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Chapter 1: Resistive Switching Memories

1 RESISTIVE SWITCHING
MEMORIES

Resistive Switching (RS) Memories, or Resistive Random Access Memory (RRAM),
are one of the most promising candidates for Non-Volatile Memory applications. In
this chapter, after an introduction to the NAND Flash memory main characteristics and
limits, Resistive Switching Memories are presented. Electrical behavior, materials and
integration schemes will be described. An overview of the physical mechanisms
governing the switching phenomena and the electrical conduction will be given. In the
tollowing paragraphs the state of the art of released prototypes and open issues will be

addressed. A comparison between RRAM and memristors closes the chapter.
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Emerging Resistive Switching Memories and Neuromorphic Applications

1.1 Non-\Volatile Memories: NAND Flash

1.1.1 Introduction

Two key categories of electronic memory are volatile and nonvolatile. In general,
volatile memories lose their bit state when the power is removed and nonvolatile
memories retain this state for an extended period of time. This period is known as the
retention time. Typical nonvolatile memories are expected to have a retention period of
10 years [1], whereas volatile memories like dynamic random access memory (DRAM)
retain the bit state for less than 1 s [1]. Sequential and random access is another
important distinction between modern electronic memories technologies. A random
access memory (RAM) can access all bits with equal effort. The time needed to access a
bit of data is known as latency. In general a RAM has a low bit access latency. There are
two kinds of RAM, as shown in Figure 1.1: DRAM, where data is stored on capacitors
and requires a periodic refreshment, and Static RAM (SRAM) where data is retained as
long as there is power supply on. Some memory technologies like NAND flash are
written in blocks, and thus are not considered a true RAM. However, because each

block can be addressed individually, NAND flash is considered a hybrid.

. Semiconductor
Volatile — | L Non-volatile
l Memory

RAM NVM
| |
b v " ! A b
DRAM SRAM Floating Charge Emerging ROM &
Gate Trapping Fuse

v J v
FeRAM MRAM PCM

Figure 1.1 Semiconductor memories overview
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Chapter 1: Resistive Switching Memories

The terms set, write, and program are often used to refer to the operation of switching a
memory cell to the “1” state. This “1” state is often referred to as set, programmed, or
on. Conversely, the terms reset and erase usually refer to the cell switching to a “0” state.

Hence, the “0” state is referred to as reset, erased or off.

1.1.2 NAND Flash
With the recent strong increase in the demand for data storage, NAND Flash has

solidified its leading position among different storage devices for the smallest chip size
and cheapest bit cost [2]. The scaling in NAND Flash technology has progressed

aggressively and successfully with trend shown in Figure 1.2.
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Figure 1.2 The scaling trend of floating gate NAND Flash cell over 10 years [2]

During the past years, the dimension of NAND Flash cell has shrunk dramatically. Due
to this aggressive scaling, the chip production cost has become cheaper year-to-year by
~40% and consequently the market demand for NAND Flash memory has rapidly
increased in many new consumer electronic applications such as MP3, SSD, USB pen

drives, Tablets, Smart Phones and Memory Cards as depicted in Figure 1.3.
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Figure 1.3 The growth of NAND Flash market [3]

The competition of scaling down technology is getting harder in the NAND industry.
The current NAND Flash cell, the Floating Gate (FG) structure, is facing new

technological challenges approaching the 10nm dimension. Major concerns are related

to [4]:

e  Physical dimension

e  Electrical isolation

e Read window margin.
1.1.2.1 NAND Flash scaling issues
In Figure 1.4 a) is sketched the concept structure of the Floating Gate structure.
Basically it is a transistor MOSFET with two gates: the accessible Control Gate (CG)
and the charge storage gate called Floating Gate capacitively coupled with the CG.
Since the FG is completely surrounded by insulating material, the charge stored in it is
retained for long periods of time. Usually Fowler-Nordheim (FN) tunneling and hot-

carrier injection mechanisms are used to modify the amount of charge stored in the FG.
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Figure 1.4 a) Floating Gate basic structure where CG is the control gate, FG is the
floating gate, Ccg, Cs, Cp and Cp are the control gate, source, drain and bulk

capacitances; in b) the scaling trend of the physical parameters

The operations of NAND flash memory are based on the storage of electric charge for
writing/erasing and the sensing of the charge (current) for reading out the data. Thus,
the intrinsic nature imposes limitations on the thickness of the dielectrics (the tunnel
oxide and the inter-poly dielectric) which should be thicker than a minimum thickness
required to reduce the charge loss as much as possible. This limitation is the origin of

most of the scaling issues in NAND flash memory [5].

(1) Cell-to-cell interference
n (2) Hot-carrier disturbance (GIDL/DIBL)

(3) Number of electrons

(4) Channel boosting potential
(5) PGM/ERS V't window

(6) Reliability window

(7) ArF Photo limitation | | | \
. (8)IPD thickness limitation |/ W) v \
Design Rule Substrate
(a) (b)

Figure 1.5 Scaling limitations and trends in NAND flash memory.

As shown in Figure 1.5, with the scaling of the device, most of the electrical properties

have become worse. The cell-to-cell interference and the hot-carrier disturbance have
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been increasing as the cells are scaling down continuously. The number of electrons in
stored in the FG, the channel boosting potential, Program/Erase (PGR/ERS) threshold
voltage (V7) window, and reliability window are decreasing continuously. Finally, the
thickness of IPD occupies a significant portion in the cell dimension because other

dimensions have reached a comparable thickness with IPD.

The first critical issue of scaling down the NAND flash memory is the cell-to-cell
interference. The cell-to-cell interference is a V7 shift of a monitored cell when V7 shift
of a neighbor cell takes place due to the fringing electric field. The interference is
inversely proportional with the cell dimension and it depends to the fixed thickness of
the tunnel oxide and the IPD. Some solutions have been developed to reduce the
interference by the change of the gate spacer from nitride to oxide and an introduction

of air-gap both in the gate space and the active space [6].

Regarding hot-carrier disturbance by the boosted channel potential, as shown in Figure
1.6, most of the electrons are supplied by Drain Induced Barrier Lowering (DIBL)
Gate Induced Drain Leakage (GIDL) at the Ground Select Line (GDL) transistor.
Electrons are accelerated by the lateral electric field and injected into the GDL
transistors [7]. The channel potential may reaches 5~10 V by a self-boosting of channel
to suppress the disturbance in not selected lines. The channel boosting potential cannot
be scaled down with the PGR/ERS voltages because it depends on the electric field.
Thus, the hot-carrier disturbance becomes more serious as the thickness of the tunnel

oxide and the IPD shrinks with the same operating voltage.

12 Paolo Lorenzi — PhD Thesis



Chapter 1: Resistive Switching Memories

Figure 1.6 A hot-carrier disturbance mechanism. The potential diagram explains hot-

electron injection generated by GIDL current at GSL transistor

The reduction in FG capacitance, proportional to the ratio between the FG area and
the tunnel oxide thickness, caused by the technological shrink continuously reduces the
number of electrons stored in the FG per unit voltage and the reliability strongly
deteriorates as the number of electrons available for data storage becomes less than 10.
Then, the amount of V7 shift by one electron increases and becomes a range of 0.1 V,

hence it increases the dispersions of the cell 7 during operation [5].

The electrical coupling ratio, defined as the ratio between the control gate capacitance
and the total gate stack capacitance, should be kept higher than 0.6 in order to achieve
good control. To get this coupling value, scaling of tunnel oxide and IPD thickness is
very critical and has to be managed very conservatively, as shown in Figure 1.4 b), for
satisfying reliability constraints. Erase operation occurs either through electron de-
trapping from the FG or hole injection from the substrate into the storage layer; at the
same time, such operation causes an electron injection from the control gate to the
storage layer through Fowler Nordheim (FN) tunneling, and this is the reason for the

Paolo Lorenzi — PhD Thesis 13
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erase saturation problem [5]. The InterPoly Dielectric (IPD), the dielectric between the
control and the floating gate, becoming thinner with technology shrinkage will increase
this effect. This is caused by the increased electric field in the IPD and it will deteriorate
the saturation level of the threshold voltage Vt.

| oy | g L
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-I |_ BL-BL
AT AT I BL - BL = Bit Line to
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to Word Line
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H . l I AG = Advanced

u Gate Technology
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(AG) (AG)

FLASH TECHNOLOGY NODE
Figure 1.7 Cell to Cell coupling ratio trend versus technology node [8]. In the inset are

sketched the parasitic capacitances surrounding the floating gates.

