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Introduction

By observing the world around us, we can identify a variety of environments where a multitude
of objects are interacting with each other in complex ways. In many of these situations we can
pinpoint some kind of relationship, physical or abstract, between couples of objects. The union
of these objects and their interactions constitutes a network. Common examples of networks are
communities of people, where individuals form relationships with other individuals; power
grid networks, where energy is transferred between different geographical locations through
power lines; the World Wide Web, probably the most famous kind of network, composed of an
enormous number of webpages that are interconnected by hyperlinks.
All these systems can be summarized as a set of vertices (or nodes) connected by edges. By
adopting this representation, we do not always preserve the identity of each vertex or edge, but
only their arrangement in the network. The structure that emerges when describing a system in
this way is quite minimal. While this may sound like an oversimplification of our description,
we obtain an abstraction of the pure topological structure of the system we are analyzing. This
implies that this description may highlight features about the system that were not evident in
more detailed representations. A compelling aspect about this abstract approach is that any
conclusion drawn on a purely topological structure such as a network may be generalized to
other networks that do not necessarily represent a similar system. The result is the occurrence
of common patterns in very different systems that highlight the presence of universal behaviors
spanning across different domains. For example, we can find that technological networks such
as the internet have similarities with biological networks, or that the growth of a power grid
network evolves in a similar way as a financial network.

The field of complex networks revolves around this concept of universality. The study of phe-
nomena at a global scale is a relatively new approach that is counterposed to the reductionism
that has traditionally characterized physical sciences. The famous quote of the physicist and
Nobel laureate Philip Warren Anderson, "More is different", is a testament to the importance of
searching for fundamental laws at all the layers of abstraction, since often the higher scales of a
system can not be described as the combination of laws from the lower scales, and the resulting
mechanisms can be inherently different [8]. Not only the total is more than the sum of its parts,
the physicist concludes, but it is also different. This is the case for many examples of complex
systems. The stock market is composed by a large number of investors whose objective is to
maximize their profit, and to a first approximation they could be characterized by very simple
rules, yet no one would argue that the resulting network of complicated interactions is simple
nor easily described. Complex networks are thus a simplified representation of a complex system.
There are several key factors that can make a system complex:

• a large number of interacting units;

• nonlinear behaviors or interactions;

• feedback loops in the dynamics;
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• phase transitions, i.e. abrupt changes of macroscopic behavior;

• scale invariance;

• chaotic behavior;

• evolution, self-organization and adaptability;

• presence of hierarchical structures;

Not all of these properties are always present, and there is not even an universally agreed-upon
definition of the term complex system. However, the main aspect of the research on complex
system is its focus on the system’s complexity as a topic of study instead of an obstacle to avoid.
Given its multi-domain applicability, the analysis of complex systems through their network
representation is an interdisciplinary topic that involves the use of methodologies and concepts
belonging to very diverse disciplines, like mathematics, physics, computer science, statistics,
biology, sociology, economy and so on. A fundamental part of this research involves the analysis
of considerable quantities of data and for this reason the recent development of data mining,
computational intelligence and machine learning methodologies is a prominent motivation for
the rising interest in complex networks.
In this work we aim at employing techniques of computational intelligence and machine
learning in the study of complex networks. We analyze a particular kind of networks, namely
the Protein Contact Networks, and investigate their peculiarities with an hybrid approach that
involves the use of both network-based measures and computational intelligence algorithms.
Protein Contact Networks are a representation of the 3D structure of a protein.

A protein is a biological macromolecule that is at the basis of every biological process, like
enzyme catalysis, DNA replication, response to stimuli, molecules transport and many others.
A protein is composed by one or more long chains of aminoacids residues bonded together
by peptide bonds. There are 20 different kinds of aminoacids and the particular sequence of
aminoacids that composes a protein is called primary structure. The particularity of proteins
is the fact that, when they are in solution, they assume a characteristic tridimensional folded
shape through a process called protein folding[13, 170]. According to the Anfinsen’s dogma,
the 3D structure of the protein in its folded state is completely determined by the primary
structure, i.e. by the particular order of aminoacids on the chain. However, the prediction
of the folded state of a protein from the information of its primary structure is still an open
problem today, referred to as protein folding problem. In order to understand why it is important
to study the shape of a protein in solution, we must consider that protein are chemical entities
with specific functions and responses to stimuli. Specifically, the way for a macromolecule
to act on its surrounding environment and to react to external conditions is to change its
shape. Indeed, the change of shape affects the interaction potentials between the protein’s
atoms and the external environment, allowing it to perform a variety of functions. In this
regard, a protein can be imagined as a nano-machine equipped with sensors and actuators,
and engineered to be as stable as possible from a chemical standpoint. With this parallel in
mind it is easy to understand why studying the shape of a protein and how it evolves is tightly
related to investigating its function. A better comprehension of how proteins are made and how
they work has considerable implications for a variety of fields, in particular medicine. More
specifically, proteins are the receptors of nearly all kinds of drugs, and therefore understanding
their behavior is of utmost importance in the design of new improved drugs.

However, the large number of atoms and electrostatic potentials at play in a typical protein
of even modest dimensions makes the complete analysis—and even the simulation—of such
a system quite inaccessible. This inherent difficulty is one of the main reason for the recent
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adoption of network-based paradigms such as Protein Contact Networks (PCN) [49]. In the
PCN representation, the protein’s aminoacids are represented by vertices of a network, and two
vertices are connected by an edge if their corresponding aminoacids are in spatial proximity
in the tridimensional folded state of the protein, i.e. they are arranged at a distance less than
a threshold value. Several choices of the threshold values have been explored in literature,
depending on the kind of interactions one wants to include in the analysis, but a very common
choice, and the one considered throughout this work, is 8 Å .

This work is structured in two main parts. The first part is an exploratory analysis stage
where we analyze and compare PCN with several other kinds of networks and assess their
differences and features. The study is carried out with two different approaches. We start by
analyzing the properties of the graph-theoretical heat diffusion on the proteins graphs. The
diffusion of heat on a graph is a simulated process that is described by the heat kernel operator
[172] and is deeply influenced by the overall structural organization of the network. Indeed, in
tightly connected networks the diffusion of heat is very fast and reaches an equilibrium after a
short time. Conversely, a network that is separated in several weakly-communicating modules
yields a slower diffusion process. The heat kernel operator provides a series of graph invariants
that allow to characterize the topology of a network.
With these graph-theoretic measures we are able to identify a two-regime diffusion process,
characterized by a subdiffusive phase for longer times. This behavior is interesting because
diffusion of heat on a PCN has an experimental parallel in the case of the protein structure,
that is, the energy flow across the residues of a protein. Specifically, a protein molecule is
structured in a way such that energy can flow fast through shortcuts connecting distant areas
of its structure and otherwise slow along a multitude of pathways reaching dead ends. This
behavior is a trade-off that is required for the protein to maintain stability and robustness to
random perturbations while still being responsive on a system level to external stimuli. While
the existence of this double-regime has been verified experimentally in laboratory studies [100]
in this work it has been observed through only graph-theoretic considerations. The analysis
stage proceeds with a new approach to the analysis of the structure of a graph. Inspired by the
work of Nicosia et al. [134] we investigate long-term correlations properties of random walks
performed on protein contact networks in order to infer characteristics of their topology. In
particular, this is carried out by studying the multifractal properties of time series composed of
observables measured by the random walker on the network’s vertices. With this analysis, we
evidence the assortative structure of PCN as well as highlight the presence of intra-module and
inter-modules link confirming the two-mode spreading of signals mentioned above.
Given the importance of correlation analysis of time series as a proxy for investigation on
network structure we also propose a novel detrending method that is able to filter nonstation-
arity trends in series, in order to avoid the detection of spurious correlations. This method is
completely data-driven and is based on the prediction capability of a particular type of neural
networks, the Echo State Networks. By means of regularization techniques, we show that Echo
State Networks are able to separate trends from statistical fluctuations in data. The resulting
detrended series are in turn analyzed for discovering traces of multifractal behavior. By testing
this methodology on synthetic dataset we observe state-of-art results with respect to other
detrending methods proposed in literature.

Having confirmed the noteworthy peculiarities of PCN, we then proceed with the second
part of this project, that is, the generation of new realistic networks that present these charac-
teristics. In other words, the objective of this stage is to design a generative model for Protein
Contact Networks.
Generative models are a very important tool in network theory. A suitable generative model
provides important insights on the evolutionary mechanisms that have lead to the formation of
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the system that the network is representing. Moreover, a generative model allows to sample
new networks in order to obtain new unseen structures and infer properties that are not easily
observable in real data. In the case of PCN, being able to generate new networks is the key to
understand the particular trade-offs that evolution has favoured in building such organized
and efficient structures. Given the generality of network representation, this knowledge can
in turn be transferred to other domains where robustness and efficient transfer of information
between distant areas of a network-like system are of fundamental importance in the design of
new instances of the system. A prominent example are power grid networks, where flow of
energy can be associated to the current flowing along the power lines, and certain trade-offs
between stability, economical feasibility and efficiency are required at the design stage.

In the first part dedicated to this topic we propose a generative model of PCN based on a
model proposed by Bartoli et al. [20], that we refer to as LMGRS. By performing heat kernel
analysis on the generated network, we show that the new generation scheme creates graphs that
are more similar to PCN in that they present subdiffusive properties, even if to a lesser extent.
However, by analyzing the topological properties of the new networks we observe that they
are too tightly connected with respect to their real counterparts. This is probably given by the
fact that PCN are the representation of atomic configurations with a non-zero spatial extension,
even if microscopic, so not all possible contact between atoms are allowed and, by consequence,
not all configuration of the corresponding PCN are possible. To indirectly account for these
physical constraints, we propose a reconfiguration scheme that rewires the links in a LMGRS
network in order to obtain more realistic configurations. The reconfigured networks, referred
to as LMGRS-REC, present statistically significant improvements in similarity with PCN in
nearly all the topological properties that we measure. By analyzing the spectral properties of
the LMGRS and LMGRS-REC networks we also assess that they show an increased similarity to
PCN with respect to the original model of Bartoli et al.

However, since LMGRS networks are still different in terms of spectral characteristics with
respect to PCN, in the last part of this work we setup an optimization problem with objective
function the spectral similarity between PCN and the candidate solution. More in particular, we
aim at obtaining networks whose spectral distribution is as similar as possible as the average
PCN spectral distribution. The optimization is performed with a genetic algorithm equipped
with custom mutation and crossover operators. These operators are designed in such a way
to produce as realistic as possible protein contact networks. The result of the optimization are
networks that are indistinguishable from a Protein Contact Network from the points of view
of their spectral distribution. This in turn leads to improved similarity of several topological
properties.

This thesis is structured as follows: in the first chapter we introduce the field of complex
networks and their theoretical background. In the same Chapter, Protein Contact Networks
and the Bartoli model are presented. In Chapters 2 and 3 is presented the analysis phase of
the networks. In particular, Chapter 2 discusses the heat diffusion properties of PCN and
Chapter 3 concerns the random walk analysis on these networks. In Chapter 4 we propose
DESN, the data-driven detrending method presented above. Finally, Chapters 5 and 6 discuss
the generation of realistic protein contact networks.
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Chapter 1

Complex networks

The study of networks has sparked from the recent availability of massive amounts of data
allowed by the development of telecommunications, internet in particular, and storage tech-
nologies. A network is a very versatile mathematical object that represents the relation between
different entities. Each entity corresponds to a node (or vertex) of the network and two nodes
are connected by an edge if they are related. Examples of networks are:

• social networks, where the individuals are the nodes and edges – in this context often
referred to as ties – represent their friendship relations with each other;

• the World Wide Web (WWW), where nodes correspond to the web pages connected by
their hyperlinks;

• Protein Interaction Networks, describing systems of many proteins and their binary
interactions;

• transport networks, where nodes are geographical locations (like cities) and their edges
represent aerial, maritime or land transports connecting them.

As it is clear from the examples, the versatility of such objects stems from the fact that nodes and
edges can be chosen to represent any kinds of entities and relations, either abstract or physical,
and such a choice influences the interpretation of any result obtained on the network. edges
can correspond to very different kinds of relations, either abstract or physical.

1.1 Basic properties of networks

A network, also called a graph in the mathematical literature, can be formally represented by a
list of its nodes and edges. By assigning to each node an arbitrary natural number as unique
identifier (ID), each edge is then represented by pairs pi, jqwhere i and j are the ID of the two
connected nodes. Formally, a graph is represented by a pair of sets G“ pV ,E q, where V is the
set of nodes with |V | “ N and E Ď V ˆV the set of edges with |E | “M.
An equivalent and often more convenient way to mathematically represent a network is by
its adjacency matrix. In its simplest form, the adjacency matrix of a graph of n nodes is an nˆn
matrix AAA with elements

ai j “

#

1, if nodes (i,j) are connected
0, otherwise.

(1.1)

The structure of the adjacency matrix completely defines the network. Moreover, since the IDs
of the nodes are completely arbitrary, any coordinated permutation of the rows and column of
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the adjacency matrix describes the same network. More in general, two graphs having the same
structure except for a permutation of their node identifiers are said to be isomorphic. A graph is
said to be simple if it has no self-loops, i.e. nodes connected with themselves, or multi-edges, i.e.
multiple edges connecting the same pair of nodes. This in turn corresponds to a zero-diagonal
binary adjacency matrix. In the previous examples of networks, the friendship network is
represented as a simple graph, since the friendship between two individuals can either exist
or not and a self-loop, i.e. a friendship with oneself, would have no meaning in this context.
On the other hand, if multiple edges are allowed between pair of nodes, each element ai j can
assume any natural value, and the network is said to be a multigraph.
When networks edges represent symmetric relations, like in transport networks, the graph is
said to be undirected and its adjacency matrix is symmetric, i.e. such that ai j “ a ji @ i, j P V . In
other cases, instead, network edges represent asymmetric relations like, for example, in the
WWW network. Indeed, hyperlinks form a directed connection from the source website to the
destination website and are not always mutual, i.e. the source site may not be in turn linked
back by the destination site. In such a directed graph (also known as DiGraph) the symmetric
property of the adjacency matrix does not hold.
Another possible generalization of a graph is possible by allowing the adjacency matrix elements
to assume real values. In this case their value represents an “intensity” of connection between
nodes and, depending on the context, provides a richer description of their relation. Notice
that this value can also be negative, indicating an inhibitory, contrasting or antithetical relation.
This kind of network is then said to be weighted, since different weights are assigned to its
edges.1 In particular, a multigraph can be interpreted as a specific kind of weighted network
where the weights of the edges are constrained to assume natural values. An example of a
weighted network is a social network where edges measure a degree of sympathy between
the involved individuals. High values corresponds to a strong relationships, negative values
to hostility and a null value to neutral or lack of relationship. In some situations it might be
necessary or more natural to define a relation where the number of nodes involved is greater
than two. Hypergraphs are the generalization of graphs that allow to create hyperedges, i.e. edges
connecting an arbitrary number of nodes simultaneously. Notice that this is not equivalent to
creating a fully connected clique of nodes in a conventional graph, since the group relation these
nodes have in common is lost and only the pairwise connections are retained. As an example,
consider a scientific collaboration network, where the nodes are the authors of scientific papers
and the edges represent a collaboration in the realization of a paper. In this case the choice
of an hypergraph is more natural since there would be a one-to-one correspondence between
hyperedges and papers produced. In a conventional graph, instead, for each collaboration of
n authors one would be forced to create npn´1q{2 edges between all pairs of authors and the
resulting configuration would be indistinguishable from a situation where npn´1q{2 papers are
separately produced by the same authors.2

The networks defined so far are composed by nodes that are distinguishable only through their
wiring patterns. This means that each node has no intrinsic identity and different nodes can be
swapped without altering the network’s properties. In situations where the identities of nodes
are not interchangeable it is possible to assign a label to each node, obtaining a labeled graph. A
label is any kind of data associated to the entity the node represent, and is considered when

1In many situations it is also useful to extract and analyze the purely topological substrate of a weighted network,
that is, the unweighted network obtained by removing all the weights from its edges. The obtained structure
can highlight features that are not immediately obvious in the original network and allows for the application of
measures and procedures developed for unweighted networks.

2The downside of choosing the hypergraph notation is that since hyperedges are sets instead of 2-tuples they are
harder to handle and many methods available in literature are not generalizable to this kind of objects.
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comparing graphs or in subsequent processing3.
A summary of all the possible generalizations of a graph is shown in Table 1.1. In this thesis
we will be focusing only on simple graphs, given their ease of description and diffusion in
the complex networks literature. Additionally, we will be considering connected networks, i.e.
networks such that any pair of nodes is connected by a path across the edges.

1.2 Network measures and statistics

One of the most common approaches to study a network and highlight its main organizing
principles is to search for suitable measures and statistics that reduce a local or a global topo-
logical property to a numeric value or distribution. The obtained values can then be used
for comparisons with other graphs or to get insights on hidden wiring patterns within the
network. Measures and statistics have been defined in the complex network literature in order
to highlight different features of the network, like e.g. discover central nodes belonging to the
network’s “core”, predict the presence of edges, identify clusters of tightly-connected nodes,
etc. In this section we describe several common measures and statistics on simple graphs that
are evaluated and discussed in subsequent sections and are commonly employed in network
analysis.

1.2.1 Centrality measures

A lot of real-world networks are composed by a great number of interconnected nodes. It is
in general unlikely that all the nodes have the same importance and hierarchical role in the
organization of the network. A common example is the world airline network, modeling the
world airports as nodes and the direct air routes connecting them as the edges of the graph.
In such a network it is easy to recognize the important role that large international airports
have in the organization of traffic across the network. These airports are generally connected
with a great number of smaller airports, so the correct functioning of these airports is crucial for
the connection of many faraway locations. In this sense, these airports constitute the “central
core” of the network, while smaller airports are distributed across the “periphery”. The most
intuitive way to quantify the centrality of a node in a network is to consider its degree, defined
as the sum of its connections with other nodes. By considering a simple graph of N nodes with
adjacency matrix A“ tai ju, the degree ki of node i is

ki ” degpiq “
N
ÿ

j“1

ai j (1.2)

Despite its simplicity, the degree centrality is in many cases an accurate descriptor of the impor-
tance of the node in a network. For example in a social network where nodes are individuals
and edges are their relationships it is reasonable to assume that nodes with a large degree,
often referred to as hubs, correspond to the most influential individuals and are critical in the
study of information spreading, group dynamics, etc. The concept of importance, however, is
obviously dependent on the particular system that the network is modeling and the hypothesis
to be investigated. In some cases one needs a measure of the centrality that describes how
well-connected is a node to the rest of the network. In the previous world airline network
example, one could identify as central those airports which are at the least number of steps
away from any other location in the network. This means that, starting from a central node, any

3Clearly, the label does not affect the pure topology of the graph, even if it can be taken into account when
defining custom measures.
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Table 1.1. Summary of the main variants of a graph. The fields marked with “-” correspond to properties
that are not required to be fixed for the graph definition. For example, the adjacency matrix of a
directed graph can be either binary, natural or real. Graph definitions can also be combined by
joining their respective properties, like e.g. a directed multigraph is a graph with multiple edges and
a non-symmetric adjacency matrix. In the last example graph, hyperedges are represented by Venn
diagrams and nodes are drawn as black dots.

Graph type Edge type Elements aij
Adj. matrix
type

Example

Simple graph 2-tuple Binary Zero-diagonal

Multigraph 2-tuple
Natural num-
bers

-

Directed graph 2-tuple -
Non-
symmetric

Weighted
graph

2-tuple Real -

Hypergraph Set Undefined -
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other node of the network can be reached through a small number of ‘hops’ across the edges of
the graph. The corresponding measure, called closeness centrality, should assign high values
to such nodes and low values to remote nodes. While several definitions of this measure have
been proposed, one of the most common, and the one used in this thesis, has the form

Ci “
N

ř

j di j
(1.3)

where di j is the length of a geodesic path between nodes i and j, i.e. the shortest path between
i and j with each edge having unitary length. While this measure is usually correlated with
degree centrality, it is a property that depends on the whole structure of the graph, so it provides
in principle a different kind of information about the position of the node in the network [163]. In
other situations one could consider a completely different criterion to quantify centrality in the
network. Consider, for example, a power grid network, where nodes represent power stations
and edges their physical connections. When dimensioning the capacity of a power station one
has to account for the maximum electrical flow it can sustain. In a first approximation, the
station will handle an electrical flow that is directly proportional to the number of shortest paths
traversing its corresponding node in the network. In this definition of centrality, the more the
station serves as a “bridge” between the other endpoints of the network, the more the node is
central. Conversely, peripheral nodes are those sites that are not fundamental in the connection
of different areas, like end-users houses in the power grid example. This kind of centrality
is defined as betweeness centrality and is a fundamental measure to consider when discussing
the efficiency of transport/transmission of a node in a network and the consequences of its
malfunctioning. The betweeness centrality CpBqi of a node k is calculated as

CpBqk “

ř

i j
σpi, j|kq

ř

i j
σpi, jq

(1.4)

where σpi, jq is the number of shortest paths between nodes i and j and σpi, j|kq is the number
of shortest paths between i and j passing through node k.4 While this property can be related to
the degree centrality, there are cases where this connection does not hold. For example, consider
the network in Fig. 1.1: the node highlighted in red has a degree of 2, yet it has high betweeness
centrality since it is the only connection between the two subgraphs shown on its left and right.
As a consequence, the removal of this node would have dramatic consequences for the global
topology since the network would become disconnected.

While the centrality measures defined above are the only types discussed throughout this
work, the list is certainly not complete and new centrality measures are constantly being
defined in literature. This derives from the fact that centrality in a network is a strongly
application-dependent concept and the incorrect application of these measures can lead to a wrong
interpretation of data.

1.2.2 Assortativity and Modularity

Networks are a very minimalistic way of representing a system. For a system composed
of many entities this corresponds to focusing on their relations more than their individual
identities. One of the main questions that could arise when analyzing a network is: “Why
are nodes connected in this way? Is there some sort of wiring principle behind the resulting

4There can be multiple paths with the same length connecting two nodes, so while the shortest path length is
always univocally determined, the shortest path itself is not.
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Figure 1.1. Test

configuration?". Identifying the properties that affect the connection between two nodes can
give an important insight on the system represented by a network. In many real-world networks
a first step in this direction is to analyze the existence of homophily between nodes. Homophily,
or assortative mixing, corresponds to the tendency of the nodes to be connected with other nodes
with similar properties. This is very common for example in social networks, where individuals
tend to be connected with people that are similar in some relevant characteristic, like social
class, political orientation or geographical location. Conversely, there are networks where the
opposite is more likely, and a disassortative mixing is observed, i.e. nodes with very different
characteristics are more likely to be connected. The assortativity of a network is the statistic that
quantifies this tendency. Let us consider a connected network with N nodes and M edges and
adjacency matrix Ai j, and a nominal observable Opiq ” Oi that can be evaluated on any node i.
The property O is nominal in the sense that it assumes symbolic values, i.e. non-numeric values
that have no intrinsic ordering nor product, like political orientation in the example above5. In
its original form, the assortativity of the network with respect to the observable O is calculated
by counting the fraction of edges connecting nodes with the same value of the property O, and
by subtracting the contribute given by the probability of them being connected by pure chance.
The assortativity has the form

Q“
1

2M

ÿ

i j

ˆ

Ai j´
kik j

2M

˙

δ pOi,O jq (1.5)

where ki stands for the degree of node i and δ pOi,O jq “ 1 if Oi “ O j, and zero otherwise. Let us
now analyze the form of the previous equation. The fraction of edges neighboring nodes with
the same value of O is given by the first term of eq. (1.5), i.e.

1
2M

ÿ

i j

Ai jδ pOi,O jq.

This value alone would not keep into account the connections given by pure chance and not
because of an assortative relations between the nodes: consider for example nodes with a very
high degree k. These nodes are more likely to be connected with each other in virtue of their
higher number of connections, even not taking into account the value of their observable O.
On the other hand, consider a network with a very unbalanced distribution of values of the
observable O on the nodes, so that many nodes have the same property O˚. In this case the

5Even if a numerical label can be assigned to each symbol, the resulting numerical ordering would be arbitrary
and hence meaningless. This corresponds to stating that equality is the only well-defined logic operation between
the values of the domain of O, while the inequalities are not.
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fraction of nodes with the same value of the observable O would be very high even when
choosing the neighbors of each node in a random fashion. From this considerations it is clear
that a useful measure has to highlight the presence of some interesting pattern while ignoring
coincidental properties given by pure chance or forced association (like in a graph where all the
observables have the same value). In the statistics language, it means that the measure has to
provide some comparison to a suitable null model. Null models are an important tool in network
science (and statistics in general) because they allow to compare the observed data to a model
where correlations have been removed in a controlled fashion, by randomizing existing data.
This allows to attribute any observed deviation of data from the null model as the result of
correlations that are not present in the null model. On the other hand, any effect observed both
in the null model and data can then be attributed as the result of randomness. Depending on the
particular feature that one wants to investigate it is possible to design a randomization scheme
whose realizations retain the properties to be considered as fixed (and hence not interesting for
the analysis) and the rest are randomized. Consider a random graph with the same N nodes
as the original graph but where each node i is connected with ki chosen at random, where
ki is the node’s degree in the original graph. The set of possible realizations of this random
graph defines a null model of the original graph, where the degree of each node is conserved
but the connections between nodes are not, the so-called configuration model. In a configuration
model with the same degree distribution as the original graph, the probability of two nodes
with degrees ki,k j to be connected is kik j

2M . From this viewpoint, the term in the parenthesis in eq.
(1.5) represents the difference between the actual value of the adjacency matrix and its expected
value if nodes were wired in a random fashion. In this way, the assortativity in its standard
form compares the wiring patterns of the graph to its corresponding configuration model for
some observable O. Assortativity is bounded in the range r´1,1s and it assumes positive values
when the graph is assortative, negative values when it is disassortative and it is zero in absence
of correlations.

