) for ∆θ = 90◦ for GPW
antennas with τ = 0.5 ps and τ = 1 ps means that the whole angular range
(from broadside θp = 0◦ to endfire θp = 90◦) is reached for a larger bias
range, thus leading to a reduced performance in terms of reconfigurability.
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Table 3.4.: Comparison of directivity and reconfigurability for GSS antennas with
different efficiencies and for different quality (τ) of the graphene sheet.

τ [ps] x0/h1 fc [THz] D0 [dB] ∆θ [◦]

GSS (η = 75%)

3.0 0.890 1.062 17.93 44

1 0.940 1.023 15.73 28

0.5 0.955 1.015 14.69 25

GSS (η = 90%)

3.0 0.940 1.023 16.48 28

1.0 0.970 1.007 14.61 21

0.5 0.980 1.003 13.93 18

Finally, we have calculated the performance of the GSS antenna when
graphene is no longer placed in the position which maximizes directivity at
broadside, but in positions that would lead to fixed efficiencies η = 75% and
η = 90%, respectively. It is worth here to stress that these results are in good
agreement with the theoretical limits established in [126] for the efficiency
of reconfigurable graphene antennas. Indeed, the theoretical efficiency of a
GSS would be upper-bounded by ηmax . 95%, as can be inferred looking
at the values on the bisector of Fig. 2 in [127] for γmax = 30 (the minimum
value of γmax for 0.5 < τ < 3 ps and f = 1 THz, when one considers the
maximum achievable angular range, i.e., µc = 1 eV and 0 eV is still greater
than 70, according to Eq. (10) in [127]). We should also mention that the re-
sults of [126], [127] are based on a far-field representation through spherical
waves that holds for antennas with finite dimensions [164], in constrast with
our initial assumption of transversely-infinite size. However, any practical
2-D LWA is laterally truncated at a suitable radial distance (which depends
on both the desired radiation efficiency and the leakage rate, such that the
antenna performance is negligibly different from that obtained in the ideal
infinite case [114]).

Results are shown in Table 3.4. As expected, a higher efficiency is paid at
the expense of a reduced reconfigurability for the aforementioned reasons.
In particular, when standard graphene (τ = 0.5 ps) is considered, an ex-
tremely efficient GSS antenna (η = 90%) would exhibit poor reconfigurable
properties, scanning angular regions being limited to an angular sector of
only 18◦. A similar conclusion holds also for LWAs based on SPP as has been
stressed in [128] for the graphene CRLH metamaterial waveguides, whose
performance is severely affected by the graphene quality. However, our last
results emphasize even more the better design flexibility of GSS with respect
to GPW antennas, and especially with respect to their counterparts based
on SPPs.



118 reconfigurable leaky-wave antennas

Figure 3.27.: 2-D section of the GSG antenna and its TEN model.

3.2.5 Graphene strip grating antennas

The GSG proposed finally here is a reconfigurable leaky-wave antenna
based on a patterned graphene metasurface as the one depicted in Fig. 3.27.
The structure is equal to the GPW [114], except for the patterning of the
graphene sheet. Specifically, we have considered a dense array of infinitely-
long graphene strips aligned along the y-axis. The proposed grating is
characterized by a subwavelength period p = λ/5 and a very small gap
between the strips w = p/10 = λ/50 at the design frequency f = 1 THz
(which corresponds to λ ' 300 µm). Under these conditions, the patterned
graphene sheet can accurately be described by a single homogenized surface
impedance [50], [52], [53]. Note that, under these hypotheses, the proposed
GSG is considerably different from those proposed in [131], where the pe-
riod of the grating is comparable with the wavelength, and hence a single
impedance would not suffice for the description of the properties of the
surface [52].

For an imperfect conductor, or more generally for an arbitrary 2-D ma-
terial characterized by a complex surface conductivity as graphene, the fol-
lowing expressions for the homogenized TE and TM impedances hold [50],
[53]:

ZTM
s =

p
σ(p− w)

− j
ζeff
2α

, (3.39)

ZTE
s =

p
σ(p− w)

− j
ζeff

2α(1− (kz/keff)2)
, (3.40)

with

α = (keff p/π) ln csc
(

πw
2p

)
,

where keff = k0
√

εeff, ζeff = ζ0/
√

εeff, and εeff = (εr1 + 1)/2.

Following the same procedure outlined in [114], [165], the dispersion
curves of the GSG are readily obtained using Eqs. (3.39)-(3.40) to describe
the sheet impedance. Results are shown in Fig. 3.28 where the disper-
sion curves of the fundamental TE (see Figs. 3.28(a) and (c)) and TM (see
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Figure 3.28.: Dispersion diagrams of β̂z and α̂z vs. f for (a)-(c) TE and (b)-(d) TM
fundamental leaky modes of a (a)-(b) graphene-based planar single-
slab antenna (solid lines) and a (c)-(d) graphene-strip grating antenna
(dashed lines). The values of the chemical potentials µc are reported in
the legends.

Figs. 3.28(b) and (d)) leaky modes of the GSG have been reported and com-
pared with those of the GPW (see Figs. 3.28(a)-(b)) for four different values
of the chemical potential µc. The values of µc have been selected in or-
der to get the same theoretical pointing angles [48] analyzed for the GPW
and the GSS antennas, i.e., θp = 0◦, 15◦, 30◦, 45, at the fixed frequencies of
f ' 0.922 THz for the first one and of f ' 1.12 THz for the second one. As
is shown, except for a frequency shift, the behaviors are similar, and hence
comparable radiative performances are expected from the contribution of
the relevant leaky modes.

To verify this, the radiation patterns (see Fig. 3.29) have been calculated
analytically by taking into account only the contribution of the leaky mode,
as described in [48]. As expected, the radiation patterns at broadside (black
lines) of a GSG show a slightly larger beamwidth due to the small increase
of the leakage rate, as can be inferred from the inspection of Figs. 3.28 and
3.29. However, as the bias is decreased from its maximum value µc = 1 eV
(broadside condition), graphene ohmic losses increase as extensively com-
mented in 3.2.1. As a consequence, in the GPW (see Figs. 3.28(a)-(b)), the
leakage rates at the cutoff frequency f ' 0.922 THz tend to remain al-
most the same (note that, in 2-D LWAs, as the phase constant increases
beyond the cutoff frequency, the leakage rate usually decreases [48]), and
in turn the corresponding half-power beamwidths are rather large over the
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Figure 3.29.: Normalized radiation patterns P(θ)/Pmax vs. θ for (a) TE and (b) TM
fundamental leaky mode of a GPW (blue lines) and a GSG (red lines).

considered scanning range (see solid lines in Figs. 3.29(a)-(b)). Conversely,
in the GSG (see Figs. 3.28(c)-(d)) the leakage rates at the cutoff frequency
f ' 1.12 THz decrease as µc decreases, and in turn the corresponding half-
power beamwidths (see dashed lines in Figs. 3.29(a)-(b)) are narrower than
those of the GPW (see solid lines in Figs. 3.29(a)-(b)) as the beam is scanned
for a wider angle. This behavior has a simple physical explanation. As can
be inferred from Eqs. (3.39)-(3.40), the dependence of σ on the homogenized
impedance of the graphene-strip grating, is ‘weighted’ by the geometrical
properties of the grating. As a consequence, any change in the graphene con-
ductivity σ is reflected in a weaker effect whose intensity depends on the
‘filling-factor’ w/p. The results shown here are thus a direct consequence of
the choice w/p = 0.1.

As a final remark, the different equalization of the TE-TM modes in the
case of a GSG is worth to be commented. As is seen, the values of the
chemical potentials needed to obtain the same pointing angles are different
over the H- and the E-plane, whereas they are almost the same for the GPW.
This is a consequence of the different expression (see Eqs. (3.39)-(3.40) of
the equivalent impedance shown by the graphene-strip grating for the TE
and the TM case. However, the GSG, is still quite attractive thanks to the
additional degrees of freedom provided to antenna designers. In fact, the
possibility to use a patterned graphene sheet, instead of a uniform unpat-
terned graphene sheet, allows for independently biasing each strip, thus
permitting the realization of tunable LWAs with a tapered aperture distribu-
tion.

We finally note that the radiating features of the GSG have been prelim-
inarly analyzed assuming a homogenized impedance for the GSG. In this
context, full-wave simulations are even more required in order to assess the
validity of the homogenization formulas in Eqs. (3.39)-(3.40) for conductive
strips characterized by a finite complex conductivity as graphene.
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3.2.6 Technological aspects

In this Subsection, we provide some information about the technological
implementation of a GPW, a GSS, and a GSG. The proposed structures are
depicted in Figs. 3.10, 3.18 and 3.27, respectively. The antenna feed excita-
tion can be achieved through a finite-size slot etched in the ground plane
whose dimensions along the y- and the z-axis are in the order of λ/5 and
λ/10, respectively. Then, a coherent THz source, such as a quantum cascade
laser (QCL) beam, can be used to illuminate the slot in order to suitably ex-
cite the fundamental leaky modes.

The lateral dimensions of the structure are calculated following the design
rules outlined in [114], in order to minimize diffraction from edges which
would affect the shape of the radiation patterns, especially on the sidelobes.
In particular, considering a circular substrate with radius ρap and assuming,
as is customary, that the relevant leaky modes have radiated 90% of their
power before reaching the structure edges, it can readily be shown that

ρap

λ0
' 0.18

α̂z
, (3.41)

where λ0 is the free-space wavelength at f = 1 THz. With reference to
the case of the GPW, where α̂z ' 0.2, this implies a substrate having linear
dimensions of the order of 500 µm, whereas for the case of a GSS, where
α̂z ' 0.15, they should be of the order of 750 µm. The increased linear di-
mensions of a GSS with respect to a GPW are due to the reduced value of
the leakage rate provided by the cover effect of the superstrate [115]. How-
ever, such dimensions, and even higher, are within the state of the art for
the production of high-quality graphene sheets as pointed out by many re-
cent works [166]–[171]. As is known, the chemical vapor deposition (CVD)
method allows for the synthesis of high-quality large-area graphene films
grown on copper foils. Even more interestingly, it has recently been shown
that a new, simple and effective method based on CVD [171] allows for
the production of several square centimeters of strictly monolayer graphene
sheet, thus paving the way for the mass production of monolayer graphene
in industry.

Once the graphene film is produced, it can be transferred onto a back-
metalized SiO2 substrate (already comprising the polysilicon layer) as de-
scribed in [169]. In the case of a GSS, a double-layered slab consisting of
a layer of SiO2 and a layer of HfO2 is then stacked on top of the graphene
sheet.

With regard to the GSG, the only difference would consist in the transfer
process of the graphene sheet from the copper foil to an imprinted poly-
methyl-methacrylate (PMMA), as well described in [172]. It is worth here
to stress that this technique [172] preserves the quality of the CVD grown
graphene, and offers the possibility to transfer of the GSG onto the silicon
oxide substrate.
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The tunable features of graphene are then exploited by varying the DC
voltage between the graphene sheet and the polysilicon layer, used here
as a gate electrode (the interested reader can find further details on the
realization of different biasing schemes in [173]). With regard to this last
aspect, some limitations exist due to the high electrostatic field requested
to achieve significant values of chemical potentials. As shown in 3.2.1, an
integral equation relates the chemical potential µc to the electrostatic field
E0. In Fig. 3.2, it is seen that a variation of µc in the range 0 eV to 1 eV re-
quires electrostatic fields of several V/nm. However, the voltage breakdown
of the dielectric filling the capacitor constituted by the graphene layer and
the conductive polymer layer is rarely taken into account in the literature.
Indeed, by means of the approximate formula [142], [174]:

E0 '
qe

ε0εr

1
π

(
µc

h̄vF

)2
, (3.42)

where vF ' 106 m/s is the Fermi velocity in graphene, it is easy to find that
the maximum chemical potential µc,max that can be achieved for a certain
material is given by the formula:

µc,max = h̄vF

√
πε0εrEbd

qe
, (3.43)

where Ebd represents the voltage breakdown of a given dielectric material.
If ones uses Ebd of SiO2 (εr = 3.8, Ebd = 1.5 V/nm) which is one of the ma-
terials with the highest Ebd [143], it comes out that the maximum chemical
potential that can be achieved is only 0.436 eV. However, since µc,max de-
pends not only on Ebd but also on εr, an accurate analysis of Table I in [143]
revealed us that the choice of HfO2 (εr = 25 and Ebd = 0.67 V/nm), TiO2

(εr = 95 and Ebd = 0.25 V/nm), and Al2O3 (εr = 9 and Ebd = 1.38 V/nm)
lead to values of µc,max equal to 1.12 eV, 1.33eV, and 0.92 eV respectively. It
is worth here noting that, even if both HfO2, TiO2, and Al2O3 are charac-
terized by a non-negligible loss tangent in the THz range [175], [176], the
extremely thin layer that is needed in our design would result in a negligi-
ble impact on the performance of the antenna. It should also be noted that
these materials (viz., HfO2, TiO2 and Al2O3) provide minimal degradation
of epitaxial graphene structural properties when integrated with thin dielec-
tric layers [177]. In particular, it is seen that Al2O3 is only mildly affected
by surface-optical phonon-scattering with respect to other high-permittivity
materials [144].

On the other hand, it has been shown that high-permittivity materials are
subject to phonon scattering which reduce the mobility of graphene [144].
A good choice is represented by Alumina (Al2O3).

Furthermore, very recently new techniques involving ion gel gate di-
electrics [174], [178] seem to provide an innovative solution in order to bias



3.2 graphene-based leaky-wave antennas 123

graphene up to 1 eV avoiding the problems posed by the voltage breakdown
of the most common dielectric materials.

As a final comment, since in our design the minimum value of the chem-
ical potential for scanning the beam at 45◦ is of the order of 0.30 eV [115], a
suitable solution in order to avoid the use of TiO2 and HfO2 could be repre-
sented by the possibility of chemically pre-doping graphene. Note also that
chemical doping seems to scarcely affect the mobility of carriers in graphene
[117].
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3.3 fabry-perot cavities based on liquid
crystals

3.3.1 Introduction

In the previous Section we have exhaustively seen the exceptional features
of graphene LWAs. Several designs, namely, the Graphene Planar Waveg-
uide (GPW), the Graphene Substrate-Superstrate (GSS), and the Graphene
Strip Grating (GSG) antennas have been promoted as promising candidates
for the development of novel efficient reconfigurable 2-D LWAs in the THz
range.

However, the technological implementation and the measurements of the
proposed devices in the THz range is a delicate task. As is seen (see 3.2.6),
the graphene synthesis as well as the realization of the biasing scheme, may
present some issues. The former, usually impact on graphene quality caus-
ing the degradation of the radiation performance, as recently pointed out in
[173]. The latter may restrict the range of tunability of the proposed devices
due to the high required levels of the electrostatic field, which may cause
the voltage breakdown of the dielectric materials.

In this context, in the present Section we will consider nematic liquid
crystals (NLCs) as an alternative tunable element to graphene, for the design
of THz reconfigurable 2-D LWAs. As is known [92], [93], the application of
a low driving voltage allows for tuning the dielectric properties of LCs. As a
consequence, the phase constant of the LW modes responsible for radiation
is affected, determining the beam steering capability at fixed frequency. We
then propose an innovative configuration of electronically scanning THz
Fabry-Perot cavity (FPC) LWAs based on NLCs.

In 3.3.2 we briefly describe the general physical properties of LCs with
particular emphasis on NLCs. In 3.3.3 a simplified electromagnetic model
for NLCs is derived to characterize its dielectric properties. The dynamic
range exhibited by its permittivity tensor is shown for a considerably wide
range of bias voltages. Thus, inspired by tunable filters using LCs in a FPC
[179], [180], several designs of FPC-LWAs based on NLCs are developed in
3.3.4 using the electromagnetic model derived in the previous Subsection.
Dispersive and radiative analyses are presented for different configurations,
characterized by different choices of the thicknesses and the number of the
layers, assuming lossless models. On the basis of such an analysis, two
specific designs are validated through full-wave simulations for both the
lossless and the lossy case. Results clearly reveal the advantages and disad-
vantages of their implementation in both ideal and realistic scenarios.
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3.3.2 Liquid crystals

Nematic liquid crystals (NLCs) are the most widely studied and used liq-
uid crystals (LCs). As is known [92], in addition to the solid crystalline and
liquid phases, LCs exhibit intermediate phases (mesophases) where they flow
like liquids (thus requiring hydrodynamical theories for their complete de-
scription), yet possess some physical properties characteristic of solids (thus
requiring the elastic continuum theory for their complete description). As a
function of temperature, or depending on the constituents, concentration,
substituents, and so on, LCs exist in many so-called mesophases: nematic,
cholesteric, smectic, and ferroelectric [92].

As a matter of fact, among all liquid crystals mesophases, NLCs best ex-
emplify the dual nature of liquid crystals–fluidity and crystalline structure.
Generally speaking, we can divide liquid crystalline phases into two dis-
tinctly different types: the ordered and the disordered. For the ordered
phase, LCs behave much more as solids. However, even in the ordered
phase, LCs still possess many properties typical of liquids. Liquid crystals
in the disordered or isotropic phase behave very much like ordinary fluids of
anisotropic molecules. There is, however, one important difference, which
make them attractive for electromagnetic applications: near the isotropic
nematic phase transition temperature, the LC molecules become highly suscep-
tible to external fields, and their responses tend to slow down considerably
[92].

In particular, it is known that [92], [93], when no bias is applied, the op-
tical axis of the LC molecules is aligned along the horizontal axis (unbiased
state), whereas, when a sufficiently large driving voltage (typically an alter-
nating voltage in the few kHz range to prevent electrochemical degradation)
is applied across the LC, the optical axis is fully tilted along the vertical axis
(biased state) [181] (see Fig. 3.30). While the maximum achievable tuning
range can be inferred from the knowledge of these two limiting states, the
voltage-dependent tunable properties of LCs require a rigorous study of the

Figure 3.30.: Representation of NLC molecules twisting in a LC cell. The optical
axis of the NLC switches under the effect of an applied bias voltage.
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Figure 3.31.: 2-D section (a) on the xy-plane and (b) on the xz-plane of the THz
fishnet MM. Further details on the unit-cell are available in [96].

LC dynamics. This task can be performed by employing the Q-tensor for-
mulation, an advanced numerical tool for the accurate studies of the LC
orientation in confined geometries [96].

In the next Subsection, we will show the results of such an analysis in re-
lation to a novel tunable THz fishnet metamaterial (MM) based on thin NLC
layers. These results will serve us to develop a simplified electromagnetic
model of LCs to be used in the analysis of some original FPC-LWAs based
on NLCs.

3.3.3 Electromagnetic model for nematic liquid crystals

Among the different kind of NLCs, we consider here the nematic mixture
1825 because of its high birefringence at THz frequencies [96]. The dielectric
properties of such a material are described by a complex permittivity tensor:

ε = ε0

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 , (3.44)

where εij ∈ C for i, j ∈ {x, y, z} are the cartesian components of the relative
permittivity. In general εij 6= εkl for any pair {i, j} 6= {k, l} with i, j, k, l ∈
{x, y, z}, due to the anisotropic nature of the NLC. The analysis of the Q-
tensor in [96] provided us the values of the relative permittivity components
for different values of the electrostatic field when the LC layer is biased
through the THz fishnet MM reported in Fig. 3.31. In Fig. 3.32, the real
parts7 of the diagonal components, i.e, εii, are reported for bias voltages Vb

going from 0 V (unbiased state) to V∞ = 7 V (biased state), as contour plots
over the xy-plane for z = 0 (see Fig. 3.31(b)). In Fig. 3.33, the same plots are
reported for the off-diagonal components, i.e., εij for i 6= j8. As is seen, the
optical axis of the NLC tilts in the xz-plane exhibiting a negligible rotation

7 Imaginary parts are not reported for brevity. Their behavior is qualitatively similar to those of
the real parts but on a different scale, the imaginary parts changing from approximately 0.08
to 0.05.

8 Only three components are reported due to the Hermitian symmetry of ε, viz., εij = ε∗ji .
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Figure 3.32.: Real part of the diagonal terms εii(x, y, z = 0) vs. xy-plane of
the relative permittivity tensor for Vbias = 0− 7 [V]. First column
(i = x), second column (i = y), and third column (i = z). Starting
from the first row the driving voltage takes the following values:
{0, 1.5, 2, 3, 4, 7} [V].

over both the yz- and the xy-plane. Thus, at a first approximation9, the NLC
can be locally modeled as a uniaxial crystal whose complex permittivity
tensor is given by:

ε(0) = ε0

εo 0 0
0 εo 0
0 0 εe

 , ε(V∞) = ε0

εe 0 0
0 εo 0
0 0 εo

 , (3.45)

9 A more accurate model should take into account the non-zero values of the εxz and εzx compo-
nents.
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Figure 3.33.: Real part of the off-diagonal terms εij(x, y, z = 0) vs. xy-plane of the
relative permittivity tensor for Vbias = 0 − 7 [V]. First column (i =
x, j = y), second column (i = y, j = z), and third column (i = x, j =
z). Starting from the first row the driving voltage takes the following
values: {0, 1.5, 2, 3, 4, 7} [V].

where εo ' 2.42 and εe ' 3.76 are the ordinary and the extraordinary rela-
tive permittivities of the NLC in the THz range [96], respectively.

It is worth noting here that the assumption of uniaxial crystal for the
NLC layer allows for easily describing its behavior with a relatively sim-
ple equivalent circuit model [182]. On the contrary, when the off-diagonal
components are non-negligible, more complicated equivalent networks are
needed [182]. However, the analysis of such cases go well beyond the scope
of this PhD thesis.

To fully characterize the voltage dependence of the NLC, we have also
evaluated the longitudinal z variation of the diagonal components of the
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Figure 3.34.: Real part of the diagonal terms εii(x = x0, y = y0, z) vs. z for
Vbias = 0− 7 [V]. First column (i = x), second column (i = y), and
third column (i = z). Starting from the first row the (x0, y0) position
takes the following values: (0, 0) µm, (54, 54) µm, and (75, 75) µm.

relative permittivity in three different locations over the xy-plane, for
−4.85 ≤ z ≤ 4.85 µm (see Figs. 3.31(a)-(b)). Results are shown in Figs. 3.34

and 3.35 for the real and imaginary parts of εii, respectively. As is seen,
the variation is quite uniform even at the edge of the fishnet ((x0, y0) =

(54, 54) µm), whereas no variation is seen outside the fishnet ((x0, y0) =

(75, 75) µm) where there is no applied electric field. However, εxx εzz ex-
hibit a specular nonlinear variation as the bias changes from 0 V to 7 V.
Conversely, εyy does not depend on Vb. This would allow for further simpli-
fying our NLC model in the following way:

ε(Vb) = ε0

εxx(Vb) 0 0
0 εyy 0
0 0 εzz(Vb)

 . (3.46)

In the following Subsection, we will model the NLC layers with the com-
plex permittivity tensor described in Eq. (3.46). Although the voltage de-
pendence of the dielectric tensor distribution [181], [183] can routinely be
computed, for sake of brevity, we study only averaged values along the nor-
mal to the layers and the two limiting cases (i.e., unbiased and biased states)
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Figure 3.35.: Imaginary part of the diagonal terms εii(x = x0, y = y0, z) vs. z for
Vbias = 0− 7 [V]. First column (i = x), second column (i = y), and
third column (i = z). Starting from the first row the (x0, y0) position
takes the following values: (0, 0) µm, (54, 54) µm, and (75, 75) µm.

to clarify the concept and investigate the maximum tunability range of the
proposed devices.

3.3.4 Tunable THz Fabry-Perot cavity leaky-wave antenna based on NLCs

In this Subsection we employ the complex permittivity model of Eq. (3.46)
to evaluate the performance of different FPC-LWAs based on NLCs.

The proposed device (see Fig. 3.36) consists of a multistack of alternat-
ing layers of a high-permittivity dielectric (a thin layer of alumina Al2O3)
and of NLCs, placed above a GDS. The choice of Zeonor (a THz low-loss
polymer which exhibits a moderate loss tangent tan δ1 = 0.006 [184]) for the
substrate layer has been motivated by the index matching between its rela-
tive permittivity εr1 = 2.3 and the ordinary relative permittivity εo = 2.42 of
the NLC layer in the THz range [96], [185], as required to properly enhance
the resonance condition in a FPC [61]. Note that the low absorption of the
polymer introduces negligible losses overall.

As we have seen in 1.4.3, the alternation of high- and low-permittivity lay-
ers, with thicknesses fixed at odd multiples of a quarter wavelength in their
respective media, allows for obtaining a narrow radiated beam at broadside
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Figure 3.36.: 2-D section view of the proposed device and its equivalent
transmission-line representation. The NLC layers are biased through
a pair of extremely-thin moderately-conductive polymer films (not re-
ported in the picture), e.g., PEDOT:PSS [99], whose absorption is ne-
glected here.

[61]. In the proposed device, the innovating feature is represented by the
possibility of exploiting the tunable properties of the NLC [96], here repre-
senting the low-permittivity layer. In particular, the application of a com-
mon control signal to the NLC layers allows for changing their dielectric
properties, thus achieving beam steering capability at a fixed frequency.

A customized circuit model (see Fig. 3.36(b)) has been developed for the
dispersion analysis of such a structure, taking into account the anisotropy of
the NLC layers through the simplified model describe in Eq. (3.46). Hence,
when no bias is applied (Vb = 0 V), the LC molecules are aligned along the
horizontal z-axis (Fig. 3.36)10, i.e., εzz(0) = εe, promoted by a few tens nm-
thin alignment layer, which does not affect the electromagnetic properties
of the device. When a sufficiently large driving voltage (V∞) is applied
across the LC layers, as shown in Fig. 3.36(a), the LC molecules reorient
along the vertical x-axis, i.e., εzz(V∞) = εe, thus providing the maximum
reconfigurability [183].

As a consequence, with reference to the transverse transmission line of
Fig. 3.36(b), the characteristic admittances and the normal wavenumbers of
the NLC layers for both the TE and the TM polarizations (with respect to
the xz-plane) are functions of Vb. Their expression are given by,

YTE
0 =

kx

ωµ0
, kTE

x =
√
(k0nyy)2 − k2

z, (3.47)

YTM
0 =

ωε0ε2
zz(Vb)

kx
, kTM

x =

√
εzz(Vb)

εxx(Vb)
k2

0εxx(Vb)− k2
z, (3.48)

Since εyy is the only component of the NLC which does not depend on Vb,
only the TM leaky modes will be affected by the application of the bias, thus

10 Note that, in the current coordinate reference frame, the x- and z-axis have been inverted with
respect to the previous Subsection 3.3.3
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Table 3.5.: Relevant parameters for the design of the proposed THz FPC-LWAs
based on NLC.

Layout N h1[µm] h2[µm] h3[µm] f0[THz]

1 4 167 127 82 0.59

2 8 167 127 82 0.56

3 6 100 75 145 1.00

4 4 188 127 82 0.56

the following discussion will be limited to the study of the fundamental TM
leaky mode11.

As is customary for the analysis of LWAs, the dispersion equation relating
the free-space wavenumber k0 and the complex longitudinal wavenumber
kz = βz − jαz of the TM modes is readily obtained equating to 0 the input
admittances looking upwards Yup and downwards Ydw at an arbitrary cross
section (here we have chosen x = h1):

Yup + Ydw = 0, (3.49)

where

Ydw = −jYTM
0 cot(kx,0h0), (3.50)

Yup = Yin,i, (3.51)

with

Yin,i = YTM
i

Yin,i+1 cos(kx,ihi) + YTM
i sin(kx,ihi)

YTM
i cos(kx,ihi) + Yin,i+1 sin(kx,ihi)

, for i = 1, 2, ...N, (3.52)

where YTM
i , kx,i, εr,i, and hi are the characteristic admittances, transverse

wavenumbers, relative permittivities, and thicknesses of the i-th layer (i = 0
indicates the slab), respectively, and Yin,i are the input admittances looking
upwards at the beginning of the i-th layer (note that Yin,i are calculated
recursively from Yin,N+1, that is equal to the characteristic admittance of
air).

To give a proof-of-concept, we have first obtained the dispersion curves
for an ideal layout (Layout 1) described in the first row of Table 3.5, consider-
ing N = 4 lossless dielectric layers (the impact of the dielectric losses in the
performance of the antenna will be carefully analyzed further on). The thick-
nesses of the materials are given by the design rules in Fig. 3.36(a), where
the wavelengths in the media are given by λLC = λ0/

√
εo, λHPL = λ0/

√
εr2

and λsub = λ0/
√

εr1, being λ0 = c0/ f0 the vacuum wavelength, c0 the veloc-
ity of light in vacuum, and f0 the design frequency. In this specific design,
the choice of f0 = 0.59 THz is dictated by the thickness of commercially

11 Note that the assumption of uniaxial crystal allows for decoupling the TM fields from the TE
fields. This is not generally true when an anisotropic layer is at the interface with another
medium, since in the most general case, more complicated networks are needed to describe its
behavior [182].
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Figure 3.37.: Dispersion curves (β̂z and α̂z vs. f ) of the fundamental TM leaky mode
for (a) Layouts 1, (b) 2, (c) 3, and (d) 4 (see Table 3.5) when the NLC
layer is biased at V∞ (blue lines) and when is unbiased 0 V (red lines).
Colors gradually shades from blue to red as Vb decreases from V∞ to
0 V.

available alumina thin layers (127 µm) which exhibits a relative permittivity
εr2 = 9 and a loss tangent of about tan δ2 ' 0.01 (not considered in this
preliminary analysis) at 0.59 THz [186]. The choice m = 1, n = 2, and
p = 1 corresponds to the design of Layout 1 (see Table 3.5). We note that for
higher values of m, n, and p higher-order modes appear with a consequen-
tial degradation of the antenna performance.