In the basic conventional concept, the FG voltage was determined by the control gate
voltage through a coupling effect. As the design rule of NAND Flash memory is scaled
down, however, parasitic capacitors surrounding the floating gate, as shown in the inset
of Figure 1.7, should be involved to explain the secondary effects occurring in the cell
operation. The FG voltage is determined by not only the corresponding control-gate
voltage but also by the voltages of the surrounding floating gates and the control gates.
Hence, a phenomenon called “floating-gate interference,” occurs, in which change of a
cell accompanies threshold voltage shift of the adjacent cells by floating-gate voltage

shift [9]. In other words, the floating-gate voltage is coupled by the floating-gate
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Chapter 1: Resistive Switching Memories

voltage changes of the adjacent cells via parasitic capacitors in the same manner as the
control-gate voltage. Then a floating-gate interference coupling ratio can be defined. In
Figure 1.7 is shown the influence of the parasitic effects due the increase of the coupling
factor with the progress in the dimension limit for the technological processes. As the
scaling of floating gate cell is proceeded, the Word Line (WL) to- WL and Bit Line
(BL)-to-BL spaces decrease and the capacitive coupling between WL’s and BL'’s

become stronger.

The interface trap generation and the oxide bulk trap dominantly determine the
reliability of NAND flash memory [10]. Due to trap assisted leakage, the thickness of
the oxides cannot shrink too much. If the oxide is too thin, even the presence of few
traps can be sufficient to discharge the FG in not acceptable time range. The trap
generation mechanisms are much faster at the corner of the cell transistor, hence an
increased trap generation at the corner of the active and the gate makes the reliability
window decrease as the cell dimensions shrink [10, 11]. Furthermore, an increased

lateral E-field between the WLs generates more traps in the cell [5].

Many researches are being conducted in extending the FG technology and resolve the
mentioned issues. 3D cell structure has been studied as an alternative solution to
overcome the scaling limitation and increase the bit density. The 3D NAND Flash
memories can be classified largely into two groups according to the gate and channel
directions. In a vertical channel (VC) scheme, WLs are stacked on Si substrate [12]. By
digging holes through the stacked WLs, vertical tube-shaped strings are formed and
poly-Si channels are plugged-in. On the other hand, a vertical gate (VG) scheme has

stacked channels with subsequent deposition of the storage layer and gate materials
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[13]. Through the advantages of the gate-all-around or dual-gate structures combined
with the extended DR, cell current increases by ~ 2 times. In addition, subthreshold
swing decreases by ~ 30 % despite the carrier mobility degradation by ~ 85 % due to the
use of poly-Si channel, the high aspect ratio-induced process limits and complexities in

decoding circuit.

In order to keep pursuing the scaling, there are two guide lines to follow: the
optimization of the FG basic cell and array architecture and the proposal of new device
structures with innovative operating concepts. Both the guide lines are currently
experienced worldwide. So, in the last years, innovative concepts have been proposed,
alternative to the conventional FG technology, as shown in Figure 1.1: silicon nano-
crystals [14], SONOS [15-17] and TANOS [18-20], Magnetic RAM [21,22],
Ferroelectric RAM [23] and Resistive Switching Memories, often referred as Resistive

RAM (RRAM). In this thesis, we will focus on the Resistive Switching Memories.

1.2 Resistive Switching

The existence of the abrupt electrical switching event in oxides (insulator materials),
that brings the material into a conductive state has been known for over 40 years. As
shown in Figure 1.8, the first observations on these resistive switching phenomena were

reported in the 1960s [24-27].
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Figure 1.8 Some of memory/threshold switching in various oxide films already reported

in 1960s

In its basic form, the device structure is an oxide material sandwiched between two
metal electrodes, called bottom and top electrodes (BE and TE). The stack is a well-
known metal-insulator-metal (MIM) structure. After the first works those reports
remain in the domain of scientific studies. The recent revival of interest in resistive
switching began in the late 1990s, first with complex metal oxides such as the pervoskite
oxides of SrTiO3 [28], SrZrO3 [29], but later a strong interest has grown around
binary metal oxides such as NiO [30] and TiO2 [31]. The research activities had a
sensible increase after the International Electron Devices Meeting of 2004, where
Samsung presented NiO-based memory cells integrated in a CMOS compatible process
with a one-transistor—one-resistor (1T1R) device structure [32]. In that work a full
electrical characterization data were presented including data retention, endurance, and
programming/erasing characteristics suggesting that a memory technology based on

resistive switching may be feasible. During these years, various acronyms such as
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OxRAM, ReRAM, and RRAM, have been used in the literature for these devices that
exhibit RS between a high-resistance state (HRS) and a low-resistance state (LRS).
The expectation for RRAMs is that it will be a memory technology that can be easily
integrated with conventional CMOS technology, using a materials compatible with the
conventional CMOS fabrication environment and process temperatures that allow it to
be fabricated in the Back End Of Line (BEOL), so on the metal layers or within the

contact vias to the source and drain of a metal— oxide—semiconductor field-effect

transistor (MOSFET) of a CMOS chip [33].

Storage Class
Memory:
Emerging NVM

Nonvolatile

Scalable
Fast

Low power
Inexpensive

/ Archive: Magnetic Disks \

Figure 1.9 Simplified memory hierarchy [34]

In a computing system architecture to obtain the quantities of memory needed to
perform useful computations and store large numbers of variables, a combination of
high performance/low capacity (SRAM, DRAM) and low performance/high capacity
memory must be used (Magnetic Disk). The modern memory hierarchy is often
represented as a triangle (Figure 1.9) where the tip indicates a very small amount of very

high performance memory, and ranges through the massive, slow archival storage at the

18 Paolo Lorenzi — PhD Thesis
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base. A new memory class, called Storage Class Memory (SCM) [34] with specific
characteristics in between the ones of the extremes of the pyramid represented in Figure
1.9. is becoming important in order to fill the gap in the performances of fast but
expensive.  SRAM and non-volatile cheap magnetic hard disk. Due to their

characteristics, Resistive Switching memories are excellent candidates to become the

next SCM.

1.3 Structures and materials

Basically, the RRAM element consists of the bottom electrode (BE), top electrode
(TE), and the insulating oxide layer between those electrodes. In Figure 1.10 (a) is
shown a widely used MIM structure where the memory cell is fabricated on the metallic
via structure [32]. In this case, the material for BE can be different from that for the via,
while in the case of the structure shown in Figure 1.10(b), the metallic via acts as BE
[35]. When the area of the via under the oxide layer is smaller than that of TE, the via
diameter can be regarded as the effective memory element size. Thus, the active size can
be shrunk by reducing the via diameter and the oxide layers can be deposited on the via

structure.

(@) (b) (c)

L

\ \ \

oxide insulator oxide insulator  oxide insulator

(d) (€)

TE - =0

BE oxide

insulator
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Figure 1.10(a) Typical MIM basic stacking structure of RRAM. (b) The memory
element on the metallic via as a BE with oxide and TE layers. (c) The oxidized via
material for the resistance switching oxide layer. (d) The concave structure and (e) the

cross-bar structure consisting of the bottom and top electrode wires and blanket oxide

film.

In order to simplify the fabrication process, it is possible to oxidize the metal in the via,
as shown in Figure 1.10(c). Although the choice of the oxide material is strictly linked
to the metal in the via, very good resistance switching has been reported in this structure
with CuOx [36, 37] and WOx [38, 39] resistance switching layer obtained through the
oxidation of Cu and W plugs. The cell in Figure 1.10(d) has a concave structure of the
insulating layer. By decreasing the concave area, the memory element size can be scaled
down. The resistance switching in this concave structure has been reported with NiO
[40-42], TiOx [43] and HfOx [44-46] resistance switching layers. The cross-point
structure is shown in Figure 1.10(e) [47,48]. The cells are sandwiched between word-
lines and bit-lines and the memory element size is defined as the width of BE and TE
wires. In any structures, stacking of memory elements is available, which can increase

the effective memory element density and further consolidate the good scalability.

A wide range of binary metal oxides have been found to show resistive switching
phenomena. Most of them are transition metal oxides. In Figure 1.11 are summarized
the materials used for the resistive switching oxide layer and for the electrodes. In some
cases, conductive nitrides, like TiN and TaN, are also used as electrode materials. As
shown in Figure 1.12, where two graphs are sketched that resume the number of
publications taken from Google Scholar regarding the materials used as oxides in

20 Paolo Lorenzi — PhD Thesis
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RRAMs, among the oxides, the most that have drawn attention are: HfOx, AlOx,
NiOx, TiOx, and TaOx [33], because, in the past, they and have been extensively
studied or integrated in CMOS compatible processes. The deposition of these kind of
oxides usually can be done in different ways: oxidation of a corresponding metal,
reactive sputtering and atomic layer deposition (ALD). Among these methods, ALD is
widely used due to the ability to control the thickness of the thin film in a very accurate

way.
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Figure 1.11 Summary of the materials used for binary metal-oxide RS memories.
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Figure 1.12 Oxides used for RRAM memories (from Google Scholar)
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Although the preferred material for RS memories technology has not been determined
yet, it is clear that the proper choice of the combination of electrodes and oxide material
is crucial for the correct operation of the cell. Moreover, the fabrication processes should
be carefully controlled in order to prevent the oxide layers from suffering process

damage, such as plasma damages from the etching step and the deposition process.