When the observable O corresponds to labels identifying different communities of nodes, like
for example the nationality in a social network, the assortativity corresponds to the modularity
of the graph [27, 133]. Modularity is a measure of how clustered is the graph with respect to
the labeling given by the observable O. In particular, in a modular graph nodes are more likely
to be connected with nodes of the same community than with other nodes. Considering the
nationality example, strong modularity is often observed in social networks with respect to
nationality since people sharing a similar cultural background are more likely to interact and
form relationships.

When the considered observable is a scalar value, it is convenient to define the assortativity
coefficient as the generalization of the Pearson correlation coefficient over graphs:

r “

ř

i j

´

Ai j´
kik j
2M

¯

OiO j

ř

i j

´

kiδi j´
kik j
2M

¯

OiO j

. (1.6)

The term at the numerator corresponds to a covariance term and the numerator to a variance
term. The assortativity coefficient gives an idea on how correlated are the observables on
neighboring nodes. A very common choice of node observable that turns out to be surprisingly
informative is the degree of the node. The degree can be always calculated, since it doesn’t
depend on external information, and for this reason provides insights on the pure topologic
structure of the network. In particular, the degree assortativity coefficient measures the tendency
of nodes of being linked to nodes of similar degree. If the network is assortative with respect to
the degree, then it is usually composed of a main core of high-degree nodes, or hubs, tightly
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connected with each other and a periphery of many interconnected low-degree nodes6. An
example of assortative networks are the film actor networks, that is, networks where each node
represents an actor and edges represent the starring of two actors in the same movie. In this
kind of networks the degree is correlated with the celebrity status of the actor, and for this
reason it is likely that actors with high celebrity statuses collaborate in high-budget movies. The
opposite of a degree assortative network is a network where hubs are preferentially connected
to low degree nodes. This situations happens, for example, in technological networks where
hubs represent servers and low-degree nodes are the clients that request a service.

1.2.3 Transitivity

The assortativity measure presented above is a way to highlight the tendency of pairs of nodes
to be connected. Another important information that we can extract from the local wiring of
a group of nodes is the transitivity property of their connections. Transitivity in this context
means the tendency of a node to be connected with the neighbors of its neighbors. In other
words, if a node i is tied to a node j and j is tied to a node k, in a transitive network there is
a high probability that i is in turn tied to node k. Transitivity is a common feature of many
real-world networks, like in friendship networks, where if an individual i is friend with an
individual j and j is friend with k then it is more likely that i is friend with k than with some
random node in the network. One of the ways to quantify transitivity with in a graph is the
clustering coefficient. With respect to a single node i of degree ki the clustering coefficient ci is
defined as

ci “
2Ntrpiq

kipki´1q
, (1.7)

where Ntrpiq is the number of pairs of neighbors of i that are connected. Since the denominator
corresponds to the total number of pairs of neighbors of i (regardless of their connection), the
measure in eq. (1.7) is a fraction of the transitive relations involving node i with respect to the
total. The coefficient is hence bounded between 0 and 1. The value 0 corresponds to the absence
of transitivity, while the value 1 denotes that i and its neighboring nodes form a clique, i.e. a
completely connected subgraph. The global clustering coefficient of a graph is then the average
of all the clustering coefficients of its nodes, i.e.

C “
1
N

ÿ

i

ci. (1.8)

While a global clustering coefficient of 1 corresponds exclusively to a completely connected
graph, there are a multitude of topologies that correspond to a null clustering coefficient, like
trees, lattices with degree greater than 3, etc.

1.2.4 Shortest paths and small-world effect

As already mentioned in Sec. 1.2.1, an important feature of a graph topology is the distribution
of topological shortest paths between nodes. For example, when traveling by plane from a
location to another, one tends to chose the path with the minimum number of stopovers more
than the path with the shortest geographical distance. A well-connected network will then be
characterized by short paths between pairs of nodes, so as to minimize the number of steps

6Even in assortative networks hubs will be necessarily connected with many low-degree nodes, but notice that the
assortativity coefficient compares their actual frequency of connection with the corresponding expected probability
in a random model, so any forced connection is ruled out.



1.2 Network measures and statistics 9
necessary to go from a node to any other. One way to quantify this connectedness property of a
network is by evaluating its diameter, defined as

D“max
i, j

di j (1.9)

with di j the shortest-path length between nodes i and j. The diameter measures the worst-case
path length in the whole network. However, in many cases this measure turns out to be too
sensitive to few outliers since it only depends on the longest path between nodes and not on the
global distribution of paths. A more meaningful measure is the average shortest path, calculated
by substituting the maximization in eq. (1.9) with an average:

D̃“
1

NpN´1q

ÿ

i, j

di j (1.10)

This quantity is more robust to outliers and is dependent of the whole distribution of paths, even
if some care has to be taken in case of very heterogeneous distributions of path lengths. It has
been observed that in many real-world networks the average shortest path grows very slowly
with the network size, that is, even large networks tend to have very small average shortest
paths. Such networks are said to be small-world, in virtue of their apparent small size because of
their efficient connectivity. The most famous example of this effect is the anecdote of the “six
degrees of separation", the conjecture that any two persons in the world are separated by only
six steps in terms of friendship relations with other people. This conjecture originated by several
experiments conducted by the social psychologist Stanley Milgram, that observed that many
social networks are indeed small-world. Formally, a network is said to be small-world when its
average shortest path grows logarithmically or slower with the number of nodes. However,
it can be shown that the small-world property is not necessarily an hint of some underlying
process optimizing the network’s connectivity, since it can be shown that several models of
random graphs yield a small-world topology.

1.2.5 Degree distribution

As discussed in Sec. 1.2.1, the degree is an important feature of a node since it gives a general
understanding of the node connectivity with the rest of the network. On the other hand, in many
situations it is important to identify the distribution of degrees at a network level, regardless of
the identity of the specific vertices, in order to identify the balance between high-, medium- and
low-degree nodes. This in turn provides information about the structural organization of the
graph, as well as many other insights on its robustness, redundance, efficiency of connection,
etc. depending on the specific system it is representing. The degree distribution Ppkq is the
probability distribution of measuring a given degree k by randomly selecting a node of the
network. This probability can be easily estimated by evaluating the empirical frequency of
each degree k. By drawing an histogram of the resulting data it is possible to observe the
general trend of Ppkq as a function of k. In most real-world networks this trend is decreasing
since generally any meaningful network representation of a system is sparse in its edges and
high-degree nodes are rarer than low-degree ones. By representing the histogram in a loglog
plot, in many situations the resulting probability distribution of degrees turns out to have the
form

logPpkq “ ´αlogk` c. (1.11)

This form is recognizable by observing an approximately linear trend in the loglog plot. The
form in eq. (1.11) corresponds to a power law function, indeed

Ppkq 9 k´α . (1.12)
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The α coefficient represents the decay of the power law as a function of the degree: lower values
of α lead to the presence of very large hubs with degrees that are significantly higher than the
mean degree. Networks whose distribution is a power law are said to be scale free, since the
degree of their nodes have no characteristic scale. In this kind of networks the average degree
value loses much of its significance since the variance of the resulting distribution is very large,
or even infinite. In the next Section we discuss the prototypical model of a scale free network,
the Barabasi-Albert model.

1.3 Network models

One of the best ways to recognize an important pattern within a real-world network is to design
a suitable null-model with minimal assumptions that produces some effects on data. This topic
has been mentioned in Sec. 1.2.2, regarding the definition of a meaningful assortativity coeffi-
cient. For this reason in the network literature many generative models have been proposed
aiming at producing these interesting patterns and discover when some effect is not a result
of random fluctuations. In this Section we briefly describe some of the most famous network
models that are commonly used in literature because of their analytical simplicity.

1.3.1 Erdos-Renyi graphs

The Erdos-Renyi (ER) graphs are the most basic kind of random graphs. An ER network is
generated starting from N disconnected nodes. For each pair of distinct nodes a link is created
with a fixed probability p, so that each link is uncorrelated with each other. Despite their
simplicity, ER graphs are a very important aspect of network theory since they are among
the few models that can be studied analitically and show many non-trivial features that can
be calculated exactly. In particular, it can be shown that for suitable values of p ER graphs
are indeed small-world. ER graphs have also been thoroughly analyzed from many other
viewpoints, like clustering, percolation properties, resilience, degree distribution, etc. [5].

1.3.2 Barabasi-Albert graphs

Many systems are characterized by a steady growth process where new individual entities are
gradually created or added and these interact with existing components of the system. The
topology of the graph at any given time is then the result of a dynamical process. For example,
consider the World Wide Web network, where each node is a site domain and hyperlinks
between sites are the edges. In the early days of internet this network would be composed
by few thousands of nodes. Gradually, new domains have been registered and new links are
created in order to obtain the actual WWW structure. The Barabasi-Albert (BA) model is a very
simple schematization of this kind of growth process. The main principle behind the growth
is the preferential attachment mechanism, according to which new nodes that join the network
tend to connect to existing nodes with a probability that is proportional to the degree of these
nodes. In particular, if a node has a very high degree, then it has more probability of being
connected to the newly created nodes, which in turn causes its degree to increase even more.
Conversely, nodes with low-degree at any given time are less likely to gain new links and hence
their relative degree decreases further with respect to the most connected nodes. This leads
to a very wide distribution of degrees and to the so-called "rich get richer" effect, which is a
behavior that has been observed in many domains like sociology, biology, finance, and so on.
The steps to construct a BA graph are as follows:

1. start from a complete graph with M connected nodes;
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2. create a new candidate node with degree M and assign each endpoint of its links to an

existing node selected with a probability pi, given by

pi “
ki

ř

j k j
(1.13)

where ki is the degree of the i-th node and the sum in the denominator is over all the
existing nodes except the candidate node7;

3. add the candidate node to the network and repeat from point 2 until a given network size
of N has been reached.

It can be shown [5] that for N Ñ8 the degree distribution of a BA graph has the form

Ppkq 9 k´γ (1.14)

where γ “ 3 is a decay exponent that is independent of M. As discussed in Sec. 1.2.5 this form
of the degree distribution stems from a scale free topology. Indeed, BA graphs are characterized
by a small number of very large hubs and a large number of low-degree nodes.

1.3.3 Watts-Strogatz graphs

In Sec. 1.3.1 it was mentioned that ER graphs are characterized by a small world topology.
However, in the early years of research on the small-world property it was observed that ER
graphs had a major discrepancy with small-world networks extracted from real data. Indeed,
while the average shortest path was comparable, real networks showed much higher clustering
coefficients with respect to ER graphs. In Ref. [168] this was attributed to some kind of local
order between vertices that was lost in random graphs. In the same work the authors proposed a
new generative model of small-world networks that showed high clustering while still retaining
a small average shortest path. This model is structured as follows:

1. start from a connected regular ring lattice of N nodes, where each node is linked to its k
nearest neighbors where N and k can be of any values;8.

2. choose a node and the edge that connects it with its nearest neighbor, and with probability
p we rewire the edge to any other node of the network, avoiding any multiple edges, and
with probability 1´ p we leave the edge in place;

3. select the next node by moving clockwise on the ring and perform the same operation as
in step 2 until we return to the first selected node;

4. when the first node is selected again we perform the same operation as in step 2 with
its the second nearest neighbor on the lattice and move clockwise until all edges of the
second nearest neighbors have been considered;

5. we perform the same operation as in step 4 for third, forth, etc., nearest neighbors until all
edges have been considered

The free parameters for this model are the number of nodes N, the rewiring probability p
and the number of neighbors k. By varying p in the range r0,1s one obtains varying levels of
randomness, starting from a regular ring lattice for p“ 0 and ending up to a ER graph for p“ 1.

7In order to obtain a simple graph we ignore nodes that are selected twice, or reassign the link to a new node.
However, this situation is negligible when the network grows to a size N "M

8Usually for k is chosen an even number for symmetry
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1.4 Graph Laplacian

An alternative representation of a network that can be computed directly from its adjacency
matrix is the graph Laplacian, that is strongly related to the diffusion properties of the graph.
Consider a graph with adjacency matrix AAA. We can then define the degree matrix DDD as the
diagonal matrix with element Di j “ kiδi j. The Laplacian matrix is then defined as

LLL“ DDD´AAA. (1.15)

and each element is equal to

Li j “

$

’

&

’

%

1 if i“ j,
´1 if Ai j “ 1,
0 otherwise.

(1.16)

The Laplacian LLL is the generalization of the differential Laplacian operator to graphs [92]
and provides important information on the topology of the graph and is fundamental in
many contexts of network theory like graph partitioning, dynamical processes on the network,
network connectivity, etc [46, 97, 138, 176]. Moreover, the Laplacian is directly related to many
local and global properties of the network [120, 124], and its spectrum provides a compact, one-
dimensional representation of the graph which can be probed for understanding the founding
principles behind the network’s organization [34, 122, 175, 178]. To understand why LLL has the
form in eq. (1.15), consider a graph with N nodes and degrees tkiu and consider each node as
a container filled with an hypothetical substance that diffuses over the graph’s edges. This
substance may represent some physical quantity like a density of gas, quantity of cars in a road
transport network, etc. or even an abstract quantities like information, influence and so on.
At the starting time there is some initial quantity of substance ψi on each node i, and since at
any instant it propagates to the neighboring nodes by diffusion over the edges, its evolution is
described by the differential equation

Bψi

Bt
“C

ÿ

j

Ai jpψ j´ψiq (1.17)

where C is a characteristic diffusion constant. The right-hand side of previous equation can be
rearranged so as to obtain

Bψi

Bt
“C

ÿ

j

pAi jψ j´δi jkiqψ j (1.18)

which in vector form equals to
Bψψψ

Bt
“CpAAA´DDDqψψψ (1.19)

from whence it derives
Bψψψ

Bt
`C LLLψψψ “ 0 (1.20)

which has the same form as a diffusion equation except for the differential Laplacian operator
∇∇∇

2 that has been substituted by the graph Laplacian LLL.
Starting from the graph Laplacian it is possible to define the normalized graph Laplacian L̃LL as

L̃LL” DDD´1{2LLLDDD´1{2 “ III´DDD´1{2AAADDD´1{2 (1.21)
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and each elements is equal to

L̃i j “

$

’

’

&

’

’

%

1 if i“ j,
´ 1?

did j
if Ai j “ 1,

0 otherwise.

(1.22)

The normalized graph Laplacian is an important, formal representation of graphs, since
it conveys many structural and dynamical properties of the modeled system [107, 117, 122].
Moreover, the normalized laplacian is generally studied because of its interesting spectral
properties, as shown and discussed throughout this work. In particular, the normalized graph
Laplacian can be decomposed according to the spectral representation

L̃LL“ΦΦΦΛΛΛΦΦΦ
T , (1.23)

where
ΛΛΛ“ diagpλ1,λ2, ...,λNq (1.24)

is a diagonal matrix containing the eigenvalues, ΦΦΦ is the eigenvectors matrix. It can be shown
that the eigenvalues of the normalized Laplacian spectrum are bounded between 0 and 2 and the
smallest eigenvalue is always 0, so we can choose the to order the indices such that 0“ λ1 ď λ2 ď

λ3 ď ¨¨ ¨ ď λN ď 2. One interesting property of the normalized spectrum is that the multiplicity
of the eigenvalue 0 is the equal to the number of connected components of the graph (hence the
reason why there is always at least one zero eigenvalue). Moreover, the highest eigenvalue is
always lesser than 2 expect for bipartite graphs, where it is 2. The influence of the normalized
laplacian spectrum on the graph’s topology is one of the main focuses of this thesis and it is
thoroughly analyzed with several approaches.

Starting from the normalized Laplacian, it is possible to define a diffusion equation similar
to eq. (1.20), called heat equation [96, 172]. The heat equation has the form

BHHHt

Bt
“´L̃LLHHHt , (1.25)

where Ht is a time-varying doubly-stochastic nˆn matrix, called heat kernel, and t is the time
variable. The heat equation describes the flow of heat over the graph and, differently from
the diffusion equation of eq. (1.20), here the unknown variable is a matrix instead of a vector.
Indeed, the heat equation describes the flow of some diffusing substance over the network
edges rather than the quantity of substance accumulated in the nodes. This is why the heat
equation is particularly suitable to describe the flux of information from a vertex to another in
situations where cascade interactions occur. The general solution to (1.25) is

HHHt “ expp´L̃LLtq, (1.26)

which can be calculated by exponentiating the spectrum of L̃LL:

Ht “ΦΦΦexpp´ΛΛΛtqΦΦΦT
“

N
ÿ

i“1

expp´λitqφφφ iφφφ
T
i . (1.27)

The solution HHHt of eq. (1.25) is a time-varying matrix whose pi, jq´ th element represents the
quantity of substance that originated from node i and is flowing towards j by following a path
with a length of t. Notice that for this reason in a connected graph the heat matrix is in general
non-zero everywhere for a sufficiently high time instant t. In particular, HHHt » III´ L̃LLt for t Ñ 0 and
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HHHt » expp´λ2tqφφφ 2φφφ

T
2 when t is large9. This means that the large-time behavior of the diffusion

depends on the global structure of the graph, while its short-time characteristics are determined
by the local structure. The heat trace HTp tq of HHHt is given by

HTp tq “ TrpHtq “

N
ÿ

i“1

expp´λitq “C`
N
ÿ

i“C`1

expp´λitq, (1.28)

where C is the multiplicity of the eigenvalue 0, corresponding to the number of connected
components of the graph. For a connected graph the heat trace is hence

HTp tq “ 1`
N
ÿ

i“2

expp´λitq. (1.29)

The heat trace assumes the value N at t “ 0, where N is the number of nodes, and approaches
asimptotically the value 1 for t Ñ8. To obtain a clearer interpretation of the heat trace, we
consider a scenario where the (graph-theoretical) heat represents the information transfer
between nodes. Each node generates as time t “ 0 a message that is propagated across the
network edges. The value HTp tq can then be interpreted as the number of separated components
of the graph at the time t from the point of view of information exchange. Indeed, at time 0 the
graph is equivalent to N separated components since no communication has been established
between nodes. When time t grows the information generated on each node reaches farther and
farther locations of the network. For t Ñ8 an equilibrium state is reached where each node is in
contact with any other node of the network and there is no more information exchange. In this
perfectly synchronized state the network is a single connected component from the information
viewpoint and this is reflected in the unitary value of the heat trace. An interesting property
of the heat trace is that its value is invariant under permutations of the node ordering, so
isomorphic graphs yield identical curves. On the other hand, the heat trace is a scalar quantity
that depends only on the eigenvalues of the normalized Laplacian, so it does not preserve the
information about its eigenvectors. A related quantity that depends both on eigenvalues and
eigenvectors is the heat content. The heat content HCptq of Ht is defined as:

HCptq “
ÿ

uPV

ÿ

uPV

Htpu,vq “
ÿ

uPV

ÿ

uPV

N
ÿ

i“1

expp´λitqφipvqφipuq. (1.30)

It can be shown (see Ref. [116]) that the heat content can be expressed in terms of power series
expansion,

HCptq “
8
ÿ

m“0

qmtm. (1.31)

By using the McLaurin series for the exponential function, we have

expp´λitq “
8
ÿ

m“0

p´λiq
mtm

m!
, (1.32)

which, substituted in Eq. 1.30, gives

HCptq “
ÿ

uPV

ÿ

uPV

N
ÿ

i“1

expp´λitqφipvqφipuq “
8
ÿ

m“0

ÿ

uPV

ÿ

uPV

N
ÿ

i“1

φipvqφipuq
p´λiq

mtm

m!
(1.33)

9The vector φφφ 2 is referred to as normalized Fiedler vector
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and thus

qm “

N
ÿ

i“1

˜

ÿ

uPV

φipuq

¸2
p´λiq

m

m!
. (1.34)

The qm coefficients in Eq. (1.31) are called heat content invariants (HCI) and have been shown to
be quite informative of the global network structure [172].

1.5 Random walks on graphs

Networks in their graph representation are generally awkward to handle from a mathematical
viewpoint. Their structure is invariant under permutations of the node ordering, and they are
in general infinite-dimensional objects10. For this reason in literature many methods have been
defined to linearize the structure of a graph and obtain some 1-dimensional description of its
structure. In Ref. [134] the authors propose to design a random walk process on the network in
order to probe its structural properties. In particular, let us consider a graph G and a random
walker that at the time step t “ 0 is randomly placed onto a node of the graph. The walker
evaluates some kind of property of the node, for example the degree, and stores the value
in a list. At t “ 1 the walker jumps on a node chosen randomly among the previous node’s
neighbors, then registers the value of the measured observable on the new node and adds it
to the list. The process goes on for a T iterations and the output is the time series of T values
of the observable measured during the random walk across the graph’s edges. This process is
Markovian and its evolution can be described by evaluating the transition matrix associated to
the graph’s adjacency matrix A, given by

PPP“ DDD´1AAA. (1.35)

where DDD is the degree matrix. More precisely, the matrix P defines a first-order, unbiased
Markovian chain on the nodes of G, where the transition probabilities are entirely determined
by the adjacency matrix [30, 33]. If G is connected and undirected, then the underlying Markov
process admits a unique stationary distribution on the nodes, πππ “ πππPPP, given by the vertex degrees:

πi “
ki

2M
. (1.36)

We now define a time-homogeneous property map M : V ÑO , where O is the domain of vertex
properties, such as degree, clustering coefficient or other well-defined observables of the nodes
of G. A random walk on a graph G generates a sequence of vertices that are visited over discrete
time indexes. We can associate to the random walk a sequence of observables by evaluating
at each time step t the corresponding vertex observable given by Ot “Mpνtq, where νt is the
node being visited at time t, generating thus a sequence of nodes properties, O1,O2, ...,OT .
Interestingly, the process described above is technically equivalent to an hidden Markov model
where the observables are determined deterministically from the current state. As shown in

10To see why, consider a regular square lattice where each node has exactly 2D neighbors. This network can be
embedded in a D-dimensional Euclidean space since the symmetry and triangular inequality of the Euclidean metric
are respected by definition. Indeed, in this space there is a local order where each node cannot be linked to any other
node of the network. Consider the previous example, and suppose to create a link between two distant nodes on
the lattice. In the D-dimensional space, this ‘shortcut’ violates the triangular inequality and so the graph has to be
embedded in a higher-dimensional space to restore it. By allowing an arbitrary number of nodes and shortcuts
between arbitrarily distant areas of the lattice one obtains a general topology and the embedding space dimension
grows accordingly, becoming in general infinite. The interested reader may see Ref. [32] for further discussion on
the topic.
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Ref. [134] and in Chapter 3, by studying the correlation properties of the resulting time series
it is possible to obtain surprisingly informative insights on the structural organization of the
network.

1.6 Protein contact networks

As we will discuss in the following Chapters, the main object of study of this work are Protein
Contact Networks. Protein contact networks are a graph theoretic representation of a protein
3D structure in the folded state. Aminoacids are represented as vertices of an unweighted
graph, and two vertices are connected by a link if the corresponding aminoacids are in spatial
proximity. Two aminoacids are considered close when their distance is between 4 and 8 Å.
The binary adjacency matrix, having as rows and columns the residues ordered according to
their position in the sequence, is the main information that is exploited when following this
approach. Notice that in this unlabeled graph representation the different chemical properties
of amminoacids are deliberately neglected. This representation highlights secondary order
structures (i.e. α-helices and β -sheets) as patterns of the graph’s adjacency matrix, as shown in
Fig. 1.2. PCNs allow for a reliable reconstruction of the global protein structure [166] as well as
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Figure 1.2. Secondary structure elements as motifs of a typical protein contact network represented by
its adjacency matrix. Inset at the top right: α-helix; Inset at the bottom left: antiparallel β -sheet [169].

an efficient description of relevant biological properties of proteins such as allosteric effect and
identification of active sites [51].

1.6.1 The Bartoli model

Generative models of networks are an important aspect of network theory. Indeed, a suitable
network generative model that shows interesting/non-trivial properties has several advantages
in network analysis, notably:

• provides insights on the wiring mechanisms leading to an observed emergent property

• serves as a null model for statistical analysis

• allows the sampling of new graphs

• allows the extrapolation of properties, i.e. sampling of graphs with properties that are
unobserved in experimental data, like greater sizes, higher connectivities, etc.;
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The design of a realistic generative model of protein contact networks is therefore an important
topic for understanding the principles behind proteins structure and it will be thoroughly
discussed in the following Chapters. The starting point we consider for generating a PCN is the
model of Bartoli et al. [20]. In their work, the authors define a growth-based model for graph
generation that consists of three simple rules. Starting from a graph of N vertices (i.e., amino
acids):

1. A backbone is created by connecting adjacent neighbors up to a distance of 2, hence
creating all edges pi, i`1q and pi, i`2q. This corresponds to assigning contacts to the first
two diagonals and, ensuring global connectivity of the network; in our works, however,
we will consider a slight modification of this rule and we will allow only links between
second-neighbors (i.e. vertices with distance 2 on the backbone)

2. Adding long range contacts between amino acids on the chain by selecting a pair pi, jq
with a probability that decreases linearly with distance, i.e. Plinpi, jq91´|i´ j|;

3. Connecting the residuals selected in the previous points and all their first neighbors. This
corresponds to adding contacts for all combinations of pairs ti´1, i, i`1uˆt j´1, j, j`1u,
where i and j are the previously selected vertices. This is motivated by the physical
constraints of the chain, since putting in contact two aminoacids often causes other
neighboring aminoacids on the sequence to come closer.