In Fig. 3.37(a) the dispersion curves of the fundamental TM leaky mode
have been calculated in the range 0.50− 0.75 THz. The color of the curves
gradually shades from red to blue when the bias Vb is changed from 0 (un-
biased state) to a threshold voltage V∞ (biased state), which can be accurately
calculated through the method described in [181], [183]. For the proposed
LC cell, values below 20 V are sufficient to practically cover almost the whole
switching range. In this simplified analysis, the relative permittivities are as-
sumed to linearly vary with Vb. Thus, while the unbiased and biased states are
always correctly predicted, the dynamic variation of β̂z and α̂z for interme-
diate values of Vb could significantly change once the voltage-dependence
of ε is computed.

As expected, when Vb = V∞ (blue curve) the splitting condition β̂z ' α̂z is
achieved for fop = 0.59 THz, i.e., when the operating frequency fop is equal
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Table 3.6.: Radiating performance in terms of beam reconfigurability (θM
p ), directiv-

ity (D0) and beamwidth (∆θ), for all layouts.

Layout fop[THz] β̂M
z θM

p [◦] α̂
(c)
z D0 [dB] ∆θ [◦]

1 0.59 0.37 22 0.16 17.87 26

2 0.59 0.44 26 0.05 27.98 8

3 1.00 0.65 40 0.08 23.90 13

4 0.56 0.34 20 0.17 17.35 34

to the design frequency f0. Even more interestingly, once the frequency
is fixed, e.g., at fop, it is possible to change the value of the normalized
phase constant β̂z, such that β̂z > α̂z by simply lowering the bias voltage,
whereas the value of the normalized attenuation constant α̂z remains almost
the same. As a consequence, the dispersion diagram of Fig. 3.37(a) reveals
the possibility to steer the beam with a quasi-constant beamwidth at a fixed
frequency through bias voltage. The relevant radiating features have been
reported in the first row of Table 3.6. The maximum pointing angle θM

p , and
the HPBW at broadside ∆θ have been evaluated through Eqs. (1.28) and
(1.32)-(1.33), respectively, whereas the directivity at broadside is approxi-
mated by the formula D0 = 4π/∆θ2.

As is shown in Table 3.6, we expect that Layout 1 would allow for dy-
namically scanning the beam from broadside to 22◦ as the voltage is de-
creased from its limit value V∞. However, the HPBW remains relatively
high (∆θ ' 26◦) during the scanning of the beam, due to the relatively high
leakage rates (α̂(c)z ' 0.16). It is worth noting that the HPBW at broadside is
greater than the maximum pointing angle. This means that during the steer-
ing of the beam the radiated power density never decreases below −3dB
within the scanned angular range.

Possible workarounds for improving either the scanning range or the
beamwidth are the use of an increasing number of layers or of a thicker
NLC layer as proposed in Layouts 2 and 3, respectively (see Table 3.5). As
expected, in Layout 2 (see Fig. 3.37(b)), the attenuation constant is consider-
ably reduced whereas the range of tunability is almost the same. Conversely,
in Layout 3 (see Fig. 3.37(c)), the attenuation constant is just slightly reduced,
but a wider range of tunability is achieved with respect to Layout 1. Note
that, in Layout 3, the operating frequency has been raised to f0 = 1 THz and
the thickness of alumina thin layer has been reduced to 75 µm[187]. This
has been made possible by designing the FPC-LWA with a higher-order LW
mode (m = 1, n = 2, and p = 2). Unfortunately, the assembly of Layout 2
and Layout 3 is not practical for the technological implementation of such
devices. Therefore, in Layout 4, we have considered the same configuration
of Layout 1 and further modified the thickness of the Zeonor substrate ac-
cording to the closest available commercial value, i.e., hsub = 188 µm, thus
simplifying the fabrication of the device. As it can be expected, the only
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Figure 3.38.: Radiation patterns predicted considering only the LW pole contribu-
tion (dashed lines) and by means of reciprocity theorem (solid lines)
for (a) Layouts 1, (b) 2, (c) 3, and (d) 4 (see Table 3.5) when the beam
points at broadside (blue lines) and when is steered at the maximum
pointing angle (red lines).

noticeable differences between Layout 1 and 4 are the frequency shift of f0

from 0.59 to 0.56 THz, and a reduced range of tunability.

On the basis of the previous dispersion analysis, the radiating patterns on
the E-plane of all the proposed Layouts (see Table 3.5) have been evaluated
considering a HMD excitation placed on the ground plane. Two methods
have been used: i) LWA theory, i.e., taking into account only the contribu-
tion of the relevant leaky mode and using Eq. (1.27)12; ii) Reciprocity, i.e.,
by means of a rigorous application of the reciprocity theorem. Specifically,
an in-house MATLAB code has been developed to derive the relevant 1-D
Green’s functions of the TEN model shown in Fig. 3.36(b), using the ABCD-
matrix formalism [157]. Then the reciprocity theorem is invoked to calculate
the E-plane far-field radiation patterns excited by a HMD source.

Results have been reported in Figs. 3.38(a)-(d) for all the layouts, consid-
ering radiation at broadside (biased status) and at the maximum pointing
angle (unbiased status). In Figs. 3.38(a), (b), and (d) a very good agreement
is seen between LWA theory and Reciprocity. However, in Fig. 3.38(c) it is
noted that the LWA theory does not allow for an accurate evaluation. This
is probably due to the presence of a higher-order LW mode (we recall here

12 For E-plane patterns excited by a HMD source Eq. (1.27) should be multiplied by a factor cos θ.
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Figure 3.39.: Dispersion curves (β̂z and α̂z vs. f ) of the fundamental TM leaky mode
for (a) Layout 2 and (b) Layout 4 (see Table 3.5) in the lossy case, when
the NLC layer is biased at V∞ (blue lines) and when is unbiased 0 V
(red lines). Colors gradually shades from blue to red as Vb decreases
from V∞ to 0 V.

that Layout 3 is a higher-order design) which increases the sidelobe level, as
correctly predicted using reciprocity.

The relevant radiating features are listed in Table 3.6 to give the reader a
concise description of the radiating performance of any Layout. As is seen
from both Fig. 3.38 and Table 3.6, Layouts 2 and 3 allow for considerably
improving the performance in terms of directivity (and consequently the
beamwidth) and reconfigurability, respectively. On one hand, the increased
size of the LC layers in Layout 3 determines an increased range of tunability,
which is paid at the expense of a pattern degradation. On the other hand,
the higher number of additional cover layers in Layout 2, determines an
increased directivity, which is paid at the expense of a higher complexity of
the structure.

As a matter of fact, any realistic implementation of a FPC-LWA based on
NLC should take into account several aspects: i) the non-negligible dielectric
losses which affect the dielectric layers in the THz regime, ii) the assembly
of any additional NLC layer which entails the introduction of a couple of
electrodes with a consequent increase of the ohmic losses, iii) the available
commercial thickness of the substrate (Zeonor layer).

Consequently, we have selected Layout 2 (the best performance in terms
of directivity) and Layout 4 (the easiest to fabricate) to investigate the dis-
persion properties of the fundamental TM LW modes in the lossy case. We
have then evaluated the dispersion curves of the relevant TM leaky mode
in the same range of frequencies taking into account all the dielectric losses
of the layers (see Table 3.7). Note that the PEDOT:PSS electrodes can safely
be neglected due to the moderate values of the conductance required to
apply a few KHz control voltage, and consequent moderate conductivity
and extremely thin profile [99]. Consequently, the values of the efficiencies
η reported in Table 3.6 take into account only the dielectric losses of the
layers.
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Figure 3.40.: Radiation patterns for (a) Layout 2 and (b) Layout 4 for radiation at
broadside (solid) and at the maximum pointing angle (dashed). The
radiation patterns have been calculated by means of reciprocity theo-
rem in both the lossless (in red) and the lossy (in black) case, and then
compared with those given by means of LWA theory (blue). Full-wave
simulations with CST are also reported for the lossy case for radiation
at broadside (filled green circles) and at the maximum pointing angle
(empty green circles).

As is shown in Fig. 3.39, the introduction of dielectric losses are responsi-
ble for increasing the value of α̂z, causing a deterioration of the performance
in terms of both the HPBW and the directivity (compare the performance of
lossless and lossy cases of both Layout 2 and Layout 4 in Table 3.7). Finally,
full-wave simulations performed by using CST Microwave Studio together
with reciprocity [148] have been reported only for Layouts 2 and 4 in this
lossy case. We recall here that the simulation setup is the same as the one
used for evaluating the performance of the GPW and the GSS in 3.2 (details
are given in Appendix B). For both layouts, it is manifest that a rigorous
application of the reciprocity theorem helps to easily get an accurate evalua-
tion of the radiating performance of the proposed antennas, as corroborated
by the remarkable agreement between our MATLAB in-house code and full-
wave simulations (see Figs. 3.40(a) and (b)). Furthermore, the introduction
of dielectric losses in the models has a detrimental effect in terms of the di-
rective features of the pattern, considerably widening the beamwidth. This
is especially true for Layout 2, as clearly shown in Table 3.7. Indeed, the
attenuation constants αz, which mainly governs the directivity and is pro-
portional to ∆θ, indiscriminately accounts for both radiation and dielectric
losses. Consequently, as dielectric losses increase, the beamwidth increases
as well.

Table 3.7.: Performance of Layout 2 and 4 in lossless and lossy case.

Layout fop[THz] β̂M
z θM

p [◦] α̂
(c)
z D0 [dB] ∆θ [◦] η[%]

2 Lossless 0.59 0.44 26 0.05 27.98 8 100

2 Lossy 0.59 0.44 26 0.13 19.26 21 40

4 Lossless 0.56 0.34 20 0.17 17.35 34 100

4 Lossy 0.56 0.34 20 0.21 15.52 27 80
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On the other hand, the overall dielectric losses in Layout 4 play only a
minor effect in the deterioration of the pattern when compared to Layout
2 (due to the increased overall thickness of lossy layers, and the negligible
losses of the dielectric polymer). As a matter of fact, the introduction of
losses considerably affects the performance in Layout 2, causing a 60% loss
of efficiency η (see Table 3.7), whereas it has only a moderate impact (20%
loss of η) in the performance of Layout 4 (see Table 3.7).
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3.4 conclusion

In this Chapter we have discussed the radiating performance of two class
of reconfigurable THz antennas based on leaky waves. Graphene and liq-
uid crystals have been considered as tunable materials, to be included in a
leaky-wave antenna design for achieving pattern reconfiguration at a fixed
frequency in the THz range. In both cases the application of a driving
voltage allows for varying the electronic properties of the material, thus
allowing the dynamic control of certain radiating properties.

To this purpose, we first discussed graphene surface conductivity as a
function of several relevant parameters comparing different theoretical mod-
els. The intraband contributions of Kubo formula are shown to adequately
describe graphene in the proposed analysis. Using this model, plasmonic
losses in graphene have been discussed to motivate the study of graphene
radiators whose mechanism of radiation is based on the propagation of non-
plasmonic leaky modes. Two class of graphene antennas have been consid-
ered in detail taking into account the impact of graphene quality on the
overall performance. As a result of this investigation, a trade-off is shown
to exist between the maximum efficiency, the maximum directivity, and the
maximum reconfigurability. However, both designs have shown superior
performance with respect to their plasmonic counterparts. In particular, one
of the proposed devices has shown attractive design flexibility considering
the typical antenna constraints.

Finally, the electromagnetic properties of liquid crystals have been briefly
discussed to justify the adoption of a simplified model for the description
of its permittivity tensor. The liquid crystal material is then treated as a uni-
axial crystal, whose optical axis can be switched from the horizontal to the
vertical axis by the simple application of a low-driving voltage. Specifically,
different multi-stacked Fabry-Perot cavity-like configurations have been con-
sidered for the design of a reconfigurable THz radiator. The benefits and
drawbacks of ideal designs against those of more practical configurations
have been carefully addressed. It is seen that ideal designs show excellent
radiating features, but are not easy to fabricate, whereas practical designs
show a considerably reduced performance, but are very straightforward to
fabricate. The results of the investigations proposed in this Chapter may be
pivotal for the future designs of reconfigurable and efficient THz leaky-wave
antennas.
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4 N O N D I F F R A C T I N G W AV E S

4.1 introduction

Since remote times, humankind observed that the propagation of any
wave (light, sound, etc.) is commonly adversely affected by diffraction and
dispersion phenomena, that is by spatial and temporal broadening of the
beams as they propagate. According to Huygens’ wave theory (XVII cen-
tury), such effects generally occur in any kind of wave propagation (electro-
magnetics, acoustics, etc.). As a consequence, diffraction limits all the ap-
plications in which is required to maintain a spatial transverse confinement
of a beam over a considerable distance, such as free-space communications,
medical imaging, radiometry, and so on.

With the multiplication of modern applications of the electromagnetic
fields, the generation of limited-diffraction and limited-dispersion electro-
magnetic waves has increasingly attracted physics and engineering commu-
nities. Over the years and over the world, many groups of researchers em-
ployed their efforts to develop more and more advanced techniques able to
reduce the undesired effects of diffraction, or even better to find diffraction-
free solutions of the wave-equation. Nowadays, we know that such solu-
tions, the so-called nondiffracting waves (or localized waves as well), theoreti-
cally exist but are not physically realizable since they possess infinite energy.
However, it has been shown that it is possible to theoretically construct and
experimentally reproduce a finite version of these solutions by accepting a
limitation on the maximum achievable distance in which the resulting fields
do not undergo diffraction [188], [189].

Since localized waves comprise a large family of diffraction-limited solu-
tions to the wave equation, in Section 4.2 we intend to study such solutions
within a unified mathematical framework. Afterwards, we will separately
investigate monochromatic (i.e., nondiffracting beams) and polychromatic
(i.e., nondiffracting pulses) solutions. In fact, even if both phenomena (viz.,
nondiffracting beams and pulses) belong to the same sector of physics, their
physical properties are quite different one another. The sense of this dis-
tinction will become clearer in Section 4.3 and Section 4.4, where we com-
prehensively review the different features of two specific monochromatic
and polychromatic solutions, namely Bessel beams and X-waves, respectively.
Finally, the most relevant technologies and systems for the generation of
Bessel beams and X-waves are briefly presented in the context of near-field
focusing applications spanning from the microwave to the optical regime.
Specifically, our analysis will be devoted to the millimeter-wave range where

143
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the simultaneous high demand for near-field focusing systems and the cur-
rent lack of compact-size, low-cost, low-profile devices motivate the increas-
ing interest in this research area. This last part would be the object of Chap-
ters 5 and 6.
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4.2 mathematical framework

Our analysis starts from considering the expression of the homogeneous
wave equation in a cylindrical reference frame (ρ, φ, z):(

∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂2φ
+

∂2

∂z2 −
1
c2

0

∂2

∂t2

)
ψ(ρ, φ, z, t) = 0, (4.1)

where c0 is the light velocity in vacuum. For the sake of simplicity, let us
consider axially-symmetric solutions (∂/∂φ = 0)1:(

∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

∂2

∂z2 −
1
c2

0

∂2

∂t2

)
ψ(ρ, z, t) = 0. (4.2)

A general solution ψ(ρ, z, t) to the wave equation can be expressed by
means of the spectral representation [20] (also known as Fourier method),
i.e., in terms of a Hankel transform with respect to the variable ρ, and two
Fourier transforms with respect to the variables z and t:

ψ(ρ, z, t) =
+∞∫
0

+∞∫
−∞

+∞∫
−∞

kρ J0(kρρ)e−jkzzejωtψ̃(kρ, kz, ω)dkρdkzdω, (4.3)

where kρ and kz are the radial and longitudinal wavenumbers, ω is the
angular frequency, and ψ̃(kρ, kz, ω) is the generalized transform of ψ(ρ, z, t)2.
This general expression implies the fulfillment of the dispersion relation
k2

0 = k2
z + k2

ρ, where k0 = ω/c0 is the vacuum wavenumber. By using this
relation, we can elide the dependence on kz from the previous integral. In
this way, any solutions to the wave equation can be recast as follows:

ψ(ρ, z, t) =
+∞∫
0

+k0∫
−k0

kρ J0(kρρ)e−jkzzejωtS(kρ, ω)dkρdω, (4.4)

where S(kρ, ω) is an arbitrary spectral function. With this expression at
hand, we investigate how the choice of the spectral function affects the type
of solutions. A specific attention will be devoted to those spectra that give
rise to localized, nondiffracting solutions.

Gaussian beam

Gaussian beams are well-known solutions of the paraxial Helmholtz equa-
tion, whose popoularity is due to their application in laser technology [190].
Here, we want to show how such a beam can also be expressed with the

1 The most general case for which ∂/∂φ 6= 0 will be envisaged in Section 6.3.
2 Note that the end-points of the ω-integral in Eq. (4.3) are limited to the real posi-

tive spectral content since ψ(ρ, z, t) is defined as the analytic signal of ψ̃(ρ, z, ω), viz.

ψ(ρ, z, t) ∆
= F−1{ψ(ρ, z, ω) · H(ω)}, where F−1(·) represents the inverse Fourier transform and

H(·) is the Heaviside step function defined as H(ω) = 1 for ω ≥ 0 and 0 elsewhere.
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general formulation expressed by Eq. (4.3). It is worth here to recall that the
word beam refers to a monochromatic solution of the wave equation, and
thus its frequency spectrum is represented by a Dirac function of the fre-
quency variable ω centered around a single frequency ω0 (i.e., δ(ω − ω0)).
In particular, for a Gaussian beam the frequency spectrum is decoupled
from the spectral function of the angular variable kρ which is represented
by a Gaussian function. Thus the overall spectral function is given by:

S(kρ, ω) = 2a2e−a2k2
ρ δ(ω−ω0), (4.5)

where a > 0 is a constant which is inversely related to the variance of a
Gaussian distribution. As is known, this beam suffers diffraction spreading
doubling its beamwidth after having traveled a distance commonly referred
as the diffraction length and calculated as zdif = π

√
3w2

0/λ0 where w0 = 2a
is the initial waist of the beam [191]. A quick glance to this formula reveals
the diffractive character of Gaussian beams. Indeed, it is easy to check that
a Gaussian beam with an initial waist comparable with its wavelength will
double its transverse spot size after having traveled just few wavelengths.
For this reason we are not interested in such kind of solutions.

Gaussian pulse

The Gaussian pulse is obtained from the Gaussian beam, simply by su-
perposing them at different frequencies. As a result, the spectral function is
the same of a Gaussian beam except for having replaced the Dirac function
with a normalized Gaussian function:

S(kρ, ω) = 2π−1/2
(

a2e−a2k2
ρ

) (
be−b2(ω−ω0)

2
)

, (4.6)

where a, b > 0. This solution also suffers diffraction spreading (the diffrac-
tive distance is the same as for a Gaussian beam) and hence it is of no
interest for our purposes. It should be noted that for Gaussian beams and
pulses (that are both diffracting solutions), the spectral function S(kρ, ω) has
been decoupled as the product of two terms S(kρ, ω) = R(kρ)F(ω) which
separately depends on ω and kρ. It will readily be shown that the coupling
of ω and kρ [192] plays a key-role in the determination of the nondiffractive
properties of localized solutions.

Bessel beam

In the previous examples, we have presented spectral functions in which
we can always split the two-variable spectral function S(kρ, ω) into two inde-
pendent functions of ω and kρ. However, only by imposing a linear coupling
between ω and kρ it is possible to obtain a localized solution [192]. This is
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Figure 4.1.: Wavevectors κ = kρ ρ̂0 + kz ẑ0 lying on the surface of a cone with axicon
angle θ0.

the reason why the previous examples are not diffraction-free beams. With
this in mind, let us consider the following spectral function

S(kρ, ω) =
δ(kρ − k0 sin θ0)

kρ
δ(ω−ω0), (4.7)

which implies that kρ = k0 sin θ0 = (ω/c0) sin θ0 with 0 ≤ θ0 ≤ π/2 where
θ0 is the axicon angle. Such a description reveals us that a Bessel beam can
be thought as a superposition of plane waves with wavenumbers lying on
the surface of a cone of angle 2θ0 (see Fig. 4.1). Even more interestingly,
the linear coupling between ω and kρ together with the dispersion relation
also implies that kz = (ω/c0) cos θ0. This is also a linear coupling of the
type ω = Vkz + b where b and V are arbitrary constants, as needed for
obtaining an ideal localized wave [192]. Another way to get the same result
has been suggested in [193] where it has been shown that a nondiffracting
field must have a spatial-frequency spectrum located on an annulus of the
spatial frequency kρ.

Using Eq. (4.7) in Eq.(4.4) we get the Bessel beam solution:

ψ(ρ, z, t) = J0(k0 sin θ0ρ)e−jk0 cos θ0zejω0t. (4.8)

This ideal solution is a diffraction-free beam according to Durnin’s def-
inition [188], i.e., in the sense that the transverse intensity distribution is
independent of the propagating distance z, or, mathematically speaking,
ψ(ρ, φ, z ≥ 0, t) = ψ(ρ, φ, z = 0, t) [188], [194]. Unfortunately, such an ideal
solution is not physically realizable since it carries infinite energy. How-
ever, it is always possible to generate truncated Bessel beams which possess
finite energy at the expense of a limitation in the maximum achievable non-
diffractive distance. The nondiffractive range (also referred as depth of focus)
of a truncated Bessel beam is given by the following simple equation [188],
[189]:

zndr = ρap cot(θ0), (4.9)

where ρap is the aperture radius. Differently from the diffraction length
zdif of Gaussian beams, the nondiffractive range zndr does not represent
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the distance at which the Bessel beam doubles its beamwidth, but rather
the distance within which the field can accurately be described by an ideal
Bessel function (i.e., J0(kρρ)e−jkzz). Afterwards, the Bessel beam intensity
abruptly decreases as a consequence of the aperture truncation. It is worth
to stress the fact truncated Bessle beams, even if they cannot rigorously
be considered free diffraction beams, they resist diffraction for a distance
much larger than a Gaussian beam as has been shown in [188], [191]. The
interested reader can find a rigorous comparison of the advantages and
disadvantages provided by Bessel beams and Gaussian beams in [194], [195].

X-shaped pulses

Let us consider the previous spectral function and replace the Dirac func-
tion δ(ω−ω0) with a more general frequency spectrum F(ω):

S(kρ, ω) =
δ(kρ − k0 sin θ0)

kρ
F(ω). (4.10)

Again, using Eq. (4.10) in Eq.(4.4) we get a family of nondiffracting solu-
tions called X-shaped pulses

ψ(ρ, z, t) =
∫ ∞

0
F(ω)J0(k0 sin θ0ρ)e−jk0 cos θ0zejωtdω. (4.11)

In principle, any choice of a well-behaved function for F(ω) would lead to
a nondiffracting pulse. The ordinary X-wave is one of the simplest X-shaped
pulse3 and is obtained by choosing:

F(ω) =
a
V

e−
a
V ω, (4.12)

where a > 0 is an arbitrary positive constant, and V = c0/ cos θ0 is the phase
velocity. It should be stressed that for an ideal X-wave, there is no cone dis-
persion with frequency (i.e., θ(ω) = θ0), thus the group velocity vg coincides
with the phase velocity. Note that the spectrum in Eq. (4.12) is suitable only
for low frequencies (the frequency spectrum actually behaves as a low-pass
filter). However, by means of the generalized bidirectional decomposition
[196], it has been shown [192] that a suitable choice of the spectral function
allows for getting solutions shifted to higher frequencies. In particular, by
multiplying F(ω) for a factor (0.5ω/V + 0.5kz)m it is possible to bump the
solutions in correspondence of the frequency ω = mV/a [192].
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Figure 4.2.: (a) Modulus and (b) phase of a higher-order Bessel beam of order n = 1
generated by an aperture of 25 cm at 12.5 GHz. The phase follows the
typical spiral path, whereas the modulus exhibits a central dark spot.

Higher-order localized waves

In Eq. (4.4) we have assumed to deal with axially-symmetric solutions, i.e.,
with ∂/∂φ = 0, and thus the azimuthal order is n = 0. However, in the most
general case, n 6= 0 and the general solution of the wave equation takes the
following form:

ψ(ρ, φ, z, t) =
+∞∫
0

+k0∫
−k0

kρ Jn(kρρ)ejnφe−jkzzejωtS(kρ, ω)dkρdω. (4.13)

Once the kρ-ω coupling is enforced as in Eqs. (4.7) or (4.10) a higher-order
Bessel beam or a higher-order X-wave solution is readily obtained. Such solu-
tions have arisen a great interest in several branches of physics (see [191],
[197] and references therein). In particular, the first-order Bessel beam is
of main interest because the intensity vanishes at the center of the beam.
This so-called dark-beam with a small and well-defined dark central spot has
applications, for example, in precision alignment [198]. Note that Bessel
beams of any non-null order exhibit a nearly dark central spot whose in-
tensity fades gradually away from the z-axis as the order n of the beam
increases.

Another intriguing property of higher-order Bessel beam is inherent to
the azimuthal phase variation. Indeed, for n 6= 0 the phase of a Bessel beam
exhibits a peculiar spiral path that creates a twisted wavefront (see Fig. 4.2(a)
and (b)). Such a particular feature gave them the name of vortex beams [199].
This has important physical implications, because the eigenvalue of the z-
component of the orbital angular momentum OAM operator Lz = j∂/∂φ is
exactly n [200]. This means that a higher-order nondiffracting wave (either
a Bessel beam or an X-wave) carries OAM; a feature that is of interest in
different areas of applied physics [201], especially in the context of optical
trapping and micro-manipulation of multiple particles [202]–[205].

3 Note that throughout the following Chapters we always refer with the term X-wave to any X-
shaped pulse, regardless of the frequency spectrum that has been used. This kind of synecdoche
is also widely used in the current literature.
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Obviously, it is possible to generate polychromatic higher-order non-
diffracting solutions, the so-called higher-order X-waves [191] or twisted pulses
[206]. Such solutions have recently been proposed in optics for applications
in ultafast photonics and OAM-based free-space quantum communications,
to name but a few [207]. However, in the microwave range, such twisted
pulses have never been proposed. This would be the object of the last part
of Chapter 6.

Superluminal localized waves

One of the most discussed features possessed by nondiffracting waves is
superluminality, i.e., the property for which an electromagnetic wave sem-
mingly travels faster than light. This property, has initially arisen a lot of
confusion and debates [208]–[211] among physicists because the existence
of a superluminal wave violates the principle of causality and thus it is not
consistent with the frame of the Special Relativity [212], [213] .

This problem was first noted in 1914 by A. Sommerfeld and L. Brillouin
when, by examining the transmission of a truncated sinusoid through an
absorbing and dispersive media, they found the precursors: pulses whose
leading edge travels exactly at c (where c is the light velocity in the medium)
but not exceed it. However the precursors were troubling because their
group velocity exceeds the speed of light [214]. As a matter of fact, in
1970 C. G. B. Garrett and D. E. McCumber [215] analytically estimate that a
Gaussian pulse can travel in a linear anomalous dispersive medium with a
group velocity vg > c.

According to Sommerfeld [216] this would not create any causality dilemma
for the following three reasons:

a) The information is from the leading edge and vg does not measure its
velocity.

b) In case of passive media the energy of the emerging pulse never ex-
ceeds the one of the pulse traveling in vacuum.

c) The front’s velocity is always limited to the precursor’s velocity that
never exceeds c.

On one hand, group velocity vg = ∂ω/∂k, and energy velocity
ve = Π/(we + wm) where Π is the Poynting vector and we and wm are the
electric and magnetic energy density, respectively, are well-defined quanti-
ties. On the other hand, the information velocity vi depends on the level
of noise of a system. Hence, to investigate superluminal propagation of in-
formation (or lack thereof), one may consider any pulse shape as long as
a noise model is incorporated [212]. With this clarification at hand, it was
proven that using the principles of information theory is strictly impossible
to transfer useful (i.e., a detectable signal in terms of signal-to-noise ratio)
superluminal information if the principle of causality applies [212]. Hence,
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we can conclude that the condition vg > c does not imply the violation of
causality.

One way to look at this is to note that any pulse is composed of different
frequency components. At the pulse’s peak these frequency components are
all in phase; after the pulse’s transmission through a medium the relative
phases between them are modified, so that a coherent superposition of these
components give rise to a shifted peak in the output pulse, causing the pulse
to appear traveling at a speed different from c. Therefore, an advance of
the pulse of the peak results in a sufficiently strong anomalous dispersion
medium, where the phases of the different frequency components of a pulse
become aligned at the exit surface of the medium earlier than even in the
case of the same pulse propagating through the same distance in vacuum
[217].

This implies that the peak of a pulse can emerge from a medium at an
instant even earlier than the instant at which the peak of the pulse enters
the medium. This particular behavior is sometimes referred as superlumi-
nal wave propagation [213]. In this sense, nondiffracting waves may exhibit
superluminal properties, without any violation of causality.