1.4 Electrical Characteristics

According to the current-voltage (I-V) characteristics, it is possible to classify the RS
devices in two general categories: unipolar (nonpolar) and bipolar. On the basis of I-V
curves shown in Figure 1.13, in unipolar resistive switching mode (Figure 1.13a), the
switching direction does not depend on the polarity of the applied voltage and generally
occurs at higher voltage amplitude that of bipolar switching, where the memory
operations are polarity dependent (Figure 1.13 b). A fresh memory device with high
initial resistance state can be switched in to a low-resistance state (LRS) by applying a
proper voltage. This process occurs just one time and it is called the ‘electroforming’ or
simply ‘forming’ and it alters the resistance of the pristine device irreversibly [49-51].
After the forming process, the memory cell can be switched to a high-resistance state
(HRS), generally lower than the initial resistance, by the application of a particular
voltage called reset voltage. This process is called RESET. Switching from a HRS to a
LRS is called ‘SET’. In the SET process, generally, the current is limited by an external
current compliance (CC) in order to avoid irreversible device damage. In bipolar
resistive switching mode, the SET and RESET occur in the opposite polarity. For

example, as shown in Figure 1.13 b), the SET operation can be done by applying
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positive voltage on TE, while negative voltages reset the device. For bipolar switching to

occur, the MIM stack should be asymmetric generally, such as different electrodes.

A RESET
Current LRS

A Current

a)

SET HRS

Voltage HRS Voltage

LRS

RESET RESET

Figure 1.13 (a) I-V curves for unipolar (nonpolar) switching where the switching is
independent on the polarity of the applied voltage. In (b) a typical bipolar I-V is shown:
SET and RESET occur at opposite polarities. In the inset a schematic diagram of the

RS memory structure.

In Figure 1.14 typical (not best or worst) device characteristics of the emerging memory
technologies and the FLASH memories are compared [52]. Regarding the emerging
memory technologies, in this thesis, we are interested in the RRAM properties. The
first big advantage of the RRAM, compared to the FLASH technology, is the low
voltage needed to program and erase (SET/RESET) the cells. While for FLASH, more
than 10V are needed, for RRAMs volages lower than 3V are enough to perform the
SET and RESET operations. The second important advantage of RS devices is the
high speed of data reading but expecially the very high speed of writing/erasing.
Compared to FLASH, they can be 1000 times faster. As one can see in Figure 1.14,

also the cell area of RRAM is competitive with the FLASH (F in figure 1.14 is the
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minimum dimension of the technological process). Before taking into account the

reliability characteristcs, it is better to give some definitions:

e Retention: the time that a memory holds its bit state when the power is
removed. This determine whether the memory is considered volatile or
nonvolatile.

e Write Endurance: the number of times a memory can be programmed and
erased before it fails (i.e. cannot be further programmed or read). Another
parameter is the Read Endurance: the number of times a memory can be read
before it fails, but this is typically greater than or equal to the write endurance,

and hence the term “endurance” usually refers to write endurance.

While the data retention values are comparable for FLASH and emerging memories,
the endurance for RRAMs can be even 8 orders of magnitude greater than the NAND.
102 SET/RESET cycles have been demonstrated [53]. This is one of the reasons why

RRAM devices are very promising candidates as Storage Class Memory [34]

MAINSTREAM MEMORIES EMERGING MEMORIES
FLASH

NOR NAND STT-MRAM PCRAM RRAM
Cell area 10F <4F* (3D) 6~50F 4~30F 4-12F
Multibit 2 3 1 2 2
Voltage >0V >10V <15V 3V 3V
Read time ~50 ns ~10 ps <10ns <10 ns <10ns
Write time 10 ps-1 ms 100 ps-1 ms <10 ns ~50 ns <10 ns
Retention >10y >10y >10y >10y >10y
Endurance >1E5 >1E4 >1E15 >1E9 >1E6~1E12

Figure 1.14 Device characteristics of mainstream and emerging memory technologies.

Adapted from [52]
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1.5 Architecture
One of the common RS memories array architectures is the 1 Transistor 1 Resistor
(IT1R) array. In this sheme, each RS cell is connected in series to a selection transistor,
as shown in Figure 1.13. With the addition of a selection transistor it is possible to
isolate the selected cell from all other unselected cells. The WL controls the gate of the
selector; thus, tuning the WL voltage it can control the write current that is delivered to

the cell, e.g. the current compliance during SET.

Vser VReseT

00 I} 0 oI} 0 0
_— . WL o = WL o
7 O T = T
Ty [

o

WL

S g
2= ——
hlEEE =
Selected Selected Selected

SL BL Cell SL BL Cell SL BL Cell
b
(@) (b) ©

W-plug

|__Top Electrode |
TaO, |

W-plug

(e) (f)

Figure 1.15 A scheme of the 1T1R array during (a) set, (b) reset and (c) read. In (d) a
sketch of the direct contact between the memory cell and the drain of selector transistor
is shown. In (e) a different cell structure [wei2008] is inserted between the metal layers

M2 and M3 (f).

The memory cell top electrode connects to the BL while its bottom electrode connects
to the contact via to the drain of the transistor, as shown in Figure 1.15 (d). It is also
possible to insert the memory cell between two metal layers (Figure 1.15 (e)-(f)) in the

back end of line (BEOL). The source line (SL) connects to the source of the transistor.
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Figure 1.15(a)—(c) shows the typical write/read scheme for the 1T1R array. For the
SET operation, WL voltage is applied to turn on the transistor of the selected cell and it
imposes the current compliance, and a SET pulse is applied to the BL of the selected
cell while SL is grounded. For the RESET operation, WL voltage is applied to turn on
the selection transistor of the selected cell without imposing a current compliance. As
RRAMs usually needs bipolar switching, a RESET pulse is applied to the SL of the
selected cell while BL is grounded to reverse the polarity. For all the unselected cells,
the WL, BL, and SL are grounded. A read voltage, usually lower than the
SET/RESET voltages, is applied to the BL in order to read the data from the 1T1R
array and a WL voltage is applied to turn on the selection transistor of the selected cell,
while SL is grounded. A sense amplifier based circuitry can sense the difference in the
read-out current for HRS and LRS through the BL comparing it to a reference current.
Due to the off state for the unselected transistors, this writing/reading scheme is widely
adopted in order to prevent crosstalk or interference issues, and each cell can be
independently and randomly accessed. Multiple bits can be written/read in parallel

into/from the same WL by activating multiple columns.

Bitline (BIL)

} Memory element
o Selector
//
5 Wordline

Bottom electrode & ~ selector (WIL)

(a) (b)

Figure 1.16 Cross Point array scheme
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The other common array architecture is the cross-point array. It consists of
perpendicular rows and columns with RRAM cells sandwiched in between, as shown in
Figure 1.16. The cross-point array, in principle, can achieve a 4F? cell area, where F is
the minimun dimension allowable of the technological process; thus, it can reach higher
integration density than the 1T1R scheme. In the oneselector and one-resistor (1S1R)
architecture, the selectors are added in series with the memory element (Figure 1.16 (b))

to prevent cross talk or sneak current paths between cells.