By iterating the points 2 and 3 of the previous rules, it is possible to generate a random synthetic
PCN with a given connectivity.
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Chapter 2

Heat diffusion on complex networks

In this chapter, we perform an extensive analysis of the mesoscopic organization principles of
complex biological systems by analyzing different complex networks: protein contact networks,
metabolic networks, and genetic networks, together with simulated networks created from
generative models and utilized as reference. All considered networks are characterized in
terms of two separate collections of numerical features. The first one is based on classical
topological descriptors, such as the modularity and statistics of the shortest paths (see Sec. 1.2).
The second one exploits the discrete heat kernel (HK), elaborated using the eigendecomposition
of the normalized graph Laplacian (see Sec. 1.4). With a first preliminary analysis, we show
that the different classes of networks are discriminated by a suitable embedding of these
numeric features. This is reasonably expected, given the substantially different natures of
the analyzed networks, but by no means can be considered as a trivial result. As a matter
of fact, the distinction in terms of metabolic, genetic, and protein contact networks is based
on network functions, and the demonstration of a link between functional and structural
properties of the corresponding graph representation is a prerequisite for the soundness of
the proposed strategy of analysis. An important result is that the two considered network
characterizations resulted to be strongly correlated with each other, denoting an agreement in
the two representations and providing a proof-of-concept of the reliability and interpretability of
the adopted network descriptions. From this first analysis, it also emerged that protein contact
networks display unique properties in terms of heat diffusion on network’s topology, that do
not allow for a straightforward classification in any of the considered models of networks,
highlighting the need of further investigations on the peculiarities of these structures. The
second and more important contribution elaborated in this chapter is the derivation of network-
based heat diffusion properties that seem to agree, on principle, with known chemico-physical
properties of protein molecules. Indeed, a computational analysis performed by exploiting the
HK formalization demonstrates that a (simulated) diffusion process on protein contact networks
proceeds slower than normal diffusion (i.e., we observe subdiffusion). Notably, a two-regime
diffusion emerged from the analysis of the heat trace decay: a fast and a slow regime. The
fast regime is driven by “shortcuts” putting in contact amino acid residues far-away along
the sequence. Subdiffusion in proteins is a well-studied property describing energy flow [100–
102, 149] and vibration dynamics [68, 130, 145, 146, 174], which has been investigated by several
experiments. There is sufficient agreement on the fact that proteins, in their native structure, are
highly modular and fractal networks [7, 17, 48, 52, 58, 104, 127]; yet they are characterized by
suitable short paths connecting distant regions of the molecules responsible for the fast-track
transport of energy and protein allosteric properties [100]. Here we observe also that, at odds
with the other networks, the modularity of protein contact networks increases with the size of
the network, a factor that also contributes to the subdiffusive property of their topology [64].
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2.1 The Considered Networks

In this analysis we considered several sets of networks representing different real-world biolog-
ical systems:

• 100 protein contact networks (PCN) extracted from randomly selected proteins of the
E.Coli proteome. Such proteins have been obtained by integrating the Niwa et al. [135]
E.Coli data with the available information of the respective native structures gathered
from the Protein Data Bank repository [2]. The selected proteins are constituted by a
number of amino acid residues ranging from 300 to 1000 units; for a detailed description
of PCN see Sec. 1.6.

• 43 metabolic networks (MN) describing organisms belonging to all three domains of life.
Vertices of such networks are the substrates and product of the chemical reactions, while
the edges are the reactions catalyzed by the enzymes. As shown in Ref. [90], these large
metabolic networks exhibit a typical scale-free topology. The sizes of the networks ranges
from 300 to 1500 vertices.

• 50 realistic gene regulatory networks (GEN) with a number of vertices varying from 200 to
1100 genes/vertices. The GEN networks are generated with the SysGenSIM software [143],
a MATLAB™toolbox for the simulation of systems genetics datasets. Artificial networks
and data by SysGenSIM have already been officially employed for the verification of
gene network inference algorithms, such as in the DREAM5 Systems Genetics challenge
[1]; they have also been used as benchmarks for the development of state-of-the-art
reverse-engineering algorithms [62, 142]. GEN networks have been generated with the
Exponential Input Power-law Output (EIPO) model, i.e., they are built by (i) sampling the
number of ingoing and outgoing edges for each vertex from, respectively, an exponential
and a power law distribution, and then by (ii) connecting the vertices accordingly. These
artificial EIPO networks exhibit two well-known structural characteristics of real gene
networks: modularity [19], and the vertex in-degree and out-degree distributions fitting,
respectively, an exponential and a power law curve [71]. Besides the adopted EIPO
topology, we considered an average vertex degree varying from 4 to 8: the average degree
has been sampled in such a wide range due to the uncertainty in the size of the interactome
in typical gene regulatory networks. Apparently, the complexity of biological organisms
better correlates with the number of interactions between genes than with the number
of genes. Therefore, the average number of edges in gene regulatory networks varies
according to the complexity of the represented organism [157]; it makes then sense to
study gene regulatory networks with a different number of interactions/edges.

To obtain suitable references with the aim of helping us in discussing the results, we considered
130 additional networks of varying size belonging to well-known classes of graphs. Such
networks play the role of “probes” in the space of topological descriptors. In particular, we
considered 10 Erdős-Rényi (ER) graphs generated with probability p“ logpnq{n; 10 Barabási-
Albert (BA) scale-free networks [18] with a six-edges preferential attachment scheme; and 10
random regular graphs (REG) with degree equal to six. To cover all network sizes, such probe
networks are generated with a number of vertices ranging from 200 to 1100. Finally, we also
generated the synthetic counterpart of the 100 real proteins (denoted as PCN-S in the following,
see Sec. 1.6.1). Such synthetic proteins have been generated by considering the same number
of vertices and edges of the real proteins. The generation mechanism of the topology follows
the three-rule scheme proposed in Ref. [20], to simulate the folded configuration of the protein
backbone by a probability of contact decreasing with the sequence distance. The only exception
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is for the rule involving edges of the backbone structure. In fact, to be consistent with the
architecture of our real proteins (we considered edges among residues within 4–8 Å), in PCN-S
we added edges only among consecutive residues in the sequence having distance 2. It is worth
pointing out that such a generation mechanism gives rise to networks with typical small world
topology [20].

2.2 Characterization of the Graph Topology

In the following, we consider two different characterizations of the considered networks. In the
first characterization we describe each network with a vector whose components are the values
of several topological descriptors (TD), directly elaborated from its topology. We consider the
number of vertices (V) and edges (E) as basic descriptors of the size and connectivity of the
network; the modularity (MOD, as defined in Sec. 1.2.2) for quantifying the presence of a global
community/cluster structure. The numerical value of the modularity is evaluated on the best
partition of nodes obtained with the Louvain algorithm [27]; the average closeness centrality
(ACC, Sec. 1.2.1), average shortest path (ASP, Sec. 1.2.4), average degree centrality (ADC, Sec.
1.2.1), and average clustering coefficient (ACL, Sec. 1.2.3) [40]; the energy (EN) and Laplacian
energy (LEN) of the spectrum (as defined in Ref. [73]), that are related to the spectral properties
of the adjacency and laplacian matrix; two invariant features from the heat kernel, respectively
the heat trace at time t “ 5 (corresponding to a transient regime in the diffusion of heat) and
the first coefficient of the heat content invariants (m“ 1); the graph ambiguity (A, as defined
in [108]), which expresses the degree of irregularity of the topology; finally, the entropy of a
stationary Markovian random walk on the graph topology (H) [47].

The second characterization is composed by three sets of features extracted from the heat
kernel properties (see Sec. 1.4) of the networks: the heat trace (HT), the heat content (HC), and
the heat content invariants (HCI). Notice that HT and HC are time-dependent characteristics,
while HCI is not. Therefore, in this characterization we consider the series HT and HC for the
instants t “ 0,1,2, ...,9 and the series HCI for m“ 0,1,2, ...,9. Given these two characterizations,
we proceed to calculate the 4 embedding vectors for each network, i.e. the topological descrip-
tors vector, the heat trace vector, the heat content vector, and the heat content invariants vector.
For each network, each of these vectors is to be considered in a separate space.

2.3 Results

In the following we present the results of the embedding of each network in each of the
embedding spaces, that is, TD, HT, HC, and HCI. In order to simplify the analysis and highlight
relevant patterns, for each of the 4 spaces we perform a dimensionality reduction by means of a
Principal Component Analysis [91], which allows to choose the directions of maximum variance
for a given dataset of points. In this way, the points representing the networks are projected in
the space spanned by the principal components (PC), that are by construction orthogonal to
each other.

2.3.1 Analysis of Topological Descriptors

Fig. 2.1 shows three different projections and a 3D visualization of the PCA of the topological
descriptors (PCA-TD). The first three PCs are sufficient to explain more than 90% of the variance
(» 91%). As it is possible to observe in Fig. 2.1(a), PC1-PC2 offer a very clear discrimination
among the different classes of networks. The separability persists also when considering
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PC1-PC3, while however we observe that GEN lose compactness and overlap with MN. By
considering PC2-PC3, instead, PCN overlap with REG. However, the overall picture emerging
from PCA-TD clearly points to the possibility of distinguishing the network types .

Let us now interpret such PCs. Tab. 2.1 shows the loadings of the first three factors of
PCA-TD. The first factor (FACTOR-1) is primarily characterized by MOD, ACC, and ASP. As
MOD increases (the community structure becomes more evident) the length of preferential
paths connecting different regions of the network increases as well. Indeed, ACC and ASP
are, respectively, negatively and positively correlated with MOD. It is worth mentioning that
ACC and ASP offer a somewhat opposite view of the same feature, i.e., the efficiency of the
paths in the networks. As the global community structure emerges (captured by MOD), also the
local clustering structure (ACL) increases as well, although ACL is less loaded on FACTOR-1.
In addition it is worth noting the agreement among the random walk entropy (H) and the
modularity: predictability of stationary random walks is affected by the presence of network
modules/communities. FACTOR-2 positively correlates the number of vertices V with LEN,
which clearly points to the correlation among the network size in terms of number of vertices
and the global architecture. The meaning of this factor will appear more clear in Sec. 2.3.4, where
we will discuss the scaling of the number of vertices with MOD and the invariant characteristics
of the HK. Finally, the third factor (FACTOR-3) could be interpreted as the “redundancy” of
the network wiring substrate. In fact, descriptors heavily loaded on FACTOR-3 are those more
directly related to the adjacency matrix–edges. The ambiguity (A) decreases as the number of
edges increases. This means that adding redundancy to the network (i.e., alternative paths)
affects the regularity of the topology. It is immediate to recognize how the different types of
networks are characterized by local linear models in the globally orthogonal PC spaces. These
linear models correspond to different scaling relations with network size – discussed later in
Sec. 2.3.4. A simple look at Fig. 2.1 allows to catch the singular position of PCN on the extreme
right of the most informative PC1-PC2 space, therefore hinting at the peculiar character of PCN
with respect to classical network architectures. Moreover it is worth noting that the synthetic
networks PCN-S are the most similar to PCN, although it is not possible to appreciate any
overlap. This fact suggests that proteins are not just “coiled strings” as hypothesized in Ref.
[20]. In addition to the features coming from the folding of a continuous backbone, PCN have
other peculiar characteristics.

Table 2.1. Loadings of the first three factors of PCA-TD. Relevant correlations are in bold.

DESCRIPTOR FACTOR-1 FACTOR-2 FACTOR-3
V -0.0441 0.9953 0.0513
E -0.2053 0.5095 0.8082

MOD 0.9591 -0.1383 -0.1036
ADC -0.2294 0.0428 0.9375
ACC -0.9918 0.0353 0.0637
ASP 0.9281 -0.0279 0.0315
ACL 0.6716 -0.3588 -0.0010
EN -0.0166 0.6830 0.7268

LEN -0.3944 0.8407 0.1712
HT (t “ 5) 0.6696 0.6486 -0.1007

HCI (m“ 1) 0.4914 -0.6172 0.4639
H 0.6906 -0.2774 0.4918
A -0.3229 0.1878 -0.7584

2.3.2 Analysis of the Heat Kernel

We consider three types of invariant features elaborated from the HK: HT, HC, and HCI. As
mentioned in Sec. 2.2, for the PCA of HT and HC we take into account 10 time instants going
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Figure 2.1. Embedding considering the first three PCs of PCA-TD.

from t “ 0 to t “ 9, while for the PCA of HCI we consider the first ten coefficients qm of the
series of Eq. (1.31). In all cases, the first three PCs are sufficient to explain more than 90% of
the variance of the original data, and so they are retained for the embedding. In Fig. 2.2 it is
shown the PCA of the HT representation (PCA-HT). From PC1-PC2 and PC2-PC3 of PCA-HT it
is possible to observe that PCN are quite clustered and well-separated from the other networks
when considering their HT, while GEN depict an incoherent pattern (this is valid for all three
PCs). In Fig. 2.3, instead, we show the PCA of the HC representation (PCA-HC). We remind
to the reader that HT and HC are correlated, since HC considers the information provided by
both eigenvalues and eigenvectors of the normalized Laplacian, and not just the eigenvalues
as in the HT case. From PCA-HC it is possible to note that all sets of networks denote a clear
distinguishability; considering either PC1-PC2 and PC2-PC3 almost all networks seems to
denote a very peculiar configuration in the PCA space. Finally, in Fig. 2.4 we show the PCA
of the HCI representation (PCA-HCI). From the PCs of PCA-HCI we observe that PCN, REG,
and ER denote a very compact configuration in the PCA-HCI space, while GEN, BA, and MN
present a more sparse distribution. This fact might be interpreted by observing that such two
groups differentiate among networks having a clear scale-free topology (second group) and
those that are not scale-free (first group). Interestingly, PCN-S seem to lie in-between those two
groups.
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Figure 2.2. Embedding of the first three PCs of PCA-HT considering t “ 0,1, ...,9.

2.3.3 Canonical Correlation Analysis of the PCA Representations

In this Section we discuss the canonical correlation analysis (CCA) calculated among the various
PCA spaces presented in the previous sections. The canonical correlation analysis provides a
measure of agreement in description between two spaces, so we exploit this methodology to
assess to what extent the HK spaces described above are a meaningful representation of the
networks’ topology. For the CCA, we always consider the first three PCs of each representation.
In Tab. 2.2 are reported the pairwise correlation values among the most important canonical
variates. There is a strong agreement among all the considered PCA representations. Since part
of the information from the HK is present also in TD and may lead to spurious correlations, we
considered also a PCA representation of TD that does not include such information, in the table
it is indicated as “PCA-TD_NO-HK”. Interestingly, removing the information of the HK from
the TD does not alter the scored correlation, so giving a demonstration of the strong coherence
between TD and HK based representations of the considered networks. This result suggests
the possibility to interpret the three HK based representations as alternative descriptions of the
networks space that are in agreement with the TD representation.

2.3.4 Scaling and Heat Diffusion Analysis

We now proceed to study the networks’ properties in terms of scaling of MOD, HT, HC, and
HCI with respect to the network size. Fig. 2.5 shows the dependence of the modularity with



2.3 Results 25

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-14 -12 -10 -8 -6 -4 -2  0  2  4  6  8

P
C

2

PC1

PCN

MN

GEN

BA

ER

REG

PCN-S

(a) PC1–PC2.

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

-14 -12 -10 -8 -6 -4 -2  0  2  4  6  8

P
C

3

PC1

PCN

MN

GEN

BA

ER

REG

PCN-S

(b) PC1–PC3.

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

P
C

3

PC2

PCN

MN

GEN

BA

ER

REG

PCN-S

(c) PC2–PC3.

-14
-12

-10
-8

-6
-4

-2
 0

 2
 4

 6
 8 -0.8

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6
 0.8

 1

-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

PC3

PCN

MN

GEN

BA

ER

REG

PCN-S

PC1
PC2

PC3

(d) PC1–PC2–PC3.

Figure 2.3. Embedding of the first three PCs of PCA-HC considering t “ 0,1, ...,9.

Table 2.2. Canonical correlation coefficients between the first canonical variates relative to different
principal component spaces.

PCA-HT PCA-HC PCA-HCI
PCA-TD 0.993 0.992 0.961

PCA-TD_NO-HK 0.988 0.986 0.946

the size of the networks, where the linear fitting are introduced to highlight the increasing or
decreasing trend of the depence. As already noted in Tab. 2.1, V and MOD do not appear to be
globally correlated. In fact, PCN and PCN-S are the only architectures that show an increasing
trend, while the others appear to be almost independent. We note an exception for ER that tend
toward a negative correlation, which agrees with the analytical results on the modularity of ER
[72]. It is worth observing more in detail the particular dependence pattern of GEN, which does
not show a clear trend. In Fig. 2.5(b) we show the scaling for GEN by considering the different
average degrees used for the EIPO model, where we can observe that each average degree gives
rise to a definite trend of MOD.

Figs. 2.6, 2.7, and 2.8 show the scaling of all considered HK invariants. Initially we consider
only three relevant time instants for HT, i.e., t “ 1,5,9, which are depicted, respectively, in
Figs. 2.6(a), 2.6(b), and 2.6(c). It is possible to observe that, as expected, at t “ 1 all networks
show a similar increasing linear trend with respect to the network size. As the time increases,
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Figure 2.4. Embedding of the first three PCs of PCA-HCI considering the first ten HCI coefficients.
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Figure 2.5. Dependence of modularity over network size. The linear fittings highlight the trends of the
dependences for each set of network.

instead, PCN show a positive slope at least one order of magnitude greater than the others.
At first, this fact might be attributed solely to the intrinsic high modularity characterizing
the protein structures. To this end, in Fig. 2.6(d) we globally correlated MOD with HT over
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Figure 2.6. Scaling of HT over networks size.

time – the time t here has a fine-grained sampling going from 0.1 to 100 with an increment
step of 0.1. In the same plot, we show also the partial correlation obtained when considering
the number of vertices as the control variable (indicated as “MOD–HT(t) / V” in the figure).
The linear correlation trend shows that initially the two quantities are fairly anti-correlated,
while they soon become very correlated, reaching the maximum correlation (» 0.88) around
the time instant t “ 10. Successively, the correlation decreases with a smooth trend. The partial
correlation demonstrates that the initial negative correlation is due to the effect of the network
size; correlations are positive when the size is removed. This variability in the correlation points
out the fact that the nature of information provided by HT is consistent with the one provided by
MOD, although they are by no means equivalent. The diffusion of heat on the graph is indeed
highly dependent of the modular structure of the network. Intuitively, a modular structure
slows down the diffusion process and this is reflected in the heat trace. Notably, as we show in
the following, the heat trace offers a richer type of information.

2.4 Ensemble Heat Trace

As explained in Sec. 1.4, the heat trace of a graph is a function that describes the diffusion of
heat on the network topology and depends on the distribution of the normalized laplacian
eigenvalues λ̃i. However, such a characterization is cumbersome to handle for a set of n graphs,
since it involves n different functions of time. In order to design a more compact characterization
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that describes the heat diffusion of a whole set of networks, we consider the linear best-fitting
obtained from the HT scaling functions considered in the previous Section. Indeed, as it is
possible to observe in Figs. 2.6(a), 2.6(b), and 2.6(c), at a fixed time t and for a given set of
graphs, the HT as a function of the graph size follows an approximately linear trend. In order
to justify this observation, consider the heat trace of a generic graph G of size N at a fixed time t:

HTGpt;Nq “ 1`
N
ÿ

i“2

expp´λitq. (2.1)

where λi are the eigenvalues of the normalized Laplacian of G. Let us define an ensemble
of graphs C , i.e. a set of graphs that share a common characteristic spectral density. Such
spectra can be synthetically described by considering the spectral density of the ensemble C .
Accordingly, we can consider the eigenvalues as i.i.d. random variables, λ̃i, assuming values
according to the spectral density of the ensemble, except for λ̃1 that assumes deterministically
the value 0. The HT of a generic graph G P C of dimension N can be written as

HTGpt;Nq “ 1`
n
ÿ

i“2

expp´λ̃itq “ 1`
N
ÿ

i“2

expp´λ̃ tq. (2.2)

where last step is carried out by considering that, since the λ̃i are assumed i.i.d., their realizations
can be expressed as N realizations of a single random variable λ̃ . For fixed time t, we can define
the ensemble heat trace, HTC pN; tq, as the mean heat trace over all graphs of the ensemble C with
size N at fixed time t

HTC pN; tq “ xHTGpt;NqyC “ 1`
N
ÿ

i“2

xexpp´λ̃ tqyC “ 1`pN´1qxexpp´λ̃ tqyC , (2.3)

Since the term xexpp´λ̃ tqyC does not depend on the size of the graph N, HTC pN; tq can be
expressed as a linear function of the graph size

HTC pn; tq “ 1´αC ptq`αC ptq ¨n» αC ptq ¨n, (2.4)

where αC ptq “ xexpp´λ̃ tqyC P r0,1s is a time-dependent angular coefficient (slope) that is charac-
teristic for the entire ensemble C . By fitting linearly the HT we therefore implicitly hypothesize
the possibility to consistently describe each class of networks with an ensemble, C , character-
ized by a unique probability density function of the (normalized) Laplacian eigenvalues (see
Ref. [123] for a related theoretical study). This assumption is also justified by the results of
PCA-HT reported in Fig. 2.2, which show good agreement among the networks of the same
class. As a consequence, the linear best-fitting of the HT as a function of the graph size allows us
to consider a statistic over an entire homogeneous class of networks, instead of focusing on each
isolated network dynamics separately. It is straightforward to realize that HTC pN; tq “ N for
t “ 0, i.e., αC p0q “ 1. As t grows αC ptq decreases with a rate that is related to the characteristic
HT decay of the ensemble.

In Fig. 2.7(a) we show the linear best-fitting slopes of HT, αC ptq, as a function of time – note
that t always varies from 0 to 100 with an increment step of 0.1. While one expects to observe
trends consistent with an exponential decay (see definition of HT in Eq. 1.28), it is possible
to recognize a different trend for the PCN ensemble. For the sake of a better visualization, in
Figs. 2.7(b), 2.7(c), and 2.7(d) we report the same plot but isolating, respectively, PCN, MN, and
GEN; other networks are omitted for the sake of brevity. Fig. 2.7(b) depicts what we might
consider a change of functional form for the PCN trend at some point in time (i.e., starting
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around t » 5). This change of regime in the diffusion lasts few time instants, then the trend
switches from exponential to power law like. This is not observed on the other networks that,
instead, remain consistent with an exponential decay. In practice, for rt ą 5, the diffusion in
PCN seems to be consistent with a power law, αC prtq „rt´β , where in our case the characteristic
exponent is β » 1.1. Similar anomalies of functional form have been observed in the (cumulative)
distribution of many experimental time series, especially in those related to financial markets
[98]. This phenomenon might happen when the functional form is consistent with one of the
q-exponentials family, which originated in the field of non-extensive statistical mechanics [161].
In the case of PCN, this behavior is the signature of a crucial physical property of proteins,
i.e., the efficient yet controlled energy flow between different areas of the structure. Energy
flow in proteins mimics the transport in a three-dimensional percolation cluster [100]: energy
flows readily between connected sites of the cluster and only slowly between non connected
sites. This experimentally validated double regime seems to be captured by the HT decay trend
shown in Fig. 2.7(b). This result is elaborated from a minimalistic PCN model, so confirming
the relevance of this graph-based representation in protein science [50].
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Figure 2.7. Scaling of HT linear best fitting slopes over time (time is sampled in 1000 equally-spaced
points between 0 and 100).

Now let us consider the results for the HC (Figs. 2.8(a), 2.8(b), and 2.8(c)). Those three
figures depict the scaling of the HC over the network size, considering the information of the
entire HM. Notably, PCN and PCN-S are the only network types showing a consistent linear
scaling with the size for all time instants. Other networks are not well-described by a linear fit as
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the time increases. Finally, in Fig. 2.8(d) we show the scaling of the first HCI coefficient with the
vertices (please note that for m“ 1, Eq. 1.34 yields negative values). Of notable interest is the fact
that PCN denote a nearly constant trend. This means that, since the HCIs are time-independent
features synthetically describing the HC information, PCN denote a similar characteristic in
this respect, as in fact HC scaling in Fig. 2.8 is consistently preserved over time.

In Fig. 2.9 we offer a visual representation of the heat diffusion pattern over time that is
observable through the entire HM. We considered two exemplar networks of exactly the same
size: the “JW0058” protein and the synthetic counterpart belonging to PCN-S that we denote
here as “JW0058-SYNTH”. As discussed before, PCN are characterized by a highly modular
and fractal structure, while the considered synthetic counterpart exhibits a typical small world
topology. Accordingly, by comparing the diffusion occurring on the two networks over time,
it is possible to recognize significantly different patterns that were not noted in the scalings
of Fig. 2.8. Of course, initially (t “ 1) the heat is mostly concentrated in the vertices, which
results in a very intense trace. As the time increases, the diffusion pattern for the real protein
is more evident and also persistent. This is in agreement with recent laboratory experiments
[100, 101], which demonstrated that diffusion in proteins proceeds slower than normal diffusion.
In graph-theoretical terms, this means that the spectral gap considerably dominates the sum in
Eq. (1.28) as t becomes large. On the other hand, the diffusion for JW0058-SYNTH is in general
faster since in fact the trace vanishes quickly. It is worth noting the difference in intensity that
emerges from the figures. This fact is due to the different architectures characterizing the two
networks: PCN are considerably more modular than PCN-S. We obtained analogue results by
considering the other network types.