However, here we will not deal with the superluminal behavior of non-
diffracting waves but rather on their focusing properties. Specifically, in the
next Sections the different nondiffracting properties of both Bessel beams
and X-waves will be summarized, as well as their possible generation from
microwaves to optics. A brief review of the technologies and potential ap-
plications which involves Bessel beam and X-wave generation will be briefly
outlined. A specific attention will be devoted to millimeter-wave devices.
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4.3 bessel beams

4.3.1 History, definition and properties

The word beam refers to a monochromatic solution to the wave equation,
with a transverse localization of its field. It was known back to 1941 [218]
that a Bessel function could ideally represent a monochromatic solution to
the wave equation whose transverse profile was concentrated around the
axis of propagation and did not suffer diffraction. Such a solution, known as
Bessel beam, has not attracted the attention it deserved since it was endowed
with infinite energy and hence, from a theoretical point of view, it was no
longer different from a plane-wave4. In fact, the intensity distribution of
a zeroth-order Bessel beam decays as ρ−1 (see Fig. 4.3), and thus it is not
square integrable [188].

Only in 1987, J. Durnin et al. [188], [189] brought justice to Bessel beams,
showing that it was possible to generate a truncated Bessel beam from a
finite transverse aperture and hence, the beam was now endowed with finite
energy. In their experiment, they showed that the field does not undergo
diffractive spreading along a considerable distance, instead of an infinite
one as predicted for an ideal Bessel beam. In fact, from the experiment
emerged that a Bessel beam was actually reproducible at the expense of a
limitation in the depth of field. More precisely, a well-defined propagating
distance exists within which the Bessel-beam profile is preserved. With
the aid of geometrical optics, J. Durnin predicted that for a finite aperture
with radius ρap the nondiffractive range of a Bessel beam characterized by an
axicon angle θ0 is given by Eq. (4.9). As we previously said, beyond the
nondiffractive range, the on-axis intensity of the main-lobe rapidly decays

4 Plane waves are also diffraction-free mode solutions of the Helmholtz equation. They differ
from Bessel beams because they have not confined transverse profiles with narrow beam radii
[189]
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Figure 4.3.: Intensity distribution of a zeroth-order Bessel function of the first kind
(black solid line) and its envelope (blue dashed line) decaying as ρ−1.
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(a) (b)

Figure 4.4.: Contour-plot of a zeroth-order Bessel beam generated by an (a) infinite
aperture and (b) a finite aperture of radius radius ρap = 3λ and with an
axicon angle θ0 = 45◦.

and the Bessel-beam behavior is no longer appreciable5. This behavior is
clearly shown in Fig. 4.4 where the generation of an ideal Bessel beam (see
Fig. 4.4(a)) is compared with the generation of a truncated Bessel beam (see
Fig. 4.4(b)) from a finite aperture of radius ρap = 3λ and with an axicon
angle θ0 = 45◦. As predicted by geometrical optics (GO) [220], the Bessel
beam profile generated from a finite aperture corresponds to the ideal one
within a triangular region whose boundaries, the so-called shadow boundaries,
are defined by the axicon angle θ0.

Even though the transverse intensity profile of a Bessel beam is sharply
peaked, the amount of energy in each ring (i.e., between two consecutive
zeros of the Bessel function) is approximately equal to that contained in
the central maximum. This would have posed some problems from the
perspective of power efficiency (e.g., a Bessel beam profile which exhibits
five nulls over the aperture would carry less than 20% of the total energy in
its main lobe). Indeed, the more rings the beam has the lower the energy in
the central core.

Nevertheless, J. Durnin et al. [194] showed that, even if each lobe (i.e., the
area between two successive nulls) of a Bessel beam carries approximately
the same energy as the central spot, the power transport efficiency of a
Bessel beam was comparable with that of a Gaussian beam which contains
50% of its total energy within its half-power beamwidth. They also showed
that the depth of field of a Bessel beam could be made far larger than that
of a Gaussian but at the expense of power in the central core. This result,
can easily be inferred from Eq. (4.14). In fact, from the coupling expressed
by Eq. (4.7) we know that kρ = k0 sin θ and kz = k0 cos θ0 and hence Eq. (4.9)
can be recast as

zndr = ρapkz/kρ, (4.14)

so that zndr ∝ k−1
ρ . Moreover, the null-to-null beamwidth NNBW = 2ρNN

of a zeroth-order Bessel function of the first kind is given by the following

5 We note here that its most outer lobe will diverge first, followed by the second most outer one
and so on up to the main lobe which will diverge last [219]. Hence, beyond the nondiffractive
range, none of the lobes will be clearly distinguishable.
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relation kρρNN = j0,1 where j0,1 = 2.4048 is the first null of the J0(·) function.
As a consequence,

NNBW ' 4.81/kρ, (4.15)

so that NNBW ∝ k−1
ρ . From Eqs. (4.14) and (4.15) it is manifest that a

trade-off is dictated between the narrowest NNBW and the maximum non-
diffractive range that one can hope to achieve for a given kρ and in turn a
given axicon angle θ0.

Another remarkable feature of Bessel beams is the self-healing (or self-
reconstruction) property [191], [197], which is the capability for a beam to
reconstruct itself after a certain distance when an obstacle is placed along
the axis of propagation. This outstanding property gets a physical and clear
explanation from the plane waves decomposition of a Bessel beam (a differ-
ent explanation in terms of conical waves is reported in [221]). As we have
already emphasized, the Bessel beam can be thought as a set of plane waves
with wavenumbers lying on the surface of a cone, (thus sharing the same
axicon angle). In fact, if we place an object in the center of a beam of light,
this will typically project a shadow for only a few wavelengths. In general,
the length of a shadow region produced by an object of diameter D would
be of the order D2/λ [222]. In the case of a Bessel beam, the waves that
create the beam are able to move past the obstruction, casting a shadow into
the beam, but ultimately reforming the intensity of the profile beyond the
obstruction [204], at a distance

zmin =
ro

2 cos θ0
, (4.16)

where ro is the radius of the obstacle placed at the center of the beam. Exper-
imental results confirmed the self-healing property, showing that an initial
intensity pattern following a zeroth-order Bessel distribution is clearly re-
covered in shape and contrast after the distance zmin [197].

It is worth noting that such remarkable properties are exhibited in the
near-field. In the far-field range, the Bessel beam is expanding linearly with
distance z as a spherically outgoing wave modulated by Bessel-like angu-
lar functions. In these regions the beams will exhibit properties of normal
beams, i.e., the central spot radius greatly exceeds λ, shadows are produced
in a normal manner, etc. [222].

4.3.2 Potential applications

From J. Durnin’s work a lot of interesting applications of nondiffracting
beams have been investigated in several sectors of physics and engineering.
As pointed out by R. M. Herman and T. A. Wiggins in [222] the main prop-
erties of zeroth-order Bessel beams that can make them quite attractive for
practical use are:
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(a) (b)

Figure 4.5.: (a) A sketch of the experimental setup used by J. Durnin for the first
generation of a Bessel beam in optics [189]. (b) A sketch of the exper-
imental setup for generation of a Bessel beam through an axicon lens
as presented in [223]. The axicon element allows for converting a Gaus-
sian beam in a Bessel beam within a rhomboidal region located in the
near field. The dashed red line is located at z = zndr/2. In the far-field,
the Fourier-Transform of the aperture field gives rise to the expected
annulus shape.

i) The existence of a narrow central range with a transverse size compa-
rable or even smaller than the operating wavelength6.

ii) The quasi-invariant transverse intensity distribution with respect to
the propagating axis z, over an extensive range.

iii) The self-healing character, which means the absence of significant
shadows within the near field.

Property i) implies uses in investigating the position, size, or motion of small
objects, as well as in applications demanding high pointing accuracy. Prop-
erty ii) implies a usefulness in applications requiring great depths of field.
Property iii) implies uses in applications where it is required to illuminate
many collinear objects without making them shadowing by one another.

Hence, some specific applications might be nonlinear optical applications
(thanks to the large length-to-central-beam-size ratio), photolithography,
alignment of optical components, micropositioning for optical data storage,
wireless power transfer, covert communications, near field probing, chip-to-
chip communications, medical imaging, security screening, and so on.

4.3.3 Realizations

Over the time, a lot of techniques have been implemented for the gener-
ation of Bessel beams, especially in the optical regime. The first realization
dates back to the 1987, when J. Durnin [189] proposed an annular slit (a
diffracting ring) of radius ρap backilluminated by a plane wave and placed
at the focal distance z f of a converging lens to form the beam, as shown in
Fig. 4.5(a). A simple geometrical argument reveals that the axicon angle of
such a system can be estimated to be θ0 = arctan ρap

z f
.

6 J. Durnin has shown that the center of the beam has a minimum diameter of 0.75λ.
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This experimental setup results from the application of Fourier Optics,
since the spatial spectrum of a Bessel beam (i.e., its Fourier Transform in
the kρ-domain) consists of a single ring (annulus) in the spectral domain
[224]. However, this experimental setup suffers from very low efficiency,
since most of the incoming power is blocked by the diaphragm.

To this purpose, conical lenses [225], [226], commonly known as axicons,
were proposed [227], [228] to overcome this issue. An axicon is a conical
lens with a flat entrance surface which is commonly used to convert a Gaus-
sian beam in a Bessel beam (see Fig. 4.5(b)). The resulting Bessel beam
distribution behind the lens can be interpreted as the constructive interfer-
ence of the plane waves coming from the surface of the cone, which share
the same axicon angle θ0 (whose name origins from this device) and hence
define a Bessel beam7.

Other efficient methods have been suggested in the literature such as
aberrating lens [222], computer-generated holograms [229], Fabry-Perot cav-
ities [230], distributed Bragg reflectors [81], concentric circular piezo-electric
rings [231] etc.. However, most of these techniques are suitable for acoustics
or optics applications, where the vectorial nature of electromagnetic fields
is fairly neglected. Conversely, in the microwave range, where a full-wave
analysis is usually recommended, very few implementations have been pro-
posed [232]–[234]. In these works [232]–[234], the scalar-wave approxima-
tion has been generally adopted limiting its range of applicability to de-
vices with an aperture size much larger than the wavelength of operation
ρap � λ, and for small transverse wavenumbers kρ � k0 [224], [235]. As
a consequence of Eq. (4.15), the resulting Bessel beams were characterized
by beamwidths much larger than the operating wavelength. However, it
is of paramount importance for near-field focusing applications, to gener-
ate Bessel beams with narrow beamwidths. In such conditions, a full-wave
analysis is needed.

To this purpose, different rigorous vector analyses of the generation of
Bessel beams by finite apertures have been suggested in [224], [236]–[238],
which avoid the paraxial approximation of earlier works [188], [239]. These
vector approaches paved the way for the first microwave realizations of
Bessel beams with arbitrary small transverse wavenumber kρ � k0. Such
realizations include circular array of antennas [219], radial-line slot-array an-
tennas (RLSA) [220], [240]–[242], near-field plates [243], metasurfaces [244],
[245], flanged metallic circular waveguides [246], and leaky radial waveg-
uides [153], [224], [235]. Among the abovementioned devices, those in [224],
[235], represent some of the most compact-size low-cost, low-profile Bessel-
beam launchers in the microwave range. However, their scalability to the
millimeter-wave frequency range poses some technological issues due to
the extremely-thin substrates that they would require to operate with the
fundamental mode. To this purpose, in [153] it has recently been proposed
a leaky radial waveguide operating with a higher-order leaky mode. Since,

7 The interested reader can find a rigorous explanation in terms of path integrals in [222].
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in this second part of the thesis we mainly deal with the generation of non-
diffracting waves in the millimeter-wave range the leaky-radial waveguide
originally proposed in [224] at microwaves, and its modified version suitable
for the millimeter-wave regime [153] will be the object of the next Chapter 5.
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4.4 x-waves

4.4.1 History, definition and properties

The word pulse commonly refers to a perturbation of a system with a
very short duration. According to Heisenberg’s principle, from a high local-
ization in time follows a broadening in the frequency spectrum associated
with the pulse. As a consequence, an ideal pulse is usually seen as the coun-
terpart of an ideal beam which has a punctual localization in frequency
but requires an infinite time duration. However, if on one hand the non-
monochromatic spectrum of a pulse allows for a wider class of solutions
to the wave equation, on the other hand it has been harder to find such
solutions.

All started in 1983, with the pioneering work of J. N. Brittingham
[247]. For the first time a mathematical formulation for packet-like solu-
tions of Maxwell’s equations were introduced. In this work, the solutions
were found in a heuristical way and then rigorously proven to be three-
dimensional nondispersive electromagnetic pulses [248], i.e., packet-like so-
lutions which maintain both their shape invariant during propagation. He
gave the name of Focus Wave Modes (FWM) to such kind of pulses. It
is worth noting that in literature such solutions are also referred as splash
pulses [249], slingshot pulses [250], undistorted progressive pulses [251], and com-
plex source wave-fields [252], [253], even if they represent only different classes
of the wider family of nondiffracting pulses; a useful and clarifying compar-
ative table is reported in [234].

Then, in 1985, R. W. Ziolkowski showed that this FWM solution was a
space-time version of a Gaussian-beam [249], especially when the latter is
thought to be equivalent to a spherical wave centered at a stationary com-
plex location [253], [254]. Consequently, the FWM is clearly a moving Gaus-
sian beam with complex source location that moves parallel to real z-axis,
where z is the axis of propagation. As for ideal Bessel beams, these solutions
had infinite energy [248], [249] and thus they were nonphysical.

In particular, A. Sezginer gave a formal proof, for the nonexistence of
an electromagnetic mode in vacuum, which has finite energy, and which
retains the superluminal, nondispersive, and nondiffractive properties of a
FWM [248] for an infinite distance. However, he showed how to construct
finite-energy luminal pulses, which propagate with constant speed and ap-
proximately without deformation for a certain (long) depth of field.

Subsequently (1989), a simple theoretical method known as bidirectional
decomposition allowed for constructing a new series of nondiffracting lumi-
nal pulses [196], [250], [255], [256]. Another elegant and comprehensive
theoretical framework for a unified treatment of different nondiffracting so-
lutions of the wave equation was then (1996) proposed by J. Fagerholm et al.
in terms of an angular-spectrum representation [198].
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Figure 4.6.: (a) 2-D and (b) 3-D plot of the normalized amplitude of an X-wave as
a function of ρ and z− vzt where vz is the group velocity of the wave.
Since for an ideal X-wave cone dispersion is neglected, the group ve-
locity vz coincides with the phase velocity vph = c/ cos θ0. As a con-
sequence the variable z − vzt gives a measure of the spatio-temporal
confinement of the pulse. In this example, we have considered a wide
uniform frequency spectrum and an axicon angle θ0 = 45◦. The X-shape
of the pulse follows the inclination dictated by the axicon angle, as em-
phasized by the boundaries in both figures.

Other methods to get exact finite-energy nondiffracting pulses were also
proposed [257] to show that their superluminal versions (i.e., nondiffracting
pulses characterized by a group velocity which exceeds that of the light
in the medium) are supported by Maxwell’s equations in vacuum, thus
without requiring any anomalous dispersion phenomena in the propagat-
ing medium [258].

Nevertheless, in the abovementioned mathematical constructions the su-
perluminality of FWMs played a central role, whereas the focusing proper-
ties of such pulses were not sufficiently emphasized. Fortunately, Durnin
[188] suggested that it was possible to generate nondiffracting electromag-
netic pulses with a simple linear superposition of Bessel beams sharing the
same axicon angle over a certain frequency range. Such a polychromatic
version of Bessel beams is now commonly recognized as X-wave. It is easy
to understand that an X-wave, once thought as a frequency superposition
of Bessel beams, inherits the self-healing property and the nondiffractive
character of Bessel beams.

With regard to the focusing properties, it should be noted that the increase
of the spectral content of an X-wave with respect to a Bessel beam is reflected
in a higher time localization of the pulse. Since the pulse is supposed to
travel along the longitudinal direction, this would result in a longitudinal
localization of the pulse (see Fig. 4.6). In fact, while a Bessel beam solution
is ideally characterized by a Bessel-like transverse distribution and a flat
longitudinal distribution (as a result of the monochromatic character of the
Bessel beam8), the X-wave solution is characterized by the same transverse
distribution, but a limited longitudinal distribution (as a consequence of

8 We recall here that the Fourier-Transform of a Dirac function is a constant function.
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the polychromatic character of the Bessel beam9). A thorough discussion of
these properties is postponed to Chapter 6.

4.4.2 Potential applications

As we have already said, the high-confinement of X-waves in both the
transverse and the longitudinal axis is a result of the frequency-modulation
of Bessel beams. This would suggest their application to a lot of millimeter-
wave applications such as medical imaging, wireless power transfer, radiom-
etry, etc., where the focusing capabilities of a device are of paramount im-
portance.

The exponential growth in these research areas, has driven researchers
in developing more sophisticated techniques for producing spatially and
temporally localized field profiles. In the context of localized waves, perhaps
the most intriguing perspectives were opened by the work of M. Zamboni-
Rached et al. [192], where different localized fields with finite total energies
and arbitrary frequency spectra were proposed. Just to mention but a few,
they showed how it was possible to produce different localized solutions,
by simply superimposing an infinite sets of X-waves (which gives rise at
the so-called X-wave Transform [191], [259]) with their energy concentrated
more and more in a spot corresponding to the vertex region.

However, the frequency-modulation of Bessel beams is not the only way
to manipulate Bessel beams in order to obtain more interesting properties.
In a recent contribution [260], it has been shown that a suitable superpo-
sition of Bessel beams all endowed with the same frequency, but different
longitudinal wave numbers gives rise to a stationary localized wave field
with high transverse localization, and whose longitudinal intensity pattern
can assume any desired shape within a chosen interval. Since the intensity
envelope associated to this field remains static, these solutions of the wave
equation are known as frozen waves.

Since this field is generated by a superposition of beams at fixed fre-
quency, but with different wave numbers, this technique is also referred
as angular modulation. A detailed analysis of such frozen waves as well as
their applicability in modern applications goes beyond the scope of this the-
sis. (The interested reader can find in [261] a theoretical work which deals
with the generation of frozen waves through finite apertures, whereas its
experimental generation in optics is reported in [262]).

Here, specifically in Chapter 6, we will mainly deal with the efficient gen-
eration of X-waves, i.e., frequency-modulated Bessel-beams in the millimeter-
wave range.

9 If each frequency component has the same weight (i.e., a uniform frequency spectrum), the
longitudinal distribution will follow a cardinal sine function, as an effect of the Fourier Trans-
form.



4.4 x-waves 161

(a) (b)

Figure 4.7.: (a) A sketch of the experimental setup used by Lu and Greenleaf for the
first generation of X-waves in acoustics [264]. (b) A sketch of the exper-
imental setup for the first measurement of the 3-D field distribution of
X-waves in optics [265]. Except for a system of converging lenses and
a pinhole, the mechanism of generation was equal to the one originally
proposed by Durnin [189] for the Bessel beam generation.

4.4.3 Realizations

At the end of the ’80s, the main issue related to the practical generation of
nondiffracting pulses was represented by the launchability of pulses derived
from the fundamental Gaussian pulses. This topic was further exacerbated
by E. Heyman, B. Z. Steinberg, and L. B. Felsen [252]. In 1987, they intro-
duced the Complex Source Pulses (CSP) [252] which differ from FWM in
having a bidirectional spectra, i.e. both forward and backward components.
Thus, they were not a true-source excited field since they were described
by the sum of both causal and anticausal Green’s functions. Fortunately,
in 1989, further studies revealed that localized-wave solutions could be de-
signed by means of causal components only and, moreover, they could be
generated from finite apertures [250].

Once the launchability of FWM was proven, it remained to understand
how to launch these kind of waves from finite apertures. The answer came
from acoustics in 1992, when J. Y. Lu and J. F. Greenleaf designed an ex-
perimental ultrasound setup [263] for the generation X-wave [264], a special
kind of localized solutions of the wave equation. In that experiment [263],
a discrete array of 10 transducers (see Fig. 4.7(a)) was proposed. A poly-
nomial waveform synthesizer was used to generate 10 broadband X-wave
drive functions for the 10 transducer elements which were excited follow-
ing specific time patterns. The acoustic waves were successfully measured
in water in a plane along the axis of the transducer with a calibrated hy-
drophone. The measured RF signals produced by the 10 transducer ele-
ments were summed, in order to obtain the sought X-wave signal by means
of the frequency modulation.

The difficulties with meeting the requirement of ultrawideband spectral
content in the case of light field, have obstructed the study of X-waves in
optics. As a consequence, the first evidence of optical X-wave generation
came only in 1997 thanks to the experiments performed by P. Saari and
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K. Reivelt [265] who reported the first measurements of the whole three-
dimensional distribution of the field of optical X waves in free space (the
first experimental evidence of X waves aimed only to demonstrate the sup-
pression of temporal spread of ultrashort pulses in dispersive media and it
was performed by H. Sõnajalg and P. Saari in 1996 [266]). In that experiment
[265], an annular slit similar to the one used by Durnin [189] for generating
truncated Bessel beams was used (see Fig. 4.7(b)). The original part of the
experiment was related to the method for recording the fields which was
based on a field cross-correlation technique. In fact, a simple CCD camera
would have required a temporal resolution in the subfemtosecond range to
measure such pulses.

These promising results won the initial common scepticism that floated
around the generation of localized waves. However, if the requirement of ul-
trawideband spectral content obstructed the study of X-waves in optics, this
is even more true in the microwave range, where most of radiators have frac-
tional bandwidth optimistically limited to values of 10%-20%. Moreover, in
the previous experiments the cone dispersion, i.e., the frequency dependence
of the axicon angle, has always been fairly neglected. Such an assumption
no longer holds at microwaves where longitudinal and radial wavenumbers
commonly show a non-linear frequency dispersion (even in the vacuum),
thus affecting the axicon angle dispersion. In fact, if we define the normal-
ized longitudinal and radial wavenumbers k̂z = kz/k0 and k̂ρ = kρ/k0, it is
manifest from the definition of the axicon angle

θ(ω) = arctan
kρ(ω)

kz(ω)
= arctan

k̂ρ(ω)

k̂z(ω)
, (4.17)

that one needs to enforce normalized wavenumbers constant with respect
to frequency, to prevent cone dispersion. A condition that, at microwaves,
is never met, except for guided, non-radiating, transverse electromagnetic
(TEM) modes. Hence, neglecting dispersion in such polychromatic solutions
as X-waves is not possible for an accurate analysis. Moreover, despite the
large amount of different theoretical formulations [192], [234], [249], [263],
[267], only few works [266], [268] have taken into account cone dispersion
on a theoretical basis. Such an effect, it is supposed to have a non-negligible
impact in the focusing features of X-waves. As a matter of fact, there is
still lack of an experimental evidence of X-waves in the microwave range,
except for a “controversial” experiment done by D. Mugnai and A. Ranfagni
in 2000, aimed to the observation of the superluminal properties of such
waves rather than their remarkable properties of both spatial and temporal
confinement10.

10 There, the experimental setup, consisting of a circular slit fed by a horn antenna placed in
the focal plane of a circular mirror, and of a second horn antenna placed at a variable distance
along the propagating axis, measured the velocity of propagation of a microwave signal carried
by X-waves. Unfortunately, no measurements have been provided of the 3-D field distribution
of the field. Thus, there was no experimental proof of the effective X-wave generation.
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To this purpose, in Chapter 6 we will present an original framework for
the evaluation of the nondiffractive features of X-wave even when wavenum-
ber dispersion is taken into account. With this new criterion at hand, we
will propose a realistic wideband millimeter-wave radiator which looks par-
ticularly promising for the first experimental evidence of X-waves in the
millimeter-wave range.
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4.5 conclusion

In this Chapter we have reviewed the mathematical framework needed to
understand the properties of nondiffracting beams and pulses. Two particu-
lar solutions, i.e., Bessel beams and X-waves, have been discussed in detail,
emphasizing their focusing properties and their nondiffracting/self-healing
character as well. These features are shown to be extremely useful for a lot
of millimeter-wave applications, thus motivating the increasing interest in
this class of solutions.

Afterwards, we have outlined the significant ‘milestones’ in the field of
Bessel beams and X-waves generation, from a historical point of view. The
first experiments in acoustics and optics have been reviewed to introduce the
first realizations at microwaves and millimeter waves. It has been shown
that, while monochromatic Bessel beams have been already generated at
microwaves, efficient generation in the millimeter-wave range are rather
scarce. This motivates the investigations of Chapter 5. Even more inter-
estingly, there is still a lack of evidence of X-waves at microwaves. This is
mainly due to the non-negligible wavenumber dispersion which commonly
affects microwave wideband radiators. In this sense, the analysis developed
in Chapter 6 clearly reveal perspectives and limitations in the context of
X-waves microwave generation.



5 B E S S E L- B E A M L A U N C H E R S

5.1 introduction

In the previous Chapter 4, we have reported a thorough review of the state
of the art inherent to the generation of nondiffracting waves from microwave
frequencies to optical frequencies. In this Chapter 5, we specifically deal
with the generation of Bessel beams in the microwave and millimeter-wave
range. As we have already emphasized, the interest in this specific range
of frequencies is motivated by the increasingly high demand of focusing
devices in modern applications suited for millimeter waves.

Among the different Bessel beam launchers proposed to date, here we
want to focus our attention on a specific one: the leaky radial waveguide. The
reason for this choice is twofold. On one hand, the leaky radial waveg-
uide represents one of the most performing prototype thanks to its cost-
effectiveness, structural simplicity, and easiness of fabrication. On the other
hand, the leaky-wave radiation mechanism typical of such devices allow us
to make a strong connection between leaky waves and nondiffracting waves,
i.e., between the first and the second part of this PhD thesis, respectively.

Chapter 5 is organized in two Sections. In Section 5.2, we introduce the
leaky-radial waveguide by reviewing the main features of a prototype op-
erating in the microwave-range [224], [235]. After a rigorous description of
the device on a theoretical basis, we will review some relevant numerical
and measurement results to assess the capabilities of this device. Finally,
it will be shown, how unfeasible it would be the application of a simple
frequency scaling of this microwave design to millimeter-waves. Such a re-
sult motivated the need a different approach suitable for millimeter-wave
frequencies. The result of this investigation will be the object of Section 5.3.

In Section 5.3, an original and different theoretical analysis of the leaky
radial waveguide is proposed to deal with a suitable millimeter-wave design.
Such a study will furnish extremely useful analytical formulas for the design
of leaky-radial waveguides at millimeter waves. Numerical and full-wave
analyses will validate the theoretical results. Finally, the fabrication and the
measurement of the proposed millimeter-wave prototype will be reported
and accurately described. For completeness, the performance of this device
within its operating bandwidth will be carefully addressed for its potential
use as an X-wave launcher. These devices would be the object of Chapter 6.

165
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5.2 microwave bessel-beam launchers

In this Section a microwave Bessel beam launcher based on a leaky radial
waveguide (LRW) is presented. The leaky radial waveguide under considera-
tion (see Fig. 5.1) is basically a dielectric-filled metallic parallel-plate waveg-
uide in which the upper plate has been replaced by a partially reflecting
sheet (PRS). This structure belongs to the class of 2-D leaky-wave antennas
(LWAs) described in Chapter 1. The main difference with respect to 2-D
LWAs is the presence of a circular metallic rim which transversely limits the
structure. As a consequence, the considered LRW is not designed to let their
excited leaky modes radiate most of the power before they have reached the
edge of the structure. On the contrary, the presence of a metallic wall at a
suitable radial position enforces the presence of a pair of inward and back-
ward leaky waves which gives rise to a resonant leaky mode. The resonance
has a central role for the creation of the Bessel beam. This aspect will readily
be clarified in 5.2.1 where we will rigorously review the theoretical frame-
work underlying the design principles of the LRW. Then, in 5.2.2 and 5.2.3
numerical and experimental results will be provided to validate the concept.
Finally, in 5.2.4 we will frequency scale the design at millimeter waves. The
failure of this approach will motivate the need of a new design principle
described in Section 5.3.

It is also worth here to emphasize the strong connection between leaky
waves and nondiffracting waves. Indeed, for this class of devices (viz., LRWs)
leaky waves are responsible for the radiation of a monochromatic nondiffracting
wave, such as a Bessel beam. This aspect is extremely important since it
bridges the two main parts of this thesis, i.e., the first one focused on leaky
waves and the second one focused on nondiffracting waves.

5.2.1 Theoretical analysis

As is known, zeroth-order Bessel beams emerge as axially-symmetric solu-
tions of the scalar wave equation when expressed in a cylindrical reference
frame [164], [218], [269]. In the microwave range, the scalar theory is not
sufficient to describe Bessel beams of arbitrary beam size, since the paraxial
approximation holds only when kρ << k0 [224], [235], [236]. To account for
the vector wave nature of Bessel beams, one should use Maxwell’s equations.
A very convenient method, is to use the vector potentials A and F. In fact,
the translational invariance of the LRW with respect to the z-axis, allows to
decouple the electromagnetic problem, searching independently for an elec-
tromagnetic field which is transverse-electric (TE) or transverse-magnetic
(TM) with respect to the axis of symmetry (viz., the z-axis). Thus, the only
z-component of the vector potential Az(Fz) is required to describe a TM(TE)
electromagnetic field. The vectorial formulation is then reconducted to the
resolution of a scalar problem through the use of the vector potentials. As is
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Figure 5.1.: Geometrical view of a leaky-wave radial waveguide of thickness h. A
metallic rim is placed at ρ = ρap. The PRS is represented by a square
lattice of metallic patches.

customary [164], [269], all the electric and magnetic fields components are
finally derived from Az and Fz.