In order to enable high density 1S1R cross-point arrays, an ideal selector should respect
several specifications derived from circuit performances, device and process
compatibility. One of the requirements for the selector is that a two-terminal device is
needed to not cause extra memory array area overhead. Furthermore, a selector should
be able to provide enough current for SET and RESET operations. For example, to
enable resistive memory with ~10 A switching current, this translates to current density
of ~10 MA/cm?2 for a selector, where targeting 10x10 nm2 cell size. The maximum
achievable cross-point array block size depends on the circuit performance like read
margin, read/write power, etc. All these aspects are strongly affected by the leakage
currents from the unselected memory elements. The leakage currents need to be as low
as possible for improving the overall memory operation [54]. Considering that an ideal
selector should have high current at high voltage as well as very small current at low
voltages simultaneously, this translates into a highly nonlinear characteristic [55]. As
most of the reported resistive memory cells exhibited better performance in bipolar
operation mode, a bidirectional selector, which could provide symmetrical I-V, such as

high drive current and highly nonlinearity at both polarities is required.
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Parameter Ideal value
ON current I, >10MA/cm”
Threshold Voltage, Vi, ~ 0V
ON/OFF ratio >10°
Processing temperature <400 °C
Operating temperature 85°C
Switching speed <50 ns
Operation polarity Compatible with memory element
Scalability Comparable with memory element

Figure 1.17 Selector Device requirements

In order to transfer selector nonlinearity to the 1S1R full cell, it is important that the
selector element is compatible with the memory cell, to guarantee enough current
during writing operations and limited leakage current from the unselected memory
elements. This means that the selector characteristics as: currents, speed, reliability,
array yield and variability should be as good as or even better than the resistive memory
cell [55]. Moreover, the materials composing the selector should be CMOS compatible,
as for the memory element, thus limiting the usage of materials such as Pt, Ag, Au, etc.
To enable 3D stacking of the memory arrays, the thermal budget of selector device
fabrication should be BEOL compatible. It is also desired that a selector has a simple
structure and low aspect ratio, to reduce the process complexity. Some of the parameters

discussed are summarized in Figure 1.17.
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1.6 Physical mechanisms of operation

It is widely accepted, that the physical mechanisms governing the switching phenomena
in the oxide RRAM are based on the migration of oxygen vacancies and ions with
related electrochemical reactions [56]. This ion drift is responsible for the formation
and modification of a conducting filament (CF) between electrodes. This physical
mechanism is also referred as redox (reduction/oxidation) effect [57]. The forming
operation, corresponding to the first set process in the fresh sample, is similar to a
dielectric soft breakdown. Initially, the oxygen vacancies (Vo?**) density, namely double
positive charged defects, in the metal oxide is relatively low. Under an appropriate
electric field, the pairs of Vo?* and oxygen ions (O%), double negative charged, are
generated. The potential barrier for O*migration is lowered due to applied electric field
and the oxygen ions drift toward the anode, where they form an oxygen reservoir, as

shown in Figure 1.18.

V= +Virmig Top Electrode
Top Electrode 3 . (XIXXX) LRS:
0% =0 +2e @} Filamentary Conduction

10 ' >
O {3 0+2e=Vo-+ 0% (9 CF
2, d }

b Forming: ®

Soft-breakdown V= +Veet V = +V,,.., (unipolar) or -V, (bipolar)

Bottom Electrode

Bottom Electrode Top Electrode JoREEcHEHE

0 000 0% =0 +2e" 0 +2e=0%

Reset:

Without interfacial barrier:
0% diffusion (unipolar)
With interfacial barrier:
0% Drift (bipolar)

oxygen ion
(O oxygen vacancy

Freshsample: IRS () Cathode HRS:
Bulk Leakage Conduction © oxygen atom

O @l O+2e=Vo +0%* Vo +0%=0 +2e"

Set:
Soft-breakdown

Top Electrode

Top Electrode
(XX X)
6]

Metal Oxide

Bottom Electrode

Bottom Electrode

Figure 1.18 Picture of the switching mechanism in RRAMs
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At the same moment, in the bulk, oxygen vacancies are generated and they lead to the
formation of the conductive filament. Usually the as-deposited RRAM oxide films are
amorphous or poly-crystalline, thus the CF is preferentially created along the grain
boundaries [58]. The forming operation brings the RRAM cell in the LRS. During the
RESET process, due the reversed electric field, O* are injected again in the insulating
layer and they recombine with the Vo?* composing the CF. In this way a gap region is
created and the conductive filament is partially ruptured, thus originating the HRS. The
residual CF with oxygen vacancies rich region is referred as the “virtual electrode” and it
is responsible of the fact that the current in HRS is higher than the current in the
pristine material. In the following SET process, the migration of oxygen ions occurs in
the gap region and the CF reconnects both electrodes. This picture gives a

phenomenological description of the experimental observations for many binary oxide

RRAM devices.

1.6.1 Resistive Switching

As discussed in the previous paragraph, the oxygen ion migration is responsible of the
switching phenomena in the RRAMs memory cell. This migration can be described
through the ionic drift equation [59] and it can be derived from the simple rigid point-
ion model illustrated schematically in Figure 1.19 [60, 61]. In solids, an ion hops in the
net potential of the lattice ions. The solid parameters playing a role are the periodicity a
and the activation energy Uy The application of an electric field E, through an external
voltage applied, modifies the potential shape and results in an effective barrier lowering
by a factor ~ *gFEa/2. Therefore, the overall effect on the average drift velocity can be

described by the formula:
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Uy
v~ fae K sinh(ﬁj 11
2KT

Where fis the frequency of escape attempts, ¢ is the electron charge, K the Boltzman

constant and 7'is the temperature.

&

..
. @) .

Figure 1.19 Illustration of vacancy drift. In a) the rigid point-ion model. In b) the
corresponding potential energy profile and in c) the barrier lowering due to an applied

electric field.

We should notice that the electric field in 1.1 is the local electric field and it can be
much higher than the average field Enen that is determined from the applied bias
voltage V= [Encn(x)dx. In addition, the temperature expressed in 1.1 is the local

temperature and it takes in to account Joule heating, which contribution is important

Paolo Lorenzi — PhD Thesis 31



Emerging Resistive Switching Memories and Neuromorphic Applications

due to high current densities and electric field. The local temperature can be described

by the equation:
T-T 4+ ny2 12
R
where 7} is the room temperature and Ry, is the effective thermal resistance [62].
O Oxygen vacancy

@ Oxygen ion
© Oxygen atom

o ot Residual filament

Figure 1.20 Conceptual picture of the conductive filament growth

In Figure 1.20, all the complex phenomena involving oxygen ions and vacancies
migration are simplified into the growth of a single dominant filament that
governs the switching process [63]. The size of the gap (g) between the tip of the
filament and the electrode is the state variable determining the device resistance value.
The kinetic of the state variable g can be described by the equation 1.1 in combination
with 1.2 and taking in to account that the electric field £ in 1.1 is the local electric field.
This mean that this is the electric field in the gap region and it is much higher than the

mean electric field simply calculated by E=V7%,., where V is the external applied voltage
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and £, is the oxide thickness. A local enhancement factor that takes into account the
non-uniform potential distribution in the cell is needed. The electric field in the gap
region generally increases when the gap size decreases. In this way, field decrease as the
tip of the filaments gets farther away from the electrode. A simplified expression of the

dependence of the enhancement factor with the gap length is:

1.
7=70_Cogb) 3

where yis the enhancement factor and y, ¢ and 4 are fitting parameters [63-651].

An alternative approach is the description of resistance switching via the numerical
solution of differential equations that include continuity equations for charge carriers
(Poisson equation), heat transport (Fourier equation), and ionized defects based on a

drift/diffusion model [61]. The set of equations is given by:

VoV =0
~Vk, VT =|oV¥[ 1.4

on
8_tD =V(DVn, — uFn,)

oin the first equation of 1.4 is the electrical conductivity and ¥ is the local potential. In

the heat transport equation 4 is the thermal conductivity. The term |6V lP|2 represents
the local dissipated power density given by the product of the field by the current
density, while —=VK, VT term is the corresponding space variation of the heat flow. In
the drift/diffusion ionic current equation 7p is the ions concentration, D is the ionic
diffusivity, and p is the ionic mobility. Diffusivity and mobility were assumed to be
described by the Einstein relation. Finally, the electric conductivity ¢ and thermal

conductivity 4, were assumed to depend on 7p.
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Figure 1.21 1) Experimental data for RESET and model [66]. In 2 a) the defect
density and b) the local temperature from the points A to D marked in the IV curve in

1. In 3 the contour plot of the density concentration from A to D and from A' to D'.

In Figure 1.21 1) Experimental RESET data, with points A,B,C and D highlighted
and the curves calculated with equation 1.4 are shown [66]. In 2) the profile of

calculated defect concentration 7p (a) and temperature (b) for points A-D are depicted.
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At the RESET voltage, corresponding to point B, the temperature has a maximum
value around 500 K thus the ion migration started in the direction of the electric field
(towards the BE). Due to this process, the regions above the middle of the CF strongly
decreased the concentration of defects, while the region below the center of the CF
shows the increase of defects concentration. Increasing the voltage, the depleted gap
length increases, thus increasing the resistance as observed in the I-V curves in 1). As
the depleted gap extends, the local temperature in 2) (b) changes, since the voltage drop
mostly occurs in the gap region. As a result, the portions of the CF above and below the
depleted gap stay at lower temperature and electric field, decreasing the migration flux
of ionized defects. To sustain more defect migration and the corresponding resistance
increase. This is why we observe a gradual RESET in Figure 1.21 1). In 3) it is shown
the contour plot of the defect concentration for the points A-D (a) and A-D’ (b)
corresponding to two different CF diameters. As one can see, the initial diameter does
not affect the evolution of gap increasing with the voltage. This is because the local field

and temperature are not dependent on the lateral CF dimension. In conclusion:

e  Gap region extension is driven by the directional drift of ionized defects along
the electric field direction

e  Diftusion effects can be seen as a fattening of the CF at increasing voltage.