2.5 Discussion

In this chapter we have investigated the structure of three types of complex networks: protein
contact networks, metabolic networks, and gene regulatory networks, together with simu-
lated archetypal models acting as probes. We biased the study on protein contact networks,
highlighting their peculiar structure with respect to the other networks. Our analysis focused
on ensemble statistics, that is, we analyzed the features elaborated by considering several
instances of such networks. We considered two main network characterizations: the first one
based on classical topological descriptors, while the second one exploited several invariants
extracted from the discrete heat kernel. We found strong statistical agreement among those
two representations, which allowed for a consistent interpretation of the results in terms of
principal component analysis. Our major result presented in this paper was the demonstration
of a double regime characterizing a (simulated) diffusion process in the considered protein
contact networks. As shown by laboratory experiments, energy flow and vibration dynamics in
proteins exhibit subdiffusive properties, i.e., slower-than-normal diffusion [100]. The notable
difference in the diffusion pattern between real proteins and the herein considered simulated
polymers (whose contact networks have the same local structure of the corresponding real
proteins), points to a peculiar mesoscopic organization of proteins going beyond the pure
backbone folding. The observed correlations between MOD and HT indicates this principle
in the presence of well-characterized domains. The novelty of our results is that we were able
to demonstrate such a well-known property of proteins by exploiting graph-based modeling
and computational tools only. The fact that the observed properties emerged with no explicit
reference to chemico-physical characterization of proteins, relying hence on pure topological
properties only, suggests the existence of general universal mesoscopic principles fulfilling the
hopes expressed by Laughlin et al. [99].
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Figure 2.8. Scaling of HC and HCI over network size.
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(a) HM for JW0058 at t “ 1. (b) HM for JW0058-SYNTH at t “ 1.

(c) HM for JW0058 at t “ 5. (d) HM for JW0058-SYNTH at t “ 5.

(e) HM for JW0058 at t “ 9. (f) HM for JW0058-SYNTH at t “ 9.

(g) HM for JW0058 at t “ 15. (h) HM for JW0058-SYNTH at t “ 15.

Figure 2.9. HM diffusion pattern over time for the real JW0058 protein and its synthetic counterpart.
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Chapter 3

Network as a time series

In this chapter we exploit the Multifractal Detrended Fluctuation Analysis (MFDFA) [23, 94, 136],
a generalization of the Detrended Fluctuation Analysis (DFA) [139], to study time series obtained
from complex networks via stationary unbiased random walks (RW). The time series consist of
the successive measurements of a given observable of the current node the walker is visiting, as
described in Sec. 1.5. Our aim is to discover the existence of long-range correlations in these
generated time series by means of the MFDFA. The MFDFA builds upon a generalization of the
so-called Hurst exponent as a detector of long-range correlations [21, 153]. At the basis of Hurst
exponent is the idea of characterizing time series in terms of their degree of persistence: roughly
speaking, a series is long-range correlated (persistent) if the underlying process has memory
of the past states, a property that is firstly noticeable as a heavy-tail in the corresponding
autocorrelation function. Brownian motion corresponds to Hurst exponent equal to 0.5 and it
is considered as the baseline uncorrelated process. Series with Hurst exponent greater than
0.5 are considered as persistent; series with Hurst exponent smaller than 0.5 are anti-persistent
(consecutive values tend to be very different). Additionally, if the value of this exponent does
not vary significantly with the magnitude of fluctuations, then the time series is considered
monofractal and it can be consistently analysed via DFA; in the opposite case, it is multifractal
and the MFDFA is a more suitable choice. If the studied time series corresponds to a sequence
of discrete observables attached to the vertices of a network and the ordering is determined
by the subsequent encounters of a random walker exploring the graph, then its persistence /
antipersistence property can be translated into the assortative / disassortative character of the
graph with respect to said observables. An assortative graph [131] is a graph in which vertices
with similar properties (typically the degree is used, but in theory any property of the vertex
can be taken into account) tend to be in contact more frequently than what expected by chance,
while a disassortative graph has the opposite feature. Studying a complex network by the action
of a random walker producing a collection of time series of encounters with vertices has an
advantage with respect to the simple computation of the static assortative indexes of the graph.
Indeed, the walker trajectories offer also a sampling of the paths distribution in the graph.
This distribution is affected by the whole set of mutual relations of vertices at different scales,
which are not fully appreciable by a single static snapshot of the network by means of classical
network invariants. In the same manner, we are able to gain an insight on the different scaling
of the autocorrelation function and hence on the distribution of the corresponding observable
across different locations and scales of the network.

In this study, we primarily focus on the protein contact networks (PCN) elaborated from the
E. coli [103]. We compare the properties of PCN with those of different known network and
time series models. In particular, we bias the study on their analogies and differences with their
synthetic counterpart PCN-S, introduced Sec. 1.6.1; PCN-S consist in coiled cords of polymers
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in which the probability of contact is a decreasing function of the distance between residues
along the chain.

3.1 Multi-Fractal Detrended Fluctuation Analysis

It is known that many processes in Nature and society present long-term memory, manifested
in primis as heavy tails in the autocorrelation function of the considered observables. This
phenomenon, referred to as the persistence of a process, can be characterized by the value of
the Hurst exponent H, introduced in 1951 by the British hydrologist Harold Edwin Hurst [81].
The exponent normally assumes values in the range r0,1s and is traditionally calculated with
the R/S analysis, as shown in [153]. When the process corresponds to uncorrelated noise (e.g.
Brownian motion) then the value of H is 0.5, whereas if the process is persistent (correlated) or
antipersistent (anticorrelated) it will be respectively greater than and less than 0.5. However,
conventional methods employed to analyze the long-range correlation properties of a time
series (e.g., spectral analysis, Hurst analysis [21, 153]) reveal to be misleading when said time
series is non-stationary. In fact, in many cases it is important to distinguish fluctuations caused
by trending behaviors of data at all time scales – which in this context can be regarded as
noise – from the intrinsic fluctuations characterizing the dynamical process generating the time
series. One of the methods usually employed for this purpose is the Detrended Fluctuation
Analysis (DFA), which has shown to be successful in a broad range of situations [139]. The DFA
has been generalized in the so-called Multifractal Detrended Fluctuation Analysis (MFDFA)
[23, 35, 94, 136], which accounts for multifractal scaling, that is, different correlation behaviors
on different portions of data, which are thus identified by different sets of scaling exponents.
Among the many applications of MFDFA, it is possible to cite the analysis of human EEG [179],
solar magnetograms [113], human behavioral response [83], hippocampus signals [60], seismic
series [158, 159], medical imaging [111], financial markets [22, 151], and written texts [10].

The MFDFA procedure is described thoroughly in [94] and it is reported briefly in the
following. The method can be summarized in five steps, three of which are identical to the DFA
version. Given a time series xk of length N with compact support, the MFDFA steps are:

• Step 1 : Compute Y piq as the cumulative sum (profile) of the series xk:

Y piq ”
i
ÿ

k“1

rxk´xxys , i“ 1, . . . ,N. (3.1)

• Step 2 : Divide Y piq in Ns ” intpN{sq non-overlapping segments of equal length s. Since the
series length N may not be a multiple of s, the last segment is likely to be shorter, so this
operation is repeated in reverse order by starting from the opposite end of the series, thus
obtaining a total of 2Ns segments.

• Step 3 : Execute the local detrending operation by a suitable polynomial fitting on each of
the 2Ns segments. Then determine the variance,

F2pν ,sq ”
1
s

s
ÿ

i“1

"

Y rpν´1qs` is´ yνpiq
*2

, (3.2)

for each segment ν “ 1, . . . ,Ns and

F2pν ,sq ”
s
ÿ

i“1

"

Y rN´pν´Nsqs` is´ yνpiq
*2

(3.3)
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for ν “ Ns`1, . . . ,2Ns, where yνpiq is the fitted polynomial in segment ν . The order m of
the fitting polynomial, yνpiq, determines the capability of the (MF-)DFA in eliminating
trends in the series, thus it has to be tuned according to the expected maximum trending
order of the time series.

• Step 4 : Compute the qth-order average of the variance over all segments,

Fqpsq ”
"

1
2Ns

2Ns
ÿ

ν“1

“

F2pν ,sq
‰q{2

*1{q

, (3.4)

with q PR. The q-dependence of the fluctuations function Fqpsq highlights the contribution
of fluctuations at different orders of magnitude. For q ą 0 only the larger fluctuations
contribute mostly to the average in Eq. 3.4; conversely, for q ă 0 the magnitude of the
smaller fluctuations is enhanced. For q“ 2 the standard DFA procedure is obtained. The
case q“ 0 cannot be computed with the averaging form in Eq. 3.4 and so a logarithmic
form has to be employed,

F0psq “ exp
"

1
2Ns

2Ns
ÿ

ν“1

ln
“

F2pν ,sq
‰

*

. (3.5)

Steps 2 to 4 are repeated for different time scales s, where all values of s have to be chosen
such that sě m`2 to allow for a meaningful fitting of data. It is also convenient to avoid
scales są N{4 because of the statistical unreliability of such small numbers Ns of segments
considered.

• Step 5 : Determine the scaling behavior of the fluctuation functions by analyzing log-log
plots of Fqpsq versus s for each value of q. If the series xi is long-range power-law correlated,
Fqpsq is approximated (for large values of s) by the form

Fqpsq „ shpqq. (3.6)

The exponent hpqq is the generalized Hurst exponent; for q“ 2 and stationary time series, hpqq
reduces to the standard Hurst exponent, H. When the time series manifests a uniform scaling
over all magnitudes of fluctuations - i.e. hpqq is independent of q - the series is said monofractal.
Conversely, when different scaling behaviors are observed depending on q and hpqq actively
depends on q, the series is referred to as multifractal.

Starting from Eq. 3.4 and using Eq. 3.6, it is straightforward to obtain

N{s
ÿ

ν“1

rFpν ,sqsq „ sqhpqq´1, (3.7)

where, for simplicity, it has been assumed that the length N of the series is a multiple of the
scale s, such that Ns “ N{s. The exponent

τpqq “ qhpqq´1 (3.8)

corresponds to the multifractal generalization of the fractal mass exponent. In case of positive
stationary and normalized time series, τpqq corresponds to the scaling exponent of the q-order
partition function Zqpsq. Another function that characterizes the multifractality of a series is the
singularity spectrum, Dpαq, which is obtained via the Legendre transform of τpqq,

Dpαq “ qα´ τpqq, (3.9)
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where α is equal to the derivative τ 1pqq and corresponds to the Hölder exponent (also called
singularity exponent). Using Eq. 3.8 it is possible to directly relate α and Dpαq to hpqq, obtaining:

α “ hpqq`qh1pqq and Dpαq “ qrα´hpqqs`1. (3.10)

The multifractal spectrum in Eq. 3.9 allows to infer important information regarding the
“degree of multifractality” and the specific sensitivity of the time series to fluctuations of different
magnitudes. In fact, the width of the support of Dp¨q is an important quantitative indicator
of the multifractal character of the series (the larger, the more multifractal a series is). Also
the codomain of Dp¨q encodes useful information, since it corresponds to the dimension of the
subset of the times series domain which is characterized by the singularity exponent α .

3.2 The Considered Data

In this work we consider 400 E. coli protein contact networks (PCN) as the main object of study
and we compare them to several models. To this end, we generated 400 synthetic polymers
(PCN-S) by employing the generation method presented by Bartoli et al. [20], and by setting
appropriate parameters in order to resemble the basic properties of each of the above PCN
(i.e., the graph size). More precisely, each E. coli protein JWxxxx is juxtaposed with its synthetic
counterpart, JWxxxx _ SYNTH, having equal number of vertices and edges – the four-digit number
xxxx stands for its unique identifier. In addition, we consider 10 Erdős-Rényi networks (ER) and
10 scale-free networks generated using the Barabási-Albert (BA) model, varying the number
of vertices between 300 and 1200. The former are generated setting p“ logpNq{N, where N is
the network size, while for the latter we used a six-degree attachment scheme. To allow the
processing of such networks via the MFDFA procedure, we generate time series by means of
stationary unbiased RWs, where at each step an observable is measured from the current vertex.
Considering the size of the networks at hand, the RW length has been fixed at 105 time instants;
this length assures the coverage of all vertices for a statistically significant number of times
and it is consistent with the recommendations in Ref. [134]. We associate to each network
three time series generated within the same RW. The first series considers vertex degree (VD)
as observable; the second one the vertex clustering coefficient (VCL); the third one the vertex
closeness centrality (VCL). Those three observables account for, respectively, the short, medium,
and long range information of the network from the point of view of a vertex.

The dataset is also composed by six classes of time series that act as probes, which are
obtained directly from their generative models. The herein considered time series are obtained
from three fractional Brownian motion (FBM) processes with increasing Hurst coefficients,
and three multifractal binomial cascades (BC), characterized by increasing MFS widths. FBMs
have coefficients H “ 0.25,0.5,0.75 and represent the poles of monofractality with increasing
persistence. For each fixed value of H, we generated ten different time series (for a total of
30 FBMs) to account for the statistical variability. On the other hand, BCs are deterministic
multiplicative processes, which are generated with the partition coefficient a“ 0.6,0.7,0.8. These
series are inherently multifractal, although they possess different persistence levels. Notice that
in this case there is no point in generating more than one instance of the BC processes for each
value of a, since the process is deterministic; so only three BC time series are generated.

3.3 Analysis of persistence properties

The first property that we analyze is the Hurst coefficient that, as described above, quantifies
the persistence of the time series. In Figs. 3.1(a), 3.1(b), and 3.1(c) are shown the values of H
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measured on each time series of the PCN, PCN-S, BA, and ER, for each of the three observables
VD, VCL, and VCC, respectively, along with the Hurst exponents proper of the three classes of
FBMs. Notice that, since FBM time series are not obtained as different observables yielded by a
RW on a network, their Hurst exponents have been just replicated across the three figures.
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Figure 3.1. Persistence of the series measured through the Hurst exponent for VD (a), VCL (b), and
VCC (c). The PCN (red bands) show significant persistence for all the three observables. (d)
Sample autocorrelation function for the protein JW0058 and the corresponding synthetic polymer
JW0058_SYNTH. (e) and (f) Sample time series. The higher persistence of the natural protein with
respect to the synthetic analogue is particularly evident in the VCC series.

As expected, BA and ER networks produce RWs consistent with an uncorrelated Brownian
motion (i.e., H “ 0.5), since basically they are the result of an uncorrelated degree distribution.
Interestingly, from the persistence levels shown in Fig. 3.1, it is possible to observe that PCN
(red bands) induce time series with strong persistence, regardless of the particular observable.
It is also evident from Fig. 3.1 that also synthetic polymers (green bands), similarly to the PCN,
show positively correlated behaviours, even if they do not seem to capture this characteristic
persistence to a sufficient degree. It is also important to mention that, when plotting the
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Hurst exponents of PCN-S as a function of Hurst exponents of their corresponding PCN (data
not shown for brevity), no trending has been observed. Indeed, these two quantities are not
proportional and thus PCN-S instances cannot be considered just as less-persistent versions
of their corresponding PCN. These results can be exploited to gain a more insightful view
on the intrinsic characteristics of the PCN class, by relating the properties of the RWs to the
topological properties of the corresponding graphs. In particular, the time series of VD show
positive correlations, which in turn imply degree assortativity. This result is in agreement with
the claims of Böde et al. [29], although we reached the same result by exploiting a different
technique, since usually the degree assortativity is investigated through the method proposed
by Newman [131]. It is worth pointing out that, since PCN are known to be fractal networks
(embedded into a three-dimensional space) [68, 104], the observed degree assortativity is not
in agreement with the theoretical hypothesis of Song et al. [156], which requires the degree
distribution of fractal networks to be disassortative.

The high persistence of the clustering coefficient observed in the PCN is slightly more
tricky to interpret in terms of topological properties. Roughly speaking, the VCL of a vertex
is proportional to the local connectivity of the subgraph formed by the vertex and its closest
neighbors with respect to the whole graph. It is known that PCN show a high degree of
global modularity (see [50, 105]). Therefore, the persistence of the clustering coefficient can be
interpreted as the tendency of vertices in the same module to be connected rather uniformly
with the presence of medium-to-small hubs. As a confirmation of this fact, PCN do not have
large hubs [29, 50]. Another way to explain this property is to directly relate VCL to the
persistence of VD time series. To this end, Fig. 3.2(a) shows the relation of the degree-dependent
average VCL over the possible VD. Here we considered the whole PCN and PCN-S ensembles.
The error bars (which are usually smaller than the marker) represent the standard deviation
over the entire ensemble. As it is possible to observe, while the two trends are substantially
different, the standard deviation is very small in both cases for most values of the degree. This
fact, along with the aforementioned degree assortativity, suggests a possible explanation for
the persistence displayed by the VCL series of both PCN and PCN-S. It is worth noting that,
for PCN, the clustering coefficient remains high when increasing the degree, which can be
interpreted as a sign of high global modularity.
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Figure 3.2. Ensemble average VCL (a) and VCC (b) as a function of the degree for all proteins (red points)
and synthetic counterpart (green points). Relation with respect to the degree shows significant
difference among the real proteins and the synthetic polymers.

While VD and VCL show similar characteristics, the behaviour of the VCC observable is
considerably different. By looking at the plot in Fig. 3.1(c), it is possible to observe that the Hurst
coefficients of PCN are comparable and occasionally greater than one – i.e., the corresponding
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time series are non-stationary. This might be considered as a symptom of different distributions
of typical paths within the PCN. This conjecture would be in line with the observation of Yan
et al. [173], where it is hypothesized that there are two characteristic distributions of paths
within PCN, intra-module and inter-module paths, which is also a consequence of the PCN’s
high degree of modularity mentioned before. On the other hand, PCN-S do not share this
feature, confirming an intrinsically different configuration of the network topology at a global
scale. As for the VCL observable, the VCC persistence can be related to the VD persistence by
inspecting Fig. 3.2(b). By comparing the two trends, it can also be observed that the PCN-S have
a broader distribution over the possible degree values, as a consequence of being small-world
networks [20], while PCN are neither small-world nor scale-free [50, 105]. In Fig. 3.1(d) it is
shown the autocorrelation function of the three time series for one randomly chosen protein and
its synthetic counterpart. First, it is worth noting that long-range correlations appear here in the
form of heavy tails. Additionally, the VCC autocorrelation function denotes a much heavier tail
with respect to the other observables, which is justified by the higher persistence (see Fig. 3.1(c)).
To conclude, in Fig. 3.1(e) and 3.1(f) are shown two excerpts of the time series generated by the
same protein and its synthetic model for each observable. By visually comparing the two plots,
in particular for the observables VCL and VCC, it is possible to notice that the two networks
generate RWs that are significantly different; the higher persistency of the PCN observables is
also visually recognizable.

From these results it is clear that the PCN-S network models present significant discrepancies
from their real counterparts, while still being distinguishable from other network models. These
differences will be further analyzed in the following subsections.

3.3.1 Analysis of multifractal properties

After having calculated the persistence properties of the considered time series, we can now
proceed to evaluate their degree of multifractality. For each of the time series presented in Sec.
3.2, we perform the MFDFA procedure exposed in Sec. 3.1 by executing the Matlabr routine
MFDFA1(), written by Ihlen and described in detail in Ref. [82]. The input of the routine is
the time series to analyze, a vector of the considered time scales (corresponding to the set of
increasing length scales s described in Sec. 3.2), the range of q-orders to be considered for the
analysis, and finally the polynomial order, m, for the detrending. For the analysis of all time
series, we used the following setting:

• the time scales s P t16,32,64,128,256,512,1024u;

• the orders q P t´5,´4.8,´4.6, . . . ,`4.8,`5u for a total of 51 values;

• the detrending order m“ 2.

The output produced by the routine, for all values of q, is the collection of (generalized)
Hurst coefficients Hpqq, mass exponents τpqq, singularity exponents αpqq, dimension coefficients
Dpαpqqq, and scaling function Fpqq. Please note that since Dpαpqqq is returned by the procedure
directly as a function of q, in the following we will denote Dpαpqqq as Dpqq. The width of the
MFS is the extent of the Dp¨q support, which characterizes the degree of multifractality of a series.
Clearly, all these quantities are not independent with each other and thus, in order to reduce
redundancies, we only considered the subset consisting of αpqq and Dpqq in the embedding
discussed later in Sec. 2.2. In fact, as said before, the MFS, Dp¨q, encodes all information
regarding the multifractality of the time series. Notice that all the networks are described
simultaneously by three time series, corresponding to the three observables VD, VCL, and VCC,
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while the probe time series are expressed by the same realization of the process for all the three
observables.

To gain a first insight on the multifractality of the considered time series, it is useful to relate
this property to the persistence levels calculated in Sec. 3.3. In particular, we perform this
analysis for the PCN and the PCN-S since they exhibit the highest values of H; we consider here
also the six probes, i.e., the three FBMs and three deterministic BC. Fig. 3.3(a), 3.3(b), and 3.3(c)
show the plots of H versus the width of the MFS, respectively for the observables VD, VCL, and
VCC.
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Figure 3.3. Hurst exponent vs MFS width of PCN and PCN-S. Both PCN and PCN-S show characteristics
in-between mono and multi- fractal signals. Notice that the plot scale is log-lin for sake of clarity.

By comparing in Fig. 3.3 the relative distances between the PCN points and the probes, it is
possible to observe that most PCN exhibit MFS widths that could be considered in-between
those of mono and multi-fractal signals. Some proteins also show extremely wide MFS, while
keeping the Hurst coefficient unaltered. Interestingly, PCN-S, while being less persistent, have
a similar distribution of MFS widths. As observed for the persistence analysis, the VD and VCL
observables behave very similarly also in terms of multifractality, while the VCC data points are
more clustered and present slightly narrower spectra. Once again, this can be attributed to the
substantial difference between the types of observables. Indeed, VD and VCL are short/medium
range observables, so they can be influenced by the vertex position within the network at many
distance scales. Instead, the VCC is mainly influenced by large scales (being a global topological
descriptor), hence explaining why it shows less multifractal behaviour.

The variety of MFS herein observed justifies the experiments performed in the next section,
which are focused on the analysis of the MFS projected in a suitable PCA space.
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3.3.2 Embedding of the multifractal spectra

As mentioned above, the MFS elaborated from the time series constitutes the principal hallmark
of all multifractal features. However, as first observed in Sec. 3.3.1, the spectra widths vary
significantly even between members of the same class. Hence, there is no element that can be
accounted for a meaningful representative of the whole class of proteins. For this reason, we
embed all considered MFS coefficients, i.e., Dpqq and αpqq, in a suitable low-dimensional vector
space derived by means of a PCA. With the embedding into a PCA space, we are enabled to
study the ensemble properties of each class without focusing on single elements alone, hence
gaining an insight on the features that mostly characterize the particular typology of networks.
In such embedding, each time series is initially represented by a vector v P Rn. Here, n“ 300 is
the total number of coefficients retrieved by the MFDFA that we consider, which is composed by
50 values of Dpqq plus 50 values of αpqq, for each of the three observables. A given network G,
associated with time series xVD

G ptq, xVCL
G ptq, and xVCC

G ptq, is thus represented by a vector~vG PR300

with the form

~vG “

”

DVDp´5q, . . . ,DVDp`5q, αVDp´5q, . . . ,αVDp`5q,

ë DVCLp´5q, . . . ,DVCLp`5q, αVCLp´5q, . . . ,αVCLp`5q,

ë DVCCp´5q, . . . ,DVCCp`5q, αVCCp´5q, . . . ,αVCCp`5q
ıJ

,

(3.11)

where DOpqq and αOpqq, with O P tVD, VCL, VCCu, are respectively the dimension coefficient
and the singularity coefficient associated to the time series xO

G ptq as a function of the order
parameter q. We stress that in our analysis q assumes 51 equally-spaced values between -5 and
5, with a step size of 0.2; however, we do not consider the q“ 0 case since it yields trivial values
for the MFS.

On the other hand, the probe time series (FBM and BC) are not derived from a network.
To be consistent with the aforementioned vector representation, their MFDFA coefficients are
simply replicated 3 times, giving a vector of the form:

~vprobe “

”

Dp´5q, . . . ,Dp`5q, αp´5q, . . . ,αp`5q,

ë Dp´5q, . . . ,Dp`5q, αp´5q, . . . ,αp`5q,

ë Dp´5q, . . . ,Dp`5q, αp´5q, . . . ,αp`5q
ıJ

.

(3.12)

The 300-dimensional vector space described above is obviously unmanageable from the
point of view of interpretation and, of course, visualization. For this reason, we perform a PCA
to obtain a more synthetic description of the data. The PCA does not only allow to reduce the
dimensionality of the data, but it also allows to give a reasonable and more direct interpretation
of the new reference framework, i.e., the PCs. This is the main reason why we opted for PCA
instead of a more sophisticated, non-linear, dimensionality reduction technique. Notice also
that the process has been operated on the standardized data (z-scores), which corresponds to
the correlation-based PCA, instead of the covariance-based version.

As shown in Tab. 3.1, the first four PCs explain more than the 83% of the entire variance.
For this reason, we will move our analysis to the considerably simpler four-dimensional space
spanned by the first four PCs, which are shown in the plots of Fig. 3.4; we consider the two-
dimensional subspaces derived by PC1–PC2 (3.4(a)) and P3–PC4 (3.4(b)), respectively.