Here, we are interested in generating a zeroth-order Bessel beam over
the longitudinal component of the electric field Ez = J0(kρρ)e−jkzz. In the
following paragraph we will derive the required boundary conditions to en-
force such a field distribution over the aperture of a LRW, starting from the
general solutions provided by the vector potentials. The interested reader
can find the field derivation for vector Bessel beams of any order and any
polarization in [237].

Field Derivation

We start from considering the LRW as shown in Fig. 5.1. Since we are
searching for solutions with Ez = J0(kρρ)e−jkzz 6= 0 we only consider TM
electromagnetic fields. Thus, the z-component of the magnetic vector poten-
tial Az is enough to derive all the fields components. As is known [164],
[269], the longitudinal component of the vector magnetic potential satisfies
the homogeneous Helmholtz equation in cylindrical coordinates:

∂2 Az

∂ρ2 +
1
ρ

∂Az

∂ρ
+

1
ρ2

∂2 Az

∂φ2 +
∂2 Az

∂z2 + k2 Az = 0. (5.1)

A generic solution of Eq. (5.1) is expressed as the product of three indepen-
dent functions of the three variables ρ, φ, and z, whose expressions are given
by linear combinations of Hankel functions (for the radial dependence) and
exponentials (for both the azimuthal and longitudinal dependence) [164],
[269]. Without loss of generality, inside this cylindrical waveguide (Region
1 in Fig. 5.1) Az can be expressed as [164], [224], [269]:

Az = cos(kzz)ejnφ
[

A1H(1)
n (kρρ) + A2H(2)

n (kρρ)
]

, (5.2)

where kz and kρ are the longitudinal wavenumber and the radial wavenum-
ber, respectively, related through the separation equation k2 = k2

z + k2
ρ, H(1)

n (·)
and H(2)

n (·) are the are the nth-order Hankel functions of the first and sec-
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Figure 5.2.: The mechanism of generation of a Bessel beam through the superpo-
sition of an inward Hankel wave and an outward Hankel wave. An
outward Hankel wave is generated at the center by a coaxial feed and is
then reflected back by the circular metallic rim to create an inward Han-
kel wave. If the circular rim is placed in one of the zeros of the Bessel
function and the incident wave is slowly-attenuated, the two Hankel
waves constructively interfere each other and create the Bessel beam.

ond order, respectively. The coefficients A1 and A2 will be determined once
the boundary conditions and excitation will be stipulated. Note that circu-
lar functions (i.e., cos(·) and sin(·)) have been chosen for the longitudinal
dependence due to the confinement of the fields inside the waveguide.

From here, it is straightforward to calculate the field components as [164],
[269]:

Eρ = −j
η

k
∂2 Az

∂ρ∂z
Hρ =

1
ρ

∂Az

∂φ
, (5.3)

Eφ = −j
η

k
1
ρ

∂2 Az

∂φ∂z
Hφ = −∂Az

∂ρ
, (5.4)

Ez = j
η

k

(
∂2

∂z2 + k2
)

Az Hz = 0, (5.5)

where η is the characteristic impedance of Region 1. Note that for an
azimuthally-invariant field (∂/∂φ = 0), n = 0 and Eq. (5.2) reduces to

Az = cos(kzz)
[

A1H(1)
0 (kρρ) + A2H(2)

0 (kρρ)
]

, (5.6)

so that Eφ = Hρ = Hz = 0 and the only non-null components of the field
are:

Eρ = −j
ηkzkρ

k
sin(kzz)[A1H(1)

1 (kρρ) + A2H(2)
1 (kρρ)], (5.7)

Ez = −j
ηk2

ρ

k
cos(kzz)[A1H(1)

0 (kρρ) + A2H(2)
0 (kρρ)], (5.8)

Hφ = kρ cos(kzz)[A1H(1)
1 (kρρ) + A2H(2)

1 (kρρ)]. (5.9)

As is manifest from Eq. (5.8), the Ez field component is expressed as the
superposition of an outward (H(2)

n ) and an inward (H(1)
n ) cylindrical wave

(see Fig. 5.2). As originally suggested in [239], [270], the Ez field component
would assume the desired J0 profile when A1 = A2. The required boundary
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condition to get A1 ' A2 can be achieved by placing a circular metallic
rim at a distance ρ = ρap, which corresponds to one of the zeros of the
Bessel function J0(kρρap). As a matter of fact, once an outgoing cylindrical

wave H(2)
0 (kρρ) is excited from the center of the waveguide (see the coaxial

feed in Fig. 5.1) the presence of a metallic wall at ρ = ρap would produce

a reflected wave H(1)
0 (kρρ) with almost the same coefficient of the incident

one, if this incident wave has not been strongly attenuated (due to any kind
of losses, e.g., radiation, ohmic, dielectric losses). It immediately follows
that the required equations to establish the condition A1 ' A2 are [153],
[224], [235]

βρρap = j0n, n ∈N, (5.10)

αρρap � 1, (5.11)

where j0n represents the n-th zero of the zeroth-order Bessel function [271].
The first one of the two equations requires that the inward and outward
waves constructively interfere each other two create the Bessel beam1. The
second one requires that the waves are slowly attenuated so that A1 ' A2.
Note that, if one takes the formal analogy between traveling cylindrical
waves (H(1),(2)

0 (kρρ)) and traveling plane waves (e±jkρρ), such conditions are
equal to those required to plane waves to obtain a stationary cosine-like so-
lution (which is the analogue of a J0 function in cylindrical problems [269]).
Note also that in conventional 2-D leaky-wave antennas as those seen in
Chapter 1, the structure is usually designed to be long in terms of wave-
lengths so that the excited forward leaky mode has already radiated most
of the power when it has reached the end of the structure. In such a way, no
backward waves are expected and diffraction from the edges is prevented.
Here, the structure is resonant in the radial direction and the presence of
a reflected wave is crucial to establish the desired Bessel beam profile. The
fulfillment of Eqs. (5.10)-(5.11) allows us to rewrite Eqs. (5.7)-(5.9) as

Eρ = A1
−jηkzkρ

k
sin(kzz)J1(kρρ), (5.12)

Ez = A1
−jηk2

ρ

k
cos(kzz)J0(kρρ), (5.13)

Hφ = A1kρ cos(kzz)J1(kρρ), . (5.14)

which uniquely describe the fields inside the waveguide, unless for an
arbitrary constant amplitude factor A1 stipulated by the excitation (see
[224] for further details). We note here, that Ez takes a cosinusoidal de-
pendence along z instead of the desired exponential one. This is due
to having correctly selected circular functions to describe the auxiliary
potential Az inside the waveguide. However, the fields just above the
aperture should be described by a magnetic vector potential of the type

1 If one takes in mind the asymptotic behavior of Hankel functions for large arguments [272],
this would corresponds to require that the waves are out of phase at ρ = ρap [224].
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Figure 5.3.: (a) 2-D section of the LRW and its (b) transverse equivalent network
(TEN) model.

Az = e−jkzzejnφ
[

A1H(1)
n (kρρ) + A2H(2)

n (kρρ)
]
, thus obtaining the required

propagating Bessel beam profile, whose intensity is invariant with respect to
the z-axis and up to the nondiffractive range.

The field derivation hitherto developed furnishes the required boundary
conditions to get a Bessel-beam profile over the longitudinal component Ez

of the electric field. Nevertheless, no insights have been given about the
modes supported by this structure. To this purpose, in the next paragraph,
an equivalent circuit-model as those presented in Chapter 3 for graphene-
based and LC-based LWAs will be derived in order to gain some physical
insights.

Equivalent Circuit Model

Taking advantage of the axial symmetry, we consider an arbitrary φ-cut
of the LRW to develop an equivalent circuit model (Fig. 5.3(b)) for the 2-
D section depicted in Fig. 5.3(a). As we have exhaustively described in
Chapter 3 the application of the transverse resonance technique (TRT) to the
transverse equivalent network (TEN) model, furnishes the sought dispersion
equation of the LRW:

Y0 + Ys − jY1 cot(kz1h) = 0, (5.15)

where kz1 =
√

k2
0εr − k2

ρ, is the longitudinal wavenumber in the slab, εr is
the permittivity of the dielectric filling the LRW, Y0 and Y1 are the charac-
teristic admittances in vacuum and in the dielectric medium, and Ys is the
surface admittance of the impedance sheet. Since we are only dealing with
TM electromagnetic fields, the impedance sheet is described by a purely
capacitive surface impedance Zs = jXs with Xs < 0 [28], [224], whereas
Y0 = k0/(η0kz) and Y1 = k0εr/(η0kz1), where kz =

√
k2

0 − k2
ρ and η0 is the

vacuum impedance, so that Eq. (5.15) can be recast as:

k0√
k2

0 − k2
ρ

− j
η0

Xs
− j

k0εr√
k2

0εr − k2
ρ

cot(kz1h) = 0. (5.16)
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Figure 5.4.: βρ/k0 vs. frequency ( f ). The intersections between the transverse (solid
blue lines) and the radial (black dashed lines) resonances define the
operating points.

As we have already seen, the roots of the dispersion equation are the com-
plex modes (either of SWs or LWs) supported by the LRW. Furthermore,
from the equation above, it is easy to check that the surface-wave (SW) cutoff
frequency (i.e., f SW

c such that kρ( f SW
c ) = k0 and in turn kz( f SW

c ) = 0) of the
first higher-order SW mode is given by the expression [153]:

f SW
c1 =

c0

2h
√

εr − 1
, (5.17)

so that h and εr should be chosen small enough to guarantee monomodal
propagation at a given frequency. In the next Subsection 5.2.2, Eq. (5.16) is
solved for a given set of parameters to give a proof-of-concept. Then, some
numerical results obtained in [224], [235] are reported to demonstrate how
the theoretical methods developed up to now can be applied for the design
of a realistic device.

5.2.2 Numerical results

In order to get the dispersion curves of the modes supported by the
LRW, one needs to numerically solve the dispersion equation for kρ. To
accomplish this task the values of Xs, h, and εr are needed. To give a
proof-of-concept, let us suppose to know these values; for the following
choice εr = 1, Zs = −j28.47 Ω, and h = 1 mm [235], in the frequency
range 8 < f < 12 GHz we are evidently in monomodal regime, hence
only the fundamental TM leaky mode is expected to be in the radiative re-
gion kρ/k0 < 1 (of course, a TM surface wave is always propagating with
a radial wavenumber along the light line kρ = k0), as is shown in Fig. 5.4.
Such a result suggests that once the fundamental TM leaky mode is excited
(e.g., exciting the cavity with a centrally-fed coaxial probe) at the central
frequency f0 = 10 GHz, a Bessel beam with a spectral content defined by
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lines) and the radial (black dashed lines) resonances define the oper-
ating points of the launcher. The radial resonance are reported only for
4 ≤ n ≤ 6.

kρ = (0.8− j0.03)k0 would be radiated by the LRW, provided that Eqs. (5.10)-
(5.11) are satisfied.

On one hand, Eq. (5.11) simply requires that ρap � 1/(0.03k0) ' 159 mm.
A practical criterion to size the rim radius is to require that the field ampli-
tude at ρ = ρap is greater than half its value at ρ = 0 that is

e−αρρap > 1/2 → ρap <
ln 2
αρ
' 111 mm, (5.18)

which fixes a strict upper-bound to the rim radius.

On the other hand, a close look at Eq. (5.11) reveals that, once ρap =

89 mm is fixed, a family of n dispersion curves are given by the fulfillment
of this radial resonance. Indeed, Eq. (5.11) can conveniently be recast as:

β
(n)
ρ

k0
=

j0,n

ρapk0
. (5.19)

If one plots this family of n curves over the dispersion diagram of the fun-
damental LW mode (see Fig. 5.5), one finds a set of operating frequencies
established by the intersections between the transverse resonances (roots
of Eq. (5.15)) and the radial resonances (roots of Eq. (5.19)) of the LRW.
The dark circles of Fig. 5.5) represent the operating points of the launcher,
i.e., the frequencies at which a Bessel beams with n zeros is correctly re-
alized over the aperture. The nondiffractive range (zndr) and the null-to-
null beamwidth (NNBW) of such beam can easily be calculated through
Eqs. (4.14)and (4.15), respectively.

This result has been validated through the computation of the radiated
fields by the leaky radial waveguide as described in the Appendix of [224]:
taking advantage of the equivalence theorem and the method of image charges
[163], [164], [269], [273], the equivalent surface currents over the aperture



5.2 microwave bessel-beam launchers 173

nondiffractive range

ρ [mm]

z 
[m

m
]

−60 −30 0 30 60

25

50

75

100

Figure 5.6.: Contour plot of the electric field |Ez| along the ρz-plane for the proposed
LRW at the operating frequency f = 10 GHz. The five nulls are clearly
distinguishable, as expected from theory.

are evaluated and then the radiated near field is derived through numerical
integration of the scalar free-space Green’s function [164].

As is shown in Fig. 5.6, the Bessel-beam profile is correctly radiated over
the longitudinal component of the electric field Ez at f = 10 GHz. The
theoretical nondiffractive distance zndr ' 67 mm (see dashed white line in
Fig. 5.6) correctly identifies the longitudinal distance beyond which the main
beam starts to spread out. In the next Subsection 5.2.3, some experimental
results from [235] are reported for a microwave Bessel-beam launcher with
almost the same electrical and geometrical features of the one described in
this Subsection 5.2.2.

5.2.3 Experimental results

The Bessel beam launcher described in the previous paragraph 5.2.2 has
been realized and measured in 2012 by M. Ettorre, S. M. Rudolph, and
A. Grbic [235]. The PRS was realized by printing a periodic lattice of
square patches on both sides of a thin dielectric substrate. Full-wave sim-
ulations performed with HFSS [274] provided the value of the patch size

Figure 5.7.: Final prototype. The array of vias comprising the outer metallic rim is
shown in the inset. Courtesy of Mauro Ettorre [235].
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ls = 2.32 mm needed to obtain the required impedance sheet boundary of
Zs = −j28.76 Ω at f0. Note that the periodicity of the patch elements was
set to λ0/10 (where λ0 is the operating wavelength at f0) to respect the ho-
mogenization limit (i.e., p � λ) [50], [52], so that the PRS was accurately
described by a single homogenized surface impedance.

The final prototype was then fabricated using PCB technology (see
Fig. 5.7) and measured in the frequency range from 8 GHz to 12 GHz at
the University of Michigan. More details about the fabrication process and
the measurements can be found in [235]. For convenience, we report here
just few experimental results of [235] to assess the validity of the theoretical
approach proposed so far.

As is seen in Fig. 5.8(a) HFSS simulations (at f = 9.92 GHz) and mea-
surements (at f = 9.6 GHz)2 of the normalized Ez component of the electric
field at different φ-planes for z = 0.75λ0 show a remarkable agreement. For

2 The frequency shift is attributed to tolerances inherent to the milling and etching fabrication
processes [235].

(a) (b)

(c)

Figure 5.8.: Normalized component Ez of the electric field. (a) Comparison between
measured and simulated results at z = 0.75λ0 for different φ-cuts. (b)
2D field distribution over the xy-plane at f = 9.6 GHz at z = 0.75λ0.
(c) 2D field distribution over the xz-plane at f = 9.6 GHz at y = 0.
Courtesy of Mauro Ettorre [235].
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Figure 5.9.: 2-D section of a PPW with lossy metallic plates.

completeness, the two-dimensional representation of Ez along the xy-plane
(at z = 0.75λ0) and the xz-plane (at y = 0) are reported in Figs. 5.8(b) and
5.8(c), clearly showing the distinctive ring-shaped profile of a zeroth-order
Bessel beam.

5.2.4 Millimeter-wave design

In [224] are reported very convenient design formulas to get the values of
the surface impedance and the thickness of the cavity in order to obtain a
given kρ (which in turn determine the focusing features of the Bessel beam,
i.e., the null-to-null beamwidth and the nondiffractive range). However, if
one tries to use these formulas to design a similar Bessel beam launcher
in the millimeter-wave range, these equations would provide unpractical
values, such as i) extremely thin substrates and ii) quite low values of the
impedance. Regarding to i), the small thickness of the substrate may pose
severe issues in terms of attenuation due to ohmic losses. Indeed, consid-
ering the case of a parallel-plate waveguide (PPW) whose plates (separated
by a distance h) are characterized by a finite conductivity σc (see Fig. 5.9),
the attenuation constant due to ohmic losses of the TEM mode propagating
inside the waveguide is given by [157]:

αc =
1
h

√
f

cη0σc
. (5.20)

It is clear from Eq. (5.20) and Fig. 5.10 that αc increases as f increases and
h decreases, thus highlighting the unavoidable difficulties of an efficient de-
sign of a low-profile (i.e., h� λ0) Bessel-beam launcher at millimeter waves.
Regarding to ii), a very low value of the surface impedance may pose sig-
nificant problems for the impedance synthesis through an array of square
patches. As is known, a PRS constituted by an array of square patches has
a capacitive behavior [50], [52]. This means that, in order to get a very low
value of impedance, the equivalent capacitance of the sheet must increase,
and in turn the distance between the patches might be very small. Unfor-
tunately, the tolerances of PCB technology do not allow to etch the metallic
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Figure 5.10.: αc vs. frequency ( f ). At f = 40 GHz the attenuation constant of the
TEM mode propagating in a PPW with copper plates reaches the value
of 7 Np/m.

patches with edge-to-edge distances smaller than 50 µm, putting a lower-
bound to the minimum achievable values for such a PRS.

Just to give a practical example, let re-design the Bessel-beam launcher de-
scribed in the previous paragraph [224] at f = 40 GHz by simply frequency
scaling. As a small difference with the previous design, let us consider a
dielectric of permittivity εr = 2.17 (which is a common value for the permit-
tivity of Teflon in the microwave range [157]) filling the LRW. This choice is
motivated by our intention to extend the current design based on the fun-
damental LW mode to higher-order modes3. Under these conditions, the
application of Eqs. (37)-(38) in the Appendix of [224] for kρ = 0.8− j0.03,
εr = 2.17 and f = 40 GHz gives the following values for the impedance
sheet Zs and the substrate thickness h:

Zs = −j7 Ω, (5.21)

h = 30 µm. (5.22)

On one hand, the value of h = 30 µm leads to very high losses, as can be
inferred by evaluating Eq. (5.20) for a TEM mode in a PPW made of copper
(σc ' 59.6MS/m) at f = 40 GHz (see Fig. 5.9). On the other hand, the min-
imum value of the surface impedance achievable with an array of double-
layered interleaved square patches at 40 GHz with periodicity p = λ0/10
is Zs ' −25 Ω. These results have been obtained by a parametric HFSS
simulation in which we have tried different designs by changing the gap g
between the patches up to the PCB tolerance of 50 µm (see Fig. 5.11).

From this numerical example, we have concluded that a simple frequency-
scaling law of a Bessel beam launcher is not possible at millimeter waves.
A potential work-around is represented by the possibility to use a thicker
substrate with the consequent excitation of higher-order leaky-wave modes.
However, if one properly designs the structure, it is still possible to find a
frequency range where the modal coupling between the propagating modes
is prevented, and the generation of Bessel beam possible.

3 Eq. (5.17) reveals that for air-filled PPW higher-order SWs never propagate. Note that LW
modes can be thought as analytical continuations in the complex plane of the corresponding
SW modes.



5.2 microwave bessel-beam launchers 177

39 39.5 40 40.5 41
−100

−80

−60

−40

−20

0

f [GHz]

X
s
[Ω

]

g=50µm

g=100µm

g=150µm

g=200µm

Figure 5.11.: Xs vs. f for a homogenized PRS constituted by a periodic (p = λ0/10)
array of double-layered interleaved metallic square patches. The value
of the surface impedance is calculated for different values of the dis-
tance between the patches ranging from g = 200 µm to g = 50 µm,
which is the maximum tolerance for PCB technology.

Such an investigation requires a thorough modal analysis and a com-
pletely new approach for establishing the design rules of the LRW. As a
matter of fact, the current ones [224], [235] assume that only the fundamen-
tal leaky mode is propagating inside the waveguide. To this purpose, in the
following Section 5.3 the analysis, design, prototyping and measurement of
a millimeter-wave Bessel-beam launcher working at 40 GHz with the first
higher-order TM leaky mode is carefully discussed.
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5.3 millimeter-wave bessel-beam launch-
ers

In 5.2.1, Eq. (5.17) revealed us that for εr 6= 1 the single-mode operation of
the launcher in [224] and [235] restricts the separation between the PRS and
ground plane of the LRW to thicknesses much smaller than the operating
wavelength h � λ0. Moreover, it has been seen in 5.2.4 that the application
of the frequency-scaling law to design the structure in the millimeter-wave
range would require extremely thin waveguides (e.g., a thickness of the di-
electric substrate equal to 30 µm at f = 40 GHz) and PRS with patterning
below the default tolerance of PCB technology (∼ 50 µm) leading to restric-
tively high ohmic losses [157] and practical mechanical problems.

For all these reasons, here we propose a millimeter-wave Bessel-beam
launcher whose radiation mechanism is based on higher-order TM leaky
modes rather than the fundamental ones [224], [235]. The proposed struc-
ture is a dielectric-filled LRW covered with a capacitive sheet (see Fig. 5.12

[206]). In contrast to the previous designs [224], [235], larger separation dis-
tances (on the order of half the wavelength at the operating frequency of
40 GHz) are considered between the ground plane and the PRS. In addition,
the dielectric filling the LRW is no longer a foam4, but a Teflon dielectric ma-
terial (εr ' 2.1) [157]. The launcher can then support higher-order leaky waves
and possibly surface waves. A completely novel design approach is thus
proposed based on dispersion analysis. Suitable closed-form equations are
derived for calculating the design parameters that ensure the generation of
propagating Bessel beams at the desired operating point (which is defined
by the value of k̂ρ at the operating frequency f0).

The use of higher-order modes requires a frequency range where the pres-
ence of lower-order modes and possible surface waves does not affect the
pattern of the generated Bessel beam. A bandwidth of operation of the pro-
posed structure where the simultaneous presence of lower-order and higher-
order leaky waves, as well as surface waves can be avoided is then analytically
derived and verified by full-wave simulations with COMSOL Multiphysics
[276].

The proposed concept and design relations are experimentally validated
with a prototype operating at 38.3 GHz, which is fabricated using a standard
Printed Circuit Board (PCB) fabrication process. Measurements of the verti-
cal electric field demonstrate that, within the considered band (38-39.5 GHz),
the generated Bessel beam presents a stable spot size. These results are dis-
cussed in connection to the generation of polychromatic localized waves
since they are basically combination of propagating Bessel beams in a de-
fined frequency range [191], [197], [263]. This would be the object of the last
Chapter 6.

4 In [235] a Rohacell foam substrate has been used [275].
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Figure 5.12.: Illustration of the millimeter-wave Bessel-beam launcher under consid-
eration. The blue arrows show the outward and inward Hankel waves
excited by a central coaxial probe. The constructive interference of
these cylindrical waves creates the Bessel beam profile.

This Section 5.3 is organized as follows. In 5.3.1, a modal analysis is
outlined and used to derive design equations for the launcher operating
with higher-order modes. The maximum achievable bandwidth of the de-
vice is also provided. In 5.3.2 the proposed equations are applied to de-
sign a millimeter-wave Bessel-beam launcher working at 38.3 GHz. The
proposed design is validated through full-wave simulations to assess the
consistency of this novel theoretical approach. In 5.3.4 the prototype is re-
ported, and measurement results are shown validating the design. Finally,
in 5.3.5, we discuss the features of this device are in view of its use as an
X-wave launcher.

5.3.1 Design of the structure

In order to investigate the modal properties of the waves supported by the
structure in Fig. 5.12, we solve the dispersion equation of the radial waveg-
uide for TM modes [224], [151], as has been done in 5.2.2. In the general
case of a dielectric-filled leaky radial waveguide the dispersion equation can
be expressed by means of the standard transverse resonance technique [8],
[277] as

Y0 + Ys − jY1 cot(kz1h) = 0, (5.23)

where Y1 = ωε0εr/kz1, Y0 = ωε0/kz are the characteristic admittances in
the dielectric and in the air, respectively and Ys is the sheet admittance;
kz1 =

√
k2

0εr − k2
ρ and kz =

√
k2

0 − k2
ρ are the longitudinal wavenumbers
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in the dielectric and in the air, respectively, which are generally complex
quantities (kz = βz − jαz, kz1 = βz1 − jαz1).

The values of Ys and h can be found through Eq.(5.23) once the transverse
kρ or the longitudinal kz propagation constants of the required Bessel beam
are fixed, together with the operating frequency f0, and the dielectric con-
stant εr. This procedure has been already used in [224] to get the sought
design rules of a microwave Bessel-beam launcher working with the funda-
mental leaky mode. However, those equations (viz., Eqs. (37)-(38) in the
Appendix of [224]) were derived under the assumption of kz1h � 1, which
implies h� λ0. Here, the higher-order mode operation requires that h ' λ0.
As a consequence, the previous design equations no longer hold. To this
purpose, in the first paragraph, more general equations are derived which
allow for designing Bessel beam launchers of almost arbitrary thicknesses
and working with leaky modes of any order.

In the second paragraph, the knowledge of these values of Ys and h will
allow us for solving the dispersion equation for all the modes (either surface
waves or leaky waves) supported by the structure. As expected, when the
dispersion equation is solved with the values of Ys and h found through the
new expressions derived in the first paragraph, they give rise to the previ-
ously fixed kρ at the operating frequency f0. These modal and dispersion
analyses will reveal us the range of frequency in which the modal coupling
is prevented.

Finally, in the third paragraph, we will show that it is possible to establish
a priori the maximal available bandwidth of the structure, i.e., the range of
frequency in which the simultaneous presence of more than one relevant
mode (i.e., which may contribute to radiation if properly excited) is avoided.
Approximate closed-form expressions are found in a heuristic way.

Design rules

When thicker substrates are considered we can no longer assume that
kz1h << 1. However, for higher-mode operation h ' λ0/2 is usually as-
sumed, so that kz1h ' π. Under this hypothesis, the argument of the cotan-
gent function in Eq. (5.23) is close to a multiple n = 0, 1, 2, ... of π, and hence
the cotangent function in (5.23) can be approximated by the first term of its
Laurent Series expansion close to nπ,

Y0 + Ys −
jY1

kz1h− nπ
= 0. (5.24)

Furthermore, assuming that the impedance sheet is lossless Ys = −jX−1
s ,

the approximate dispersion equation (5.24) becomes

1
k̂z
− j

η0

Xs
− jεr

k̂z1

(
1

k0k̂z1h− nπ

)
= 0, (5.25)
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where ˆ(·) refers to the usual normalization with respect to the vacuum
wavenumber k0, whereas n is related to the modal longitudinal (i.e., along
z) integer index. Following the same procedure outlined in [224], we can
rearrange the terms in (5.25) and solve for Xs,

Xs = −
k̂z1

k̂zεr
(jXs + η0k̂z)(k0k̂z1h− nπ). (5.26)

After some algebraic manipulations, a quadratic equation in h is obtained,

a2h2 + a1h + a0 = 0, (5.27)

where

a2 = k2
0[2α̂z1 β̂z1w1 − (β̂2

z1 − α̂2
z1)z1],

a1 = k0{2εr α̂z1 β̂z1(β̂2
z + α̂2

z)

− nπ[2α̂z1 β̂z1w2 + α̂z1w1 − z2(β̂2
z1 − α̂2

z1)− z1 β̂z1]},

a0 = −nπ[εr α̂z1(β̂2
z + α̂2

z) + nπ(β̂z1z2 − α̂z1w2)], (5.28)

with:

w1 = (−α̂zα̂2
z1 + α̂z β̂2

z1 − 2α̂z1 β̂z1 β̂z),

w2 = (β̂z1α̂z − β̂zα̂z1),

z1 = (β̂z β̂2
z1 − β̂zα̂2

z1 + 2α̂z1α̂z β̂z1),

z2 = (β̂z1 β̂z + α̂z1α̂z). (5.29)

Finally, by solving (5.26) and (5.27) we get:

h =
−a1 ±

√
a2

1 − 4a2a0

2a2
, (5.30)

Xs = −
η0α̂z1(2k0hβ̂z1 − nπ)(β̂2

z + α̂2
z)

k0hz1 − nπz2
. (5.31)

It is easy to verify that for n = 0 and εr = 1 these results coincide with those
presented in [224] for the lowest-order leaky-mode launcher. However, in
contrast to earlier works [219], [224], higher-order leaky-wave Bessel-beam
launchers can generate nondiffractive radiation for either inductive (Xs >

0) or capacitive (Xs < 0) (see Eqs. (5.30) and (5.31)) and corresponding
substrate heights. As an example, for the first n = 1 higher-order leaky
mode with k̂ρ = 0.8− j0.03 at f = 40 GHz, Eqs. (5.30) and (5.31) give the
following two possibilities: a) an inductive impedance Xs = 47.3Ω with a
thickness h = 2.82 mm, or b) a capacitive impedance Xs = −53.3Ω with
a thickness h = 3.25 mm. This gives designers an additional degree of
freedom during the design process. It is worth here to emphasize that only
free-standing inductive surface impedances cannot support TM leaky waves
[28]. In this case, the presence of a ground plane adds a capacitive effect
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to the equivalent impedance at the interface, and hence a TM leaky wave
can actually be supported by an inductive surface impedance, as correctly
revealed by Eqs. (5.30) and (5.31).