1.6.2 Current Conduction Models

While most of the scientific community observes a linear or ohmic behavior in the LRS,
on the HRS different electron transport mechanisms interpretations are reported:
Poole-Frenkel emission [67,68], Schottky emission [69,53], the space charge limited
current (SCLC) characteristic [70,71] .

Paolo Lorenzi — PhD Thesis 35



Emerging Resistive Switching Memories and Neuromorphic Applications

(1)

iy

€, N
@ | s I\:
Ef Ly ¥ (g
Cathode I XE] T
> E¢
(3)
E, Oxide R

Figure 1.22 Picture of possible conduction mechanism involved in a MIM stack [33]

Various metal-oxide RRAMs may have different dominant conduction mechanism
depending on different structure characteristics: material properties like the dielectric
gap or the defect trap proprieties; the fabrication process conditions like the depositions
of both metals and dielectric and the interface between the oxides and the electrodes
proprieties. In Figure 1.22 the possible conduction mechanisms through a MIM stack

are resumed:

1. Schottky emission:

2. Fowler-Nordheim (F-N) tunnelling

3. Direct tunnelling

4. Tunneling from cathode to traps

5. Poole-Frenkel emission

6. F-N-like tunneling from trap to conduction band

7. Trap assisted hopping or tunnelling
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8.  Tunneling from traps to anode

As it is clear from this summary of the transport mechanism that can be involved in the
conduction of RRAM devices, the complete and accurate description of the I-V
characteristic may consider the contemporary presence of different transport processes.
But, in most of the cases there is a predominant mechanism that can describe the cell

current voltage characteristic.

Considering the description given in paragraph 1.6.1, the parameter governing the
switching phenomena of RRAMs is the gap between the tip of the conductive filament
inside the oxide and the opposite electrode. In this scenario, since most of the tunneling
mechanisms have an exponential dependence on the tunneling distance and field
strength, the amount of current flowing through the cell can be generalized to be:
[63,64]:
| = Ioe(g’g"]sinh(\%j, 1.5

where Iy, go and ¥} are fitting parameters. With equation 1.5 it is possible to catch both
the LRS and HRS currents. Considering a fixed gap (g) in LRS, at low voltages the sin/
approximates to linear function and the combination of the parameter I, and )
determines the slope of the IV. During the RESET increasing the gap distance due to
ions migration according to kinetic expressed in equations 1.1-1.3 the current decreases

with voltage.

Alternative approaches [72,73] regarding the conduction mechanism in the memory cell

assume that, regardless of the conduction state, if the current flows through a narrow
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constriction (filamentary path) between two electron reservoirs, called quantum point
contact (QPC), the Landauer theory predicts that the current I flowing under the

application of a finite bias /" can be calculated as [74]:

|%?jT(E)[f(E—ﬂqv)—f(E+(1—ﬂ)qV)]dE, -

where E is the energy, 7" is the transmission probability, fis the Fermi distribution, ¢ is
the electron charge, and 4 is the Planck constant, 8 is the fraction of the applied bias
that drops on the source side of the constriction. Assuming an inverted parabolic
potential barrier for the first quantized sub-band inside the constriction, we obtain an

expression for I:

1+exp| a(®- V)] 1.7

M

I:E qVv +1In
h a 1+exp[a(®+(1—ﬁ)qv)]

where a is a constant related to the sub-band spatial curvature, @ is the barrier height.
For the sake of simplicity, assuming that each component ®,a,n follows a time
dependent smoothing hysteron. With this description, varying the parameters values, is
possible to obtain different I-V characteristics, covering a multitude of I-V shapes, as

shown in Figure 1.23

38 Paolo Lorenzi — PhD Thesis



Chapter 1: Resistive Switching Memories

@) —1=G,v a=2eV’
] N=1, ¢=3n/4

0
ViVl

i(d) —1=Gov  N=1 Exacteq.(3) (e)
= = Aprox eq.(7)

10 4—- —Aprox eq.(8)

106-

Figure 1.23 (a) I-V curves, (b) ®-V loops and (c) R-V for different ® values. (d) I-V
curves for different a values. (¢) Exact and approximate expressions for the current

[72].

1.7 Open issues
The key issue of RRAM cells is the variability of the switching parameters. Due to the

stochastic nature of ionic (oxygen vacancies or metal ions) migration, defects
characteristics and material proprieties like the grain boundaries in polycristalline

materials [58, 75, 76], the filament shape varies from device to device and also from
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cycle to cycle in the same device. The fluctuation in the number of particles defining, for
example, the radius of the conductive filament or the fluctuations in constriction
geometry can be the reasons behind the resistances distributions shown in Figure 1.24
[77] where both the variabilities intracell (a,b) and intercell (¢) are represented. The
HRS resistance variation comes from the variation of the ruptured CFs length, thus any
small variation of the tunneling gap distance may be magnified to be an exponential

dependence of the tunneling current on the tunneling distance.
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Figure 1.24 (a) LRS and (b) HRS distribution for 200 cycles in the same cell for
different current compliances+ values. Distribution are approximately lognormal. In (c)
LRS distribution in 100 different cells for various current compliances and pulse time.
In (d) data retention measurements in HRS and LRS for two different current

compliances.

Important variations in resistance distribution (even bigger than one order of
magnitude) mean a more complex sensing circuit design and requires the program and
verify techniques to acheive the target states, which could be latency consuming for the

MLC operations. Although RRAM could require small write current (e.g., ~10 pA)
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due to the filamentary switching mechanism, reducing too much the programming
current may lead to increasing instabilities like a wider resistance distribution as shown
in Figure 1.24 or it could reduce data retention performances when filament is too thin
[78] as shown in Figure 1.24 (d) where data retention tests are reported for two

different current compliances.

Altough reducing the the RRAM currents is critical for the reliability of the device, it is
important for the 1T1R array architecture described in paragraph 1.5, because with new

technological nodes the current of the low power transistor for logic accordingly scales

too.
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Figure 1.25 a) Silicon CMOS low-power logic transistor’s drive current with the
scaling from 130 nm down to 20 nm for different W/1 simulated with the Predictive
Technological Model [79] and Resistive Switching write currents. B) SPICE
simulation of write margin and write power as a function of cross-point array size.
increasing the nvm cell’s i-v nonlinearity (N) by adding selectors is helpful to minimize

the ir drop problem along the interconnect wire and the sneak path problem

Paolo Lorenzi — PhD Thesis 41



Emerging Resistive Switching Memories and Neuromorphic Applications

Figure 1.25(a) shows the silicon CMOS low-power logic transistor’s drive current with
different technology nodes from 130 nm to 20 nm for different ratio of the channel
Width and Length simulated with Predictive Technology Models (PTM) [79]. The
typical write current of Resistive Switching Devices, including RRAM, from the
literature data is also marked. As one can sse, the RRAM’s write current typically ranges
from 10 to 100 pA and it does not depend on the device area due to the filamentary
conduction mechanism, so it does not scale with the technology node. Considering the
transistor characteristics, for example, the drive current at Vs = 5V can approach 40 pA
for a W/L =1 transistor at 27-nm node [80]. So, for this reason, reducing the write
current down to sub-10 pA is of great importance for continuing the scaling of the
1T1R array. In addition, reducing the write voltage down to sub-1 V is also necessary
for embedded applications if using a logic-compatible process. The alternative array
architecture to the 1T1R is the the cross-point array that suffers of other challenges: 1)
the voltage drop problem along the interconnections and 2) the sneak path problem
through the unselected cells. The voltage drop (usually referred as IR drop) issue
becomes not negligible when the WL and BL wire associated resistance increases. This
happens scaling the technological node in the sub-50-nm regime where the
interconnect resistivity drastically due to the increased electron surface scattering. For
example, at 20-nm node, the copper interconnect resistance between two neighboring
cells is ~2.93 Q; thus, the IR drop along the wire for a large array is no longer negligible
[52]. The farthest cell from the driver sees an interconnect resistance that can be

comparable to the typical LRS resistances, thus a part of the write voltage will drop on
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the wire instead of the RRAM cell. A compensation voltage could be necessary to

guarantee a successful write operation.