To understand the meaning of the PCs just retrieved, we analyze their loadings. In Fig. 3.5
are shown the correlations of each original variable with the first four PCs, where the original
variables are ordered as described in Eqs. 3.11 and 3.12. As it is possible to note in Tab. 3.1,
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Table 3.1. Explained variance of the first five PCs.

PC1 PC2 PC3 PC4 PC5
Explained Variance(%) 31.12 29.46 16.58 6.71 4.94
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Figure 3.4. PCA of the MFS extracted from all considered time sseries.

the first two principal components, PC1 and PC2, are nearly equivalent in terms of explained
variance and they are correlated, respectively, to the singularity exponent αpqq and spectrum
Dpqq. In particular, they are both strictly related to the large fluctuations (positive q orders) of
the observables VD and VCL, and to almost all fluctuation orders of VCC – see Fig. 3.5(a). Once
again, there is a clear separation between the characteristics of short and medium range ob-
servables, VD and VCL, and the long-range observable VCC. In fact, the discriminating power
of VD and VCL is limited to the structure of their larger fluctuations, which is due to their
local nature (we stress that local here refers to the neighborhood extent of the corresponding
vertex). Arguably, the related small fluctuations behave just as a “background noise”, providing
little information on the relevant global properties of the networks. On the other hand, the
organization of large fluctuations of VD and VCL in a RW indicates the occurrence and distri-
bution of significant events, i.e., those related to the global topology of the network, like for
example jumps between modules or areas with different local topology, hub encounters, etc. By
following this interpretation, large fluctuations provide information that appears to play an
important role in the discrimination of the network’s class. The VCC, instead, is fundamentally
different. In this case, as mentioned at the end of Sec. 3.3.1, the observable is much more
sensitive since it is affected by the network topology at the largest distance scales. Hence, its
variations are globally discriminating at all fluctuation orders.

The loadings of the third and fourth PC shown in Fig. 3.5(b) are easier to interpret. In fact,
the first thing that is worth noting is the complete absence of influence of the VCC observable –
since it is almost completely loaded in the first two PCs. This first observation reconfirms that
all fluctuation orders of VCC provide important information in terms of variance. Interestingly,
PC3 and PC4 are suitably allocated on the VCL and VD observables. At odds with what we
have observed in Fig. 3.5(a), PC3 and PC4 are characteristic of the small fluctuations only (of
both Dpqq and αpqq). However, PC3 seems to be heavily influenced by the probe networks
variance; Fig. 3.4(b) offers a visual understanding of this claim. Therefore, its contribution in
the discrimination among the different network topologies is questionable, while PC4 provides
a small but yet perceptible contribution in terms of variance.
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Figure 3.5. PC loadings. The three observables forming the overall MFS are differentiated by using
diverse shaded colors.

3.4 Discussion

In this chapter, we have exploited the possibility to characterize protein contact networks by
means of a multifractal analysis of suitable time series. Such time series have been generated by
performing stationary, unbiased, random walks on the graph structures, recording at each vertex
three different quantities: the degree, clustering coefficient, and closeness centrality of the vertex.
Those three observables capture, respectively, short, medium, and long range peculiarities of the
considered networks. Our analysis of the considered protein contact networks was compared
with several probe data. Notably, we used a receipt to generate synthetic polymers designed to
mimic random coiled cords, two well-known classes of random networks, and two models of
time series embodying the archetypical monofractal and multifractal signals.

The presented study provided a number of results. First, persistence analysis of the time
series showed that proteins, regardless of the considered vertex observable, generate strongly
persistent signals. When considering the degree as the observable, this can be translated into
assortativity of the degree distribution. This first result is confirmed by the recent literature,
although, to our knowledge, we are the first to asses such a property by means of time series
analysis. We also pointed out that this result is in contrast with the recent hypothesis requiring
disassortativity in fractal networks [65, 156, 177]. We also found that the assortativity of other
observables can be linked to the assortativity of the vertex degree, since the degree basically
controls the behaviour of the RW and thus influences to some extent all other measurements.
Then we moved to a first analysis inspecting the multifractal footprint proper of the considered
time series. Results showed that time series associated to protein contact networks – again
regardless of the observable – should be considered as signals in-between the typical mono and
multi- fractal behavior. We further elaborated over those results by performing the interpretation
of the entire multifractal spectrum via the embedding into a suitable vector space. Such a
vector space has been derived by first associating each time series to a high-dimensional vector
containing suitable samplings of the domain and codomain of the multifractal spectrum derived
by the multifractal dentrended fluctuation analysis. Successively, we performed a principal
component analysis, resulting in a four-dimensional vector space explaining large part of the
original data variance. The principal component analysis allowed us to perform a detailed
interpretation regarding the importance of different fluctuation orders by analysing their
loadings on the principal components. Results showed that large (in magnitude) fluctuations
of all observables are more important in terms of discrimination (variance) of the considered
networks/time series. Along with these, small fluctuations of the closeness centrality observable
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were also recognized to be discriminating, fact that has been attributed to their long-range
(global) nature. Small fluctuations of the degree and clustering coefficient, instead, are less
informative, since they are more easily associated with background noise.

We conclude by arguing that this methodology for analyzing complex networks could be
used also in different settings. Indeed, the techniques employed in this work never assume
the knowledge of the global topology of the graph. In particular, this study might be of
interest when the topology of the network under analysis is not directly observable, but can be
gradually “explored” with suitable time-dependent measurements of the vertices. Moreover,
the comparison of the proteins considered in this work with the corresponding synthetic
versions highlighted important differences, which in turn strengthen the need to develop a
more suitable generative model for protein contact networks. The problem of designing an
improved generative model is discussed in the following Chapters.
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Chapter 4

Detrending of time series with Echo
State Networks

In the previous Chapter we discussed a methodology to indirectly gain insights on the topology
of a network by studying the correlation properties of a random walk on its edges. To this
aim, we employed the Multifractal Detrended Fluctuation Analysis, a procedure explained in
Sec. 3.1 that measures the multifractal scaling properties of the fluctuations of a time series. In
order to extract such quantities, the MFDFA performs a preprocessing step called detrending.
Detrending is a fundamental step of the procedure since it allows to filter any nonstationary
behavior in the time series, which would cause the appearance of spurious correlations in the
results. The particular criterion chosen for the detrending is to divide the series in separate
windows of a given size and fit a polynomial of a certain order in each window. The residuals
are then considered as the detrended time series. However, trends are often present in the form
of periodicities (also referred to as seasonalities) and/or fast-varying functions. These trends
are not always correctly removed by the MFDFA procedure and this results in the detection
of spurious correlation properties. For this reason, additional detrending methods are often
used as a preprocessing step of the MFDFA in order to filter these trends before the polynomial
detrending takes place. In other research works, the local detrending step of DFA is modified
or replaced with other ad-hoc methods [79, 109, 144]. The main problem with detrending
lies in the difficulty of defining what exactly a trend is [171]. Local-fit based methods rely
on the assumption that a trend is generally a slow-varying process, while the superimposed
noise is a process characterized by higher frequencies. While this is often the case, it is still
difficult to determine the right form and parameters of the fitting function without biasing
the analysis. Moreover, window-based fitting algorithms are heavily influenced by the choice
of the window sizes. In [171] a trend is defined as an intrinsically fitted monotonic function
or a function in which there can be at most one extremum within a given data span. This
method is not affected by border effects since it is not window-based. However, a problem with
this definition is that it does not (fully) describe periodic trends in a consistent way. Chianca
et al. [36] suggested to perform a detrending by applying a simple low-pass filter, in order to
eliminate slow periodic trends from data. While this approach is suitable for systems with
slow-varying trends, it is difficult to apply to more general cases, when the trends’ frequencies
span over a significant portion of the (power) spectrum. Another approach that has been
demonstrated to be useful in the case of periodicities was proposed by Nagarajan [129]. As a
first step, the signal is represented as a matrix, whose dimension has to be much larger than
the number of frequency components of the periodic (or quasi-periodic) trends as shown by
the power spectrum. The well-known singular value decomposition method is then applied to
remove components related to large-magnitude eigenvalues, which correspond to the trend.
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Such a method, although interesting and mathematically well-founded, is very demanding in
terms of computations and also assumes a deterministic form for trends.

In this Chapter, we follow an approach similar to Wu et al. [171] and define a trend in
a completely data-driven way. We consider the analyzed time series as a series of noisy
measurements of an unknown dynamical process. We also assume that the dynamical process
is predictable to a certain degree by means of a particular type of Recurrent Neural Network
(RNN) called Echo State Network (ESN) [25, 112]. RNNs have been shown to be able to predict
the outcome of a number of dynamical processes [43]. In particular, a fundamental theorem
formulated within the Neural Filtering framework, relates the number of neurons in a RNN
hidden layer with the expected approximation accuracy of the estimated signal with respect to
the true signal [110] of the process. Specifically, given a sufficiently large amount of processing
units, a RNN that takes as input the measurement process can output an estimation that can be
made as close as desired to the signal process, given its past input sequences. However, not
all processes are predictable at the same level, as formally studied in [24, 41], for instance. For
example, chaotic processes are not predictable for long time-steps, while other deterministic
systems, like a sinusoidal waveform, can be easily predicted. In a stochastic setting, instead,
we note that white noise cannot be predicted at all, since the past observations do not convey
any information about the future. On the other hand correlated noise signals, such as fractional
Gaussian noise (fGn), are in theory partially predictable given the presence of memory in the
process. To handle prediction problems of increasing difficulty, models characterized by a
higher complexity or a larger amount of training data are required. In the case of ESNs, the
complexity of the model is mainly determined by the properties and the size of its recurrent
hidden layer. Here we propose to perform a data-driven detrending of nonstationary, fractal and
multifractal time series by using ESNs acting as a filter. In this study, trends are the only form of
nonstationarities that we consider. By means of ESNs, we predict the trend of a given input time
series, which is always superimposed to the (multi)fractal component of interest. Such a trend
is then removed from the original time series and the residual signal is analyzed with MFDFA
in order to evaluate its scaling and (multi)fractal properties. The proposed methodology is
tested on several synthetic and real-world time series in order to assess its performance.

4.1 Detrending using ESNs

We now describe the main assumptions of our model and the detrending procedure to be used
on a given univariate time series yptq. We consider yptq as being composed of two superimposed
components of different degrees of predictability:

• a trend process xptq, which corresponds to the main stochastic process. This process
represents the intrinsic dynamical evolution of the studied system and is predictable with
high accuracy by an ESN;

• a noise process nptq, which is less predictable by an ESN, hence requiring a more complex
model to be described.

Under the assumption of statistical independence between xptq and nptq, yptq can be separated
in the sum

yptq “ xptq`nptq, t P N. (4.1)

The trend xptq is a nonstationary stochastic process of larger magnitude with respect to nptq,
even if there are no hard constraints on their relative scales. The noise process, instead is a
zero-mean, self-similar and stationary stochastic process which can in general be correlated, and
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thus is characterized by a Hurst coefficient and a multifractal spectrum. Prototypical examples
of such a process are fractional Gaussian noise and (fractional) Lévy stable processes [66, 148].

We are interested in removing the trend process from data and in obtaining the noise
component nptq in order to be able to study its fractal properties. One way to approach this
problem is to apply a filter to the measurement process and, in contrast with the common
use of filters, only keep the noise part by subtracting the filtered signal from the original time
series. A discrete-time optimal filter is a system that takes as input a measurement process yptq
and outputs an estimate, x̄ptq, of xptq at each time step t, such that a given error criterion (e.g.,
mean square error) is optimized. The simplest kind of filters are linear filters, which are widely
employed in virtue of their efficiency and analytic tractability. However, in many situations not
only the assumption of linearity is violated, but also an explicit analytical model of the signal is
not available a priori. In these situations, it can be convenient to employ data-driven models
that do not make strong assumptions on the data being processed and are capable to describe a
wide range of processes.

In this work we employ an Echo State Network (see Appendix A) as a nonlinear filter in
order to learn an approximation x̄ptq of the trend process xptq, by training the system only with
the measurement process yptq. Since we are dealing with correlated noise, there is a possibility
for an arbitrarily complex network to learn and predict also part of the noise process nptq and
thus overfitting data. However, given our assumption of noise as a less predictable process, we
constrain the neural network descriptive capability by using proper regularization techniques to
prevent such overfitting. The proposed detrending with ESN procedure, called DESN, consists
of a series of steps, whose details are provided in the following.

Let us consider the pair of time series tudataptq,ydataptqu
T
t“1 representing respectively the input

and desired output of the network. Since in the prediction framework ydataptq“ udatapt`τ f q, with
τ f the forecast horizon, the two time series can be constructed from a time series z“ tzptquT`τ f

t“1 ,
representing the measurements of the observed process. The two time series are then split into
two separate datasets: training tutrptq,ytrptqu

Ttr
t“1 and test set tutsptq,ytsptquT

t“Ttr`1. The readout
is trained by feeding the ESN with utrptq and forcing ytrptq as teacher signal. At this point,
the detrending procedure is applied on the remaining data of the test set. In particular, the
prediction ŷtsptq is in turn utilized to detrend ytsptq, as explained below. From now on, we
assume the ESN to be already trained and then, since the training data are no longer considered,
we will denote ytsptq simply as yptq. The time series ŷptq, which denotes the values predicted by
the ESN, can be expressed as:

ŷptq “ yptq` epredptq “ xptq`nptq` epredptq, t P N, (4.2)

where epredptq is the ESN prediction error as a function of time.
The performance of a prediction model can be evaluated through the forecast accuracy,

typically implemented as the normalized root mean square error [44], quantifying the differences
between predicted and observed values. For a given model complexity, the prediction error is
related to the amount of training data and on the accuracy of the training procedure. However,
even for a optimally trained model, in the presence of noise the forecast will always be subject
to an error, due to (intrinsic) stochastic unpredictability of the process or insufficient complexity
of the prediction model. We refer to this source of error as intrinsic unpredictability of the process
with respect to the given model complexity and its related error function as eintrptq. By assuming
independence between the training error etrptq and the intrinsic error eintrptq, we can write
epredptq as the sum of the independent components

epredptq “ etrptq` eintrptq, t P N. (4.3)
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If the prediction model is properly trained, we can assume the training error to be negligible,
i.e.,

etrptq » 0 @ t P N. (4.4)

Our assumption in this work is that the trend process xptq of the observed signal yptq is com-
pletely predictable by an ESN model and all sources of intrinsic unpredictability are concentrated
in the noise component nptq. This assumption corresponds to approximating:

ŷptq “ x̄ptq » xptq @ t P N. (4.5)

When Eqs. (4.4) and (4.5) hold, by inserting Eq. (4.3) in (4.2) we obtain:

nptq » ´eintrptq @ t P N. (4.6)

In this case, the predicted time series, ŷptq, is a good approximation x̄ptq of the trend component
xptq of yptq. Therefore, an estimation n̄ptq of the true noise nptq can be obtained as:

n̄ptq ” yptq´ ŷptq “ ´epredptq » ´eintrptq. (4.7)

The time series that we analyze here contains measurements of a signal with a superimposed
noise, which increases the difficulty of obtaining high reliability in short-term forecasts. For
this reason, one needs to wait until the trend accumulates sufficiently before it becomes clear:
considering different forecast horizons could significantly influence the result of the prediction.
In order to mitigate the dependency of the prediction performance on the particular forecast
horizon τ f , we perform multiple forecasts using an ensemble of k independent ESNs, each
one trained considering a different prediction step-ahead τ

piq
f , i“ 1, ...,k. The output signals of

the ensemble of predictors, elaborated on the basis of the same input data but using different
forecast horizons, generate independent outcomes ŷiptq, i“ 1, ...,k, that are combined together
in an average forecast, ŷptq “ 1{k

řk
i“1 ŷiptq. This approach provides a more accurate prediction

by compensating for the variance introduced by the single predictors. Such an approach is
related to the well-known frameworks of ensemble learning [53, 160] and neural network
ensembles [76]. In the latter it has been shown experimentally that the synergy of multiple
back-propagation neural networks improved learning, generalization capability, noise tolerance,
and self-organization with respect to a single, yet more complex system.

4.1.1 Other detrending methods

In this section, we describe some existing methodologies that have been used in previous works
for separating trends from the noise components in a time series [23]. To be consistent with our
approach, we consider the following detrending procedures as MFDFA preprocessing steps.

Empirical Mode Decomposition Empirical Mode Decomposition (EMD) is a data-driven
technique that performs a decomposition of the original signal, yptq, in terms of a finite number
of modes giptq, called Intrinsic Mode Functions (IMF), and a residual component. IMFs are
derived directly from data, without any prior assumption about their model. EMD [61] can be
used to extrapolate a trend in data by considering the residual given by: x̄ptq “ yptq´

řn
i“1 giptq.

The residue is hence subtracted from the original time series in order to remove the global trend
and obtain an estimate of the noise. Generally, as shown in Wu et al. [171], also a number of
IMFs are selected along the residual in order to better approximate the trend. This is especially
needed where the trend is composed by periodicities, which cannot be approximated by a
single residual. The EMD procedure has also been applied as a local detrending method in the
windows computed with DFA, in place of the conventional polynomial fitting [144].
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Fourier-Detrended Fluctuation Analysis The Fourier-Detrended Fluctuation Analysis (FDFA)
is a tool used for identifying trends characterized by frequencies with a significant power [128].
The method targets the first few coefficients (those having larger amplitude or real part) of
a Fourier expansion and thus it can be considered as a simple high-pass filter [36]. We use a
slightly different approach here, which consists in cutting the spectral components with higher
amplitude, rather than exclusively focusing on those having lower frequencies – as originally
proposed in [36]. In this way, the definition of trends is relaxed in order to consider all larger
amplitude periodicities, independently of their variation speed. Specifically, we first apply
the discrete fast Fourier transform to the data records, then we sort the spectral components
according to a decreasing order of their amplitude. Successively, we truncate the first τfreq
coefficients of the Fourier expansion. Finally, we apply the inverse Fourier transform to the
truncated series. After this last step, border effects may appear at the opposite ends of the time
series. These distortions are eliminated by cropping a portion of the initial and last part of the
series.

Smoothing Smoothing methods operate in the time domain and basically implement low-
pass filters. High frequency are attenuated on the base of the specific properties of the adopted
smoothing method. We consider four different smoothing procedures, which depend on a
parameter σ , representing the span of the smoothing procedure:

• Algorithm 1: a low-pass filter with coefficients equal to the reciprocal of the span (moving
average);

• Algorithm 2: local regression using weighted linear least squares and a 1st degree polyno-
mial model;

• Algorithm 3: local regression using weighted linear least squares and a 2nd degree
polynomial model;

• Algorithm 4: a generalized moving average with filter coefficients determined by an
unweighted linear least-squares regression and a polynomial model of specified degree p.

4.2 Experimental results

In this Section, we evaluate the performance of DESN, the proposed detrending method based
on ESN. We compare the results with those obtained using the detrending methods introduced
in Section 4.1.1, namely Empirical Mode Decomposition (EMD), Fourier-Detrended Fluctuation
Analysis (FDFA), and different Smoothing (SM) techniques. In order to demonstrate the
effectiveness of the proposed technique, we consider several synthetic time series having a self-
similar noise component with known characteristics. We also test the methods on a real-world
dataset, the sunspot time series, described in Section 4.2.2. These latter data have already been
studied in the (multi)fractal analysis context – see, for example, [54, 79] and references therein.
The datasets taken into account and a MATLAB code for reproducing all experiments presented
in this Chapter are publicly available1.

4.2.1 Synthetic time series

As described above, the synthetic time series are of the form yptq “ xptq` nptq, with xptq the
trend and nptq the noise component. We use the four aforementioned detrending methods for

1https://bitbucket.org/slackericida/desn_v1/overview
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computing an estimation of xptq, namely x̄ptq, and we evaluate the accuracy of each method
by analyzing the LTC and multifractal properties of the estimated noise, n̄ptq “ yptq´ x̄ptq. The
accuracy of each method is evaluated by comparing the coefficients obtained with MFDFA
(see Section 3.1) on the estimated noise n̄ptq with respect to the ground-truth nptq. For all the
synthetic series and methods, the MFDFA procedure has been executed on scales ranging from
16 to 1024 data points and with a second-order local polynomial detrending. The parameter q
ranges from -5 to +5.

We consider seven time series Y1, . . . ,Y7, which are obtained by combining a trend selected
from one of the five different time series X1, . . . ,X5 with a noise selected from one of the three
different time series n1, n2, and n3. Signals used as trend are described by the functions shown
in Table 4.1. For the trend signals, X1,X2,X4, and X5, we report the interval from which the values
of the domain variable x are extracted. In Table 4.2 are summarized the average properties of
the synthetic noise components. We use two different sets of ten fGn processes generated by
setting H respectively to 0.7 and 0.3, and a deterministic binomial multifractal cascade [136]
with multiplicative factor equal to 0.60708. For the noise n3, we also consider the spectrum
asymmetry

Θ“
∆αL´∆αR

∆αL`∆αR
, (4.8)

where ∆αL and ∆αR are the width of the left and right part of the support of Dpαq (3.9), re-
spectively. A negative value for Θ denotes a right-sided spectrum, highlighting a stronger
multifractality on smaller fluctuations, while the contrary holds in the case of a positive value.
All time series have been normalized by calculating the z-score; the amplitudes of signal and
noise series are multiplied by a suitable scalar value, in order to obtain a signal-to-noise ratio of
16.

Table 4.1. Description of the functions used as trend within the synthetic signals. The term νmax refers to
the Nyquist frequency fs{2, where fs is the sampling rate, and the terms U pxmin,xmaxq and N pµx,σxq

are respectively the uniform and normal distributions.

ID Description

X1 sinptq.

X2
ř10

i“1 Ai sinp2πνitq,
 

νi “U p0,10´5νmaxq
(

,tAi “N p1,1qu.

X3 s}s}s}..., with s the first 100 digits of π .

X4
ř10

i“1 Ai sinp2πνitq, tνi “U p0,0.5νmaxqu ,tAi “N p1,1qu.

X5 sinptq{t2.

Table 4.2. Characteristics of the synthetic noise processes. The Hurst exponent and MFW of n1 and n2
are the outcome of MFDFA averaged over ten independent realizations of the process.

ID Description Length avg. Hurst avg. MFW (Θ)

n1 fGn 150000 0.695 0.022

n2 fGn 150000 0.303 0.032

n3 Binomial cascade 131072 0.883 1.192 (0.048)
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Overall, we performed seven different tests. In Table 4.3, we report the time series under
consideration and the values used for configuring each detrending procedure. Note that the
length of the i-th time series Yi is given by the length of the noise component, which is reported
in Table 4.2. For DESN, we consider an additional time series for training the network (referred
as ytrptq in Section 4.1), whose length is half of Yi’s length.

Table 4.3. Time series and configuration of the different detrending procedures used in each test. For
DESN, we report the values of the size of the reservoir (Nr), the spectral radius (ρ), the regularization
coefficient (λ ), and the number k of forecast models. For FDFA, we report the thresholds τfreq and
τtime used for determining the amount of coefficients to be truncated in both frequency and time
domain. For SM, we report the span of the moving average σ and the identifier of the adopted
algorithm. Finally, for EMD we report the number of the last s IMFs which are used for defining the
trend.

Data DESN FDFA SM EMD

Y1 = X1 + n1 Nr “ 500, ρ “ 0.99,
λ “ 0.1, k “ 30

τfreq “ 150, τtime “ 950 σ “ 50, algo: 2 s“ 13

Y2 = X2 + n1 Nr “ 200, ρ “ 0.4,
λ “ 0.1, k “ 20 τfreq “ 60, τtime “ 1 σ “ 1800, algo: 3 s“ 5

Y3 = X3 + n1 Nr “ 500, ρ “ 0.99,
λ “ 0.1, k “ 20

τfreq “ 115, τtime “ 50 σ “ 20, algo: 4 s“ 19

Y4 = X4 + n1 Nr “ 400, ρ “ 0.99,
λ “ 0.1, k “ 10

τfreq “ 400, τtime “ 3000 σ “ 10, algo: 1 s“ 17

Y5 = X5 + n1 Nr “ 100, ρ “ 0.99,
λ “ 0.05, k “ 30 τfreq “ 4000, τtime “ 250 σ “ 1000, algo: 1 s“ 8

Y6 = X1 + n2 Nr “ 500, ρ “ 0.99,
λ “ 0.1, k “ 30

τfreq “ 400, τtime “ 2000 σ “ 50, algo: 2 s“ 17

Y7 = X1 + n3 Nr “ 500, ρ “ 0.99,
λ “ 0.05, k “ 20

τfreq “ 250, τtime “ 2000 σ “ 60, algo: 4 s“ 24

Results are obtained by averaging ten independent realizations of the tests. The sources of
randomicity for each test are the different realizations of the noise process – for n1 and n2 – and
the different executions of the DESN procedure – ESN input and reservoir weights. We used a
grid search to tune the (hyper-)parameters of the different methods in their respective spaces.
For each detrending method, we considered a different sets of bounds and search resolutions of
the respective parameter space and a specific loss function for guiding the optimization. The
error measurement that we used is the normalized root mean squared error (NRMSE) function,
which is defined as follows:

NRMSE“

d

x‖y´d‖2y

x‖y´xdy‖2y
, (4.9)

being y the ESN output (A.2) and d the desired one.