Dispersion and modal analysis

The modes supported by the LRW are computed by numerically solving
Eq. (5.23) [23]. The values of Xs = −25 Ω and h = 3.175 mm are derived us-
ing Eqs. (5.30), and (5.31) for a tangential wavenumber kρ = (0.8− j0.007)k0

at f ' 40 GHz and εr = 2.17. A rigorous application of Eqs. (5.30), and
(5.31), would give Xs = −24.57 Ω and h = 3.139 mm (or, for the inductive
case Xs = 22.97 Ω and h = 2.928 mm). Here, we have used slightly different
values for taking into account the commercial availability of PTFE substrates
[278] whose nearest available thickness is 3.175 mm.

However, for a wide range of parameters the dispersion diagrams of the
structure are qualitatively very similar. For convenience, we have decided to
present the numerical results related to the choice of parameters that have
been used for the realized prototype described in 5.3.2 and 5.3.3. Hence,
this paragraph does not only give a description of the dispersive and modal
properties of a generic millimeter-wave Bessel-beam launcher, but also fur-
nishes the theoretically expected dispersive analysis of the proposed proto-
type developed in paragraphs 5.3.2 and 5.3.3.

In Figs. 5.13(a) and 5.13(b) the normalized phase constant βρ/k0 and at-
tenuation constant αρ/k0 as functions of the frequency f are reported for
all the complex modes (either proper αz > 0 or improper αz < 0 [2], [3])
supported by the structure. Specifically, three leaky-wave (LW) modes are
observed. Note that, in the limit of kρ → 0, Eq. (5.23) gives an approximate
expression for the LW cutoff frequencies (β̂ρ ' α̂ρ � 1):

f LW
n ' c

2πh
√

εr
cot−1

(
−η0

Xsεr

)
+

nc
2h
√

εr
. (5.32)

The phase constant βρ of each leaky-wave mode above cutoff varies in the
range approximately from 0 to k0. As is typical (see 1.2.3), slightly after
βρ > k0, the two conjugate leaky poles coalesce (the physical one with
αρ > 0 and the non-physical one with αρ, not reported here for readabil-
ity purposes of Fig 5.13(a)) in the so-called splitting-point (also known as fold
singular point [279] in the frame of Morse critical points theory [280], [281])
and afterwards give rise to a couple of purely real improper (nonphysical)
poles. Specifically, one real improper pole (with a βρ greater than k0) has
a decreasing βρ with respect to the frequency, until it reaches the value
βρ = k0. At this point, the real improper mode becomes a real proper pole,
i.e. a physical surface wave guided at the interface, whose βρ tends to the
asymptotic value of k0

√
εr [151], [154], [162], [163]. The cutoff frequency of

this surface-wave (SW) mode can be determined by replacing βρ with k0 in
the dispersive equation.
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(a)

(b)

Figure 5.13.: (a) Normalized phase constant and (b) normalized attenuation con-
stant vs. frequency f up to 100 GHz for the first three TM of a LRW as
in Fig. 5.3. The solid and dashed lines denote the dispersion curves for
the proper and improper modes, respectively. The blue and red curves
represent the dispersion curves for the real and complex modes, respec-
tively. Hence surface-wave (SW) modes are shown by black solid lines,
whereas the leaky-wave (LW) modes are shown by grey dashed lines.
In these plots, it is assumed that Xs = −25 Ω, εr = 2.17, h = 3.175 mm
[153].

We note here that a zeroth-order surface wave propagates from DC fre-
quency, since

f SW
n ' nc

2h
√

εr − 1
, (5.33)

whereas the expression for the first-order n = 1 SW cutoff frequency coin-
cides with Eq. (5.17) in 5.2.1.

It is also worth noting that the condition expressed by Eq. (5.11) which
requires the weak attenuation of the relevant leaky modes that is necessary
to efficiently combine the incident and the reflected cylindrical waves com-
posing the Bessel beam, is satisfied by any leaky mode only for frequencies
f > f LW

n (see Fig. 5.13(b)).

Moreover, it is known [2], [3] that slow improper waves (i.e., waves with
βρ ≥ k0 and αz < 0) do not actually contribute to the aperture field, but
conversely the excitation of proper surface waves can deteriorate the pro-
file of the generated Bessel beam. As a consequence, the proper definition
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Figure 5.14.: Dispersion curves (SW and LW in blue solid and red dashed lines,
respectively) for the design of the higher-order launcher prototype.
The operating points are given by the intersections of the fast leaky-
wave modes and the hyperbolic curves given by the Bessel zeros (black
dashed lines). Once the operating point is chosen, the operating band-
width (highlighted gray region) is fixed by the closest intersections of
either the fast leaky-wave or the surface-wave modes. The parameters
used in Fig. 5.13 are also assumed here.

of a frequency band where a single-mode leaky-wave propagation can be
obtained, is of fundamental importance.

Determination of the maximal available bandwidth

As has been noted in Section 5.2, the resonance needed to produce a
Bessel beam as a superposition of two Hankel waves of inward and outward
type, is obtained by placing a circular metallic rim at a radial distance ρap

corresponding to a null of the required zeroth-order Bessel function, i.e.

β
(q)
ρ

k0
=

j0,q

ρapk0
, q = 1, 2, .. (5.34)

where j0,q is the q-th zero of J0. As we have seen in paragraph 5.2.2,
the above relation is represented by q hyperbolic curves (dashed lines in
Fig. 5.14). The intersections with the first higher-order (n = 1) leaky-wave
(LW1) and zeroth-order (n = 0) surface-wave (SW0) phase constants (see also
Fig. 5.13(a)) identify a grid of resonant modes of the radial waveguide with
a metallic rim, as shown in Fig. 5.14 for ρap = 22.3 mm. Since improper slow
waves do not contribute to radiation, the two improper branches emerging
after the SW cutoffs (see blue dashed lines in Fig. 5.13(a)) are not reported
in Fig. 5.14. Indeed, their presence would not affect the determination of
the maximal available bandwidth as has been previously defined (see the end
of the first paragrah in 5.3.1).

The intersection of the desired radial resonance (here q = 5) with the re-
quired leaky-wave mode (here n = 1) defines the operating frequency f0 of
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Figure 5.15.: Geometrical interpretation of the problem in Fig. 5.14. The blue dot
represents the operating point given by the intersection between q = 5
and n = 1 dispersion curves. The green dots represent the operating
points given by the intersection between n = 1, and q = 4, 6 dispersion
curves. Once a′ is found, it can be used to calculate both f LW1

inf and
f LW1
sup , thanks to the symmetry of the problem.

the Bessel-beam launcher, and the operating phase constant β̂0 = β̂( f0). In
addition, we can define the maximal available bandwidth Bav for single-mode
operation as the smallest frequency range containing f0 and delimited at its
ends by adjacent intersections with the adjacent resonant modes. It should
be stressed that this maximal available bandwidth should not be confused with
the practical bandwidth of the launcher, which will likely be narrower and
limited by the input impedance match and the frequency dependence of the
artificial surface.

As is manifest from Fig. 5.14, the lower bound of Bav is given
by flow = max{ f SW0

inf , f LW1
inf }, whereas the upper bound is given by

fhigh = min{ f SW0
sup , f LW1

sup }. These four frequencies can be expressed through
approximate analytical expressions, by taking advantage of the geometrical
interpretation of Fig. 5.15. In fact by exploiting the asymptotic periodicity
of the zeros of the Bessel functions [271], i.e.

j0,q+1 − j0,q ' π, (5.35)

from Eq. (5.34) the vertical distance ∆( f ) between two consecutive hyperbo-
las at a given frequency f is given by

∆( f ) =
j0,q+1

ρapk0
−

j0,q

ρapk0
' c0

2ρap f
. (5.36)
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By assuming a nearly linear leaky-wave phase constant between f LW1
inf and

f LW1
sup , we get (see Fig. 5.15)

f LW1
inf,sup = f0 ±

∆( f0)

m1 + m2
, (5.37)

where

m1 =
dβ̂LW1

ρ ( f )
d f

∣∣∣∣
f0

, m2 =
j0,qc0

2πρap f 2
0

. (5.38)

Moreover, if the fundamental surface-wave phase constant is close to the
asymptotic value β̂SW0

ρ ' √εr, we have

f SW0
inf =

j0,rc0

2πρap
, f SW0

sup =
j0,r+1c0

2πρap
, (5.39)

where

r =
⌊

ρapk0δβSW0( f0)

π

⌋
, (5.40)

δβSW0( f0) =
√

εr − β̂0 being the phase difference between the leaky wave
and the fundamental surface wave at the operating frequency f0, and b·c is
the floor function.

In the next Section 5.3.2, the theoretical analysis developed so far will be
validated through full-wave simulations. The performance of the prototype
designed with the equations provided in the first paragraph of 5.3.1 will
be investigated within the theoretical maximal available bandwidth, namely
from 37.3 GHz to 40.3 GHz. This frequency domain analysis will allow us
to assess the formulas for the maximum available bandwidth analytically
derived above.

5.3.2 Numerical validation

In order to validate the results of the previous paragraph, a Bessel beam
with kρ = (0.8− j0.007)k0 around the operating frequency of f0 = 39.7 GHz
has been designed with h, Xs given by Eqs. (5.30) and (5.31), respectively,
fixing the radial (q) and vertical (n) order of the resonances to q = 5 (i.e., the
fifth zero of the J0), and n = 1 (viz., the first higher-order LW mode). This
choice has led to the following set of parameters:

ρap = 22.3 mm,

h = 3.175 mm, (5.41)

Xs = −25 Ω,

where we have considered a dielectric substrate with a permittivity εr =

2.17 as in Section 5.3.1. These values lead to the desired operating point
with a relative accuracy of 0.3% (see Fig. 5.16), in agreement with the small-
argument first-order approximation of the cotangent function made in 5.3.1.
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Figure 5.16.: Approximation of the tangent function tan(kz1h) vs. h with (kz1h− nπ)

for n = 0, 1, 2 when kz1 = k0

√
εr − k̂2

ρ with k̂ρ = 0.8. As expected, at
h = 3.175 mm the approximation is very good, leading to percentage
error of 0.3%.

Note also that for ρap = 22.3 mm we get αρρap ' 0.13 � 1 as required by
Eq. (5.11).

The dispersion diagram of the structure in the range of interest was al-
ready shown in Fig. 5.14. As we have calculated in the third paragraph of
5.3.1 the single-mode propagation is obtained between flow = 37.3 GHz and
fhigh = 40.3 GHz, respectively.

This operating bandwidth has been numerically validated using COM-
SOL Multiphysics [276]. Specifically, a 2-D section of the structure has been
simulated enforcing an axial symmetry along the z-axis and a transition
boundary condition (TBC) over the aperture to model the presence of the
impedance sheet (see Fig. 5.17(a) and (b)). As is shown in Fig. 5.18(a), at
the central frequency f0 = 39.7 GHz, the contour plot of the longitudinal
Ez electric field component, takes the expected zeroth-order Bessel over the
aperture plane and up to the nondiffractive range, equal to 16.4 mm ' 2.2λ0

(a) (b)

Figure 5.17.: (a) Geometry of the COMSOL model of the prototype. The size of the
evaluation box is set slighlty larger than necessary in order to avoid
spurious reflections from the PML boundary conditions. (b) Boundary
conditions setting of the COMSOL model of the prototype.
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Figure 5.18.: Contour plot of the electric field |Ez| along the ρz-plane for the mm-
wave launcher under analysis at (a) f = 39.7 GHz, (b) f = 37.3 GHz,
and (c) f = 40.3 GHz.

(λ0 = 7.5 mm, at f0 = 40 GHz), where the sidelobes are no longer clearly
distinct, and the main beam starts to widen.

The behavior of Ez along the ρz-plane at both the lower flow and
higher fhigh limits of the maximal available bandwidth, is also shown in
Figs. 5.18(b) and 5.18(c), respectively, in order to validate the closed-form
expressions (5.37) and (5.39) for the bandwidth.

At the lower limit flow = 37.3 GHz, the radiated Ez field has a larger
beamwidth (see Fig. 5.18(b)). This is due to the smaller transverse propaga-
tion constant of the leaky-wave mode which intersects the hyperbolic curve
corresponding to q = 4. At the upper end, fhigh = 40.3 GHz, the Ez radiated
field is perturbed by the excitation of a surface wave, and hence no useful
focused beam is generated (see Fig. 5.18(c)). However, within the maximal
available bandwidth 37.3− 40.3 GHz, a Bessel beam with a stable spot size
can be observed, as confirmed in the following Subsection by experimental
tests.

To conclude this Subsection, the 1-D profiles of Ez along ρ at different
distances z from the radiating apertures are shown in Fig. 5.19. Note that,
as the distance from the aperture increases, the sidelobes present a higher
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Figure 5.19.: 1-D profile of the normalized electric field |Ez| at f = 39.7 GHz, for the
proposed launcher (parameters as in Fig. 5.13), for various distances
z = λ/2, λ, 3λ/2, 2λ from the aperture.
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Figure 5.20.: Prototype of the mm-wave leaky-mode Bessel-beam launcher. The
feeding probe can be recognized at the center of the structure.

level, whereas the alternation of maxima and minima is progressively less
pronounced.

5.3.3 Prototype

The Bessel-beam launcher designed in the previous Subsection 5.3.2 has
been manufactured (see Fig. 5.20) using a PCB process at IETR, Rennes,
France. The LRW consists of a substrate with permittivity εr = 2.17
(Neltec NY9217 [278]) and height h = 3.175 mm. The sheet impedance
(Xs ' −25 Ω) is realized by etching a two-dimensional array of interleaved
squared metallic patches [235] (see Fig. 5.21) with a periodicity p = 750 µm
(λ0/10 at f0 = 40 GHz) and a border distance d = 50 µm on a double-
side patterned substrate of permittivity εr = 6.15 (Rogers Duroid 6006) and
height hFSS = 0.127 mm. The patch size has been tuned on HFSS [274] to
get the required impedance value Zs = −j25 Ω at the operating frequency
f0 = 40 GHz. Basically, a unit-cell is excited with a Floquet mode imping-
ing with a normal incidence on the patch. The Y-parameters are then re-

Figure 5.21.: Schematic of the coaxial probe transition used for matching the mm-
wave launcher.
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Figure 5.22.: HFSS unit-cell model for the impedance synthesis of the capacitive
sheet. The respect of the homogenization limit p � λo p [50] allows
for describing the fields with only the fundamental n = 0 Floquet
harmonic, and hence only an equivalent transmission-line is required
to model the structure.

trieved from the simulation, and the surface impedance is extracted using
a simple equivalent transmission-line model [52], [282] (see Fig. 5.22). The
impedance sheet has been glued to the NELTEC substrate using an adhesive
layer Taconic fastRise FR− 27− 0030− 25 [283] with permittivity εr = 2.78
and thickness hglue = 86 µm.

A commercial connector (SRI Connector Gage 85131100080 [284]) has
been used to feed the structure from the back side of the launcher. The
geometry of the impedance surface has been modified close to the inner
probe of the coaxial connector (see Fig. 5.21) to improve the S11. In fact, the
radius of the metallic disk rdisk1 and its distance from the adjacent patches
are critical parameters for the impedance matching (further details can be
found in [153]). The stacked structure is enclosed with a circular metallic
rim of aluminum with radius ρap. The final prototype is shown in Fig. 5.20.

5.3.4 Measurements

The measurements have been performed in the Near-Field Test Range at the
IETR, Rennes, France. The prototype has been measured in the frequency
range 38 − 39.5 GHz with a frequency step of 100 MHz, and compared
with full-wave results of the complete structure performed in HFSS. The S-
parameters have been calculated by connecting the measuring probe and the
prototype to the Vector Network Analyzer (VNA). For the near-field mea-
surements, the measuring probe has been connected to an xyz translation
stage (see Fig. 5.23) to sample the longitudinal component of the electric
field Ez over a scanning area of 45 mm× 45 mm with a step of 0.75 mm at
six different z-planes starting from 3.75 mm (λ0/2) up to 18 mm (5λ0/2), in
order to verify the Bessel beam generation. The measuring probe is made
of a semi-rigid coaxial cable (UT-85) with the inner conductor extending
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Figure 5.23.: Some pictures of the Near-Field Test Range at IETR, Rennes, France.
Courtesy of Ioannis Iliopoulos [285]. Note that the antenna under test
(AUT) shown in the picture on the left is not our actual prototype
which was not mounted on the mast. These pictures are reported just
to show the measurement setup.

0.75 mm (λ0/10 at f0 = 40 GHz) beyond the outer conductor and dielectric.
In addition, the Ez component has been also measured along the xz-plane
(φ = 0◦) in order to highlight the overall nondiffractive behavior of the gen-
erated Bessel beam within the expected nondiffractive range.

Through measurements, a minimum in the amplitude of the reflection
coefficient (which also corresponds to the zero-crossing point of the reflec-
tion phase) of the prototype was found at a frequency of fm = 38.3 GHz
as shown in Fig. 5.24(a)-(b). Around this frequency, the measured |S11|
shows a −10 dB fractional bandwidth of approximately 3.7%. It is noted
that fm is shifted of 2.5% relative to the expected operating frequency f0.
This frequency shift may be attributed to fabrication tolerances (the inter-
ested reader can find more details in [153]).

Contour plots of the measured Ez component of the electric field
above the aperture are shown in Figs. 5.25(a)-(f) at various distances
(z = 0.5 λ0, 0.75 λ0, λ0, 1.5 λ0, 2 λ0, 2.5 λ0, where λ0 is equal to 7.5 mm)
from the radiating aperture at the operating frequency 38.3 GHz. An az-
imuthally symmetric Bessel beam is clearly shown. In particular, it is possi-
ble to distinguish the five dark rings corresponding to the five nulls of the
Bessel function.

A frequency sweep in the operating frequency range 38− 39.5 GHz with
a frequency step of 300 MHz, of the same contour plots at a fixed distance

37 37.5 38 38.5 39 39.5 40
−20

−15

−10

−5

0

f [GHz]

|S
11

| [
dB

]

BW = 3.7%

f
m

 = 38.3 GHz

(a)

37 37.5 38 38.5 39 39.5 40
−180

−90

0

90

180

∠
 S

11
 [°

]

f
m

 = 38.3 GHz

(b)

Figure 5.24.: (a) Measured reflection coefficient (|S11| in dB) and (b) reflection phase
(∠S11) of the prototype in the frequency range 37÷ 40GHz. The black
dashed lines highlight the frequency range for which the return loss is
under −10 dB.
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(a) (b) (c)

(d) (e) (f)

Figure 5.25.: Measured intensity of Ez along the xy plane at f = 38.3 GHz
at z = 0.5λ0, 0.75λ0, λ0, 1.5λ0, 2λ0, 2.5λ0 from the impedance surface,
where λ0 equal to 7.5 mm.

(a) (b) (c)

(d) (e) (f)

Figure 5.26.: Measured intensity of Ez along the xy plane at z = λ at f = 38.0 GHz,
38.3 GHz, 38.6 GHz, 38.9 GHz, 39.2 GHz, 39.5 GHz.

z = λ is reported in Figs. 5.26(a)-(f). A comparison with HFSS simulations
and numerical results (MATLAB) has also been reported in Figs. (5.27)(a)-
(c) at different distances z = 0.5λ0, 0.75λ0, λ at f = 38.3 GHz, and in
Figs. (5.27)(d)-(f) at different frequencies f = 38 GHz, 38.8 GHz, 39.5 GHz at
z = λ.

Finally, Fig. 5.28 provides the measured Ez field component along the
xz-plane (almost the same results have been obtained along the xy-plane,
due to the good azimuthal symmetry shown by the measurements) at
f = 38.0GHz, 38.3 GHz, 38.6 GHz, 38.9 GHz, 39.2 GHz, 39.5 GHz. As ex-
pected, the spot size represented here by the Half-Power Beamwidth
(HPBW) and the Bessel-beam profile are preserved along the axis of prop-
agation up to the nondiffractive range (marked with a white dotted line).
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(a) (b) (c)

(d) (e) (f)

Figure 5.27.: Comparison between measurements (solid gray lines), simulations
(dashed blue lines), and numerical results (red dashed lines). (a)-(c)
Normalized Ez vs. ρ at f = 38.3 GHz at z = 0.5λ0, 0.75λ0, λ0. (d)-(f)
Normalized Ez vs. ρ at z = λ at f = 38.0 GHz, 38.8 GHz, 39.5 GHz.

(a) (b) (c)

(d) (e) (f)

Figure 5.28.: Measured intensity of Ez along the xz plane at f = 38.0 GHz, 38.3 GHz,
38.6 GHz, 38.9 GHz, 39.2 GHz, 39.5 GHz.

Above this distance, diffraction prevails, and the beam starts to widen. Note
that the nondiffractive range decreases with frequency according to the cor-
respondent increase of k̂ρ, as expressed by Eq. (4.14).

The stability of the HPBW (see Fig. 5.29) is also maintained with respect
to the frequency variation. This result has been validated through mea-
surements (comparison with full-wave simulations is available for z = λ

in [153]) for different distances z from the aperture plane. As predicted
by Eq. (4.15), due to the dispersive behavior of βρ, the measured HPBW de-
crease monotonically slowly with frequency, within the measured frequency
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Figure 5.29.: Measured HPBW vs. f in the range 38 GHz to 39.5 GHz at differ-
ent distances z = 0.5λ0, 0.75λ0, λ0, 1.5λ0, 2λ0, 2.5λ0. The color shades
from blue to cyan as z increases from 0.5 λ to 2.5 λ. At z = λ the
HPBW shows a remarkable stability with respect to the frequency.

range (38− 39.5 GHz). Moreover, the measured HPBW remains quasi-stable
at z = λ with a variation coefficient (CV):

CV =
œHPBW

HPBW
' 1.1%, (5.42)

being σHPBW ' 50 µm the standard deviation of the measured HPBW, and
HPBW ' 4.3 mm its mean value. Note that, as the distance from the aper-
ture increases, the average value of the HPBW increases because the main
beam starts to widen as long as it approaches the nondiffractive range.

5.3.5 Use of a LRW as an X-wave launcher

These promising results, i.e., the generation of zeroth-order Bessel beams
with a fixed spot size over a certain bandwidth, have suggested the investiga-
tion of the possibility to generate polychromatic nondiffracting solutions, i.e.
X-waves, with this prototype. However, an intrinsic limitation has revealed
us the unfeasibility of the project for any kind of Bessel-beam launcher gen-
erated with forward leaky waves. In fact, if one looks at the dispersion be-
havior of the leaky mode responsible for radiation (in this case the first
higher-order mode, but the concept holds also for the fundamental mode),
it is easy to check that the radial phase constant βρ monotonically increases
with frequency around the operating point. This means that the longitudi-
nal phase constant βz will decrease with frequency (due to the separation
equation kz =

√
k2

0 − k2
ρ). Furthermore, the group velocity along z is given

by:

vz =

(
∂βz

∂ω

)−1
=

(
∂β̂z

∂ω
k0 +

1
c0

β̂z

)−1

= c0

(
∂β̂z

∂ω
ω + β̂z

)−1

, (5.43)
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thus the condition required for having vz > 0 is:

ω
∂β̂z

∂ω
+ β̂z > 0. (5.44)

Since 0 < β̂z < 1 and ∂β̂z/∂ω < 0, if we define s = −|∂β̂z/∂ω| the absolute
value of the frequency slope of β̂z, the relation above is equal to:

s <
β̂z

ω
. (5.45)

It is easy to verify that, for the required forward leaky mode, one would
obtain s > β̂z/ω in a small bandwidth centered around the operating fre-
quency (e.g., s ' 10−10 at ω0 ' 1011 with β̂z ' 0.5, then s > ω/β̂z), thus
describing a pulse which is propagating towards the aperture. Obviously,
there would not be any pulse propagation away from the aperture, thus
making impossible the generation of any pulse (especially a nondiffracting
pulse such as an X-wave) from such a device.

Therefore, in order to investigate the possibility to generate nondiffracting
pulses, we have considered structures able to radiate waves with a positive
longitudinal group velocity vz > 0. In the next Chapter 6 we thoroughly dis-
cuss the properties of Radial Line Slot Array (RLSA) antennas [242], [286],
whose radiation mechanism can be attributed to backward leaky waves
[206]. As we will see, such devices can realistically pave the way for the
first experimental generation of X-waves in the microwave/millimeter-wave
range.
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5.4 conclusion

In this Chapter the analysis, design, and implementation of a microwave
Bessel-beam launcher has been reviewed. The considered device is based
on the excitation of lower-order leaky modes, thus not allowing for a conve-
nient frequency-scaling at millimeter waves. In fact, the existing design rules
would have led to impractically thin substrates and considerably high ohmic
losses at millimeter waves. To reduce the consequent ohmic losses and fab-
rication issues, a higher-order design is then proposed. New design rules
are derived in analytical form to prevent modal coupling. Measurement re-
sults of a prototype working around 40 GHz have confirmed the proposed
analysis and design over a fractional bandwidth of about 4%. Within the op-
erating bandwidth the Bessel beam has shown a remarkable quasi-constant
beamwidth; a feature that is of paramount importance in near-field focusing
applications.

Finally, the propagating features of forward leaky waves have been dis-
cussed in connection to their use for generating X-waves. As a result, it
is shown that forward leaky waves as those excited by this prototype do
not allow for the generation of a propagating X-wave. Conversely, limited-
dispersion backward waves seem to be particularly amenable for these pur-
poses, as we will readily see in the next (and also last) Chapter 6.



6 X-W AV E L A U N C H E R S

6.1 introduction

In the previous Chapter 5, we have seen some experimental realizations of
Bessel beam launchers in the microwave and the millimeter-wave frequency
range. As pointed out in Chapter 4, the generation of Bessel beams over a
considerable fractional bandwidth may open the possibility to realize poly-
chromatic nondiffracting solutions, such as X-waves. Unfortunately, in 5.3.5
it has been shown that the LRWs proposed in Chapter 4 are not suitable for
X-wave generation due to the specific dispersive character of the relevant
leaky modes. However, a different class of wideband microwave radiators
will be considered in this Chapter 6 to overcome these limitations.

Chapter 6 is organized in two Sections. In Section 6.2, we introduce the
reader to the theoretical framework that is needed to understand the fun-
damental limitations upon the millimeter-wave generation of zeroth-order X-
waves1 with finite apertures. This will bring us to evaluate the impact of both
the aperture truncation and wavenumber dispersion on the spatio-temporal
features of the generated X-wave. Finally, a wideband radiator, namely a
Radial Line Slot Array (RLSA) antenna [242], [286], [287] is briefly outlined
and proposed as an X-wave launcher. Numerical results will validate the
concept.

In Section 6.3, we investigate the possibility to generate higher-order X-
waves (i.e., localized twisted pulses characterized by an azimuthal phase vari-
ation) in the microwave range through finite apertures. A numerical vali-
dation will clearly reveal the focusing capabilities of a wideband dispersive
radiator. It is worth to note here that higher-order X-waves have never been
carefully studied in the microwave range. Moreover, the higher-order charac-
ter of such waves, may pave the way for the first localized transmission of
orbital angular momentum (OAM) in the microwave range. A possibility that
could open unprecedented scenarios in the context of high data-rate wireless
transmissions and spatial diversity in Telecommunications.

1 From now on we omit this prefix, so that X-waves will always be considered of zeroth-order if
not differently specified.
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6.2 generation of zeroth-order x-waves
through finite apertures

Among the different solutions within the class of polychromatic non-
diffracting waves, here we focus our attention on the family of X-shaped
pulses (see Chapter 4). In particular, we will consider ‘spectrally-flat’ X-shaped
pulses, i.e., nondiffracting solutions whose spectral content is described by
Eq. (4.10) weighted with a uniform frequency spectrum. This choice has been
motivated by the fact that any realistic frequency spectrum has most of its
spectral content concentrated in a limited bandwidth around a central fre-
quency2. As a consequence, uniform frequency spectra allow for describing
a wide class of high-frequency X-shaped pulses. For this reason, in the follow-
ing we adopt the notation of X-waves (which, by definition, are described by
an exponentially-decaying frequency spectrum) to refer to such pulses.

In this Section, the spatio-temporal properties of band-limited, dispersive,
electromagnetic X-waves generated by millimeter-wave wideband radiators
are discussed within a novel theoretical framework. In particular, in 6.2.1 the
original concept of metric of confinement is introduced in order to evaluate the
focusing properties of an X-wave. The definitions of weak and strong confine-
ment will emerge as useful criteria to determine if the spatial confinement
of an X-wave is efficient or not. These tools are then used in 6.2.2 to show
that even an ideal X-wave (where ideal means a nondiffracting and nondis-
persive X-wave) must fulfill some precise requirements in terms of fractional
bandwidth, aperture size, and axicon angle, to show an efficient spatial con-
finement along both the transverse and the longitudinal axes. Even more
interestingly, in 6.2.3 we will show how, by progressively removing some
simplifying hypotheses, it is still possible to generate a limited-diffraction
and limited-dispersion X-wave. Finally, in 6.2.4 a wideband radiator, namely
an RLSA antenna [242], [286], [287], is briefly introduced and then consid-
ered for the practical generation of such X-waves. In fact, the wideband
capability of RLSA antennas together with their limited-dispersion proper-
ties [206] suggest their use as X-wave launchers. Numerical results based
on the characteristics of a realistic device corroborate the theoretical results
of 6.2.2 and 6.2.3. Specifically, the impact of the aperture size and wavenum-
ber dispersion on the spatio-temporal features of the generated X-wave are
thoroughly discussed.