Figure 1.25(b) shows the SPICE simulation of the write margin and write power as a
function of the cross-point array size for different I-V nonlinearity (N). The
nonlinearity is defined as the current ratio between the current at the writing Voltage
and the current at the half of the writing voltage. The cell resistance is fixed and the
wire width is fixed at 20 nm. It is seen that at least , N 1000 > is needed for maintaining
sufficient write margin and minimizing write power for a large array (e.g., a 1,024 x

1,024 array).

1.8 Prototypes

In recent years, several RRAM prototypes have been reported in literature. A wide
range of switching materials were adopted including metal oxide based RRAM cells and
conductive bridge RAM. As shown in Table 1 [62], most of prototypes were fabricated
with technological nodes above 100 nm, in relatively small array size (typically below 10
MB). The exploitation of the capabilities of RRAMs devices in relaxed technology node
and small array size demonstrates the strong interest for non-volatile embedded
applications like microcontroller, where RRAM offers the advantages of faster read

operation and lower power consumption.
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Table 1 RRAM prototypes, adapted from [62]

Year Tech.Node Capacity Company/Institute Switching Material Ref.
2010 130 nm 64 M Unity CMOX [81]
2011 180 nm 4 M ITRI Ti/HfO2/TiN [82]
2011 130 nm 384 k Adesto Ag/GeS2 [83]
2011 180 nm 4 M Sony CuTe/GdOx [84]
2012 180 nm 8 M Panasonic TaN/Ta02/Ta205/Ir [85]
2013 110 nm 512k Panasonic TaN/Ta02/Ta205/Ir  [86]
2013 24 nm 32G Sandisk/Toshiba MO [87]
2014 27 nm 16 G Micron/Sony CuO [88]
2015 90 nm 2M Renesas /MetalTa205/Ru [89]

In 2013 Panasonic released in the market the first microcontroller with 64KB of
RRAM (Figure 1.26). The Panasonic website describes it as “MNI0IL Resistive RAM
(ReRAM) Embedded 8-bit MCUs are industry-leading, low-power microcomputers
delivering enhanced processing performance, 50% lower power consumption, and over 5 times
faster rewriting than flash memory or EEPROM. [...]. With the low-power consumption
ReRAM, shorter processing time and voltage control by high-performance CPU, and leakage
current reduction of new fabrication process, MIN101L reduces power consumption by 50%
compared to the existing Flash microcomputer. Unlike flash memory or EEPROM, MIN101L
does not require a data erase to provide over 5 times faster rewriting rate. This design makes
the Panasonics MNIOIL ReRAM Embedded 8-bit MCUs ideally suited for portable
healthcare, security, and sensor equipment.” The key points for the adoption of RRAM

devices instead the classical FLASH in the Panasonic microcontroller are the reduced
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power consumption due to the very low voltages needed to write and read the memory

cells and the low leakage, the high speed of operations and the higher cyclability.

Panasonic Mouser Part #: 867-MN101LROSDXW
Manufacturer Part#:  MN101LROSDXW
Manufacturer: Panasonic
Description: 8-bit Microcontrollers - MCU ROM 64KB

RAM 4KB 80-TQFP ReRAM MCU

» Embedded Memory
- ROM (ReRAM) : 64 KB (Programmable area: 62 KB, Data area: 2 KB)

-RAM : 4KB
@ Larger Image * ReRAM Specification
- Program voltage (Vppig): 1.8 Ve 3.6 V
- Program cycles : 1 K (Program area), 100 K (Data area)

- Data is rewritable in bytes without data erase.

Flash microcomputer
~ (conventional)

ReRAM
Microcomputer

|  8bitCPU
101E Series

Peripheral
circuit

g i e

— NUmber of rewriting: Power Number of rewriting:
10k times by 100k times
(General-purpese use)
Consumption current y Consumgption current
Current  guring aed acion Cument  guring intermvtted action
Repetition cycle turnnt reduced with ReRAM
- High-speed operation
(CPU processing performance impro

Oparation (0.3%) operation
(4 MHz) (99.7%)

(32 khHz)

Time
* Please note that these value are subject to change without prior notice.

Figure 1.26 Panasonic 8-bit microcontroller MN101LRO5DXW with 64KB ReRAM.
In the bottom part of the figure, the advantages of using ReRAM respect to FLASH

conventional microcontroller are highlighted.

Considering Table 1, in two cases, a more aggressive technology node were adopted in

order to obtain device size below 30 nm, thus obtaining an array size of several GB
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[87,88]. In [88] a 16Gb ReRAM designed in a 27nm node is presented. The 1T1R
memory cell (Figure 1.27) is dual-layered with a CuTe conductive material and a thin
insulator. The resistive element with top and bottom electrodes (TE, BE) operates
through bipolar switching. A 1GB/s DDR interface and an 8-bank concurrent DRAM-
like core architecture. High parallelism, a pipelined data-path architecture and
innovations such as concurrent set/reset verify. The selector employs a buried-wordline

architecture and is also used for current control during set (transition to LRS).
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' I l |/m M1 Set and Reset Distribution
BLpitch2F =

10x Dynamic Common "
Range: Source %t 1177 { RESET
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\J
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3
Buried Recessed Access Device. Isolation Gate - o b=tz B s = s i

Read Current (A)

Figure 1.27 16 GB RRAM chip memory cell and LRS and HRS distributions

1.9 RRAM as Memristor

In the last paragraph of this chapter, the author wants to give a mention on the
Memristor. This is motivated by the fact that, during last years, the RRAM community
and the Memristor community are merging together and it is not unusual in literature

to refer to Resistive Switching devices as Memristors.

In a 2008 Nature Article entitled “The missing memristor found” [90], the authors
Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart and R. Stanley Williams of
the HP Laboratories claimed that they found the fourth passive element theorized by

Leon Chua in 1971 [91]. The memristive propriety arises naturally in nanoscale systems
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in which resistive switching phenomena and ionic transport are driven by external

applied voltage.

| |
—\\\—e ——*

g=]
Resistor T Capacitor
dv = Rdi = dq‘ = Cdv

=]

dg = idt
Inductor Mernristor
dp = Ldi dp = Mdg
Memristive systems

Figure 1.28 The four fundamental two-terminal circuit elements: resistor, capacitor,
inductor and memristor. Resistors and memristors are subsets of a more general class of
dynamical devices, memristive systems. Note that R, C, L and M can be functions of
the independent variable in their defining equations, yielding nonlinear elements. For

example, a charge-controlled memristor is defined by a single-valued function M(q).

Prof. Leon Chua noted that six different mathematical relations connect pairs of the
four fundamental circuit variables: electric current I, voltage 7, charge Q and magnetic
flux @. One of these relations (the charge is the time integral of the current) is
determined from the definitions of two of the variables, and another (the flux is the time
integral of the voltage) is determined from Faraday’s law of induction. Thus, there

should be four basic circuit elements described by the remaining relations between the
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variables. The ‘missing’ element—the memristor, with memristance M—provides a

tunctional relation between charge and flux, /@=Mdy.

If M is a constant, the memristor is identical to the resistance. The interesting case is
when the memristance is not constant but depends on the history of current that had
previously flowed through the device. This means that the present state depends on how
much electric charge has flowed and in what direction through it in the past. In [90] the
HP Labs team realized a memristor composed by a thin film of titanium dioxide and
Platinum metal electrodes, thus connecting the operation of RRAM devices to the
memristor concept. After the publication of the HP Labs, the interest in memristors
grew up dramatically. The discovery of the missing element had great attention by the

media and newspapers.

Following this, Prof. Leon Chua has argued [92] that the memristor definition could be
generalized to cover all forms of two-terminal non-volatile memory devices based on
resistance switching effects. All the RRAM devices exhibit a distinctive “fingerprint”
characterized by a pinched hysteresis loop confined to the first and the third quadrants
of the v—i plane whose contour shape in general changes with both the amplitude and
frequency of any periodic “sinewave-like” input voltage source, or current source. In
particular, the pinched hysteresis loop shrinks and tends to a straight line as frequency

increases. So RRAMs and Memristors can be considered as the same device.
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2 KEY ASPECTS OF RESISTIVE
SWITCHING MEMORIES
OPERATIONS:
EXPERIMENTAL ANALYSIS
AND MODELING

In this chapter, a description of the tested devices will be given in terms of device
structure, fabrication and electrical characteristics. Key aspects of the behavior of the cell
will be addressed. Experimental characterization and modeling of the influence of the

applied voltage waveform, device geometry, external temperature, and electrical stress

will be described.
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2.1 Devices
Choice of proper materials composing the MIM stack is a key issue for fabrication and
electrical operation of RRAM devices. In this Ph.D. project different MIM structure
were used. Most of them were fabricated by the “Commissariat a 1'énergie atomique et

aux énergies alternatives” (CEA), Grenoble, France.