Parameter settings of detrending methods For DESN, the parameters that we considered
are the size Nr of the reservoir, searched in r100,500swith resolution 100; the spectral radius ρ
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searched in the set t0.4,0.518,0.636,0.754,0.872,0.99u; the regularization coefficient λ used in
the linear regression for the training of the readout is searched in r0.05,0.3s with step size 0.05;
the number k of forecast models used is searched in r10,30swith step size 10. As discussed in
Section 4.1, we used a different forecast step for training each of the k ESNs of the ensemble.
In particular, the forecast step of the i-th predictor model is mk “ 10 ¨ i. The adopted loss
function is the average error computed on y and forecast ŷi of the i-th prediction model, that is,
1{k

řk
i“1 NRMSEpŷi,yq.

For the SM procedure, we tuned the span of the moving average σ in r10,2000swith step size
10. For guiding the hyper-parameter optimization, we used a loss function which minimizes
the error and maximizes the span, defined as: fSM “ ηSM ¨Err` p1´ηSMq1{σ , where Err is
the error evaluated as Eq. (4.9) and ηSM P r0,1s is a weight parameter that was set to 0.1 in
every test. Note that for ηSM “ 0 the error component is neglected, then the resulting span is
maximized covering the whole time series; this generates a smooth function which assumes
in every point the mean value of the original signal. On the other hand, by setting ηSM “ 1,
only the error is minimized and the span assumes its minimum value σ “ 2, which generally
produces an insufficient smoothing of the signal. We evaluated the performances using all the
four algorithms described in Section 4.1.1 and we reported here the one which achieved the
best results. The polynomial degree p in the algorithm 4 was set to 15 in every test.

For setting the optimal values of the parameter τfreq in the FDFA procedure, after having
ordered the Fourier coefficients by their amplitude (from larger to smaller), by visual inspection
we first identify the “elbow” in the sequence, which is its inflection point, which determines
the frequencies to be truncated (i.e., these having very high power). Once the inverse Fourier
transform is performed, some cropping on the boundaries of the time series is necessary to
attenuate boundary effects caused by the alteration of the spectrum.

Finally, in the EMD approach we used the standard setup of the stop criterion for retrieving
the IMFs, as described in [80]. The sum of the last s IMFs represents the trend and the number s
is optimized by minimizing the following loss function: fEMD “ ηEMDErr`p1´ηEMDqs{S, where
S represents the total number of IMFs identified relative to each signal – usually between 15 and
20 components. Also in this case, Err is the error evaluated with Eq. (4.9) and ηEMD P r0,1s is a
weight parameter. Note that for ηEMD “ 0 the error component is neglected and s assumes the
minimum value 1, i.e., only the last IMF is selected for approximating the trend. On the other
hand, when ηEMD “ 1 the error is minimized, but all the s IMFs are selected for representing
the trend, which then coincides with the original signal. We set ηEMD “ 0.1 when we tested the
synthetic signals Y3, Y4, Y6, and Y7, while in the processing of the remaining signals (including
the sunspot time series) we set ηEMD “ 0.5.

Discussion of results In Fig. 4.1, we plot a short sample of each time series with superimposed
the trends identified by the different detrending procedures. The details of the results are
reported in Table 4.4, where we show the resulting Hurst coefficient and multifractal spectrum
width (MFW) for each time series, with their corresponding standard deviations. In Fig. 4.2
we graphically represent the quality of the scaling of the fluctuation function for the estimated
noise components. The linear fittings of the scaling functions are highlighted in green when
the considered detrending method (column) has preserved a correct scaling behavior on the
selected time series (row), while we used red dashed linear fittings to denote an incorrect scaling
or significantly altered Hurst/MFW coefficients with respect to the ground truth.

As shown in Table 4.4, the four methods perform differently on each time series. With
the EMD and SM methods, and considering the parameter optimization criteria presented in
Section 4.1.1, we could not obtain a correct scaling for most of the tested time series. The first
five time series, Y1-5, are composed by a signal (trend) with a superimposed persistent noise
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Figure 4.1. Colors online. Trends identified on the different signals. The function depicted with black
dashed lines represents the trend of the original time series. The colored lines represent the trends
identified using DESN, EMD, FDFA, and SM. For clarity of representation only small portions of the
time series are shown.

with H “ 0.7, according to Table 4.3.
In Y1, the trend is a single sinusoid, which is the simplest periodic function and it is easily

separable from noise, which is much more complex from a prediction perspective. As expected,
the Hurst exponent is estimated with a good precision by DESN. FDFA obtains a similar
accuracy, since in this case the trend can be easily isolated, it being described by a single
high-amplitude frequency in the Fourier domain. In fact, as described in Section 4.1.1, FDFA
operates by eliminating the frequencies with largest amplitudes, so its maximum efficiency is
reached when trends consists of few isolated dominating frequencies. On the other hand, in
time series where trend periodicities are spread over a large portion of the spectrum or are too
entwined with the noise frequencies, FDFA tends to fail. In fact, by cutting a significant amount
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Figure 4.2. Colors online. Scaling of fluctuation functions related to the detrended time series. Only one
instance of each test in Table 4.4 is reported here. The least-square linear fittings are highlighted in
green when they correspond to a correct scaling function and in red otherwise.

of frequencies, FDFA tends to corrupt the spectrum of noise and hence its scaling properties.
It is important to point out that the original FDFA method proposed in [36] works only as a
low-pass filter without taking into account amplitudes, so its limitation is even more evident in
these particular cases. The SM and EMD procedures do not perform well on identifying the
trend in Y1. While this is a common issue with EMD applied to sinusoidal signals [171], with
SM we can observe in the example of Fig. 4.2 a crossover that breaks the global scaling. This
crossover is given by the smoothing algorithm acting only at a scale determined by its span
parameter.

Despite the apparent increasing difficulty of the detrending task on the second time series
Y2, whose trend is a linear combination of low-frequency sinusoids with different amplitudes,
all methods perform equally well. However, by comparing the trend functions in Table 4.1, it
is important to notice that the frequency of the sinusoid function in X1 is significantly higher
than the maximum value of the frequencies characterizing the trend X2. In this case, in fact, the
variation of the trend signal is sufficiently slow to be isolated properly by EMD and SM, which
behave in this case as low-pass filters.

On the third series Y3, the results are similar to what observed in the first test. In fact, the
trend signal is a periodic series obtained by repeatedly concatenating the first 100 digits of π .
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Therefore, the trend is characterized by a broad spectrum with fast frequencies, and thus EMD
and SM are once again unable to perform the required task. In fact, even if from Fig. 4.2 we can
observe the log-log scaling of EMD to be approximately linear, the obtained Hurst coefficient
is 0.366, which differs significantly from the true value of 0.695 and incorrectly denoting an
antipersistent behavior. This means that the fractal properties of noise have been considerably
altered by the EMD detrending procedure and the result is not to be considered correct.

The trend in Y4 is a more complex version of Y2, since the signal X4 is characterized also by
high frequencies, it being composed by a linear combination of 10 sine waves with frequencies
chosen randomly in a broad interval. In this case, only FDFA succeeds in detrending the series
correctly, since the spectrum of the trend consists of isolated high-amplitude frequencies. In
fact, as explained above, the FDFA procedure implemented in this work filters the spectral
components with greater amplitudes, regardless of their frequency, thus making the filtering
method independent of the variation speed of the signal. EMD and SM, instead, are designed
with the underlying assumption that trends are characterized by low frequencies (slow variation)
and hence they are unable to filter rapidly-varying trends correctly. DESN, on the other hand,
does not perform any explicit assumption regarding the form of the trend. In this case, however,
the resulting signal is much harder to predict since its periodicity is much longer than the
network’s memory can account for. In particular, it has been shown that ESNs are unable
to learn functions composed of even two superimposed oscillators with incommensurable
frequencies [86], because of the aperiodicity of the compound signal. Such a signal, in fact,
would require the simultaneous coexistence of two stable and uncoupled oscillating modes in
the network’s dynamics, a configuration that is very difficult to attain in practice.

The time series Y5 is instead a classic example where the FDFA method fails. In this case,
the trend signal does not consist of isolated frequencies, but it is described by a continuous
distribution of frequencies in the spectrum, most of them characterized by a small amplitude.
Hence, the filtering performed by FDFA alters the signal and this results in a crossover at larger
scales, as we observe in Fig. 4.2. All the other methods, instead, perform well on this time series,
given the regular behavior of its trend signal in the time domain and the prevalence of low
frequencies in the Fourier domain.

The time series Y6 is composed by the trend X1 with the addition of antipersistent noise.
Analogously as what observed for Y1, only DESN and FDFA succeed in correctly identifying
the trend on such a time series. So far, in every test the estimation of n1 and n2 resulted to be
monofractal, as confirmed by the estimated MFWs shown in Table 4.4. The only exception is in
the outcome given by EMD on Y5, where we detect on n̄ptq the presence of spurious multifractal
scaling, which is not present in the ground-truth signal n1.

The time series Y7 is the only series characterized by a multifractal scaling. As shown in the
results, in this case only DESN and FDFA produce a correct scaling function, even if the precision
of the estimation is not optimal, probably because of the higher complexity of such a time series.
The calculated Hurst coefficient is (slightly) overestimated by DESN and underestimated
by FDFA. The principal difference in performance between these two approaches lies in the
estimated multifractal spectrum width. In fact, in this case the estimate obtained with DESN is
significantly closer to the ground truth, while FDFA considerably underestimates its value, thus
suggesting a process with far less multifractal properties. Moreover, we can observe that both
methods overestimate the asymmetry with a bias on the left-hand side of the spectrum. In the
case of DESN, this can be explained by considering that the right-hand side of the spectrum
corresponds to the smaller fluctuations, which are more easily affected by the ESN prediction
error.
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Table 4.4. Average values and standard deviations (where applicable) of Hurst exponent and width of

the multifractal spectrum (MFW) of the noise estimated on each time series along with the ground
truth (GT) value evaluated on the original noise. The asymmetry Θ of the multifractal spectrum (Eq.
(4.8)) of the series Y7 is reported in brackets. The standard deviation is not defined for the results of
FDFA on series Y7, since the values are deterministic. The cases in which the detrending method did
not succeed in preserving the noise self-similarity are denoted with “n.s.”.

H
ur

st

ID GT DESN FDFA SM EMD

Y1 0.695 0.713 ˘ 0.007 0.705 ˘ 0.007 n.s. n.s.

Y2 0.695 0.719 ˘ 0.007 0.690 ˘ 0.004 0.706 ˘ 0.005 0.701 ˘ 0.006

Y3 0.695 0.691 ˘ 0.006 0.702 ˘ 0.006 n.s. 0.366 ˘ 0.004

Y4 0.695 n.s. 0.687 ˘ 0.002 n.s. n.s.

Y5 0.695 0.718 ˘ 0.006 n.s. 0.711 ˘ 0.006 0.711 ˘ 0.007

Y6 0.303 0.318 ˘ 0.003 0.314 ˘ 0.002 n.s. n.s.

Y7 0.883 1.021 ˘ 0.003 0.793 n.s. n.s.

M
FW

(Θ
)

Y1 0.022 0.027 ˘ 0.012 0.026 ˘ 0.006 n.s. n.s.

Y2 0.022 0.032 ˘ 0.014 0.034 ˘ 0.013 0.028 ˘ 0.011 0.023 ˘ 0.009

Y3 0.022 0.029 ˘ 0.008 0.024 ˘ 0.006 n.s. 0.023 ˘ 0.005

Y4 0.022 n.s. 0.037 ˘ 0.010 n.s. n.s.

Y5 0.022 0.019 ˘ 0.007 n.s. 0.018 ˘ 0.005 0.102 ˘ 0.041

Y6 0.032 0.040 ˘ 0.008 0.043 ˘ 0.002 n.s. n.s.

Y7 1.192
(0.048)

1.116 ˘ 0.046
(0.397 ˘ 0.060)

0.593 (0.849) n.s. n.s.

4.2.2 Sunspot data

In this section, we consider the time series relative to the number of daily sunspots [3]. The
dataset contains more than 70000 records and is characterized by a trend given by the well-
known 11-year cycle of the sun. Such a dataset has been already used by other authors in the
field of (multi)fractal time series analysis (see, e.g., [54, 79]). For all the methods taken into
account here, the MFDFA procedure has been executed on the detrended series with scale
parameter ranging from 16 to 1024 data points, first-order local polynomial detrending, and
parameter q ranging from -5 to +5.

For this test, we configured FDFA with τfreq “ 150 and τtime “ 500. In the EMD case, we set
the weight parameter ηEMD “ 0.5 in the cost function. For SM, we set the span σ “ 1000, the
weight parameter ηSM “ 0.1, and we used algorithm 2. For DESN, we set the reservoir size
Nr “ 500, the regularization coefficient λ “ 0.05, and the spectral radius ρ “ 0.99. For DESN,
we compared two settings with different numbers k of forecast models, namely k “ 10 and
k “ 30, which produced slightly different, yet qualitatively comparable results. Since there is no
known ground truth for the sunspot time series, in this section we compare our results with the
properties reported in other works [54, 79].

In Table 4.5, we show the values of the Hurst coefficient and the width of the multifractal
spectrum. As we can see in the table, all four methods, when suitably tuned, agree on the
persistence of the process up to fluctuations of „ 0.05 in the Hurst exponent values. Such values
are also similar to the coefficient H “ 0.73 reported in Ref. [79], where an adaptive detrending
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is performed on the time series relative to monthly sunspot. The Hurst exponent retrieved
with DESN, with an ensemble of k “ 10 ESNs, is closer to the ground truth with respect to
the other methods, while the outcome obtained with k “ 30 is slightly higher. By assuming
that the true value lies in-between the general consensus, this may suggest that a suitable
dimension of the ESN ensemble has to be chosen in order to obtain best performance, even if the
observed variability is in general fairly low. Regarding the MFW, we observe that DESN is not
in agreement with the other detrending methods and, to a lower extent, also on the asymmetry
Θ. In fact, even if all methods agree on the right-sided multifractal nature of the series, both
DESN configurations denote a lower degree of multifractality and lower asymmetry. However,
it is worth noting that the MFW value estimated by DESN is much closer to the values reported
in [54], while the degree of asymmetry is still different. It is also worth pointing out that the
authors in [54] did not perform any detrending in their work. This was possible thanks to
the fact that the underlying trend is very slow and a number of sufficient data points can be
analyzed by considering scales lower than half of the dominating periodicity. In Fig. 4.3, we
show the trends identified using the different approaches herein taken into account. As it is
possible to observe, the trend calculated by DESN correctly recognizes the characteristic 11-year
cycle of the sunspot time series. In Fig. 4.4, we show the results of the scaling of the fluctuation
function obtained by using the two configurations for k of DESN. The general agreement of the
values estimated by DESN with other methods offers a sound justification for the quality and
reliability of the proposed detrending method.

Table 4.5. Hurst exponent, MFW, and asymmetry (Θ) of the detrended sunspot time series, estimated
using different detrending methods.

Method Hurst MFW

DESN (k “ 10) 0.729˘0.0003 0.456˘0.0560 ´0.408˘0.0536

DESN (k “ 30) 0.808˘0.0002 0.641˘0.0614 ´0.542˘0.0412

FDFA 0.688 1.205 ´0.556

SM 0.680 1.118 ´0.726

EMD 0.731 1.686 ´0.786



58 4. Detrending of time series with Echo State Networks

×10
4

0.5 1 1.5 2 2.5 3

-50

0

50

100

150

200

250

300

350

400

EMD

SM

DESN10

DESN30

FDFA

Figure 4.3. Colors online. Trends identified on the sunspot time series. The function depicted with black
dashed lines represent the original time series. The colored lines represent the trends identified using
EMD, FDFA, SM, and DESN with k “ 10 and k “ 30.
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4.3 Discussion

In this Chapter, we have explored the possibility of identifying and removing trends in a given
time series by means of echo state networks, a particular type of recurrent neural network.
The proposed method, called DESN, allows to filter out trends with minimal assumptions and
without performing a windowed fitting as proposed in other detrending approaches. This is
possible by exploiting the capability of recurrent neural networks to learn and predict complex
dynamical processes in order to separate the actual trend from its stochastic fluctuations. Our
main assumption consists in considering the noise and trends components as processes with
very different degrees of predictability. We exploited such an assumption as a separating
criterion. Notably, we have used an ensemble of echo state networks as a filter, operating with a
standard configuration and trained using linear regression for the readout layer. Many other
approaches exist both for designing the reservoir and for training the readout [56, 150], which
could be evaluated in future works depending on the specific problem at hand.

As a first benchmark, we have analyzed the performance of DESN and other detrending
techniques taken from the literature on several synthetic time series generated using different
types of trends and noise processes. The quality of the detrending has been evaluated by
comparing the properties of the estimated noise with respect to the known ground truths.
The evaluations of the Hurst exponents and the properties of the multifractal spectra on the
detrended series have been performed with the multifractal detrended fluctuation analysis
procedure, a consolidated method in the field of fractal analysis of time series. In most cases,
the resulting fractal coefficients computed by DESN procedure agreed with the expected values
and the noise self-similarity properties were preserved by the detrending operation. On the
other hand, in several occasions other detrending methods were not able to perform a correct
detrending, which resulted in an incorrect scaling of the fluctuation function. In general, DESN
and a detrending method based on Fourier analysis have shown to be the most reliable methods
in terms of detrending accuracy on the considered synthetic time series.

As a second test, we have analyzed the well-known sunspot time series, which is a mul-
tifractal time series that has been taken into account in several related works [54, 79]. Our
experimental results suggest that the multifractal properties retrieved by using DESN were both
qualitatively and quantitatively compatible with those suggested in other works taken from the
literature. This further strengthens the validity of the proposed data-driven detrending method
based on echo state networks.
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Chapter 5

Generation of Protein Contact
Networks

In Chapters 2 and 3 we investigated the peculiarities of the protein contact networks and
assessed their differences with respect to the other networks and, in particular, the generative
model PCN-S described in Sec. 1.6.1. We observed that there are still significant differences
between PCN and PCN-S. Although many generative models have been developed in the still
young network science discipline [28, 132], fewer and less established examples are available in
the literature when focusing on formal representations of protein molecules [11, 31, 59, 121, 140,
141, 152]. In this Chapter we attempt at bridging this gap by designing a two-step generative
model for PCNs. The first stage of our method starts from a modified version of the PCN-S
model. The quest for a reliable and, most importantly, justifiable generative model for PCNs
implies as a first step the identification of a target function. This allows for a unambiguous
evaluation of the proposed model in terms of similarity of the simulated contact networks
with the real PCNs. Inspired by the seminal works by Leitner [100], we considered here as
target function to approximate the peculiar heat trace decay of PCNs shown in Sec. 1.4. Such a
property is elaborated from the heat kernel [38, 95, 172], the graph-theoretical analogue of the
well-known first-order differential equation describing diffusion of heat in a physical medium.
We also evaluate the soundness of the proposed approach by focusing on mesoscopic analyses.
In particular, we first study characteristics elaborated from the normalized Laplacian spectra
of the generated networks. To complement this spectral analysis, we also analyze several
topological descriptors of the resulting networks. Results show that the ensemble of networks
generated with our method ends up into a significant improvement of similarity with real PCNs,
as for both spectral and topological properties. However, a principal component analysis (PCA)
of the considered topological descriptors reveals a gap with actual PCNs, specifically related to
the shortest paths. The second step of the proposed method is hence designed to compensate
this drawback. As a result, we show that we are able to achieve a further statistically significant
improvement of the ensemble characteristics, without altering the global spectral properties of
the first ensemble. As a byproduct of our study, we demonstrate that modularity, a well-known
feature found in proteins as well as in many other biological networks, is not sufficient to
explain the underlying network architecture of PCNs. This result is of particular interest, since
it stresses the peculiar architecture of proteins that suitably merges conflicting features such as
path efficiency and modularity.
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5.1 Dataset

In our study we start from three ensembles of networks. Each ensemble contains 100 networks
of varying size (from 300 to 1000 vertices). The first two ensembles are the set of 100 PCN
and 100 PCN-S presented in Sec 2.1. For the third ensemble we consider networks generated
according to the recently-proposed scheme in Ref. Sah et al. [147]. Such a generation mechanism
produces modular networks with controlled (i.e., used-defined) modularity and average degree
values. In our study we consider these networks because, as we confirmed in Chapters 2 and
3, modular structures seem to be ubiquitous in biological networks. Indeed, modularity is
considered to be at the basis of resilience and adaptability of biological networks. Accordingly,
the third ensemble of Sah et al. networks is generated by copying modularity and average
degree from the considered PCNs. By considering the Sah et al. ensemble we define a controlled
frame or reference to assess the importance of modularity in PCN. We now proceed to describe
the proposed generative method.

5.2 First step: the LMGRS generative model

Native contacts in folded proteins are in one way or another constrained by the covalent bonds
due to the backbone. Therefore, a first interesting question that one would ask when designing
a generative mechanism is “what is the effect of the backbone on the modular organization of a
PCN?”. To provide an answer to such question, we first define the notion of short range (SR)
and long range (LR) contacts, that is, native contacts whose residues are, respectively, close
and distant on the sequence (backbone). We chose 12 residues as threshold for SR contacts
[137]. Fig. 5.1 shows the two separate degree distributions elaborated from the considered
ensemble of varying-size PCNs. SR contacts denote a clearly different distribution with respect
to those that are LR. Considering this fact and that PCNs do posses a modular architecture, one
would be tempted to postulate a striking rule such as “SR contacts are intra-module while LR
are inter-module links”. If this rule was correct, it would be possible to design a generative
mechanism accordingly, e.g., by connecting intra-module and inter-module links according
to their specific (empirical) distributions. Nevertheless, such a possibility seems to be weakly
supported by the following test. In Fig. 5.2 we show a graphical representations of two PCNs,
denoted as “JW0058” and “JW0179”. Those two networks contain roughly the same number
of amino acid residues (around a thousand); JW0058 is made of two chains while JW0179 is
derived from a single-chain polymer. To verify the above stated hypothesis, we need to consider
a suitable criterion to find a partition of the vertices with maximum modularity. We again
utilize the Louvain algorithm as defined in Ref. [27] to discover such partition. Results in Fig.
5.2 demonstrate that intra-module links (solid lines) are SR (drawn in red), in both cases, only
around 55% of the times. This fact (that has been verified for a larger number of PCN) suggests
to reconsider the possibility to follow such a SR/LR contacts characterization with respect to
intra/inter module links. In addition, we found in our data that there is no trivial relation
among the distance on sequence and the Euclidean distance among residues in the 3D space
(r» 0.162, full data not shown here). This complexity is expected as confirmed by the enormous
research effort in predicting native contacts in proteins [12, 45, 57, 78, 89, 93, 114, 125, 126, 155].

Let us describe the proposed generative mechanism. Algorithm 1 conveys the pseudo-code
of the procedure. The algorithm builds on the mechanism introduced by Bartoli et al. [20] and
described in Sec. 1.6.1. Firstly, edges are deterministically added among any two residues at
distance two on the sequence. In the model of Ref. Bartoli et al. [20], the second step consists in
sequentially wiring pair of vertices with a probability that decays linearly with their distance
on the backbone. In our model we instead substitute this linear probability with the observed



5.3 Analysis of the LMGRS ensemble 63

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2  4  6  8  10  12  14  16  18

S
R

 d
is

tr
ib

u
ti
o

n

Degree

(a) SR contacts.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30

L
R

 d
is

tr
ib

u
ti
o

n

Degree

(b) Distribution of LR contacts.

Figure 5.1. Degree distribution of SR (5.1(a)) and LR (5.1(b)) contacts. Both distributions are provided in
lin-log plots to improve visualization. SR contacts are determined by considering a distance on the
sequence lower than or equal to 12 residues.

probability of the real PCN ensemble, evaluated from the empirical frequencies. In other
words, the probability of wiring two vertices i and j that are placed at a distance |i´ j| “ d
on the backbone is equal to npdq{Mtot, where npdq is the number of neighboring vertices at a
backbone distance d in the PCN ensemble and Mtot the total number of edges. The empirical
probability obtained from the PCN ensemble is shown in Fig. 5.3 (left) and an heat map of the
log-probability of each edge on a typical adjacency matrix is shown in Fig. 5.3 (right). With this
method we generate a set of networks where the number of nodes and number of edges match
each network of the PCN ensemble. The generated graphs are referred to as LMGRS networks.

As shown in the following, this straightforward modification results in a considerable
improvement under many aspects.

Algorithm 1 Pseudo-code of the proposed generative algorithm.
Require: Number of vertices, n, and edges, m
Ensure: A graph G“ pV ,E qwith n“ |V | and m“ |E |
1: Add n vertices in V with unique, progressive, numerical identifiers
2: Add backbone contacts in E : connect all vertices vi and v j for which |i´ j| “ 2
3: Loop to add all remaining non-backbone contacts ñ

4: while |E | ă m do
5: Select two non-connected vertices vi and v j with probability pp|i´ j|q given by their distance |i´ j| according

to the empirical distribution in Fig. 5.3
6: Add the undirected edge e“ pvi,v jq in E
7: end while
8: return G“ pV ,E q

5.3 Analysis of the LMGRS ensemble

We now analyze the spectral properties of the 3 ensembles of networks presented in Sec. 5.1 and
compare them to the LMGRS ensemble generated with the method discussed in the previous
Section. Fig. 5.4(a) shows the characteristic HT slopes decay (presented in Sec. 2.4) of the
different ensembles. From the plot it is possible to note that LMGRS introduce a considerable
improvement with respect to Bartoli et al. and Sah et al. ensembles; yet the PCN trend is
not perfectly approximated. To obtain a more straightforward representation of the spectral
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(b) JW0179 modules/links organization.