These results demonstrate that a dispersive-finite X-wave (even if it can no
longer be considered nondiffractive and nondispersive in the most rigorous
sense) retains localization properties in both the transverse and the longitu-
dinal axes over a finite distance and time duration related to the physical
size and bandwidth of the generating device. These features may be of in-

2 Despite a finite spectral extension does not constitute a true signal which, on the contrary,
requires an infinite spectrum.
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Figure 6.1.: Definition of a metric of confinement for an X-wave. A pulse character-
ized by a transverse spot width Sρ and a longitudinal spot width Sz
is launched through a finite radiating aperture of diameter dap = 2ρap.
Since the main constituents of an X-wave, i.e., Bessel beams, maintain
their spot widths up to the nondiffractive range zndr, an X-wave will be
properly defined over an area on the ρz plane which is limited along ρ by
the aperture diameter and along z by the nondiffractive range. If most
of the energy of the pulse is contained in this region, we can actually
state that the considered X-wave is efficiently confined.

terest in various applications at millimeters waves and optics, where the
spatial confinement of electromagnetic pulses is of paramount importance.

6.2.1 Metric of confinement

In Section 4.3, we have thoroughly discussed the focusing features of
Bessel beams providing a formula (viz., Eq. (4.15)) for evaluating the trans-
verse spot width Sρ, i.e., the null-to-null spatial length along the radial direc-
tion ρ (see Fig. 6.1). Since a Bessel beam is generated by a finite radiating
aperture, its focusing performance may be evaluated by the transverse con-
finement Cρ:

Cρ
∆
=

Sρ

dap
, (6.1)

defined as the ratio between the transverse spot width Sρ and the aperture
size dap. An X-wave, as a spectral superposition of Bessel beams, retains
almost the same transverse spatial distribution of a Bessel beam, so that Cρ

can be used to describe also the transverse confinement of an X-wave. How-
ever, an X-wave is also traveling along the longitudinal axis z, as is briefly
sketched in Fig. 6.1. At this point, a question arises: given a longitudinal
spot width Sz, how can we evaluate the focusing performance of an X-wave
with respect to the longitudinal z-axis? The answer lies again in the focus-
ing features of its main constituents. As a matter of fact, a truncated Bessel
beam will retain its transverse spatial distribution within the nondiffractive
range zndr. As a consequence, any definition of longitudinal spot width Sz

is meaningless if not normalized to the nondiffractive range zndr. It immedi-
ately follows that the focusing performance of an X-wave may be evaluated



200 x-wave launchers

on the transverse axis by Cρ, and on the longitudinal axis by the longitudinal
confinement Cz:

Cz
∆
=

Sz

zndr
, (6.2)

defined as the ratio between the longitudinal spot width Sz and the non-
diffractive range zndr. As is clearly shown in Fig. 6.1, the spatial features of
an ideal X-wave are well defined only within a ρz plane limited by ρap along
the transverse axis, and zndr

3 along the longitudinal axis (see the ‘Area of
X-wave definition’ in Fig. 6.1). Within the area of X-wave definition, we can say
that an X-wave is efficiently confined along the ρ-axis if and only if the spot
width along ρ (Sρ) is much smaller than the aperture size (dap), i.e., Cρ < 1.
Similarly, the confinement along the z-axis is effective if and only if the spot
width along z (Sz) is smaller than the nondiffractive range zndr, i.e., Cz < 1.

From the discussion above, the concept of efficient confinement directly
arises. Hence, a metric which is able to ‘capture’ the comprehensive con-
finement of an X-wave is needed. To this purpose, in the following two
paragraphs we propose the concepts of weak confinement and strong confine-
ment.

Weak Confinement

For some applications, the constraints on the confinement may be slightly
relaxed since we could be interested in solutions that are not efficiently con-
fined in one direction but extremely confined along the other one. From
this viewpoint, a suitable definition of metric is given by the product of the
ratios Cρ = Sρ/dap and Cz = Sz/zndr:

C(w)
ρ,z = Cz · Cρ, (6.3)

where C(w)
ρ,z stands for weak confinement. From the definition above, we

would say that an X-wave is weakly confined if and only if:

C(w)
ρ,z < 1. (6.4)

Obviously, for Cρ,z = 1 there will never be efficient confinement, since the
transverse or the longitudinal spot widths would exceed the aperture size
or the nondiffractive range, respectively.

Strong Confinement

For some other applications, the constraints on the confinement may be
quite strict since we could be interested in solutions that are efficiently con-

3 Indeed, beyond the nondiffractive range, Sρ would no longer describe the actual spot width of
the pulse.



6.2 zeroth-order x-wave generation through finite apertures 201

fined in both directions. From this new viewpoint, a suitable definition of
metric is given by the following4:

C(s)
ρ,z =

1 if max(Cρ, Cz) > 1,

C(w)
ρ,z elsewhere,

(6.5)

where C(s)
ρ,z stands for strong confinement. From the definition above, we

would say that an X-wave is strongly confined if and only if:

C(s)
ρ,z < 1. (6.6)

In the following 6.2.2, both the transverse and the longitudinal profiles of
an ideal X-wave are calculated in closed forms assuming uniform frequency
spectra. This analysis allows for the evaluation of Cρ and Cz, and in turn of
the confinement features of ideal X-waves in the frame of both the weak and
the strong metric of confinement.

It is worth noting that, for an ideal nondispersive X-wave, the phase veloc-
ity vp does not change with frequency, and thus it coincides with the group
velocity vg. Since the propagation of an X-wave is along one dimension (viz.,
the z-axis), this means that the temporal axis t can be considered as a spatial
coordinate through the product with vp

5. By duality, the longitudinal con-
finement properties of ideal X-waves give also a measure of the temporal
spreading of the pulse, thus both the metrics defined above measure the
spatio-temporal features of an ideal X-wave.

Finally, we should stress that the discussion on the confinement capabili-
ties of X-waves in the present Subsection 6.2.1 is not related to any assump-
tion on the chosen frequency spectrum. Conversely, the discussion of the
following subsections holds only for uniform frequency spectra.

6.2.2 Ideal X-waves

In the representation of an ideal X-wave (see Section 4.2), some simplify-
ing hypotheses are tacitly assumed:

i) the aperture field is a nondiffractive Bessel beam over the entire fre-
quency range and along an infinite propagating distance. This means
that an infinite aperture, or infinite energy is required [188], [189];

ii) the axicon angle θ(ω) = θ0 does not change with frequency. This
latter condition implies that no wavenumber dispersion is taken into
account.

However, even under these simplifying hypotheses, it will readily be
shown that is not always possible to efficiently confine an X-wave in the

4 Which emulates the boolean operation Cρ > 1 OR Cz > 1.
5 This is in agreement with the definition of Minkowski’s spacetime.
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sense expressed by the metrics C(w)
ρ,z and C(s)

ρ,z previously defined. The fea-
tures of dispersive (i.e., removal of hypothesis ii)) and dispersive-finite (i.e.,
removal of hypothesis i) and ii)) will be the objects of Subsections 6.2.3 and
6.2.4, respectively.

Note also that, though the spot-widths of ordinary X-waves have already
been calculated in [263], it still lacks an insight about the confinement prop-
erties of X-waves in the current literature.

Analytical description

The mathematical description of an X-wave has already been discussed in
Chapter 4. Here, we report for convenience Eq. (4.11):

ψ(ρ, z, t) =
∫ ∞

0
F(ω)J0(k0 sin θ0ρ)e−jk0 cos θ0zejωtdω. (6.7)

We recall here that ψ(ρ, z, t) is defined as the analytic signal of ψ̃(ρ, z, ω), i.e.,

ψ(ρ, z, t) ∆
= F−1{ψ̃(ρ, z, ω) · H(ω)}, (6.8)

where F−1(·) represent the inverse Fourier transform, and H(·) is the most
known Heaviside step function. This allows to discard the negative spectral
content of an X-wave.

From now, we limit our study to uniform frequency-spectrum X-waves
(UXWs)6, i.e., band-limited spectrally-flat X-waves described by Eq. (6.7)
when F(ω) is a uniform frequency spectrum centered around a carrier an-
gular frequency ω0 and zero outside a certain angular frequency band ∆ω

F(ω) = Π
(

ω−ω0

∆ω

)
=

1 |ω−ω0| ≤ ∆ω/2

0 elsewhere
, (6.9)

where Π(x) = H(x + 1/2)− H(x− 1/2) is the window function.
For this choice of F(ω), the integral in Eq. (6.7) for a UXW reduces to:

χU(ρ, z, t) =
ω0+∆ω/2∫

ω0−∆ω/2

J0

(
ω

c0
sin θ0ρ

)

× exp
[
−j

ω

c0
cos θ0

(
z− c0t

cos θ

)]
dω (6.10)

=

ω0+∆ω/2∫
ω0−∆ω/2

J0

(
ω

uρ
ρ

)
exp

[
−j

ω

uz
(z− uzt)

]
dω, (6.11)

where uρ = c0/ sin θ0 and uz = c0/ cos θ0 are the radial and longitu-
dinal phase velocities, respectively. The spatial confinement properties
of an X-wave weighted with a uniform spectrum can easily be deter-

6 For the interested reader, localized solutions characterized by different choices of frequency
spectra as well as UXWs have been widely investigated in [192] with the aid of the bidirectional
decomposition technique (see [196]).
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Figure 6.2.: Normalized χU
t (ρ) vs. ρ for f0 = 60 GHz, θ0 = 11◦ and (a) ∆ω/ω0 =

0.05 (b) ∆ω/ω0 = 0.2. Comparison between the numerical integration
of Eq. (6.12) (red circles), the exact integral of Eq. (6.12) (green solid
curves), and the approximation given by Eq. (6.15) (blue dashed curves).
As the fractional bandwidth ∆ω/ω0 increases, the approximation is less
accurate on the tails, but the width of the main beam is always well
approximated.

mined by calculating the integral in Eq. (6.11) along both the z- and ρ-
axis. Note that, the transverse (χU

t (ρ, t) = |χU(ρ, z = 0, t)|) and longitudinal
(χU

l (z, t) == |χU(ρ = 0, z, t)|) profiles of the UXWs both depend on time
t. However, since for ideal UXWs the nondispersive character of waves
implies vz(t) = uz = c0/ cos θ0, then χU

t (ρ) and χU
l (ξ) would depend on a

single variable defined as ξ = z− uzt. For the sake of simplicity we always
assume t = 0, so that ξ = z and χU

t (ρ) and χU
l (z) are functions of a single

spatial variable. Note that, by duality, if we assume z = 0, so that ξ = t,
then χU

l (t) would measure the temporal spreading of the pulse.

In particular, the transverse amplitude profile of a UXW is given by:

χU
t (ρ) = |χ(ρ, z = 0, t = 0)| =

∣∣∣∣∣∣
ωM∫

ωm

J0

(
ω

c0
sin θρ

)
dω

∣∣∣∣∣∣ =∣∣∣∣ xc0

2ρ sin θ
[πH0(x)J1(x) + (2− πH1(x))J0(x)]xM

xm

∣∣∣∣ , (6.12)

where H0(·) and H1(·) are the Struve functions of zero and first order [272],
respectively, and where

ωM = ω0 + ∆ω/2, ωm = ω0 − ∆ω/2, (6.13)

xM =
ωMρ sin θ

c
, xm =

ωmρ sin θ

c
. (6.14)

It can be shown that the expression in Eq. (6.12) is very well approximated
by:

χU
t (ρ) ' ∆ω

∣∣∣∣J0

(
ω0 sin θρ

c0

)∣∣∣∣ , (6.15)

for small arguments of J0(·) (see Fig. 6.2). Note that Eq. (6.15) simply rep-
resents the product of the integrand function in Eq. (6.12) evaluated at the
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carrier frequency and the bandwidth, hence Eq. (6.15) can be interpreted as
a result of the Mean Value Theorem [288]

Similarly, the longitudinal amplitude profile of a UXW is given by:

χU
l (z) = |χ(ρ = 0, z, t = 0)| =

∣∣∣∣∣∣
ωM∫

ωm

exp
(
−j

zω

c0
cos θ

)
dω

∣∣∣∣∣∣ . (6.16)

The integration over ω yields:

χU
l (z) = ∆ω

∣∣∣∣sinc
(

z∆ω cos θ

2c0

)∣∣∣∣ . (6.17)

Conditions for the weak confinement of ideal X-waves

From Eqs. (6.15) and (6.17) it is possible to evaluate the spot size of the
UXW. Here, we consider as spot size the null-to-null distance of the ampli-
tude profile over both axes. The quantities Sρ and Sz previously defined are
then given by:

Sρ =
2j0,1c0

ω0 sin θ
, (6.18)

Sz =
4πc0

∆ω cos θ
, (6.19)

where j0,1 = 2.4048 identifies the first null of the J0 function. As stated in
6.2.1, a weak efficient spatial confinement takes place only when the con-
straint in Eq. (6.4) is respected.

Thus, using Eqs. (6.18), and (6.19) in Eq. (6.4), and expressing the aperture
size ρap in terms of the operating wavelength λ0 = 2πc0/ω0, yields:

C(w)
ρ,z =

j0,1

2πm sin θ︸ ︷︷ ︸
Cρ

2 sin θ

m∆ω cos2 θ︸ ︷︷ ︸
Cz

=
j0,1

πm2 cos2 θ∆ω
< 1, (6.20)

where m = ρap/λ0 is the aperture radius in number of wavelengths and
∆ω = ∆ω/ω0 is the fractional bandwidth. Note that in Eq. (6.20) a ratio
with respect to the aperture size has been considered, even if the fields
are here computed by neglecting the finiteness of the aperture. However,
Eq. (6.20) will allow for evaluating the impact of different parameters on the
shape of the wave. This information will be useful even in the practical case
of a finite aperture, discussed in 6.2.4.

In Fig. 6.3, the weak confinement C(w)
ρ,z is expressed as a function of the

electrical length m = ρap/λ0 and the axicon angle θ. The intensity of C(w)
ρ,z

goes from 0 (white) to 1 (black) 7. The yellow hyperbola delimit a region
of θ, m values for which Eq. (6.20) is satisfied, for four different values of
the fractional bandwidth: ∆ω = 0.01, 0.05, 0.1, 0.2 (Figs. 6.3(a)-(d)). As

7 Note that, from the definition of C(w)
ρ,z (Eq. (6.20)) values greater than 1 are possible, but they

are here saturated to 1 for readability purposes.
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Figure 6.3.: Weak confinement C(w)
ρ,z vs. ρap/λ0 and θ. The yellow hyperbola repre-

sents the boundary between the region of efficient (in white) and non-
efficient confinement (in black) for ideal UXWs, when fractional band-
widths of (a) ∆ω = 0.01, (b) ∆ω = 0.05, (c) ∆ω = 0.1, and (d) ∆ω = 0.2
are considered. The region of efficient confinement increases for larger
fractional bandwidths. In any case, this region corresponds to electri-
cally large apertures with small axicon angles.

clearly shown, the region of efficient confinement increases as the fractional
bandwidth increases up to ∆ω = 0.2. Note that for higher values of ∆ω

there are no significant changes with respect to Fig. 6.3(d).

Interestingly, from Fig. 6.3 it is easy to infer that electrically large aper-
tures (high m) and low axicon angles θ are required to efficiently confine a
pulse in a weak sense, even for ideal UXWs. Furthermore, it is clear from
Eq. (6.20) that the fractional bandwidth ∆ω controls the pulse confinement
along the z-axis (Cz) without affecting the confinement along the ρ-axis (Cρ).
Conversely, θ affects both Cρ and Cz. In particular, as θ increases, the pulse
is more confined along ρ but spreads along z, and viceversa.

Numerical examples

To give a proof-of-concept we have considered a small fractional band-
width ∆ω = 0.01 and a large one ∆ω = 0.2. In Fig. 6.4, we have overlapped
the confinement boundary obtained for ∆ω = 0.2 over the contour plot of
the weak confinement C(w)

ρ,z obtained for ∆ω = 0.01. As a result, in Fig. 6.4
a transition region is defined where a pulse would be efficiently confined
in the weak sense for ∆ω = 0.2, but inefficiently confined for ∆ω = 0.01.
These results have been validated through numerical simulations in Fig. 6.5.
As is shown, if an X-wave is generated with parameters in p1 (see purple
dot in Fig. 6.5(a)) the intensity distribution |χU(ρ, z)|2 is not confined for
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Figure 6.4.: The yellow and white hyperbola represents the boundaries between the
region of efficient (in white) and non-efficient confinement (in black)
∆ω = 0.01 and ∆ω = 0.2, respectively. The transition region is limited
by the two hyperbola.

FBW = 100 · ∆ω = 1% because the longitudinal spot width does not go
to zero within the nondiffractive range (see Fig. 6.5(b)). Conversely, for
FBW = 20% the same X-wave would be confined as shown in Fig. 6.5(c).
For completeness, numerical results for X-waves generated with parameters
in p2 and p3 (see the yellow dot and the blue dot in Figs. 6.5(a) and (d),
respectively) have been reported. As expected, the resulting X-wave is not
efficiently confined for p2 even for a FBW = 20% (see Fig. 6.5(e)), whereas
it is very well confined for p3 (see Fig. 6.5(f)).

Figure 6.5.: C(w)
ρ,z vs. ρap/λ0 and θ0 for (a) FBW = 1% and (d) FBW = 20%. The

purple dot p1 represents an X-wave with m = 8 and θ = 10◦. The yellow
dot p2 represents an X-wave with m = 1 and θ = 10◦. The blue dot p3
represents an X-wave with m = 25 and θ = 20◦. An X-wave in p1 is
generated for (b) FBW = 1% and (c) FBW = 20%, whereas X-waves in
(e) p2 and (f) p3 are both generated for FBW = 20%. In (b-c) and (e-f),
the intensity of the X-wave is reported over a ρz plane limited by ρap
along ρ and zndr along z. From this representation, if Sρ and Sz fit in the
plot, then the X-wave is confined over the respective axis. Note that, the
ρ-axis is normalized to ρap while the z-axis is normalized to zndr.
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Figure 6.6.: Strong confinement C(s)
ρ,z vs. ρap/λ0 and θ. The yellow curves repre-

sent the boundaries between the region of efficient (in white) and non-
efficient confinement (in black) for ideal UXWs, when fractional band-
widths of (a) ∆ω = 0.01, (b) ∆ω = 0.05, (c) ∆ω = 0.1, and (d) ∆ω = 0.2
are considered. The region of efficient confinement increases for larger

fractional bandwidths as for C(w)
ρ,z . However, the efficient region is con-

siderably narrower due to the more strict criterion applied by the strong

metric C(s)
ρ,z with respect to the weak metric C(w)

ρ,z .

Furthermore, the results hitherto obtained using the weak confinement ex-
pressed by C(w)

ρ,z are compared with those obtained using the strong confine-

ment. In fact, the results of Fig. 6.3 obtained for C(w)
ρ,z are reported in Fig. 6.6

for C(s)
ρ,z . As expected, the efficient region is considerably narrower due to

the more strict criterion applied by the strong metric C(s)
ρ,z with respect to the

weak metric C(w)
ρ,z .

Finally, the distinction between C(w)
ρ,z and C(s)

ρ,z has been highlighted by
the numerical example of Fig. 6.7. As is seen, when an X-wave is gener-
ated with parameters as in p1 (m = 10, θ0 = 60◦, and ∆ω = 0.2), the
resulting pulse would be weakly confined but not strongly confined (see top-
right panel); whereas when an X-wave is generated with parameters as in
p2 (m = 10, θ0 = 30◦, and ∆ω = 0.2), the resulting pulse is strongly con-
fined (see bottom-right panel). Consistently to the definition of C(w)

ρ,z and

C(s)
ρ,z , since p1 lies outside the region of strong confinement but within the

region of weak confinement (see top-left and bottom- left panels of Fig. 6.7),
the resulting X-wave is not confined along the longitudinal z-axis, but it is
extremely confined along the transverse ρ-axis.

As a final remark, we provide here some useful analytical expressions.
In fact, the yellow hyperbola which define the boundaries for C(w)

ρ,z can be
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Figure 6.7.: Upper-left and lower-left corner: C(w)
ρ,z and C(s)

ρ,z vs. ρap and θ for FBW =
20%. Upper-right and lower-right corner: 3-D view of the normalized
|χ(ρ, z)|2 vs. ρ and z with parameters as in p1 and p2, respectively (viz.,
m = 10 and θ0 = 60◦ for p1, and m = 10 and θ0 = 30◦ for p2).

calculated in closed-form, by setting Eq. (6.20) to 1. If one wants to express
the hyperbole as a function of θ one would obtain:

m(w)
min =

1
cos θ

√
j0,1

π∆ω
. (6.21)

As is clearly expressed by the equation, as ∆ω increases, the hyperbole is
more pronounced, in agreement with the previous considerations. Note
also that m(w)

min in Eq. (6.21) represents the minimum electrical aperture size
m that the radiating device needs to be in order to achieve the weak confine-
ment for any value of the axicon angle θ. Obviously, this minimum aperture
size increases for lower axicon angles.

Even the boundaries for C(w)
ρ,z can be calculated in closed-form. In this

case, one needs to set separately Cρ and Cz in Eq. (6.20) to 1. As a result,
one would obtain:

m(s)
ρ =

j0,1

2π sin θ
, (6.22)

m(s)
z =

2 tan θ

∆ω cos θ
, (6.23)

so that the boundary is given by:

m(s)
min = min

θ

{
m(s)

ρ , m(s)
z

}
. (6.24)
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From Eqs. (6.22) and (6.23) it is clear that ∆ω only affects the longitudinal
confinement, whereas θ affects m(s)

ρ and m(s)
z with opposite trends. This

aspect clearly emphasizes the importance of the fractional bandwidth ∆ω

which is the only independent parameter of an X-wave that allows to im-
prove its overall confinement properties without negatively affects the con-
finement along the transverse direction as the axicon angle does.

In the following, we will use only the weak confinement. Specifically,
Eq. (6.20) will be considered as an upper-bound limit for the weak con-
finement of both dispersive and dispersive-finite UXWs based on the ideal
assumptions used for its derivation.

6.2.3 Dispersive X-waves

In the previous subsection we have assumed that the axicon angle
does not change with frequency in the considered band θ(ω) = θ0 for
ω ∈ {ω0 − ∆ω/2, ω0 + ∆ω/2}, and thus both the longitudinal and trans-
verse wavenumbers, given by kρ = (ω/c) sin θ0 and kz = (ω/c) cos θ0, re-
spectively, are also linear functions of frequency, as required for generating
ideal localized waves (see Section 4.2). This assumption is widely assumed
in optics and acoustics, thus motivating the reason why X-waves have been
experimentally generated only in these range of frequencies [264], [265]

However, in most electromagnetic devices, especially for those with
considerable fractional bandwidths, a non-linear relationship between kz,
kρ and ω is usually assumed, thus dispersion cannot be neglected [224],
[241], [242].

Such a wavenumber dispersion should not be confused with the anomalous
dispersion of nonlinear media (e.g. Kerr media [289]–[292]) that has already
been exploited in relation with the spontaneous formation of X-waves [268],
[289], [291], [293]. There, the frequency dispersion may be considered bene-
ficial for the suppression of temporal broadening of pulses due to material
dispersion [266], [268], [294]. Here, it is an undesirable phenomenon that
has to be taken into account for a realistic analysis of pulse propagation and
broadening.

Generally, the dependence of both longitudinal and transverse wavenum-
bers on ω is not known in closed-form, but, for most cases (especially for
narrow-band signals), it can be accurately described by a second-order Tay-
lor series expansion [164]:

kρ = kρ0 + kρ1(ω−ω0)
1
2

kρ2(ω−ω0)
2, (6.25)

kz = kz0 + kz1(ω−ω0)
1
2

kz2(ω−ω0)
2, (6.26)

where ω′ = ω − ω0, whereas kρ0, kρ1, kρ2 and kz0, kz1, kz2 represent the co-
efficients of the second-order approximation for the transverse wavenum-
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ber kρ and for the longitudinal wavenumber kz, respectively. Note that,
kz0, kz1, kz2 are also related to kρ0, kρ1, kρ2 through the relation of separability
k2

ρ + k2
z = k2

0. After mathematical steps, one gets the sought relations

kz0 =
√

k2
0 − k2

ρ0, (6.27a)

kz1 = (k0c−1 − kρ0kρ1)/kz0, (6.27b)

kz2 = (c−2 − k2
ρ1 − kρ0kρ2 − k2

z1)/kz0. (6.27c)

Note that, kz0, kz1, and kz2 are related to the phase velocity uz = ω0/kz0,
the group velocity vz = (∂kz/∂ω)|−1

ω=ω0
, and the group velocity dispersion

(GVD), respectively8.

As a consequence, the mathematical description of a dispersive UXW is
approximated by

χU(ρ, z, t) =
ωM∫

ωm

J0
[
kρ(ω)ρ

]
exp [−jkz(ω)z] exp (jωt) dω

'
∆ω/2∫
−∆ω/2

J0

[(
kρ0 + kρ1ω′ +

1
2

kρ2ω′
2
)

ρ

]

× exp
{
−j
[(

kz0 + kz1ω′ +
1
2

kz2ω′2
)

z
]}

× exp
[
j(ω′ + ω0)t

]
dω′, (6.28)

where ω′ = ω−ω0. As a difference with respect to Eq. (6.11), the transport
of the pulse is no longer rigid, hence both the transverse and longitudinal
profiles depend on time. Moreover, the transverse profile χU

t (ρ, t), as a func-
tion of time, can only be calculated numerically. Nevertheless, χU

t (ρ, t = 0)
is still well approximated by Eq. (6.11) provided that θ is now calculated at
ω0

χU
t (ρ, t = 0) ' ∆ω

∣∣J0
(
kρ0ρ

)∣∣
= ∆ω

∣∣∣∣J0

(
ω0 sin θ0ρ

c

)∣∣∣∣ . (6.29)

Note that, for sufficiently low values of kρ1, Eq. (6.29) is a good approxima-
tion even for t > 0.

For the longitudinal amplitude profile, an analytical closed-form expres-
sion still exists and is given by

χU
l (z, t) '

∣∣∣∣∣erf
[√

jzkz2

2

(
ω′ +

zkz1kz2 − t
zkz2

) ]ω′=∆ω/2

ω′=−∆ω/2

∣∣∣∣∣
×
∣∣∣∣√ π

j2kz2z

∣∣∣∣, (6.30)

8 The interested reader can find an exhaustive analysis on this can be found in [268].
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Figure 6.8.: Comparison between numerical integrations (red circles) and approx-
imations (Eqs. (6.29) and (6.17) in green solid lines and Eqs.6.18 and
6.19 in blue dashed lines) of (a)-(b) transverse profiles and (c)-(d) lon-
gitudinal profiles for a dispersive X-wave in fractional bandwidths
(a)-(c) FBW = 5% and (b)-(d) FBW = 20% centered around f0 =
60 GHz. The resulting profiles have been obtained assuming kz0 = 0.2k0,
kz1 = 0.55 · 10−12, and kz2 = 0. Results are reported over an aperture
plane of ρap = 15λ0 and zndr calculated at f0. Note that ρ′ = kρ0ρ and
z′ = kz0∆ωz/2.

where erf(·) is the error function [272]. Note that, kz2 = 0 (i.e., when a
first-order Taylor series expansion of kz is assumed) is a removable singular-
ity. Thus, as long as kz2 → 0, Eq. (6.30) reduces to Eq. (6.17). It is possible
to evaluate the spot size of a dispersive UXW in an approximate analyti-
cal form for Eq. (6.29) or numerical form for Eq. (6.30). In any case, both
Sρ and Sz are upper-bounded by Eqs. (6.18) and (6.19) (see Fig. 6.8), thus
the weak confinement C(w)

ρ,z given by Eq. (6.20) can still be used as a valid
metric. In particular, for narrow fractional bandwidths (∆ω . 0.05), the
spot widths of a dispersive X-wave coincide with those of an ideal X-wave,
and thus Eq. (6.20), as well as Eqs. (6.21) are still good approximations (see
Fig. 6.8(a) and (c). For wider fractional bandwidths (∆ω & 0.2), Sρ remains
unchanged with respect to the ideal case (as is clear by comparing Eqs. (6.29)
and (6.15)), whereas Sz can only be calculated numerically and it is gener-
ally greater than the ideal one (see Fig. 6.8(b) and (d)). As a consequence,
Eq. (6.20) should yield an underestimation of the actual pulse longitudinal
size.

In the following Subsection a physical device is proposed to account for
the finiteness of the structure. After a brief description of the radiating
device, numerical results are presented under the frame of a rigorous theo-
retical formulation. Comments on the results will end Section 6.2.
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Figure 6.9.: (a) Prospective view of an RLSA. (b) Brillouin diagram f vs. kz for the
structure in Fig. 6.9. kz (green curve) is given by Eq. 6.33 through the
relation of separability. The second-order Taylor approximation (blue
circles) accurately describe the wavenumber dispersion curve. The slope
of kz is lower than the light line (black line), so that c0 > vz > 0.