In the tested devices HfO2 was used as insulating layer, while different combination of
metal electrodes, including Platinum (Pt), Titanium (Ti) and Titanium Nitride (TiN)
were adopted. Two different set of samples fabricated in two phases were studied. In the
first set, resistive memory cells, with dimensions ranging from 1.8um down to 300 nm,

were fabricated above a metal 1 level (see Figure 2.1)

TE 25nm
Oxide
BE 25nm

=

Figure 2.1 Schematic of the integrated memory cells (cell diameter ranges from 1.8pum

to 300 nm)

A TiN layer was deposited before the bottom electrode in order to ensure its adhesion.
A TiN/Ti layer was used at the top of the structure as antireflective layer for the
lithography. To fabricate samples showed in Figure 2.2 HfO2 was deposited through
Atomic Layer Deposition (ALD) at 350 °C on Physical Vapor Deposition (PVD) TiN

or Pt. Top electrode (Ti or Pt) was then deposited by PVD and patterned via Ion Beam
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Etching (IBE). X-Ray diffraction data revealed coexistence of both orthorhombic and

monoclinic phases in HfO2.

HfO, Hfo,

S 1S

N

S3P|?f‘

HfO, HfO,

IL
TiN

Figure 2.2 Studied device splits. Interfacial layer (IL) schematically represented
according to physico-chemical analysis and high resolution TEM image of sample (Pt-

T4i). Inset: closer view on the active stack [45].

(b) [ #io o, it : Hio,
(111) (1,1,1) (1,0.2) (1,3,0)
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(1,1,1)
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4
£ 5 nm thick HfO '
3 nm thick HfO,
_WM&- - LR, .
T T ' !

Figure 2.3 X-ray diffraction HfO,thin films (with varying thickness), deposited in all

cases on Pt [46].
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As shown in Figure 2.3 a 10nm thick HfO2 on Pt is mainly monoclinic [46], while it is

found mainly orthorhombic on TiN.

Atomic concentration profiles measured by Energy-dispersive X-ray spectroscopy
(EDX: an analytical technique used for the elemental analysis or chemical
characterization of a sample. It relies on an interaction of some source of X-ray
excitation and a sample) upon Pt/HfO2/Ti samples (see High Resolution TEM, Figure
2.2 and EDX, Figure 2.3 a)) and TiN/HfO2/Pt (Figure 2.3 b))) devices. Oxygen
profiles were found shifted either towards Ti (a) or TiN (b) electrodes, indicating the
formation of HfOx/TiOx or HfOx/TiOxN interfacial layers (IL) induced by the O-

getter character of Ti [93,94].

Hf centroid Q centroid Q centroid Hf centroid

50 a) .D y (.L. ) | = - b) . B
Pt N Ti m - ._L) -j;

Hr.7) . (,-T.O HE

Atomic Composition Profile (AU}
Atomic Composition Profile (A1)

10 3 ) 3 oo ] 70 75

0 5 10 15
PcsitionL[n Posj‘tion [Am]

' ]
A A
[Pt X HfO2 )@__1.;(: Ti | [ TiN HfO2 >( Pt_|
A 14 \| \|

Figure 2.4 (a) Atomic composition of the active layers in as fabricated (Pt-Ti) device

measured by EDX. Distribution of O from HfO2 is found to be shifted towards Ti
electrode indicating the presence of an interfacial oxide layer. In TiN-Pt samples (b)

distribution of O from HfO?2 is found to be shifted towards TiN electrode.

The second set of samples has a TiN/HfOx/Ti stack. The devices were fabricated in a
in mesa process. TiN bottom electrodes (BE) were deposited by PVD and patterned by

DUV (Deep Ultra Violet) lithography to obtain device areas from 600nmx600nm to
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3pumx3pm. Following this step, HfOx was deposited by ALD at 300°C and annealed at

400°C in N2 ambient for 30min. The Ti top electrode was deposited by PVD. A final

anneal was performed at 450 °C for 30 m.

2.2 Quasi-Static electrical Characteristics
Quasi-static characterization of Forming, SET, RESET of the different kind of

samples was performed using the Agilent B1500 Semiconductor Parameter Analyzer
(SPA). The voltage sweep speed was set at 17/ and the current compliance was
externally imposed to the devices by the SPA. Forming and SET/RESET current-
voltage characteristics are shown in Figure 2.5. To initiate switching a preliminary
forming operation is required. It is a one-time writing process at voltage higher than
regular operating bias. When the four samples are compared (Table 2, Figure 2.5) it
appears that the Ti presence strongly decreases the forming voltage (under 3V). We
identified device polarity behaviors, i.e. unipolar (non-polar) vs. bipolar. To this aim, we
performed several SET/RESET I-V sweeps on the devices. The results are summarized
in Table 2, which reports SET and RESET voltages, and LRS and HRS resistances.
Pt-Pt samples are found to be unipolar (non-polar), while samples TiN-Pt, TiN-TiN
and TiN-Ti are bipolar. They require positive voltage applied on TiN electrode except
in case with Ti where devices need positive voltage applied to Ti to achieve SET. This
behavior suggests that the presence of an interlayer rich of oxide vacancies plays a
fundamental role in determine the polarity of the switching of the devices [45]. For the
unipolar samples the LRS was found to be lower than the others, while the HRS
higher, thus giving the highest ratio between the two resistive state. The bipolar samples

have LRS value around 500 ©2 and HRS between 10kQ and rarely 1MQ.
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Furthermore, bipolar samples show symmetric behaviour between SET and RESET in

terms of switching voltages.
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Figure 2.5 Current — Voltage (IV) curves for Forming SET and RESET for a) Pt-Pt b)
TiN-Pt, ¢) TiN-TiN and d) TiN-Ti samples. In the inset of a) the unipolar
characteristics is shown. The MIM stack of different samples are also sketched in the

insets of (a-d).
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Table 2 Electrical parameters measured on the four splits under investigation

Vorming[ V] Vser[V] Vreser[ V] Rser[Q]  Rreser[Q]
UNIPOLAR BEHAVIOUR
Pt-Pt 4.4+0.3 3+1.5 0.4 +0.15 <100 ~1M
BIPOLAR BEHAVIOUR
Pt-Pt 4.7+0.3 3+1.5 -0.3+0.1 ~500 1-100M
TiN-TiN 3.70 £ 0.58 0.8+0.2 -0.8+0.1 ~600 10k-100k
TiN-Pt 3.75 £ 0.82 0.7£0.2 -0.7+0.1 ~600 10k-1M
TiN-Ti 2.7 +£0.52 0.51 £0.15 -0.48 £ 0.1 ~800 6k-20k

2.3 Waveform

As discussed in the previous paragraph, all the results were obtained in Quasi-Static
conditions. This means that the applied voltage sweeps were so slow to be considered as
steady state, thus considering only the influence of the voltage variable and neglecting
the other one: time. In this paragraph, we analyze the effects of different voltage
waveforms on the switching characteristics of the memory cells. Before discussing the

results, an overview on the setup used to this aim is needed.

2.3.1 Experimental Setup

The experimental set-up is sketched in Figure 2.6. Voltage waveforms are applied to the
BE of device under test (DUT) through the MOSFET M1 and displayed on channel 1
of an oscilloscope (LeCroy WaveRunner 44Xi). Current (Ipuz) flows through the DUT
and a reference resistance (Rgzr) that is in series with the memory cell. The voltage drop

on Rger is amplified by a factor G and acquired on channel 2 (Vem), thus being:
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Ipur=Veno/(G-Rrer). In order to limit the current during SET, the voltage drop on Rger
is monitored: when it reaches the critical value Vzer, externally set, the MOSFET M1

limits current to the value: Iroyrr=Vzer’RREF.

- lJIJ = | CH1
\ [
< DUT
Vp “ \\
; /I b l IG\ CH2

7 \ \ Oscilloscope

jusnand

Figure 2.6 Experimental setup. Highlighted the current compliance limitation part

This kind of external current limitation was preferred to the insertion of just an external
series resistance because it prevents voltage partition during the SET ramp between the
external resistance itself and the device resistance which changes during the ramp. Using
Rrer= 240, the partition is always negligible compared to the RRAM LRS values, as

shown in table 2 for bipolar samples, and the current measurement is reliable.