Figure 5.2. Classification of contacts by considering the SR/LR typology and the intra/inter module
arrangement. The partition is derived by using the maximum modularity criterion. Vertex assign-
ment to modules is represented using different colors; numerical module identifies are drawn in the
legend and in the corresponding vertex labels. Solid lines denote intra-module links while dashed
lines inter-module links. Black links denote LR contacts, while red links are SR. Please note that the
length of the links in the figures respects the actual Euclidean distances of contacts. The assumption
that LR contacts are mostly inter-module links (and accordingly, SR contacts are mostly intra-module
links) seems to be disproved by those examples.

properties of these ensembles, we now proceed to analyze the spectral distributions of the
networks of each ensemble. In particular, for each ensemble C we consider the flattened set λλλC “
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Figure 5.3. Distribution of backbone-distance probabilities for the contacts in the PCN ensembles (left)
and relative heat map (right) with log-probabilities for each edge of the adjacency matrix.
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of C . We then estimate the global ensemble spectral distribution by performing a Gaussian
Kernel Density Estimation on the set λλλC . A Kernel Density Estimation is a nonparametric way of
estimating a probability density function of a random variable from a given set of observations
[162]. In Fig. 5.4(b) are shown the ensemble spectral densitites of the 4 ensembles. The LMGRS
ensemble density has clear similarities with the one of Bartoli et al., being the two based on
the same algorithmic template. Nonetheless, by highlighting the left side of the distributions,
it is possible to notice some improvement for a specific region (in-between 0 and 0.2). This
region is particularly important for the modeling of PCN since it is well known that the smallest
normalized eigenvalues are related to the modular organization of the networks and, in general,
to the global network organization [9]. LMGRS ensemble offers a better approximation in the
distribution of these eigenvalues, which explains the significant improvement observed for the
HT decay. Now we move to the analysis of the ensembles by considering the representation of
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Figure 5.4. Ensemble HT slopes decay for the considered graphs 5.4(a) and related Laplacian spectral
densities 5.4(b). The proposed LMGRS model clearly denotes more similar characteristics with respect
to PCNs in terms of HT decay. Analogously, the LMGRS model induces a density of eigenvalues
more similar to PCNs in the lower bands (see detailed plot), suggesting that the community structure
is more suitably approximated. In comparison, the Sah et al. model instead does not mimic as well
the spectral density of PCNs.
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each graph as a numeric vector containing suitable features that characterize different aspects
of the network topology, as done previously in Chapter 2. The topologic embedding vector
generated for each network G is composed by the following components (see Sec. 2.2 for a
complete description of their meaning):

• Modularity (MOD)

• Average Closeness Centrality (ACC)

• Average Shortest Path (ASP)

• Average Clustering Coefficient ( ACL)

• Adjacency spectrum energy (EN)

• Laplacian spectrum energy (LEN)

• Random Walk Entropy (H)

• Graph Ambiguity (A)

To offer a synthetic visualization, in Fig. 5.5 we perform a Principal Component Analysis of the
resulting vector space and show the first three components. The first three PCs explain » 92%
of the entire data variance (PC1» 39%, PC2» 30%, and PC3» 23%) and therefore they are offer
a complete description of the space; the component loadings (Pearson correlation coefficients
between original descriptors and components) are reported in Tab. 5.1. The loadings on the PC
offer an easily interpretable scenario, where PC1 is mostly explained by the path distribution
(ACC and ASP) and the local clustering (ACL). As expected ACC negatively scales with both
ASP and ACL, so pointing to the fact that ACL decreases the efficiency of signal transmission
across the network (positive correlation with ASP). Thus, high values of PC1 corresponds to
architectures with high characteristic length (slow information transmission), while low values
of PC1 point to graphs with high closeness centrality (ACC) and thus relatively efficient signal
transmission. PC2 is mainly correlated with MOD, A and H, with A going in the opposite
direction with respect to the other two descriptors. This corresponds to the fact the regularity
of a graph decreases as the modularity increases; it is also well-known that modularity affects
random walks behavior, explaining the positive correlation with H. PC3 is entirely described by
the spectra of the adjacency and Laplacian matrices (respectively indicated by EN and LEN).

The PCs are linearly independent by construction, so the above results clearly indicate that
the dataset can be described by three autonomous topological features: 1) path length and
local clustering (PC1); mesoscopic modularity (PC2); and 3) spectral properties (PC3). The
particular mixing of these independent features varies across the different ensembles. Let us
now focus on the PCA subspace spanned by PC1-PC2 (Fig. 5.5(a)). It is possible to note that
the LMGRS ensemble introduces an improvement in PC1, which as explained before, encodes
contributions in terms of path distribution and local clustering. A very interesting scenario
can be observed when considering the projection given by PC1-PC3 (Fig. 5.5(b)). In fact, when
PC2 is not considered Sah et al. and LMGRS networks become very similar to each other, and
entirely different from the ensemble of Bartoli et al. To summarize, it is worth pointing out
that the average Euclidean distance among the LMGRS and PCNs networks represented in the
three-dimensional PCA space is significantly inferior (pă 0.0001) with respect to the distances
among Bartoli et al. and PCNs (3.13 vs 4.69 with standard deviations 0.75 and 0.68, respectively).
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Figure 5.5. PCA of the topological descriptors calculated on the four ensembles of protein graphs.
LMGRS model is an improvement with respect to Bartoli et al. [20] also considering classical TD.

Table 5.1. Principal component loadings.

PC1 PC2 PC3
MOD 0.26148 0.78872 0.13409
ACC -0.97835 -0.15695 -0.11588
ASP 0.92838 0.26494 0.09270
ACL 0.89098 -0.22533 -0.12227
EN 0.01862 0.27707 0.95810

LEN 0.04354 -0.27981 0.94213
H 0.05171 0.99519 -0.04393
A 0.09073 -0.84835 0.06463

5.4 Second step: the LMGRS-REC reconfiguration procedure

From PCA space snapshots we deduce that the LMGRS ensemble is a considerable improvement
with respect to the others, even if there is still a gap to be filled with respect to PCN. In
particular, LMGRS networks present a too small value of the average shortest path length, i.e.
the small-world signature is too strong. This fact explains the differences observed in path
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distribution and modularity, since the path efficiency and modular properties are two conflicting
features in networks, that is, modular organization is progressively lost as the network becomes
more and more interconnected and the average shortest path decreases. To this end we now
consider another ensemble derived by post-processing LMGRS networks with the following
edge reconfiguration process. Given a graph G“ pV ,E q, the reconfiguration step is primarily
meant to lower the small-world signature in G. This is done by iteratively rewiring edges in
E according to their edge-betweenness value. The pseudo-code of the edge reconfiguration
algorithm in shown in Algorithm 2. The reconfiguration process rewires edges with high
edge betweenness centrality1, since those edges have a direct impact on path efficiency, and
accordingly also on the modular organization. At each iteration, the edge with maximum edge-
betweenness is removed and it is re-attached to two randomly chosen vertices at a backbone
distance given by the empirical distribution shown in Fig. 5.3. This process is repeated until a
suitable convergence criteria is met. In our case, we considered a number of iterations (50) that
resulted in a statistically significant improvement of the ensemble features that we observe. A
reconfigured graph Ĝ is obtained at the end of the reconfiguration loop. Notice that we insure
connectedness for all Ĝ. The loss of small-world signature in Ĝ is primarily verified with the
ASP increase (see Fig. 5.6(b) for an example), which is a consequence of the targeted rewiring of
edges with maximum edge-betweenness. We apply this reconfiguration step to all the generated
LMGRS networks, obtaining the so-called LMGRS-REC ensemble. In Fig. 5.6(a) we show the

Algorithm 2 Pseudo-code of the proposed edge reconfiguration algorithm.
Require: A graph G“ pV ,E qwith n“ |V | and m“ |E |
Ensure: A modified graph Ĝ“ pV ,E qwith n“ |V | and m“ |E |
1: loop
2: Calculate the edge-betweenness measure for all edges in E
3: Let emax be the edge with maximum edge-betweenness. Remove emax from E
4: Select two non-connected vertices vi and v j with probability pp|i´ j|q given by their distance |i´ j| according

to the empirical distribution in Fig. 5.3
5: Add the undirected edge e“ pvi,v jq in E
6: end loop when stop criterion is met
7: return Ĝ“ pV ,E q

detailed changes of several topological properties for the LMGRS and LMGRS-REC with respect
to the PCNs. The figure reports, for each descriptor, the average absolute difference calculated
for each graph of the respective ensembles with respect to the PCN graphs; standard deviations
are reported as vertical bars. Results show that the reconfiguration algorithm performs well as
for statistical significance of differences with respect to the LMGRS ensemble, assessed via t-test
with the usual 5% threshold. In particular, as desired reconfigured networks denote more similar
ASP and ACC. As expected, such improvements for the shortest paths have a direct influence
on the global modularity. In fact, MOD is significantly improved. This is a direct consequence
of the fact that path efficiency and modularity are features to be considered in a trade-off. ACL
similarity improves as well, denoting a better approximation of the local cluster structure of
PCNs. It is important to note that differences for EN and LEN are not statistically significant.
This fact tells us that spectral properties of the reconfigured networks are not significantly
altered. Fig. 5.7(b) offers a visual confirmation of this fact. In fact, the spectral densities for
LMGRS and LMGRS-REC reported in the figure are almost identical. However, it is worth
discussing the HT slopes shown in Fig. 5.7(a). From the figure, it is possible to notice a slight
divergence among LMGRS and LMGRS-REC for large-time instants. This is due to the difference
in magnitude of the first non-zero eigenvalue of the normalized Laplacian, which particularly

1the edge betweeness centrality is the betweeness centrality associated to an edge instead of a node. See Sec. 1.2.1
for a definition of the betweeness centrality
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influences the asymptotic HT behavior. Such a difference is a byproduct of the designed edge
reconfiguration algorithm, which focuses on rewiring edges with high edge-betweenness: those
are most likely connections among different densely connected communities.
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Figure 5.6. Average differences for each topological descriptor with respect to PCN (5.6(a)) and their
standard deviations. We are able to modify, among the other factors, the small-world character of the
generated networks without significantly affecting the spectra of the adjacency (EN) and Laplacian
(LEN) matrices. Statistical significance of differences is assessed via t-test. Fig. 5.6(b) shows the ASP
of a sample graph during the reconfiguration process.
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Figure 5.7. Same as Fig 5.4 but including also reconfigured LMGRS.

5.5 Discussion

In this Chapter, we proposed a two-step generative model for protein contact networks. For
the first step, we partially took inspiration from the work of Bartoli et al. [20], whose idea is
to generate contact graphs by first adding backbone contacts deterministically (considering
adjacent residues along the sequence). Successively, a number of additional contacts are
added with a probability inversely proportional to the residue distance along the sequence.
Here we modified this part by considering the actual empirical probability distribution of
contacts with respect to the sequence distance, derived from an ensemble of E. coli proteins.
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We analyzed our generative method by considering three additional ensembles composed of
100 varying-size protein contact networks. We focused on a mesoscopic analysis, that is, we
primarily investigated the soundness of the models by considering information derived from
the eigendecomposition of the normalized Laplacian. Results showed that the proposed method
approximates with better precision the behavior of actual protein contact networks in terms of
characteristic diffusion time. We considered also several common topological descriptors. This
last analysis pointed out that our method, as well as the others, does not approximate sufficiently
well the path distribution. To this end, we designed an edge reconfiguration algorithm to be
used as the second step of the proposed generative method. We then generated an additional
ensemble of reconfigured networks, which showed statistically significant improvements with
respect to the initial one.

We considered an ensemble composed of graphs synthesized according to a recently-
proposed mechanism [147], designed to construct a network with specified modularity and
degree profiles. Notably, we reproduced the modularity and degree values from the actual
protein contact networks herein considered. Results demonstrate that modularity, when hard-
coded into the networks, does not explain alone the actual architecture of proteins. In fact, we
modularity should be considered as an emergent property of such networks, which is suitably
optimized in a trade-off with the conflicting feature of path efficiency. In our model, an increased
modularity emerged from the peculiar PCNs mesoscopic wiring obtained from their empirical
contact distribution at increasing distance length: a simple linear decrease in contact frequency
at increasing sequence distance does not allow to reach the typical modularity of real proteins.
The fine tuning of long-range contacts allows for directly intervening on both modularity and
path efficiency balance, so confirming the crucial importance of long-range contacts in folding
process [37, 167]. A sound generative mechanism for protein contact networks is of utmost
importance in current researches in protein science. The possibility to learn in a data-driven
fashion an effective model for protein contact networks would allow to easily generalize other
instances of such networks. This perspective could be interesting also for protein engineering
purposes [42]. Morevoer, the theoretical study of networks promises to pave the way for the
discovery of universal principles at the basis of protein organization.
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Chapter 6

Optimization of the LMGRS networks

In the previous Chapter, we attempted at reproducing the peculiar spectrum of PCNs by an
incremental approach: synthetic networks are generated by the LMGRS generative model based
on known features of PCN, and the distance of the generated networks from real PCNs spectra
was estimated. Successively, the LMGRS are reconfigured in order to improve their similarity in
average shortest path with the real PCN, obtaining the LMGRS-REC networks.

In this Chapter, we follow an alternative approach to the reconfiguration step. We focus
here on the spectral similarity [69] between the generated matrices and the experimental PCNs
under consideration. To this end, we exploit a evolutionary optimization scheme in which
networks are iteratively selected and modified according to a suitable fitness function. A similar
problem has been discussed in the works of Refs. [39, 84]. In these works, the problem consists
in reconstructing a matrix with a given normalized Laplacian spectrum. Whether and in which
cases the spectrum univocally determines the corresponding graph is still an open and difficult
problem, which is known as inverse spectral problem [77, 164, 165]. In fact, a straightforward
procedure for reconstructing a graph adjacency matrix from a given Laplacian spectrum is still
unknown. Moreover, there are known classes of co-spectral graphs, i.e., non-isomorphic graphs
exhibiting identical Laplacian spectra, for which such an operation would be impossible to
perform. Nevertheless, such classes are believed to be sufficiently rare in the networks space
and thus the Laplacian spectrum can be considered as a meaningful representation of most
topological properties of a graph and hence of the modeled system. However, in this work
we are interested in recognizing the common principles behind all the PCN topologies, so our
task is to find a graph that statistically resembles a typical, realistic PCN, without referring to
any particular protein. Therefore our objective is not to reconstruct a network with a given
normalized laplacian spectrum, but instead we aim at generating a network with a given
spectral density. In this context, we recall the concept of spectral classes of networks, mentioned
in Sec. 2.4 (see Refs. [14, 15, 70]), i.e., groups of networks which share similar spectral densities.
The proposed PCN generation method optimizes candidate solutions (i.e., graphs) in order
to minimize the spectral distance with respect to the PCN class. We show that our method is
capable of producing networks of varying, user-defined size, all having the very same spectral
density characteristic of the considered PCN ensemble. Finally, we complement the analysis of
the generated network spectra by studying the correlation properties of their Laplacians. This
is performed by borrowing the tools developed in the field of Random Matrix Theory [118],
which have been recently applied to network science [87, 88, 119].
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6.1 Spectral classes

The boundedness of the spectrum of the normalized graph laplacian operator in r0,2s, which
is independent of the number of vertices N, makes it a suitable tool to compare networks of
different sizes. Indeed, it is possible to treat a graph Laplacian as a random matrix [88] with
a well-defined spectral density ρpλ q. As discussed by Gu et al. [70], and mentioned in Sec.
2.4 matrices sharing a common normalized Laplacian spectrum density ρpλ q form a spectral
class. To estimate the spectral density of a given matrix, we employ the well-known kernel
density estimation (KDE) method equipped with a Gaussian kernel. Starting from the spectrum
λ pL q “ tλiu, we obtain the continuous function

ρpxq “
1
N

N´1
ÿ

i“0

1
?

2πσ2
exp

ˆ

´
px´λiq

2

2σ2

˙

, (6.1)

where σ is the kernel bandwidth. The spectral density ρ̄C pxq of a spectral class C “ tG1,G2, ...u,
or spectral class density (SCD), is defined as

ρ̄C pxq ” xρGpxqyGPC
, (6.2)

where ρG is the spectral density of a graph G P C . Notice that the exact spectrum of a spectral
class is not well-defined. The main assumption of this work is that the SCD of a set of networks
preserves (part of) the common characteristics in the structural organization of all networks of
the set. We also define the spectral distance dpG1,G2q between two graphs G1 and G2 as the `2

distance between their spectral distributions:

dpG1,G2q :“
ż 2

0
rρ1pxq´ρ2pxqs

2 dx, (6.3)

where ρ1pxq and ρ2pxq are, respectively, the estimated densities of λ pG1q and λ pG2q. Given
the boundedness of the normalized Laplacian spectrum, this transformation to a continuous
distribution allows us to compare spectra with a different number of eigenvalues in a natural
way, hence overcoming the problem of comparing networks having different sizes. Analogously,
the distance in eq. (6.3) can be readily extended to the distance of graph from a spectral class,
by writing

dpG1,C q :“
ż 2

0
rρ1pxq´ ρ̄C pxqs

2 dx. (6.4)

with ρ̄C pxq denoting the SCD of class C . The notion of spectral class is closely related to the
concept of random matrix ensembles, which will be formalized in the next section.

6.1.1 Random matrix theory

Random Matrix Theory (RMT) studies the properties of ensembles of random matrices [118].
RMT originated in nuclear physics for the analysis of the energy spectra of atomic systems.
According to RMT, the matrices of an ensemble can be seen as independent realizations of a
generalized random variable that possess common spectral and structural properties. From
a probabilistic analysis of the spectrum of such matrices it is possible to extract important
universal properties of the ensemble and of the underlying generating process. One of the most
famous results on the universality in RMT is the Wigner’s semicircle law, which demonstrates
that the spectral distribution of a large random matrix converges to a semicircular form over the
real line. The most common universal ensembles studied in RMT are the Gaussian Orthogonal
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Ensemble (GOE), Gaussian Unitary Ensemble (GUE), and Gaussian Symplectic Ensemble (GSE),
each one corresponding to different universality classes [118]. RMT has been successfully
applied also to matrices representing complex networks [88]. One of the most commonly used
statistics in RMT is the nearest neighbors spacing distribution (NNSD), which measures the
degree of repulsion between neighbouring eigenvalues in the spectrum. Computing the NNSD
of a spectrum allows to derive a universal law that measures the degree of repulsion of the
eigenvalues, regardless of their distribution over the real line. In fact, areas of higher (lower)
spectral density would lead to erroneously consider eigenvalues as more (less) attractive, and
hence hide the universal fluctuation properties (i.e., those independent from the particular
spectral distribution) of eigenvalue spacings.

For this reason, given a spectrum tλiu with spectral distribution ρpxq, it is common to
consider a new spectrum given by the values assumed by the cumulative distribution of ρpxq
evaluated at the points λi,

λ̄i “ Fpλiq “

ż

λi

0
ρpxqdx. (6.5)

This operation is called unfolding [118] and it allows to obtain a uniformly-distributed
spectrum with unitary mean spacing between eigenvalues. The spacings between eigenvalues
are then calculated as si“ λ̄i`1´ λ̄i. Since the functional form of the cumulative distribution is not
known when dealing with empirical data, it is customary to approximate Fpλiq by numerically
fitting a polynomial curve to the empirical eigenvalue distribution [4]. This operation is similar
to the detrending procedures employed in time series analysis for analyzing fluctuations of
nonstationary processes [63]. In the study of atomic energy spectra, Wigner hypothesized that
the closer one gets to a level, the smaller the probability becomes of finding another one. This
repulsion is well-described by the probability distribution [87]

Pβ psq “ Asβ exp
´

´Bsβ`1
¯

, (6.6)

which is called Wigner’s surmise for β “ 1 or Brody formula in its generalized form. In (6.6)

A“ p1`β qB and B“
”

Γ

´

β`2
β`1

¯ıβ`1
are two parameters; Γp¨q is the Gamma function. Pβ psq is the

probability of finding a spacing s between two consecutive eigenvalues λ̄i and λ̄i`1. The values
β “ 1,2,4 correspond to the GOE, GUE, and GSE ensembles, respectively. When β Ñ 0, instead,
Eq. (6.6) approaches the Poisson distribution, implying that the eigenvalues in the spectrum are
completely independent of one another.

To the best of our knowledge, all ensembles commonly studied in RMT consist of matrices of
the same size [63]. In this work, we will relax this constraint by studying ensemble properties of
several spectral classes of normalized Laplacian matrices of graphs having different dimensions.
Intuitively, this is allowed by the fact that the NNSD depends only on local fluctuation properties
of the eigenvalues, i.e., their first neighbours and not on the global organization of the spectrum.

6.2 Datasets

We consider three sets of networks, namely PCN, Bartoli et al. networks and LMGRS networks.
These sets are the same ensembles of networks considered in Chapter 5. More specifically,
the dimension and connectivity of each graph in each set has been chosen to resemble the
characteristic of a corresponding protein in the PCN set, for a total of 100 graphs for each set.
For each set of networks, we computed their SCD with the approach discussed in Sec. 6.1. We
refer to these densities as ρ̄PCNpxq, ρ̄Bartolipxq, and ρ̄LMGRSpxq, respectively.
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6.3 PCN reconfiguration by means of genetic algorithms

The objective of the reconfiguration is to optimize the graphs obtained through the LMGRS
method explained in Sec. 5.2. In particular, we aim for the minimization of the dissimilarity
between the normalized Laplacian spectrum of the graph to be optimized and the SCD of
the real PCNs. Our method is able to optimize one network at a time, having a specific
user-defined number of vertices N and edges E. A symmetric graph is composed of at most
E “ NpN´1q{2 edges, where N is the number of vertices of the graph. The backbone consists
only in the contacts between the amino acids at distance 2, i.e., edges pi, i` 2q, as the first
neighbors are trivial contacts given by the linear structure which are not informative of the
global contact organization of the protein and hence unnecessary for our representation. Since
the backbone contacts are fixed a priori, the remaining degrees of freedom for the contact
maps are Ẽ “ NpN´1q{2´2N`2, i.e. the total number of unconstrained possible edges, so the
search space dimension is 2Ẽ . For the networks under consideration, with a number of vertices
varying from 300 to 1000, the search translates to a combinatorial optimization problem with a
considerably large search space.

The objective function to be minimized must be representative of the distance between
the Laplacian spectrum λ pGq of a candidate solution graph G and the SCD ρ̄PCNpxq of PCN. A
convenient form for the objective function is thus

d̃wpG,PCNq “
ż 2

0
wpxq rρGpxq´ ρ̄PCNpxqs

2 dx. (6.7)

where ρGpxq is the estimated spectral density of the normalized laplacian spectrum of graph
G, as explained in Sec. 1.4. The distance d̃wp¨, ¨q reduces to dp¨, ¨q of eq. (6.4) when wpxq “ 1, as
defined in Eq. (6.3). The motivation for the choice of such a distance function will be given
in Sec. 6.4. To follow the common convention in evolutionary algorithms design, we define
the fitness as a function to be maximised, so for a given graph G its fitness function f pGq
corresponds to

f pGq “ ´d̃wpG,PCNq. (6.8)

Since the evaluation of the spectrum of a generic matrix is not available in closed form, and
the objective function (6.8) depends on the eigenvalues of the normalized laplacian matrix, the
optimization has to be carried out with a derivative-free optimization method. For this reason,
we employ a genetic algorithm [67] equipped with custom operators in order to perform the
search in the matrix space. Every candidate solution is an adjacency matrix that is represented
with a binary genetic code, where each gene encodes the presence of a specific edge of the
contact map (we remind that only non-backbone contacts are optimized). The initial population
of the genetic algorithm is composed by the set of LMGRS adjacency matrices of equal size N
and connectivity E. The flow of the genetic algorithm, as implemented in this work, is reported
below:

1. A population of Npop individuals (adjacency matrices) is generated according to the
LMGRS method presented in Sec. 5.2. The binary genetic code and corresponding fitness
of each individual is evaluated.

2. The population is grouped in Npop{2 randomly chosen pairs of individuals. For each pair,
with probability µcross, a crossover operator is applied and two new individuals - the
offspring - are generated, for an average total of Npop ˚µcross new individuals. The task of
the crossover is to attempt to generate individuals that share advantageous traits of both
parents.
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3. For each individual of the newly generated offspring, a mutation operator is applied with

probability µmut. This operator is needed to avoid trapping the evolution in local minima
and gradually refresh the gene pool - i.e. the unconstrained edges configurations.

4. The fitness value, related to the objective function to be minimized, is calculated for each
individual of the actual population composed by the previous population and for the
newly-generated offspring, for an average total of Npop`Npop ˚ µcross individuals. The
population is subsequently ordered by decreasing fitness values.

5. The new population is formed by keeping only the Npop fittest individuals, i.e. those
with higher fitness values, among the previous population and the offspring, while the
remaining individuals are removed.

6. Steps 2 to 5 are iterated until convergence of the fitness value, evaluated as a variation
threshold over a fixed number of iterations, or until a maximum number of iterations has
been reached.

In the following, the objective function and the main operators of the genetic algorithm are
described more in detail.

6.3.1 Genetic algorithm operators

In the preliminary stage of this study, several different operators of mutation and crossover
have been tested for the genetic algorithm. However, for the sake of brevity, in the following
we report the details only about the operators that have been actually used in this work.

Mutation For the mutation we used a custom version of the random shuffle operator. As
described above, each individual is randomly selected for the mutation with probability µmut.
When an individual is selected, each unconstrained edge of the corresponding graph (i.e.,
genes with value 1) has a probability of being randomly relocated with probability µp. The
new position of the edge in the adjacency matrix is then extracted according to the empirical
distribution of backbone distances already used for the creation of the LMGRS graphs and
shown in Fig. 6.1.