6.2.4 Dispersive-finite X-waves

In Chapter 5 we have seen two specific structures for Bessel-beam gener-
ation at microwaves (see Section 5.2) and millimeter waves (see Section 5.3).
Unfortunately, both devices use the combination of an inward and an out-
ward Hankel wave to generate a Bessel beam profile. As a result, such
Bessel-beam launchers are inherently narrow-band, thus providing poor
localization of X-waves in the sense of both the weak and strong metrics.
Moreover, in 5.3.5 we have seen that forward LWs as those used in Sec-
tion 5.2 and Section 5.3, always provide vz < 0, thus making impossible
the description of an outward propagating X-wave. However, it has been
recently shown [240] that Bessel beams can be efficiently generated through
an inward traveling wave aperture distribution in a well-defined conical
region centered around the axis of symmetry [220], [240], [295] (a rigor-
ous mathematical explanation can be found in [240]). As a consequence
of the non-resonant character of the aperture distribution, a radiating aper-
ture able to support an inward Hankel wave may generate nondiffractive
Bessel-like beams over a wide fractional bandwidth.

RLSA antennas

A class of microwave devices supporting such inward Hankel-wave dis-
tributions are RLSA antennas [242], [286], [287]. Basically, an RLSA is a
dielectric-filled radial waveguide where the upper metallic plate is loaded
with an array of radiating sub-resonant slots. The size and position of the
slots are selected through an automatic-design procedure based on the al-
ternate projection method [296]. Starting from a preliminary design, obtained
by means of an approximate analytical model, the required aperture (holo-
gram) is numerically refined by using an ad-hoc optimization tool [242], [286]
(details on the synthesis procedure can be found in [286], [287]).
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Briefly, according to Bethe theory [297], the radiation from a slot etched
on a metallic plane is equivalent to the radiation of a pair of equivalent
dipoles. In particular, for elongated slots [286], radiation can accurately be
described only by an equivalent magnetic dipole M = αm ·H

inc parallel to
the metallic plate and proportional to the incident magnetic field Hinc =

Hincĥ0 through a dyadic polarizability αm [297]. For the fundamental TMz
0

mode of a radial waveguide (see Fig. 6.9(a)), the expression of the equivalent
surface magnetic current distribution, takes the form [269]:

M = jαm · ĥ0ejφ H(2)
1 (k0

√
εrρ). (6.31)

that is a first-order outward Hankel wave. Since, zeroth-order Hankel in-
ward waves are necessary to generate Bessel beams (see [240]), the phase
matching condition is enforced between the expression in Eq. (6.31) and
the co-polar component of the desired surface magnetic current distribution
Map = H(1)

0 (kρρ)p̂0, where p̂0 is an arbitrary polarization vector. By ex-
ploiting the asymptotic behavior of Hankel functions, the phase matching
condition implies:

ej(φ−k0
√

εrρ)

√
ρ

∼ ejkρρ

√
ρ

→ ρ =
φ

kρ + k0
√

εr

→ ρ =
φ

k0(sin θ0 +
√

εr)
, (6.32)

that is the equation of the spiral along which the slot pairs should be
arranged. As frequency changes, Eq. (6.32) is still valid, but the equiva-
lent magnetic current distributions becomes M ∼ p̂0ej(φ−k0(ω)

√
εrρ)/
√

ρ and
Map ∼ p̂0ej(kρ(ω)ρ)/

√
ρ. Consequently, from Eq. (6.32) follows an approxi-

mate dispersion equation for the RLSA given by:

ej(kρ(ω0)+k0
√

εr−k0(ω)
√

εr)ρ

√
ρ

∼ ejkρ(ω)ρ

√
ρ

→ kρ(ω) = kρ(ω0)−
√

εr

c0
(ω−ω0). (6.33)

A full-wave Method of Moments (MoM) analysis is needed to evaluate
the field radiated by RLSA antennas [298], [299]. However, the knowledge
of the dispersion relation allows for describing the near-field distribution
of all the electromagnetic field components through the evaluation of the
scalar potential Az (Fz) associated to the propagating TM (TE) mode (see
Section 5.2).
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Theoretical formulation

In order to take into account the edge diffraction due to the finiteness of
the radiating structure, the dispersive-finite UXW is calculated as

χU(ρ, z, t) =
ωM∫

ωm

Erad(ρ, z) exp(jωt)dω, (6.34)

where Erad is a proper scalar component of the total radiated electric field
Erad which can be calculated e.g., as [163], [164]:

Erad(r) =
1

4π

∫
S′
(r− r′)× Et(r′)

(1 + jkR)
R3 e−jkRdS′, (6.35)

where r, and r′ are the observation and source points, respectively,
R = |r− r′| is the euclidean distance between the observation and source
points, S′ is the surface on which the electromagnetic sources are localized,
and Et = n̂× E× n̂ is the tangential electric field component (n̂ being the
unit vector normal to the surface).

Note that Eq. (6.34) is the general form of Eq. (6.11) where Erad replaces
the ideal Bessel beam distribution. As we have previously discussed, the
magnetic surface current distribution Map is equal to a first-kind, zeroth-
order Hankel inward wave so that the tangential electric field Et = Map× n̂,

can be expressed as Et(ρ, φ) = H(1)
0 (kρ(ω0)ρ)p̂0× n̂0, and kρ(ω0) is a design

parameter.

The structure synthesizing such an aperture field distribution is shown
in Fig. 6.9(a). It consists of a dielectric filled radial waveguide loaded
with radiating slots operating at f0 = 60 GHz and with a finite radius of
ρap = 15λ0 = 75 mm, centrally fed by a coaxial probe. The dispersion equa-
tion of the RLSA (see Eq. (6.33) and its related Brillouin diagram Fig. 6.9(b))
has been obtained for εr = 1.04 and kρ(ω0) = 0.2k0. This choice leads
to an operating axicon angle θ0 ' 11◦ with a nondiffractive range at f0

equal to z(c)ndr ' 367 mm. It is worth mentioning that the design parameters
of the proposed structure have been shown according to the results in Fig.
6.3 requiring an axicon angle smaller than 50◦ for a radiating aperture of
15λ0. Note also that such a wavenumber dispersion defines a subluminal
(vz < c0) backward wave [2] with vz > 0, thus describing an outward propa-
gating X-wave. Since vz = 2π∂ f /∂kz from Fig. 6.9(b) it is readily obtained
vz ' 0.841c0

Numerical results

The impact of the fractional bandwidth on the spatial features of an X-
wave is here evaluated considering the ideal case (see 6.2.2), the dispersive
case (see 6.2.3) and the dispersive-finite case. For convenience, we report
here the different expressions for the numerical calculation of ideal, disper-
sive, and dispersive-finite X-waves:
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Figure 6.10.: 2-D normalized intensities for ideal (first column: (a) and (d)), disper-
sive (second column: (b) and (e)), and dispersive-finite (third column:
(c) and (f)) UXWs, when the pulse has reached half the propagating

distance of z(c)dof. The numerical results are shown for ∆ω = 0.05 (first
row: (a-c)), and ∆ω = 0.2 (second row: (d-f)).

ideal :
ω0+∆ω/2∫

ω0−∆ω/2

J0 (k0 sin θ0ρ) e−k0 cos θ0zejωtdω (6.36)

dispersive :
ω0+∆ω/2∫

ω0−∆ω/2

J0 (k0 sin θ(ω)ρ) e−k0 cos θ(ω)zejωtdω (6.37)

dispersive-finite :
ω0+∆ω/2∫

ω0−∆ω/2

Eradejωtdω. (6.38)

In Fig. 6.10 the 2-D maps of the normalized intensity (defined as
|χU(ρ, z, t)|2) of the pulse for the ideal (see Fig. 6.10(a)-(c)), the dispersive
(see Fig. 6.10(b)-(e)), and the dispersive-finite (see Fig. 6.10(c)-(f)) cases, for
a fractional bandwidth of ∆ω = 0.05 (see Fig. 6.10(a), (b), (c)), and ∆ω = 0.2
(see Fig. 6.10(d), (e), (f)). The field intensities are shown on a ρz-plane
limited on the ρ-axis by the aperture of the finite structure (ρap = 15λ0,
λ0 = 5 mm) and on the z-axis by the nondiffractive range achieved at the
carrier frequency z(c)ndr = 367 mm. Here it is worth to remark that the non-
diffractive range is generally a function of the frequency (as is clear from
Eqs. (4.14) and (6.33)) and thus its value varies within the bandwidth in
both the dispersive and the dispersive-finite case. Conversely, in the ideal
case, the pulse is assumed to be nondispersive and nondiffractive, thus the
nondiffractive range is constant over all the frequency range. In the ideal
case we have assumed kρ(ω) = kρ(ω0) and thus θ(ω) = θ0.
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Figure 6.11.: Evolution of the (a) transverse and (b) longitudinal HPBW vs. t. The
ideal (red curves), dispersive (green curves), and the dispersive-finite
case (blue curves) are represented for ∆ω = 0.2. The x-axis on the
top is obtained by scaling the temporal axis with the theoretical group
velocity vz ' 0.84c0.

As shown in Fig. 6.10, the pulse is depicted at a fixed time frame when
its maximum has reached the distance zp = z(c)dof/2 ' 183 mm (the time evo-
lution of the pulse is available as online supplemental material in [206]).
For the ideal case (see first row of Fig. 6.10), the previous distance is
reached for an instant of time tp < zp/c0 (tp = 0.60 ns, zp/c0 = 0.61 ns),
which means that the pulse is propagating superluminally, as expected for
a nondispersive pulse whose phase velocity is greater than c0. On the
other hand, in both the dispersive and dispersive-finite case tp > zp/c0

(tp = 0.73 ns) and hence the pulse is obviously subluminal due to dis-
persion (as already seen in Fig. 6.9(b)). Note that, for the ideal case we
get zp/tp ' 1.0194c0 m/s which is a good estimation of the theoretical
phase velocity uz = c0/ cos(θ0) ' 1.0187c0 m/s, whereas for the dispersive
(dispersive-finite) case we get zp/tp ' 0.8495c0 m/s which is also a good es-
timation of the theoretical group velocity vz ' 0.8411 ns as calculated from
Fig. 6.9(b).

Figs. 6.10(a)-(f) clearly show the impact of the bandwidth in the z-
confinement of the pulse: the greater is the fractional bandwidth, the nar-
rower is the spot size along the z-axis. In particular, the pulse shape of an
ideal UXW (Figs. 6.10(a) and (d)) does not depend on time, whereas for
dispersive (Figs. 6.10(b) and (e)) and dispersive-finite (Figs. 6.10(c) and (f))
UXWs it is strongly time-dependent. This effect is highlighted in Fig. 6.11(a)
and in Fig. 6.11(b), where the spot widths of the considered UXWs are re-
ported for both the transverse and the longitudinal sections. Specifically,
the half power beamwidth (HPBW) is calculated with respect to the abso-
lute maximum at each time frame. Figs. 6.11(a) and (b) show the evolu-
tion of the spot size of ideal (red curves), dispersive (green curves), and
dispersive-finite (blue curves) UXWs with respect to time t only for a frac-
tional bandwidth ∆ω = 0.2, for which the effects of the dispersion and of the
truncation are more pronounced. The time evolution is limited in the range
0.25 ns < t < 1.8 ns to avoid an initial transient time where the pulse still
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Figure 6.12.: Evolution of the normalized intensity vs. time t. The ideal (red solid
line), dispersive (green dashed line), and the dispersive-finite case
(blue circles) are represented for ∆ω = 0.2.

travels through a region of reactive fields, and to limit the analysis at a time
instant for which the pulse would have traveled beyond the nondiffractive
range achieved at z(c)ndr = 367 mm.

In details, in Fig. 6.11(a) it is seen that the transverse HPBW of the
dispersive-finite UXW starts spreading at the time frame when the pulse has
reached the minimum nondiffractive range z(min)

ndr of the constituent waves.
We recall here that, due to the frequency dispersion described by Eq. (6.33),
z(min)

ndr is achieved at the minimum frequency of 54 GHz for which θ0 ' 18◦

and thus z(min)
ndr ' 222 mm. Slightly after z(min)

ndr , the transverse spreading
increases almost linearly with time. As expected, the ideal UXW maintains
a constant transverse profile for all the time, whereas the dispersive UXW
has a negligible spreading (less than 2 mm here) only at the end of the con-
sidered time propagation.

In Fig. 6.11(b) an opposite trend is noticeable. While the ideal UXW re-
tains its longitudinal spot size as it propagates (due to the rigid transport in-
herent to all ideal nondispersive pulses), the dispersive UXW spreads along
the longitudinal axis after a distance z(min)

ndr at which the spot size increases
almost linearly with time. However, the dispersive-finite UXW only slightly
spreads over the longitudinal direction. Such a different behavior for the
transverse and the longitudinal spreading can be interpreted in terms of
diffraction and dispersion phenomena (the interested reader can find a more
detailed discussion in [206]).

In general, the beam spreading (either transverse or longitudinal) requires
an attenuation of the field to grant energy conservation. To this purpose,in
Fig. 6.12 the time evolution of the normalized intensities of ideal, dispersive,
and dispersive-finite UXWs have been calculated for ∆ω = 0.2. It is clear
that the ideal UXW is a soliton-like solution in the sense that its normalized
intensity is always constant. On the other hand, the normalized intensities
of dispersive and dispersive-finite UXWs decrease with time as the pulse
propagates. In the dispersive case, the attenuation is due to the different
velocities of the various frequency components of the wavepacket and thus
the intensity fades out even if the pulse is fed with infinite energy (edge
diffraction is here neglected). In the dispersive-finite case, the intensity is
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Figure 6.13.: 3-D view of the normalized intensities of a dispersive-finite UXW, gen-
erated with a fractional bandwidth ∆ω = 0.2. The time evolution is
numerically reproduced for 9 different time frames, ordered from left
to right and from top to bottom.

slightly attenuated (less than 25%) until the pulse reaches the z(min)
ndr . Beyond

z(min)
ndr the intensity decreases rapidly and then slowly vanishes, as required

for any physical system which is fed with finite energy (the dispersive-finite
pulse is generate through a finite-size radiating aperture). It is worth not-
ing that the strong fading of the pulse after z(c)ndr further corroborates our
first guess (see 6.2.1) to define a metric over the z-axis with respect to the
nondiffractive range of an ideal X-wave as reference.

Finally, some relevant time frames of the pulse propagation of a
dispersive-finite X-wave for a fractional bandwidth of 20% are reported
in Fig. 6.13. It is manifest from this 3-D representation that as the time
increases, the intensity of the pulse decreases in correspondence with the
spreading of the main spot.

Use of an RLSA as a higher-order X-wave launcher

In this Section 6.2 we have analyzed both the focusing properties of ideal,
dispersive, and dispersive-finite UXWs. Starting from an original definition
of a metric which is able to describe the confinement of UXWs even in the
presence dispersion, the effect of the fractional bandwidth on the spatial
features of UXWs generated from truncated radiating apertures has been
thoroughly discussed. As a proof-of-concept a preliminary design of a radi-
ating aperture of radius ρap = 7.5 cm fed by a 60-GHz signal with uniform
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spectrum over a 20% fractional bandwidth around the carrier frequency has
been considered. It has been shown through theoretical and numerical re-
sults that such a radiating aperture would be able to produce UXWs with
an almost constant longitudinal HPBVW of about 1 cm and a transverse
HPBW of about 2.5 cm over a propagating distance of 20 cm. The proposed
design may be synthesized with an RLSA antenna through the holographic
principle. As a consequence, we strongly believe that RLSA antennas may
also be considered for the generation of higher-order X-waves, being the holo-
graphic principle mainly based on the phase matching between the required
aperture field distribution and the one supported by the radial waveguide.

It is worth here mentioning that the higher-order character implies a non-
null orbital angular momentum (OAM), so that the generation of higher-
order X-waves through RLSA antennas could pave the way for the first lo-
calized transmission of OAM at microwaves. Such a fascinating possibility
will be theoretically and numerically investigated in the next Section 6.3
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6.3 generation of higher-order x-waves
carrying oam through a finite aperture

In the previous Section 6.2 we have seen that the generation of zeroth-
order X-waves requires electrically large apertures and low axicon angles
over a possibly wide fractional bandwidth. Besides, we have seen that RLSA
antennas are suitable radiating elements for the generation of a UXW.

In Chapter 4 we have seen different kind of localized solutions of the
scalar-wave equation. Among them, higher-order localized waves (see Sec-
tion 4.2) are characterized by an azimuthal phase variation. Such a feature
is responsible of the OAM carrying typical of these kind of waves. As well
established, OAM can profitably be used to micromanipulate small particles
[300] or for the development of alternative techniques for accelerating them
by using the so-called accelerating beams [205].

In this Section, we will focus our attention on higher-order X-waves, i.e.,
the polychromatic version of higher-order Bessel beams, commonly known
as vortex beams. Indeed, higher-order X-waves allows for combining the non-
diffractive character of X-waves with the OAM carrying of vortex beams, a
possibility that has recently been explored by physicists in the optical range
[207]. However, to the author’s best knowledge, the generation of twisted
localized pulses at microwaves is still lacking. The aim of this Section, is thus
to provide a theoretical and numerical demonstration of the possibility to
generate higher-order X-waves through microwave launchers.

To this purpose, in 6.3.1 we briefly review the synthesis method for the
realization of an aperture distribution able to generate higher-order non-
diffracting waves. With respect to Section 6.2, the inherent vectorial struc-
ture of Maxwell’s equations is here rigorously considered to generalize the
nondiffractive solution of the scalar wave-equation. In 6.3.2 the proposed
method is used to generate a first-order Bessel-beam at a single frequency, in
the microwave range. A first-order UXW is then obtained in 6.3.3 through a
polychromatic spectral superposition of its monochromatic constituents, i.e.,
first-order Bessel beams, taking into account the wavenumber dispersion (as
already done in Section 6.2 for zeroth-order UXWs). Finally, in 6.3.4 numer-
ical results will be reported for all the radiated electric field components.

These results, together with those obtained in Section 6.2, demonstrate
that a microwave wideband radiator as an RLSA antenna could generate
X-waves of any order, if properly designed. Obviously, some technological
aspects that go beyond the scope of this PhD thesis can limit the wideband
capability, as well as the effectiveness of the synthesis procedure. However,
the presented investigation may serve as a useful guideline for future exper-
imental validations.
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Figure 6.14.: Schematic view of the generation of localized twisted pulses from
a radiating aperture on the xy plane. The intersection of the
shadow boundaries (dotted black lines) defines the nondiffractive
range (zndr = ρap cot θ). Dashed red lines define the envelope of the
confined region whose section slowly increases beyond the nondiffrac-
tive range due to the limited spatio-temporal dispersion of the pulse.
In the numerical examples of 6.3.4 the transverse distributions are ob-
served at the reference plane for different time instants.

6.3.1 Analytical framework

A vectorial formulation of Maxwell’s equations in a cylindrical reference
frame (generally not axisymmetric ∂/∂φ 6= 0) is adopted in this Subsection
to find general expressions for Bessel beams of any order (note that the
vectorial formulation for zeroth-order Bessel beams has been addressed in
Section 5.2). Here, we want to develop a simple theoretical framework to
derive the aperture distribution that is needed to radiate in the near field a
n-th order TMz Bessel beam over the longitudinal component Ez:

Ez = Jn(kρρ)e−jnφe−jkzz. (6.39)

As we have already seen in Section 5.2, since the wave is TM(z) polarized,
the Ez component can be used to derive the other components of the electric
field (magnetic field components will be then cut out by the application of
the Equivalence Theorem for aperture antenna radiation [164]). In fact, by
means of Eqs. (5.3)-(5.5), the tangential components of the electric field read:

Eρ =
kz

jkρ
J′n(kρρ)e−jnφe−jkzz, (6.40)

Eφ = −nkz

k2
ρ

Jn(kρρ)

ρ
e−jnφe−jkzz, (6.41)

where first derivatives have been identified with a prime symbol (·)′. The
evaluation of Eqs. (6.40) and (6.41) at z = 0 gives the equivalent tangential
electric field distribution to be synthesized on the antenna aperture (see
Fig. 6.14).
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Figure 6.15.: Normalized amplitude distribution of Ez vs. x, y at f = 12.5 GHz
with kρ = 0.4k0 of the near field radiated over the transverse (i.e., xy)
plane at z = zndr/2. (a-c) Contour plot of Ez radiated at z = zndr/2 by
a standing-wave aperture distribution (Eqs. (6.40)-(6.41)) and (d-f) by
an inward traveling-wave aperture distribution (Eqs. (6.42)-(6.43)) for
n = 1, 3, 5 (looking from left to right) over a radiating aperture with
radius ρap = 10λ.

In Chapter 5 we have seen that standing-wave distributions, as those given
by Eqs. (6.40) and (6.41), can be obtained by means of LRWs. However, we
already know that the inherent narrow-band character of these resonant de-
vices limits its use for the generation of monochromatic Bessel beams rather
than their polychromatic version which this Section 6.3 is dedicated to. Nev-
ertheless, in Section 6.2 we have seen that inward traveling distributions can
be used to synthesize Bessel beams over a large fractional bandwidth.

Hence, in order to design a wideband launcher, we propose to synthesize
an inward cylindrical traveling wave aperture distribution by replacing the
J′n, Jn functions in Eqs. (6.40)-(6.41) with the H(1)′

n , H(1)
n , respectively, hence

obtaining

Eρ(ρ, φ, z = 0) = −j
kz

kρ
H(1)′

n (kρρ)e−jnφ, (6.42)

Eφ(ρ, φ, z = 0) = − kz

k2
ρ

H(1)
n (kρρ)

ρ
e−jnφ. (6.43)

6.3.2 Monochromatic higher-order Bessel beams

The accuracy of this assumption for monochromatic fields, has been as-
sessed through numerical evaluation of Ez assuming Bessel beams of differ-
ent orders, as is shown in Fig. 6.15 (parameters are given in the caption of
Fig. 6.15). As expected, an inward traveling distribution is able to correctly
reproduce a higher-order Bessel beam over a limited portion of the trans-
verse xy-plane which depends on the distance from the radiating aperture



6.3 higher-order x-wave generation through finite apertures 223

x/λ

y
/
λ

 

 

−10 −5 0 5 10

−10

−5

0

5

10 −3

−2

−1

0

1

2

3

Figure 6.16.: Phase distribution at f = 12.5 GHz with kρ = 0.4k0 of the Ez near field
obtained by radiating a first-order inward traveling-wave distribution
over the transverse (i.e., xy) plane at z = zndr/2. The correspondent
normalized amplitude distribution is given in Fig. 6.15(d).

[240]. This region is maximized for z = zndr/2 [240] at which the transverse
distributions of Fig. 6.15 have been calculated. It is worth here to recall that,
as for the case of zeroth-order Bessel beams [240], the unavoidable aperture
truncation limits the nondiffractive behaviour up to zndr.

In the following, we restrict our analysis to first-order, i.e., n = 1, Bessel
beams and enforce a transverse electric field Et = Eρuρ + Eφuφ having a ra-
dial wavenumber kρ = 0.4k0 over a finite aperture having radius ρap = 10λ,
at the operating frequency f0 = 12.5 GHz. The total electromagnetic field
Erad

tot = Erad
ρ ûρ + Erad

φ ûφ + Erad
z ûz radiated by this aperture is obtained as

described in Section 6.2 for zeroth-order Bessel beams.

In Fig. 6.16, the phase of the resulting monochromatic Bessel beam has
been reported for the longitudinal Ez component (the normalized amplitude
was previously reported in Fig. 6.15(d)). As expected, the higher-order char-
acter of the solution implies the azimuthal phase variation. A vortex beam
is then generated, which carries a non-null OAM. Such vortex beams will
be the main constituents of the higher-order X-wave described in the next
Subsection.

6.3.3 Polychromatic superposition of higher-order Bessel beams

Once a monochromatic higher-order Bessel beam is generated, an ideal
higher-order UXW can be obtained by superposing monochromatic vortex
beams over a certain frequency range, or, equivalently, taking the inverse
Fourier Transform of Eq. (6.39):

χz(ρ, φ, z; t) =
∫ ω0+∆ω/2

ω0−∆ω/2
Jn(kρ(ω)ρ)ejnφe−jkz(ω)z︸ ︷︷ ︸

Erad
z

ejωtdω, (6.44)

where we have again considered a uniform frequency spectrum centered
around ω0 = 2π f0 over a bandwidth ∆ω. Note that the wavenumber dis-
persion which commonly affect RLSA launchers has been properly taken
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into account by considering the approximate dispersion equation, given by
Eq. (6.33). For the considered design, the following expression is found:

kρ(ω) = 0.4
ω

c0
−
√

εr

c0
(ω−ω0), (6.45)

with εr = 1.04 as in Section 6.2. We note here that, due to the wavenumber
dispersion, zndr( f ) varies with frequency. As in Section 6.2, we conveniently
define z(c)ndr = zndr( f0) as the nondiffractive range calculated at the central
frequency f0 = 12.5 GHz.

According to Eq. (6.44), the time-domain representation of the longitudi-
nal scalar component Ez is given by replacing the ideal n-th order Bessel
solution with the values of Erad

z and retaining the real part of χz(ρ, φ, z; t).
Note that Erad

z is obtained through the application of Huygens’ principle
to the aperture field described by Eqs. (6.42)-(6.43) with kρ(ω) given by
Eq. (6.45)

Obviously, the time-domain representations of each electromagnetic
scalar component can be obtained by replacing Ez in Eq. (6.44) with the
respective scalar component so that:

χρ(ρ, φ, z; t) =<
[∫ ω0+∆ω/2

ω0−∆ω/2
Erad

ρ ejωtdω

]
, (6.46)

χφ(ρ, φ, z; t) =<
[∫ ω0+∆ω/2

ω0−∆ω/2
Erad

φ ejωtdω

]
, (6.47)

χz(ρ, φ, z; t) =<
[∫ ω0+∆ω/2

ω0−∆ω/2
Erad

z ejωtdω

]
, (6.48)

where each time-domain representation is an inverse Fourier-Transform of
an electric field scalar component.

However, a detailed analysis of electromagnetic fields at microwaves
requires a fully vectorial wave analysis. As a consequence, the scalar
components in Eqs. (6.46)-(6.48) are replaced by the radiated electric field
Erad leading to the vectorial expression of the localized electric pulse
χE(ρ, φ, z; t) = χρûρ + χφûφ + χzûz

χE(ρ, φ, z; t) = <
[∫ ω0+∆ω/2

−ω0+∆ω/2
Erad(ρ, φ, z; ω)ejωtdω

]
. (6.49)

It is worth noting that each component of χE(ρ, φ, z; t) is a spectral superpo-
sition of vortex beams, as long as Eqs. (6.40)-(6.41) are correctly reproducing
Eqs. (6.42)-(6.43). Hence, limited-diffraction twisted pulses are expected to be
generated for each component of the electric pulse χρ, χφ, and χz, and over
||χE||, i.e., its norm in L2. Note that, a fractional bandwidth ∆ω/ω0 = 0.2
is assumed as in Section 6.2.
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Figure 6.17.: Comparison between (a)-(b) nondispersive and (c)-(d) dispersive case.
The norm of χE is reported over the xz plane. The x-axis is normalized

to λ0, whereas the z-axis is normalized to z(c)ndr. The contour plot of
||χE|| has been reported for two time instants: (a), (c) ti = 0.8 ns and
(b), (d) t f = 2.4 ns.

6.3.4 Numerical results

To assess the effect of the wavenumber dispersion and the diffraction
limit, in Fig. 6.17 the normalized electric field intensity of the twisted pulse
χE(ρ, φ, z, t) has been reported at two time instants ti and t f (see the cap-

tion for the relevant details) corresponding to distances z = z(c)ndr/2 and

z = 1.25z(c)ndr for both the nondispersive (see Figs. 6.17(a) and (c)) and disper-
sive case (see Figs. 6.17(b) and (d)).

The spatio-temporal features for such higher-order UXWs are similar to
those obtained in Section 6.2 for zeroth-order UXWs. In fact, as can be
inferred from Fig. 6.17, while nondispersive UXWs are superluminal vz > c0,
dispersive UXWs result subluminal vz < c0. Moreover, the spot size is
slightly widened along the transverse direction (see Figs. 6.17(c) and (d))
without compromising the spatio-temporal localization of the pulse within
the nondiffractive range.

Conversely, when the pulse is propagating beyond the nondiffractive
range (see Figs. 6.17(b) and (d)), the central spot is not clearly visible ei-
ther when dispersion is or is not taken into account. On one hand, the
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Figure 6.18.: Screen-shots of (a) χρ, (b) χφ, (c) χz, and (d) ||χE|| at t1 = 0.8 ns,
t2 = 1.3 ns over the xy plane (both axes are normalized to λ). Note
that the colorscale for (d) and (h) is different since ||χE|| > 0.

nondispersive twisted pulse has a group velocity vz equal to the phase ve-
locity uz = ω/kz which is greater than the speed of light, thus exceeding
the nondiffractive distance at t f = 1.25zndr = 2.4 ns. As a result, its spot
size progressively grows up and in turn the intensity of the central spot
abruptly vanishes for energy conservation. On the other hand, the disper-
sive pulse travels at a group velocity lower than the speed of light, thus
reaching the nondiffractive distance without exceeding it. As a result, the
central pulse is highly attenuated but it is still distinguishable (Note that
similar results have been obtained for zeroth-order UXWs in Section 6.2).
As a consequence, the nondiffractive range also represents the distance for
which the OAM is effectively carried by the pulse.

Finally, numerical results for each component of the twisted pulse on a
transverse plane have been reported in Fig. 6.18, where their spatial dis-
tributions have been evaluated at the reference plane z = zndr/2 (refer to
Fig. 6.14) for two distinct time instants. Note that t1 = 0.8 ns corresponds to
the time instant at which the pulse is supposed to cross the reference plane.
In fact, the intensities of the pulses in Figs. 6.18(a)-(d) is remarkably greater
than those in Figs. 6.18(e)-(h), thus confirming the excellent space-time lo-
calization of the generated pulse. The peculiar rotating behavior as well as
its nondiffractive nature are clearly visible. The former confirms the OAM
carrying feature inherited by vortex beams, whereas the latter confirms the
outstanding spatial confinement features typical of UXWs.
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6.4 conclusion

In this Chapter, we have analyzed both the spatial and the temporal prop-
erties of ideal and dispersive X-waves generated by a finite radiating aper-
ture in the presence of dispersion at millimeter waves. In particular, we
have first defined an efficiency of confinement for ideal X-waves. This anal-
ysis revealed that, even in the ideal case, large fractional bandwidths and
electrically large apertures with low-axicon angles are required to efficiently
generate such pulses. Moreover, we provided exact and approximated ana-
lytically closed-form relations for the calculation of the transverse and lon-
gitudinal profiles for both ideal and dispersive X-waves with a limited uni-
form spectrum. On this ground, the propagation of ideal, dispersive, and
dispersive-finite X-waves has been considered and then compared for dif-
ferent values of the fractional bandwidth. As is seen, a radiating aperture
of diameter 15 cm fed by a 60-GHz signal with uniform spectrum over the
54 − 66 GHz bandwidth is able to produce X-waves with an almost con-
stant longitudinal spot-size of about 1 cm and a transverse spotsize of about
2.5 cm over a propagating distance of 20 cm.

The results obtained so far for zeroth-order X-waves have been then ex-
tended for the study of higher-order X-waves carrying orbital angular mo-
mentum at microwaves. Numerical results have shown that a wideband
radiator, as an RLSA antenna, can efficiently generate such intriguing so-
lutions, over each component of the electric field. This evidence may pave
the way for the first localized transmission of OAM at microwaves. Such
an outstanding possibility would open unprecedented scenarios in modern
applications spanning from wireless communications to medical imaging.





A A P O S S I B L E P R O O F A B O U T
T H E D E F I N I T I O N O F T H E
P O I N T I N G A N G L E I N LW A S

Here we wish to prove that Eq. (2.6) is exact from a mathematical point
of view. As soon as we define P0 = P(θ0), we should prove that if Eq. (2.6)
holds, then P0 (not P(θ)) is actually maximized. Hence, we are searching
for the value of β∗; P0(β∗) = max

β
P0(β). More generally, we are searching

for the maximum of the following function

f (z) =
| sin z|2
|z|2 , (A.1)

where z = x + iy = β − k0 cos θ0 − jα. For a real argument z = x, the
sinc(·) function is obviuosly maximum at x = 0, where it has a removable
singularity and nothing remains to be proven. Thus, for a rigorous proof
we just need to analytically extend this result. To do this, let us express f (z)
in terms of its real and imaginary part as:

f (x, y) =
sin2 x + sinh2 y

x2 + y2 . (A.2)

Since we are searching the maximum of this function with respect to β and
x is a function of β whose first derivative is 1, from the chain rule we have:

∂ f (x(β), y)
∂β

=
∂ f
∂x

∂x
∂β

=
∂ f
∂x

. (A.3)

To search for β∗ (or equivalently for x∗) we then set Eq. (A.3) to 0:

∂ f
∂x∗

=
∂

∂x∗

[
N(x∗)
D(x∗)

]
→ N′(x∗)D(x∗) = D′(x∗)N(x∗)→

2 cos x∗(x∗
2
+ y2) = 2x∗ sin x∗

→ x∗ = 0→ β∗ = k0 cos θ0 (A.4)
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This proves only that x∗ = 0 is a local maximum. Since, it does not exist
an algorithm for computing the global maximum, we prove it by a heuristic
argument:

f (x = 0, y) = sinh2 y/y2 = N/D,

we can then write f (x, y) =
N + ∆N
D + ∆D

,

where N = sinh2, D = y2, ∆N = sin2 x, and ∆D = x2,

If x = 0 is a global maximum, then

N
D

?
>

N + ∆N
D + ∆D

→ N∆D
?
> ∆ND → N

D
?
>

∆N
∆D

,

but for any values of x, ∆N/∆D < 1 whereas N/D > 1 for any values of y.

Hence,
N
D

>
N + ∆N
D + ∆D

→ x∗ = 0 is a global maximum.

Hence, we have proven that β∗ = k0 cos θ0 is the value of β which maximizes
P0.



B S I M U L AT I O N M O D E L F O R
T H E F U L L-W AV E A N A LY S I S O F
G R A P H E N E - B A S E D LW A S

The calculation of radiation patterns based on the reciprocity theorem
[113], [160] has been here validated through full-wave simulations of both
GPW and GSS antennas with the aid of CST Microwave Studio [159] con-
sidering HMD sources. As is known [160], the far-field intensity at a given
angle θ is equal to the Hy field excited at the original source location by an
incident plane wave impinging with the same angle of incidence θ from a
testing dipole source. This scenario can be modeled in CST [148], by excit-
ing a unit cell of period p (see Fig. B.1(a)) with a waveguide port at a proper
distance hair. Note that both the GPW and the GSS antennas are electrically
large in the transverse plane so that they could be assumed transversely infi-
nite, and hence Floquet boundary conditions can be applied to the unit cell
(see Fig. B.1(b)). The period of the unit cell and the distance of the waveg-
uide port are here set equal to p = λop/4 and hair = λop/2 (λop being the
operating wavelength), in order to prevent the excitation of higher-order Flo-
quet modes [282]. Finally, graphene has been modeled with the built-in 2-D
model used by CST which implements the full-integral expression of Kubo
formula [129]. The almost perfect agreement between our analytical results
and full-wave simulations (see Figs. 3.17 and 3.23) confirms the validity of
our approach, as well as the use of Eq. (3.13) for modelling the graphene
surface conductivity. Note also that in our previous work [114], [116], we
have used more sophisticated models taking into account both dielectric and
ohmic losses, as well as the spatial dispersion of graphene [139], obtaining
a very good agreement with the simplified model. It is worth to remind

(a) (b)

Figure B.1.: (a) CST unit-cell model of a GSS antenna. In green and blue the sub-
strate and the superstrate, respectively. The transparency of the ma-
terials has been set in order to make visible the monolayer graphene
within the substrate. The probe for evaluating the tangential magnetic
field Hy at the ground plane is represented with a blue arrow. (b) Phase-
shift walls have been implemented to emulate an infinitely transverse
uniform structure by means of a periodic unit cell.
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that, although spatial dispersion can safely be neglected for fast ordinary
leaky waves, it can instead significantly affects the propagation features of
extremely slow SPPs in the low-THz regime (see 3.2.1).
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radiation”, Proc. IEEE, vol. 53, no. 1, pp. 24–36, 1965 (cit. on p. 3).

[5] A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on
optical gratings”, Applied Optics, vol. 4, no. 10, pp. 1275–1297, 1965

(cit. on p. 3).

[6] A. A. Oliner and D. R. Jackson, “Leaky surface-plasmon theory for
dramatically enhanced transmission through a subwavelength aper-
ture, Part I: Basic features”, in IEEE Antennas Propag. Soc. Int. Symp.,
2003., IEEE, vol. 2, 2003, pp. 1091–1094 (cit. on p. 3).

[7] D. R. Jackson, T. Zhao, J. T. Williams, and A. A. Oliner, “Leaky
surface-plasmon theory for dramatically enhanced transmission
through a sub-wavelength aperture, Part II: Leaky-wave antenna
model”, in IEEE Antennas Propag. Soc. Int. Symp., 2003., IEEE, vol. 2,
2003, pp. 1095–1098 (cit. on p. 3).

[8] R. Sorrentino, “Transverse Resonance Technique”, in Numerical Tech-
niques for Microwave and Millimeter-Wave Passive Structures, T. Itoh,
Ed., New York: John Wiley & Sons, 1989, ch. 11 (cit. on pp. 5, 13,
179).

[9] N. Marcuvitz, Waveguide Handbook, 21. Iet, 1951 (cit. on pp. 6, 95).

[10] A. Galli, P. Baccarelli, and P. Burghignoli, “Leaky-Wave Antennas”,
in The Wiley Encyclopedia of Electrical and Electronics Engineering, J Web-
ster, Ed., New York: John Wiley & Sons, 2016 (cit. on pp. 6, 8, 17, 18,
22, 33, 35, 69, 104).

[11] D. R. Jackson and A. A. Oliner, “Leaky-Wave Antennas”, in Modern
Antenna Handbook, C. A. Balanis, Ed., New York: John Wiley & Sons,
2011, ch. 7 (cit. on pp. 6, 8, 17, 18, 33, 35, 39, 61, 69, 72, 104).

233



234 bibliography

[12] A. A. Oliner and D. R. Jackson, “Leaky-Wave Antennas”, in Antenna
Engineering Handbook, J. L. Volakis, Ed., New York: McGraw-Hill,
2007, ch. 11 (cit. on pp. 6, 8, 17, 18, 23, 33, 35, 69).

[13] A. A. Oliner, “Leaky-Wave Antennas”, in Antenna Engineering Hand-
book, R. C. Johnson, Ed., New York: McGraw-Hill, 1984, ch. 10 (cit. on
pp. 6, 8, 17, 18, 23, 33, 48, 69).

[14] D. R. Jackson, C. Caloz, and T. Itoh, “Leaky-Wave Antennas”, in Fron-
tiers in Antennas: Next Generation Design & Engineering, F Gross, Ed.,
New York: McGraw-Hill, 2011, ch. 9 (cit. on pp. 6, 8, 17, 18, 25, 33, 35,
69).

[15] F. Monticone and A. Alù, “Leaky-wave theory, techniques, and ap-
plications: From microwaves to visible frequencies”, Proc. IEEE, vol.
103, no. 5, pp. 793–821, 2015 (cit. on pp. 6, 8, 17, 18, 22).

[16] C. T. Tai, “Evanescent modes in a partially filled gyromagnetic rect-
angular wave guide”, J. App. Phys., vol. 31, no. 1, pp. 220–221, 1960

(cit. on p. 7).

[17] T. Tamir and A. A. Oliner, “The spectrum of electromagnetic waves
guided by a plasma layer”, Proc. IEEE, vol. 51, no. 2, pp. 317–332,
1963 (cit. on p. 7).

[18] H. Shigesawa, M. Tsuji, and A. A. Oliner, “The nature of the spec-
tral gap between bound and leaky solutions when dielectric loss is
present in printed-circuit lines”, Radio Science, vol. 28, no. 6, pp. 1235–
1243, 1993 (cit. on p. 9).

[19] W. C. Chew, Waves and Fields in Inhomogeneous Media. IEEE press New
York, 1995, vol. 522 (cit. on p. 10).

[20] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves. John
Wiley & Sons, 1994, vol. 31 (cit. on pp. 10–12, 14, 103, 145).

[21] S. Lang, Complex Analysis. Springer Science & Business Media, 2013,
vol. 103 (cit. on p. 11).

[22] W. Rudin, Real and Complex Analysis. New York: McGraw-Hill, 1986

(cit. on p. 11).

[23] V. Galdi and I. M. Pinto, “A simple algorithm for accurate location
of leaky-wave poles for grounded inhomogeneous dielectric slabs”,
Microw. and Opt. Technol. Lett., vol. 24, no. 2, pp. 135–140, 2000 (cit. on
pp. 16, 182).

[24] W. W. Hansen, “Radiating electromagnetic waveguides”, Patent No.
2.402.622, 1940 (cit. on p. 20).

[25] J. N. Hines and J. R. Upson, “A wide aperture tapered-depth scan-
ning antenna”, Ohio State Univ. Res. Found, 1957, Report 667–7 (cit. on
pp. 20, 21).



bibliography 235

[26] L. Goldstone and A. A. Oliner, “Leaky-wave antennas I: Rectangular
waveguides”, IRE Trans. Antennas Propag., vol. 7, no. 4, pp. 307–319,
1959 (cit. on p. 20).

[27] ——, “Leaky-wave antennas II: Circular waveguides”, IRE Trans. An-
tennas Propag., vol. 9, no. 3, pp. 280–290, 1961 (cit. on p. 20).

[28] R. E. Collin and F. J. Zucker, “Antenna theory”, 1969 (cit. on pp. 21,
22, 170, 181).

[29] W. Rotman and A. A. Oliner, “Asymmetrical trough waveguide an-
tennas”, IRE Trans. Antennas Propag., vol. 7, no. 2, pp. 153–162, 1959

(cit. on p. 21).

[30] C. A. Balanis, Antenna Theory: Analysis and Design. Hoboken NJ: John
Wiley & Sons, 2005 (cit. on p. 21).

[31] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineer-
ing Explorations. John Wiley & Sons, 2006 (cit. on pp. 21, 81).

[32] F. P. Casares-Miranda, C. Camacho-Peñalosa, and C. Caloz, “High-
gain active composite right/left-handed leaky-wave antenna”, IEEE
Trans. Antennas Propag., vol. 54, no. 8, pp. 2292–2300, 2006 (cit. on
p. 22).

[33] S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, “A novel tech-
nique for open-stopband suppression in 1-d periodic printed leaky-
wave antennas”, IEEE Trans. Antennas Propag., vol. 57, no. 7, pp. 1894–
1906, 2009 (cit. on p. 22).

[34] P. Burghignoli, G. Lovat, and D. R. Jackson, “Analysis and optimiza-
tion of leaky-wave radiation at broadside from a class of 1-D periodic
structures”, IEEE Trans. Antennas Propag., vol. 54, no. 9, pp. 2593–2604,
2006 (cit. on pp. 22, 33).

[35] R. Guzmán-Quirós, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo,
“Electronic full-space scanning with 1-D Fabry–Pérot LWA using elec-
tromagnetic band-gap”, IEEE Antennas Wireless Propag. Lett., vol. 11,
pp. 1426–1429, 2012 (cit. on p. 22).

[36] D. K. Karmokar, K. P. Esselle, and S. G. Hay, “Fixed-frequency beam
steering of microstrip leaky-wave antennas using binary switches”,
IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2146–2154, 2016 (cit.
on pp. 22, 31).

[37] R. Guzmán-Quirós, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo,
“Electronically steerable 1-D Fabry-Perot leaky-wave antenna em-
ploying a tunable high impedance surface”, IEEE Trans. Antennas
Propag., vol. 60, no. 11, pp. 5046–5055, 2012 (cit. on p. 22).

[38] M. Garcia-Vigueras, J. L. Gomez-Tornero, G. Goussetis, A. R. Weily,
and Y. J. Guo, “1D-leaky wave antenna employing parallel-plate
waveguide loaded with PRS and HIS”, IEEE Trans. Antennas Propag.,
vol. 59, no. 10, pp. 3687–3694, 2011 (cit. on p. 22).



236 bibliography

[39] ——, “Efficient synthesis of 1-D Fabry–Perot antennas with low side-
lobe levels”, IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 869–872,
2012 (cit. on p. 22).

[40] R. O. Ouedraogo, E. J. Rothwell, and B. J. Greetis, “A reconfigurable
microstrip leaky-wave antenna with a broadly steerable beam”, IEEE
Trans. Antennas Propag., vol. 59, no. 8, pp. 3080–3083, 2011 (cit. on
p. 22).

[41] A. Neto, S. Bruni, G. Gerini, and M. Sabbadini, “The leaky lens: A
broad-band fixed-beam leaky-wave antenna”, IEEE Trans. Antennas
Propag., vol. 53, no. 10, pp. 3240–3246, 2005 (cit. on p. 22).

[42] S. Bruni, A. Neto, and F. Marliani, “The ultrawideband leaky lens
antenna”, IEEE Trans. Antennas Propag., vol. 55, no. 10, pp. 2642–2653,
2007 (cit. on p. 22).

[43] N. Yang, C. Caloz, and K. Wu, “Fixed-beam frequency-tunable phase-
reversal coplanar stripline antenna array”, IEEE Trans. Antennas
Propag., vol. 57, no. 3, pp. 671–681, 2009 (cit. on p. 22).

[44] J. L. Gomez-Tornero, A. Martinez-Ros, A. Alvarez-Melcón, F. Mesa,
and F. Medina, “Substrate integrated waveguide leaky-wave antenna
with reduced beam squint”, in Eur. Microw. Conf. (EuMC 2013), IEEE,
Nuremberg, Germany, 2013, pp. 491–494 (cit. on p. 22).

[45] E. M. O’Connor, D. R. Jackson, and S. A. Long, “Extension of the
hansen–woodyard condition for endfire leaky-wave antennas”, IEEE
Antennas Wireless Propag. Lett., vol. 9, pp. 1201–1204, 2010 (cit. on
pp. 23, 51, 53, 54, 59, 61, 63).

[46] J. Liu, D. R. Jackson, and Y. Long, “Substrate integrated waveguide
(SIW) leaky-wave antenna with transverse slots”, IEEE Trans. Anten-
nas Propag., vol. 60, no. 1, pp. 20–29, 2012 (cit. on p. 23).

[47] J. Liu, D. R. Jackson, Y. Li, C. Zhang, and Y. Long, “Investigations
of SIW leaky-wave antenna for endfire-radiation with narrow beam
and sidelobe suppression”, IEEE Trans. Antennas Propag., vol. 62, no.
9, pp. 4489–4497, 2014 (cit. on p. 23).

[48] G. Lovat, P. Burghignoli, and D. R. Jackson, “Fundamental properties
and optimization of broadside radiation from uniform leaky-wave
antennas”, IEEE Trans. Antennas Propag., vol. 54, no. 5, pp. 1442–1452,
2006 (cit. on pp. 25, 33, 69, 71, 103, 106, 119).

[49] G. V. Trentini, “Partially reflecting sheet arrays”, IRE Trans. Antennas
Propag., vol. 4, no. 4, pp. 666–671, 1956 (cit. on p. 26).

[50] S. Tretyakov, Analytical Modeling in Applied Electromagnetics. Artech
House, 2003 (cit. on pp. 27, 118, 174, 175, 190).



bibliography 237

[51] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and
D. R. Smith, “An overview of the theory and applications of metasur-
faces: The two-dimensional equivalents of metamaterials”, IEEE An-
tennas Propag. Magazine, vol. 54, no. 2, pp. 10–35, 2012 (cit. on p. 27).

[52] O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Li-
oubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and ac-
curate analytical model of planar grids and high-impedance surfaces
comprising metal strips or patches”, IEEE Trans. Antennas Propag.,
vol. 56, no. 6, pp. 1624–1632, 2008 (cit. on pp. 27, 118, 174, 175, 190).

[53] A. B. Yakovlev, Y. R. Padooru, G. W. Hanson, A. Mafi, and S. Karbasi,
“A generalized additional boundary condition for mushroom-type
and bed-of-nails-type wire media”, IEEE Trans. Microw. Theory Tech.,
vol. 59, no. 3, pp. 527–532, 2011 (cit. on pp. 27, 118).

[54] A. P. Feresidis and J. C. Vardaxoglou, “High gain planar antenna
using optimised partially reflective surfaces”, IEE Proc. Microwaves,
Antennas Propag., vol. 148, no. 6, pp. 345–350, 2001 (cit. on p. 27).

[55] N. G. Alexópoulos and D. R. Jackson, “Fundamental superstrate
(cover) effects on printed circuit antennas”, IEEE Trans. Antennas
Propag., vol. 32, no. 8, pp. 807–816, 1984 (cit. on pp. 28, 30).

[56] D. R. Jackson and N. G. Alexópoulos, “Gain enhancement methods
for printed circuit antennas”, IEEE Trans. Antennas Propag., vol. 33,
pp. 976–987, 1985 (cit. on pp. 28, 30).

[57] D. R. Jackson and A. A. Oliner, “A leaky-wave analysis of the high-
gain printed antenna configuration”, IEEE Trans. Antennas Propag.,
vol. 36, no. 7, pp. 905–910, 1988 (cit. on pp. 28, 103, 105, 109).

[58] A. Ip and D. R. Jackson, “Radiation from cylindrical leaky waves”,
IEEE Trans. Antennas Propag., vol. 38, no. 4, pp. 482–488, 1990 (cit. on
pp. 28, 29, 103).

[59] H. Yang and N. G. Alexópoulos, “Gain enhancement methods for
printed circuit antennas through multiple superstrates”, IEEE Trans.
Antennas Propag., vol. 35, no. 7, pp. 860–863, 1987 (cit. on p. 30).

[60] M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive
photonic-bandgap antennas”, IEEE Trans. Microw. Th. Tech., vol. 47,
no. 11, pp. 2115–2122, 1999 (cit. on p. 30).

[61] D. R. Jackson, A. A. Oliner, and A. Ip, “Leaky-wave propagation
and radiation for a narrow-beam multiple-layer dielectric structure”,
IEEE Trans. Antennas Propag., vol. 41, no. 3, pp. 344–348, 1993 (cit. on
pp. 30, 130, 131).

[62] V. K. Varadan, V. V. Varadan, K. A. Jose, and J. F. Kelly, “Electronically
steerable leaky wave antenna using a tunable ferroelectric material”,
Smart Mater. Struct., vol. 3, no. 4, p. 470, 1994 (cit. on p. 31).



238 bibliography

[63] D. Sievenpiper, J. Schaffner, J. J. Lee, and S. Livingston, “A steerable
leaky-wave antenna using a tunable impedance ground plane”, IEEE
Antennas Wireless Propag. Lett., vol. 1, no. 1, pp. 179–182, 2002 (cit. on
p. 31).

[64] L.-Y. Ji, Y. J. Guo, P.-Y. Qin, S.-X. Gong, and R. Mittra, “A reconfig-
urable partially reflective surface (PRS) antenna for beam steering”,
IEEE Trans. Antennas Propag., vol. 63, no. 6, pp. 2387–2395, 2015 (cit.
on p. 31).

[65] G. Lovat, P. Burghignoli, and S. Celozzi, “A tunable ferroelectric
antenna for fixed-frequency scanning applications”, IEEE Antennas
Wireless Propag. Lett., vol. 5, no. 1, pp. 353–356, 2006 (cit. on p. 31).

[66] P. Baccarelli, C. Di Nallo, F. Frezza, A. Galli, and P. Lampariello, “At-
tractive features of leaky-wave antennas based on ferrite-loaded open
waveguides”, in IEEE Antennas Propag. Soc. Int. Symp. (IEEE AP-S,
1997), IEEE, vol. 2, Montreal, Quebec, Canada, 1997, pp. 1442–1445

(cit. on p. 31).

[67] T. Strutz, Data Fitting and Uncertainty: A Practical Introduction to
Weighted Least Squares and Beyond. Vieweg and Teubner, 2010 (cit. on
pp. 40, 46).

[68] W. W. Hansen and J. R. Woodyard, “A new principle in directional
antenna design”, Proc. IRE, vol. 26, no. 3, pp. 333–345, 1938 (cit. on
pp. 51, 53–55).

[69] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. Hobo-
ken NJ: John Wiley & Sons, 2012 (cit. on p. 62).

[70] W. B. Williams and J. B. Pendry, “Generating bessel beams by use of
localized modes”, J. Opt. Soc. Am. A, vol. 22, no. 5, pp. 992–997, 2005

(cit. on p. 81).

[71] A. Alù and N. Engheta, “Achieving transparency with plasmonic
and metamaterial coatings”, Phys. Rev. E, vol. 72, no. 1, p. 016 623,
2005 (cit. on p. 81).

[72] S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing:
Addressing waves on impenetrable metasurfaces”, IEEE Antennas
Wireless Propag. Lett., vol. 10, pp. 1499–1502, 2011 (cit. on p. 81).

[73] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line
Theory and Microwave Applications. John Wiley & Sons, 2005 (cit. on
p. 81).

[74] D. Blanco, E. Rajo-Iglesias, S. Maci, and N. Llombart, “Directivity en-
hancement and spurious radiation suppression in leaky-wave anten-
nas using inductive grid metasurfaces”, IEEE Trans. Antennas Propag.,
vol. 63, no. 3, pp. 891–900, 2015 (cit. on p. 81).



bibliography 239

[75] D. Di Ruscio, P. Burghignoli, P. Baccarelli, and A. Galli, “Omnidirec-
tional radiation in the presence of homogenized metasurfaces”, Prog.
Electromagn. Res., vol. 150, pp. 145–161, 2015 (cit. on p. 81).

[76] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrin-
sic and extrinsic performance limits of graphene devices on silicon
oxide”, Nature Nanotechnol., vol. 3, no. 4, pp. 206–209, 2008 (cit. on
pp. 81, 116).

[77] C. Jansen, I. A. Al-Naib, N. Born, and M. Koch, “Terahertz metasur-
faces with high Q-factors”, App. Phys. Lett., vol. 98, no. 5, p. 051 109,
2011 (cit. on p. 81).

[78] P. H. Siegel, “Terahertz technology”, IEEE Trans. Microw. Theory Tech.,
vol. 50, no. 3, pp. 910–928, 2002 (cit. on p. 81).

[79] C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Sig-
nificant performance enhancement in photoconductive terahertz op-
toelectronics by incorporating plasmonic contact electrodes”, Nature
Comm., vol. 4, p. 1622, 2013 (cit. on p. 81).

[80] S.-H. Yang and M. Jarrahi, “Spectral characteristics of terahertz ra-
diation from plasmonic photomixers”, Opt. Express, vol. 23, no. 22,
pp. 28 522–28 530, 2015 (cit. on p. 81).

[81] G. P. Williams, “Filling the THz gap—high power sources and appli-
cations”, Rep. Prog. Phys., vol. 69, no. 2, p. 301, 2005 (cit. on pp. 81,
156).

[82] C. Armstrong, “The truth about terahertz”, IEEE Spectrum, vol. 9, no.
49, pp. 36–41, 2012 (cit. on p. 81).

[83] P. Mukherjee and B. Gupta, “Terahertz (THz) frequency sources and
antennas - A brief review”, Int. J. Infra. Milli. Waves, vol. 29, no. 12,
pp. 1091–1102, 2008 (cit. on pp. 81, 103).

[84] J. M. Chamberlain, R. E. Miles, C. E. Collins, and D. P. Steenson,
“Introduction to terahertz solid-state devices”, in New Directions in
Terahertz Technology, Springer, 1997, pp. 3–27 (cit. on p. 81).

[85] P. H. Siegel, “Terahertz technology in biology and medicine”, in Mi-
crowave Symposium Digest, 2004 IEEE MTT-S International, IEEE, 2004,
pp. 1575–1578 (cit. on p. 81).

[86] M. Tonouchi, “Cutting-edge terahertz technology”, Nature Photonics,
vol. 1, no. 2, pp. 97–105, 2007 (cit. on p. 81).

[87] E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz
technology”, J. Phys. D: App. Phys., vol. 39, no. 17, R301, 2006 (cit. on
p. 81).

[88] M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and
W. R. Tribe, “Security applications of terahertz technology”, in Proc.
SPIE, vol. 5070, 2003, pp. 44–52 (cit. on p. 81).



240 bibliography

[89] L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano,
and M. S. Vitiello, “Black phosphorus terahertz photodetectors”, Ad-
vanced Materials, vol. 27, no. 37, pp. 5567–5572, 2015 (cit. on p. 81).

[90] C. J. Docherty, P. Parkinson, H. J. Joyce, M.-H. Chiu, C.-H. Chen, M.-
Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient
terahertz conductivity of monolayer mos2 and wse2 grown by chem-
ical vapor deposition”, ACS nano, vol. 8, no. 11, pp. 11 147–11 153,
2014 (cit. on p. 81).

[91] H. Raza, Graphene Nanoelectronics: Metrology, Synthesis, Properties and
Applications. Springer Science & Business Media, 2012 (cit. on pp. 81,
85).

[92] I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical
Phenomena. John Wiley & Sons, 2007, vol. 64 (cit. on pp. 81, 124, 125).

[93] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals. Clarendon
Press, Oxford, 1993 (cit. on pp. 81, 124, 125).

[94] J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner,
T. S. Mayer, P. F. Cristman, A. Diaz, and I. C. Khoo, “Tunable fre-
quency selective surfaces and negative-zero-positive index metama-
terials based on liquid crystals”, IEEE Trans. Antennas Propag., vol. 56,
no. 5, pp. 1308–1320, 2008 (cit. on p. 81).

[95] I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner,
“Nanosphere dispersed liquid crystals for tunable negative-zero-
positive index of refraction in the optical and terahertz regimes”, Opt.
Lett., vol. 31, no. 17, pp. 2592–2594, 2006 (cit. on p. 81).

[96] D. C. Zografopoulos and R. Beccherelli, “Tunable terahertz fishnet
metamaterials based on thin nematic liquid crystal layers for fast
switching”, Scientific Reports, vol. 5, 2015 (cit. on pp. 81, 126, 128, 130,
131).

[97] C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H.
Chan, “Tunable terahertz fishnet metamaterial”, App. Phys. Lett., vol.
102, no. 15, p. 151 903, 2013 (cit. on p. 81).
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