Crossover The crossover operator has been designed in a way to preserve secondary structure
elements, namely α-helices and β -sheets. In fact, as explained in Sec. 1.6, adjacency matrices of
proteins are typically characterized by a composition of similar higher-order structures, which
should be preserved in a crossover operation. However, the preliminary detection process of
known higher-order structures would add a considerable overhead to the crossover operation,
due to the need of calling each time an inexact motif recognition procedure, and would exclude
any other kind of network motifs potentially useful for the organization of the protein structure
but unknown a priori. For this reason, we introduce a more general heuristic for the crossover,
which we refer to as chessboard crossover. To preserve the higher-order organization of the mating
individuals, we divide each parent’s matrix in squares of equal size, as shown in Fig.6.1, where
the square’s side length is selected with uniform probability in the range rlmin, lmaxs, where
lmin, lmax are two user-defined parameters. Each diagonal square on the matrix represents a
randomly-defined backbone community, i.e., a subgraph with edges connecting only internal
nodes (intra-community links). Off-diagonal squares, instead, encode edges between different
backbone communities. This subdivision is justified by the fact that α-helices are secondary
structures that corresponds to edges between close amino acids on the backbone, as shown
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in Fig. 1.2, and hence correspond mainly to backbone communities. On the other hand, β -
sheets are composed by several parallel or anti-parallel sections of the backbone connected
laterally (β -strands), and can be composed by inter-community as well as intra-community
links. It is important to point out that the communities defined here are not intended in the
common graph theoretical sense as defined, for instance, in [176]. The two offspring are then
generated by randomly selecting the squares from each parent. In particular, for each square a
random variable distributed uniformly between 0 and 1 is extracted. If the extracted value is
ă 0.5pě 0.5q then the first (second) child inherits the corresponding genes from the first parent
and the second (first) child inherits the genes from the second parent.

While the mutation operator preserves the number of edges of the matrix, the offspring
resulting from a crossover have in general different connectivity. However, since this operation
is symmetrical and we start from graphs with equal connectivity E, we expect the mean
connectivity to remain approximately the same. This assumption has also been confirmed by
empirical evaluation. The individuals are selected in pairs for the crossover with probability
µcross.

Figure 6.1. Chessboard crossover between adjacency matrices. Each parent is divided in squares of size
c representing intra-community links (diagonal squares) and inter-community links (off-diagonal
squares).

6.4 Results

The three sets of networks considered – PCN, Bartoli and LMGRS – are each composed of
networks which exhibit very similar spectral distributions, as shown in Fig. 6.2. To quantify
this ‘spectral compactness’ of the ensembles and to compare their relative spectral differences
we computed the spectral distance between the normalized Laplacian of every graph and
the SCD of every set among PCN, Bartoli, and LMGRS. By considering each pair of classes
Cu,Cv P tPCN, Bartoli, LMGRSu, we calculated a matrix of average distance values given by:

du,v :“
A

d
´

ρLpxq, ρ̄Cv
pxq

¯E

LPCu

. (6.9)

Here du,v is the average over all matrices L̃ P Cu of the spectral distance between L̃ and the
SCD ρ̄Cv

pxq of the class Cv. The results are shown in Table 6.1. The elements on the diagonal can
be interpreted as the compactness of each set from a spectral point of view, while off-diagonal
terms describe the spectral overlap between different sets. It is worth noting that the definition
in Eq. (6.9) implies that the matrix du,v is not necessarily symmetric.

PCN is the most separated and compact cluster, while Bartoli and LMGRS denote some
overlap. This is expected, since synthetic ensembles have been generated with fairly similar
criteria. On the other hand, the compactness of the PCN ensemble is a hint of the basic tenet
of our study, i.e. that a “typical” and largely invariant topological model of a proper protein
molecule does exist in the networks configuration space.
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Figure 6.2. Colors online. Superposition of all the estimated spectral densities of the PCN, Bartoli
and LMGRS ensembles. The colored curves represent their respective SCDs. Notice that for each
ensemble all the curves follow a similar pattern.

To better visualize the position of the networks with respect to the spectral class representa-
tives, we performed a two-dimensional embedding of the spectral densities of all graphs. The
embedding has been achieved by uniformly sampling the spectral density of each graph and by
transforming the resulting space with a principal component analysis. We retain the first two
principal components, which account for „ 89% of the total variance. The results are shown in
Fig. 6.3. Each data point is a network belonging to a class and the large filled dots represent the
spectral class centres. The radius of the dashed circles represents the compactness of the cluster
and corresponds to the diagonal elements of du,v.

Table 6.1. The diagonal elements correspond to the mean distance between each network and their own
class’ SCD, so they measure the compactness of the cluster. The off-diagonal elements are instead a
measure of the clusters separation, each one being the mean distance of networks of a given class
with respect to another class’ SCD.

ˆ PCN (SCD) Bartoli (SCD) LMGRS (SCD)
PCN 0.2389 0.8483 0.7394

Bartoli 0.8540 0.2541 0.4278
LMGRS 0.7551 0.4376 0.2762

Looking at Fig. 6.3, it is evident how real PCNs occupy a different region of the space with
respect to simulated models. This points to the need to fill this gap with additional refinements.
Notably, we complement the a priori approach by exploiting a purely data-driven empirical
procedure.

We tested the genetic algorithm reconfiguration method herein developed by performing
the optimization for 10 different graphs, with number of vertices/edges randomly selected
among the real values taken from the PCN set. In the following, we denote these new networks
as the LMGRS-GEN ensemble.
As a first test, the weighting function of the distance d̃p¨, ¨q in Eq. (6.7) was set as a constant. Even
if this choice seems intuitively the most unbiased, it does not lead to an effective optimization
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Figure 6.3. Colors online. Each point is a network and the large filled dots are the spectral class centers.
The radius of the dashed circles represents the compactness of the cluster and corresponds to the
diagonal elements of du,v. Notice the overlap between Bartoli, and LMGRS, which are generated with
fairly similar processes.

of the spectrum in reasonable computing time. In fact, with such a weighting we observed
that the reconfiguration is strongly biased in optimizing the rightmost part of the spectrum of
the target density, i.e., the higher eigenvalues. The leftmost part, instead, is not satisfyingly
optimized (details not shown here). A reason that explains this behavior lies in the structure of
the normalized Laplacian spectrum. It is well-known that the leftmost part of the normalized
Laplacian spectrum is related to the global, modular organization of the network [122]. In
particular, the magnitude of the first nonzero eigenvalue, the so-called spectral gap, gives
information on the separation of different modules and many other properties related to
diffusion and synchronization processes [107]. It is hence reasonable to assume that the left-
most side of the spectrum controls mostly the global features of the graph topology, while the
right-most part is related to the local traits. Therefore, the right-most part of the spectrum should
be considered as “easier” to reproduce. Indeed, the same variation on different eigenvalues can
have significantly different effects on the network’s global structure, depending on how much
they differ in rank in the spectrum. In these cases, a weighting function is a convenient way to
encode in the algorithm a priori information on the relative importance of different sections of
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Table 6.2. Matrix of distances of LMGRS-GEN networks with respect to the PCN class and β values of

the corresponding NNSD.

ID N E Distance β

M385 385 1573 0.0421 1.0499
M400 400 1583 0.0404 1.0786
M428 428 1683 0.0350 0.8696
M445 445 1794 0.0338 0.8905
M509 509 2039 0.0368 0.8988
M509 547 2181 0.0370 0.8388
M600 600 2382 0.0395 0.9389
M702 702 2775 0.0341 1.1109
M811 811 3215 0.0294 0.9485
M938 938 3706 0.0323 0.8288

the spectrum and to establish different priorities in the optimization. For this reason, in our
work we have used exponentially decaying weights in Eq. (6.7), as depicted in Fig. 6.4. In the
figure is shown the SCD of PCN alongside the weighting function wpxq.
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Figure 6.4. Weight function wpxq (gray dashed line) of the distance defined in Eq. (6.7). The solid line is
the SCD of PCN.

The genetic algorithm has been executed in all experiments described in Sec. 6.4 with the
parameters Npop “ 100, µmut “ 0.05, µp “ 0.01, µcross “ 1, nsel “ 50.

The results of the optimization are shown in Table 6.2. For each pair pN,Eq of graph
dimension and connectivity values, the spectral distances obtained are very small with respect
to the mean distances shown in Table 6.1. Notice that while the optimization has been carried
out with the weighted objective function described by (6.7), the distances shown in Table 6.2 are
calculated with the original unweighted distance of eq. (6.3), and they are considerably lower
than the initial mean distances of the original populations of LMGRS networks. This confirms
that the optimization of the weighted distance (6.7) has led to a successful optimization of the
unweighted distance (6.4) as well. It is also important to point out that the chosen values for
pN,Eq are not guided by some constraint and, in principle, our reconstruction method allows to
generate (i.e., reconfigure) graphs of arbitrary sizes. The meaning of the column indexed with β

will be explained later.
In Fig. 6.5 we show a comparison of the spectral density of one of the LMGRS-GEN graphs,
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namely M385 (385 vertices and 1576 edges), with respect to all SCDs under consideration. It is
possible to notice a significant improvement in accuracy with respect to the SCD of LMGRS
networks. In fact, the graph spectral density of M385 is nearly indistinguishable from the SCD
of PCNs. It is worth focusing the attention on the left part of the spectrum, corresponding to the
modular organization of the network, which is a fundamental property of the protein structure.
The results about other LMGRS-GEN networks are similar and are not shown here only for the
sake of brevity.

In Fig. 6.6 it is possible to observe a sample of an adjacency matrix with 385 vertices and
1576 edges taken from each ensemble. As it is possible to notice even by a visual inspection,
the genetic algorithm based reconfiguration produces a more realistic matrix with respect to
Bartoli and LMGRS. Even if there are no evident secondary structure elements, it is possible
to recognize some common features between PCN and LMGRS-GEN in the coarse-grained
organization of edges. Instead, the LMGRS model captures only the prior distribution of
edges as a function of the backbone distance. In Fig. 6.7 are shown the distributions of
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Figure 6.5. Colors online. Comparison of SCD for PCN (thick, blue), Bartoli (red, dashed), LMGRS
(green, dashed), and the spectral density of M385 of LMGRS-GEN (yellow, dashed). The SCD of
PCN and the spectral density of M385 are nearly identical.

several topological properties of LMGRS-GEN with respect to the LMGRS and PCN networks,
specifically the average clustering coefficient (ACC), the degree assortativity coefficient (DAC),
the average shortest path (ASP) and the modularity (MOD). As it is possible to observe, LMGRS-
GEN are much more similar to PCN in terms of average clustering coefficient and modularity
with respect to LMGRS. The improvement in similarity of these two properties can be explained
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Figure 6.6. Comparison of the adjacency matrices of LMGRS (left), LMGRS-GEN (middle), and PCN
(right). Notice that LMGRS and LMGRS-GEN are not designed to be the exact structural recon-
struction of the PCN shown on the right. In fact, they are conceived to statistically approximate the
spectral properties of a typical PCN.

by considering that the modular organization and the distribution of triangles in a network are
strictly related to the spectral properties of its corresponding normalized laplacian [16, 138].
Conversely, LMGRS-GEN networks do not show significant improvement in terms of degree
assortativity and average shortest path. This discrepancy can be interpreted by considering
the fact that the average shortest path and the degree assortativity coefficient are properties
that are significantly related to the underlying tridimensional nature of proteins, a feature that
is not directly enforced in the optimization. In fact, since protein contact networks have to
satisfy physical constraints given by the spatial dimensions of residues, many possible network
configurations are not allowed and the average shortest path is generally longer. In the same
way a higher assortativity, corresponding to the tendency of nodes with similar degree to be
connected, is expected in 3D structures because of the correspondence between node degree
and local residue density. Areas with higher local density of residues, in fact, will correspond
to groups of high degree nodes connected with each other, while the opposite holds for low
density areas.

Let us now discuss the results obtained for LMGRS-GEN in terms of RMT. Even if the
spectral density captures many important structural and dynamic aspects of a network, another
important role in defining the global organization is played by the correlations between the
eigenvalues [88]. In fact, as confirmed by the Wigner’s semicircle law, networks with signifi-
cantly different structures can lead to the same spectral class distribution [118]. Accordingly,
we have analyzed the correlation properties of the LMGRS-GEN spectra with respect to PCN.
We have calculated the NNSD for each single LMGRS-GEN and PCN network as well as the
ensemble NNSD of PCN. The obtained spacing distributions are then fitted with the Brody
formula (6.6). The results of the calculated βs are shown, as a function of network size, in Fig.
6.8. The value of βPCN “ 0.8826 obtained for the PCN ensemble denotes more consistency with
the GOE ensemble. The β values oscillate between 0.7 and 1.1, so the different networks in
the PCN ensemble have similar correlation properties, which are independent with the size of
the network. The spread of β on the domain is reasonable, given the structural and functional
diversity of the chosen PCNs of the original dataset [106]. The NNSD of LMGRS-GEN networks
yields the β values reported in the last column of Table 6.2. These values are well-embedded
in the PCN bulk, so we can conclude that also the correlation properties of the LMGRS-GEN
eigenvalues are similar to those characterizing real PCNs. Finally, in order to numerically justify
the method presented in Sec. 6.1.1 to calculate the NNSD of an ensemble containing matrices
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Figure 6.7. Colors online. Boxplots of the distributions of the topological properties of the LMGRS-GEN
with respect to LMGRS and PCN. The red marker represents the median value, the box is bounded
by the 1st and 3rd quartiles and the whiskers’ extent is 1.5ˆ IQR where IQR is the interquartile range.

of different sizes, we have also calculated the mean of the β values of PCN and compared it
to βPCN. The outcome is β̄PCN “ 0.8826, which is equal to βPCN, so we conclude that the result
for the ensemble NNSD is consistent. These results suggest a further analysis of the residual
differences in the spectra also in terms of long-range correlations, for instance by evaluating
their ∆3 statistics [118].

6.5 Discussion

In this Chapter, we have analyzed the structural organization of protein contact networks by
focusing the analysis on their normalized Laplacian spectra. Starting from an a priori generative
model of a typical protein contact map, we developed an optimization method based on genetic
algorithms that rewires the edges of the synthetic map in order to optimize the similarity of
their normalized Laplacian spectrum distribution with the spectral distribution of the ensemble
of all available protein contact networks. This problem is similar to the inverse spectral problem,
with the important difference that the target spectrum that we wanted to reproduce is an
average kernel-estimated density. Therefore, in practice it does not correspond to any specific
graph of the dataset, but it is simultaneously similar to every spectrum of the class, assuming
homogeneity among the constituting spectral densities. This allows us to investigate properties
that are common among all the considered proteins, while washing out the details and statistical
fluctuations of the single elements. The reconfigured networks generated by the proposed
procedure, LMGRS-GEN, are significantly closer, in terms of spectra and several topological
properties, to the real protein contact networks, while their adjacency matrix does not clearly
show secondary structure elements. This raises the question of whether the new networks act as
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Figure 6.8. Colors online. Calculated values of β (6.6) for single matrices of PCN and LMGRS-GEN
networks (black circles and red stars, respectively) and value of βPCN (dashed line). The error bar is
the mean-square error of the fit and the dashed line represents βPCN.

a sort of “effective model”, which reproduces the spectral properties of the real proteins while
still being different in some aspects of the structural organization. This is reasonable and to
some extent expected, since real proteins have to satisfy physical constraints that significantly
reduce the space of realizable contact maps [55, 166]. In this work, however, we are interested
in basic topological design principles, without focusing on the physical substrate of a protein.
As a consequence, physical constraints have not been explicitly included in the optimization
process and the result is that LMGRS-GEN networks have more degrees of freedom in the
possible configurations that they can assume. Arguably, each of these networks represents an
“average topology”, built according to design principles encoded implicitly in the averaged
Laplacian spectrum density – i.e. the SCD of PCNs – and common to all the considered PCNs.
According to this point of view, high-level features, like secondary structure elements, are
filtered out as being part of the particular characteristics of single networks/proteins. This is
supported by the fact that in every protein the number, dimension, and position of α-helices
and β -sheets can vary significantly. Another point to consider is the fact that these networks
have been optimized in order to resemble only the static functional form of the PCN spectral
class density, without explicitly taking into account the correlations between single eigenvalues
in the spectrum. Even though the results in Sec. 6.4 already show a good agreement in
first-neighbor correlations between PCN and LMGRS-GEN, an interesting development in
this direction would be to design an improved optimization problem in which higher-order
and/or long-range correlations between eigenvalues are taken into account. In conclusion, the
future directions for this work are several, notably (i) the inclusion of realizability criteria in
the generation/optimization of adjacency matrices in order to satisfy the physical constraints
of real proteins; (ii) the analysis of the impact of higher-order and long-range correlations
between eigenvalues in the global organization of proteins via random matrix theory. While
the first direction is more concerned with protein physical properties, in the second case the
problem is approached from a purely abstract point of view. This allows for the study of the
universal properties of the normalized Laplacian of a graph and its role in the generation of
complexity, which could then be applied to other fields where the structural organization and
dynamical properties of a network are central issues in the understanding of the system under
consideration.
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Appendix A

Echo State Networks

ESNs belong to the class of computational dynamical systems, implemented according to the
biologically-inspired reservoir computing approach [112]. An input signal is fed to a large,
recurrent and randomly connected hidden layer, the reservoir, whose outputs are combined by
a memory-less linear layer, called readout, to solve a specified task. ESNs have been adopted in
a variety of different contexts, such as time series prediction [26], static classification [6], speech
recognition [154], adaptive control [75] harmonic distortion measurements [115] and, in general,
for modeling of various kinds of non-linear dynamical systems [74]. A schematic depiction of
an ESN is shown in Fig. A.1.
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Figure A.1. Schematic depiction of an ESN.
The circles represent the input variables
u, the state variables h and the output
variables y. The squares depicted with
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linear transformation performed by neu-
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The current output of an ESN is computed in two distinct phases. First, the Ni-dimensional
input vector uptq P RNi is given as input to the recurrent reservoir, whose internal state hpt´1q P
RNr is updated according to the state equation:

hptq “ fres pWr
i uptq`Wr

rhpt´1q`Wr
oypt´1qq , (A.1)

where Wr
i P RNrˆNi , Wr

r P RNrˆNr and Wr
o P RNrˆNo are randomly initialized at the beginning of

the learning process, and they remain unaltered afterwards. fresp¨q in Eq. (A.1) is a suitable
non-linear function, typically a sigmoid, and ypt´1q PRNo is the previous output of the network.
In our case, we have fresp¨q “ tanhp¨q. In the second phase, the ESN prediction is computed
according to:

yptq “Wo
i uptq`Wo

r hptq , (A.2)

where Wo
i P RNoˆNi ,Wo

r P RNoˆNr are trainable connections. The difference between fixed and
adaptable weight matrices is shown in Fig. A.1 with the use of continuous and dashed lines,
respectively.

Finally, a few words should be spent on the choice of the matrix Wr
r. According to the ESN

theory, the reservoir must satisfies the so-called “echo state property” (ESP) [112]. This means
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that the effect of a given input on the state of the reservoir must vanish in a finite number of
time-instants. In this paper we adopt the widely used rule-of-thumb that suggests to rescale the
matrix Wr

r to have ρpWr
rq ă 1, where ρp¨q denotes the spectral radius.

To determine the weight matrices of the readout, let us consider a training sequence of Ttr
desired input-outputs pairs tuptq,dptquTtr

t“1, where the output is given by dptq “ upt` τ f q. Here,
τ f defines the forecast horizon (or step ahead) considered in the prediction, i.e. how far ahead in
time the input signal must be predicted. In the initial phase of training, called “state harvesting”,
the inputs are fed to the reservoir in accordance with Eq. (A.1), producing a sequence of internal
states thptquTtr

t“1. Since, by definition, the outputs of the ESN are not available for feedback, the
desired output is used instead in Eq. (A.2) (the so-called “teacher forcing”). The states are
stacked in a matrix H P RTtrˆNi`Nr and the desired outputs in a vector d P RQ:

H“

»

—

–

uT p1q, hT p1q
...

uT pTtrq, hT pTtrq

fi

ffi

fl

, (A.3)

d“

»

—

–

dp1q
...

dpTtrq

fi

ffi

fl

. (A.4)

The initial D rows from Eq. (A.3) and Eq. (A.4) should be discarded, since they refer to a
transient phase in the ESN’s behavior. We refer to them as the washout elements.

At this point the resulting training problem is a standard linear regression, which can be
solved in a large variety of ways. We used the least-square regression, which is the algorithm
originally proposed for training the readout [85]. It consists in the following regularized
least-square problem:

w˚ls “ arg min
wPRNi`Nr

1
2
‖Hw´d‖2

2`
α

2
‖w‖2

2 , (A.5)

where w“ rwo
i wo

r s
T and α P R` is a positive scalar known as regularization factor. A solution of

problem (A.5) can be obtained in closed form as:

w˚ls “
`

HT H`αI
˘´1 HT d . (A.6)

Whenever Nr`Ni ą Q, Eq. (A.6) can be computed more efficiently by rewriting it as:

w˚ls “HT `HHT `αI
˘´1 d . (A.7)

Once the readout layer is trained, when the network is fed with an unseen input signal uptq,
with t ą Ttr, it returns a predicted value ŷptq “ upt` τ f q, according to the step ahead τ f defined
in the training phase.
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Conclusions

In this thesis we explored the organization principles between protein structure by means of
their network representation. By employing several techniques of graph theory, computational
intelligence and machine learning we showed that Protein Contact Networks have many pecu-
liarities that distinguish them from other kinds of networks. The normalized graph Laplacian
representation, related to the properties of connectivity and diffusion along the networks edges,
is at the heart of this analysis. The study is structured in two main phases. An analysis phase
where we employed several graph-theoretic tools to investigate the structural properties of
Protein Contact Networks and compare them with several other biological networks, and a
generation phase, where we designed a generative model capable of generating networks that
present such features. In the first phase we extracted the heat kernel operator as the solution
of a first order differential equation dependent of the Laplacian. From the heat kernel we
obtained several graph invariants related to the heat diffusion on the graph, namely the heat
trace, heat content and the heat content invariant coefficients. By embedding these quantities
in a suitable vector space composed by several groups of biological and synthetic network
we were able to observe the descriptive capability of the considered heat kernel invariants
in distinguishing different kinds of networks. By means of a Canonical Correlation Analysis
we measured an agreement in description between the heat kernel spaces and the space of
topological features, directly extracted from the networks. This allowed us to consider the heat
kernel invariants as an indirect yet meaningful representation of the main topological features
of PCN. We then defined the concept of spectral ensembles, i.e. groups of network with similar
spectral distributions, and the ensemble heat trace as a function of network size for a fixed time.
By studying the linear fitting slopes of the ensemble heat trace we obtained a characterization
of the heat trace decay of the whole ensemble, from which we observed that heat diffusion
on PCN is described by two different regimes. After a first phase of normal diffusion, for
longer times the heat presents a subdiffusive behavior. This graph-theoretic observation is
supported by experimental measurements on energy flow and vibrational dynamics. Moreover,
this property is not observed on any other analyzed network, including the network generated
with the scheme proposed in Bartoli et al. [20]. This result highlights a considerable difference
in wiring organization between Protein Contact Networks and the Bartoli networks. The second
part of the analysis regards the study of random walks on networks. In this part we studied
PCN structure from a different viewpoint. We setup a random walk process on the graph’s
topology and at each time we evaluated several local node observables, namely vertex degree,
vertex clustering coefficient and vertex closeness centrality. We then proceeded to analyze
these time series by means of Multifractal Detrended Fluctuation Analysis, in order to find
the trace of long term correlations in data. From the results we obtain that for PCN the time
series of all observables are persistent, indicating a strong assortativity of the corresponding
network. On the other hand, also in this case the synthetic networks from the Bartoli ensemble
do not capture this persistence property. Successively, we presented a methodology to perform
a detrending of time series in a data-driven way, by employing Echo State Networks. In several
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synthetic and real-world tests the technique showed state-of-art performances in filtering the
nonlinearities from the time series. We then proceeded to the second phase about the generation
of statistically realistic protein contact networks. In a first work, we proposed a variant of the
Bartoli model. In our scheme, the connection probability between two residues is evaluated
from the empirical frequencies observed in a dataset of real Protein Contact Networks. With
this modification the new generated LMGRS networks present an improved similarity both in
heat trace and in spectral distribution to the real PCN. They show an increased subdiffusive
character with respect to the Bartoli networks, even if to a lesser extent with respect to PCN.
We also evaluated the spectral distributions of LMGRS, Bartoli and PCN and found LMGRS
closer to PCN, especially in the left part of the spectrum. In further analysis we measured
a discrepancy in the value of the average shortest path of LMGRS with respect to PCN. To
alleviate this difference, we performed a reconfiguration step aimed at decreasing the small
world character of LMGRS, obtaining the LMGRS-REC ensemble. In a last work, we set an
optimization problem. The objective of the optimization is to obtain networks with a spectral
distribution identical to the one of PCN. This objective is achieved with the use of a genetic
algorithm, equipped with custom-designed operators. Further analyses on the topological
properties of the generated networks, LMGRS-GEN, revealed that the new networks have
increased similarity to PCN in terms of modularity and average clustering coefficient.

In these works we showed how the descriptive power of the network representation and
the versatility of computational intelligence techniques allow to gain considerable insights
on protein structure, without considering further chemical details. The improvement of such
methodologies is a key in tackling problems as complex as protein folding and to pave the way
for the discovery of universal principles at the basis of biological organization.
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