Examples of waveform traces are shown in Figure 2.7 where blue marks are the applied
voltage waveform and the current is in red. We can observe the current limitation
imposed by the circuit during the SET operation. In particular, the current compliance

was set to 1 m.A4 in this case.
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Figure 2.7 Example of applied voltage (thick blue line with open squares) and RRAM

current (thin red line) during SET (left) and RESET (right)

2.3.2 Ramp Rate influence on SET and RESET
The influence of the voltage ramp speed (rate) defined as the ratio RR=AV/A¢ on the

switching voltage was investigated [95]. In these experiments, Vszr is defined as the
voltage corresponding to the increase of the current slope and Virgser is defined as the
voltage corresponding to the maximum current (Figure 2.7). Data of Vsgr and Vagser vs
RR were collected over a set of 15 samples of two different kind of stacks:
TiN/HfO,/Pt (denoted with C1) and TiN/HfO,/Ti (denoted with C2). The averages
values are displayed in Figure 2.8. As expected, both |Vzeser and Vser increase with the

front speed following a logarithmic behaviour [96]:

2.1
Veer/reser (RR) = a5 +0g - |09(RR/C) ,

where agr, byr and ¢ are constants whose values are determined after interpolation of
experimental data (dashed lines in Figure 2.8). It is worth noticing that the two curves
are parallel (with byz~0.025 V and ¢=4.925 V/s). Actually, the switching process is due to
the concurrence of more than one mechanism, first of all the ion drift diffusion both for
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SET and RESET [59], but also the oxygen bond breaking for SET, oxygen vacancies
recovery with the oxygen ion release from the interface for RESET [64,97]. The fact
that in Figure 2.8 the dynamics for SET and RESET is the same can be attributed to
the predominance of the ion drift diffusion over other mechanisms, for both the closure

and dissolution of the conductive filament.
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Figure 2.8 (Color online) |Vreser| and Vser vs RR (symbols) for C1 samples. Inset:

Vrorm vs. RR. Lines are logarithmic interpolations.

As expected, also Vrorm behaves logarithmically with the ramp rate, but with a different
dynamics, as shown in the inset of Figure 2.8, since in this case the whole filament from
one electrode to the other needs to be formed, while in SET just a portion of it must be

completed.
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Figure 2.9 (Color online) Vgeser as a function of RR for samples C1 (closed symbols)

and C2 (open symbols). Lines are logarithmic interpolations

In Figure 2.9 the curves of |Vzeser| for the C1 (with Pt as TE) and C2 (with Ti as TE)
samples are compared as function of the RR, at room temperature. A few considerations
can be done: first, the C1 curve stands at higher values than the C2 curve; second, both
curves increase with the ramp rate and, third, they are parallel. Recalling the probability
Pr of release of oxygen O* ions from the electrode defined in [97] and substituting the

electrode oxygen release time Jf with the expression holding in our experiment

dt=/dV}/RR it can be written:

Ei—yZeV|

M.e7W 2-2

P.=f. ,
R RR
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where fis the vibration frequency of oxygen atoms, Z = 2 is the charge number of
oxygen ions, e is the electron charge, 7"is the local temperature, Kz is the Boltzmann
constant, E; is the energy barrier between the electrode and oxide and y is the
enhancement factor of the external voltage during the O* release process. The quantity
(Ei-yZe/V)) is positive and decreases increasing voltage, with the consequent exponential
increase of the release probability. On the other hand, the probability reduces linearly
with increasing RR. Therefore, increasing RR the voltage should be slightly increased in
order to get the same probability, as evidenced in Figure 2.9. The barrier energy E; to
extract oxygen ions from the TiON layer is higher than from the TiO, layer. This
affects the exponential term in the release probability Pk, favoring C2 samples. For this
reason, and also recalling that the effective dielectric thickness of C2 samples is lower
than in C1 samples, a greater voltage is needed in C1 samples to switch. Finally, the
two curves of RESET voltage in Figure 2.9 are logarithmic and parallel, indicating that
the dynamics of filament interruption is the same, governed by the same hopping barrier

[59] of ion diffusion, and is not influenced by the electrode.

2.3.3 Pulsed Forming

Pulsed measurements at very short time scale were performed to get deeper insight in
the Forming dynamics [51]. Voltage pulses with 10 ns rise time (7zsz) and amplitude
(Vp) were used. The circuit used in this experiment is sketched in Figure 2.14 (a). A
simplified version of the circuit was adopted because in Forming characterization an
external resistor is sufficient to obtain current compliance limitation without sensible
partition of the applied voltage. This is due to the very high resistance value of pre-

formed devices. Pulses were displayed on channel 1 (CH1) of an oscilloscope. The
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voltage drop on a resistor in series to the device under test (DUT) was acquired on

channel 2 (CH2) of the oscilloscope. R;.=10 KQ fixed the current compliance to V10

KQ.
a) Rs
W CH1
+ DUT
Vp CH2
- Ru \ Oscilloscope
b) g

(9]

Forming Time=100ns

Voltage (V)
B

o N

0 5 10
Time (s) X 1 O'T

Figure 2.10 (a) Sketch of the simplified setup used for measuring forming time and

resistance; (b) waveforms detected on CH1 and CH2 of the scope.

The typical waveforms acquired on CH1 and CH2 are sketched in Figure 2.10(b). The
signal displayed on CH2 allowed measuring the Forming time tr. Data of 7 for Pt-Pt
(S1), TiN-Pt (S2) and TiN-TiN (S3) samples were collected at room temperature. In
the inset is shown the distributions of forming voltage for S2. The average value 7 was

then used to plot Vp 7z against Vpin Figure 2.11. An exponential dependence was found

for all the samples (dashed lines in Figure 2.11).
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Figure 2.11 Data of forming time (average value) varying the voltage pulse amplitude
for S1, S2, S3 samples. Markers are experimental data, line is interpolation. Inset:

Weibull distributions of one set of samples (S2).

As a result, we say that voltage scaling is limited by the tradeoff with the forming time.
As an example, in samples S1 characteristic time of forming is 200 ps at 6.12 V, and
grows up of two orders of magnitude with a voltage decrease of only 18% (30ms at 5V).
The parameter relating the forming time with voltage in the exponential term is the
most important for the fast programming with low voltage. Forming times for S2
samples (featuring TiN as BE and Pt as TE) and S3 samples (featuring TiN as BE and
also as TE) is approximately the same. At the same time, the S2 and S3 curves lie at
times shorter respect to the S1 curve (featuring Pt as BE and TE). This indicates that
the chemical reactivity of the growth electrode (rather than the TE) plays a main role in

the forming kinetics. The measured shorter 7z in the case of TiN as BE can be
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explained with the formation of a TiON layer with consequent enrichment of oxygen

vacancies at the bottom interface, which accelerates creation of percolative paths.

2.4 RESET Dynamics

Alternatively a different approach can be considered to model the influence of the
applied voltage waveform on the I-V characteristic, starting from the consideration that
the filamentary electron transport in resistive switching HfO2-based metal-insulator-
metal structures can be modeled using a diode-like conduction mechanism with a series
resistance [98,99]. A number of conduction models have been invoked to explain the I-
V' curves after the initial forming step, such as Schottky emission, Poole-Frenkel
emission, tunneling and point-contact conduction, among others [73, 100-102]. All
these conduction mechanisms have associated to an exponential I-V curve for the HRS
compatible with a diode-like expression of the type: I=I,*[exp(aV)-1], where I and «
are model constants related to the particular conduction mechanism considered. The
inclusion of a series resistance allows simulating the linear I-7 curve associated with the
LRS, under the appropriate limits. It is possible to show that this simple equivalent
circuit composed by a diode and a series resistance can also describe the progressive reset
dynamics if the pre-exponential diode current factor is properly modulated. The
modulation is related to the sequential deactivation of conductive channels, which is
mathematically expressed in terms of a generalized logistic growth model.

According to previous reports [103], the filamentary current in RS devices can be
modeled using an equivalent electric circuit formed by a diode and a series resistance R.

In this case, the current is:

Paolo Lorenzi — PhD Thesis 63



Emerging Resistive Switching Memories and Neuromorphic Applications

1V, 2) =, (Dfexplalv - IR)]-1}, 2.3
where Iy is the pre-exponential diode amplitude factor and « a parameter related to the

slope of the curve. Assuming that I can be expressed as a function of the normalized

number of active channels O<A <7 spanning the dielectric film it is:

2.4
1o(4) = lomin A= 2) + o 4,
where Iomwx and Iomin are the maximum and minimum values of Iy, respectively.

Combining equations 2.3 and 2.4 it is possible to extract A from the experimental -V

curves as:

l(v): |(V,2,)—|(V,ﬂ:0) , 25
IV,2=1)—I1(V,A=0)

The values of Joma, Jomin, @ and R are chosen so as to fit simultaneously the LRS and
HRS I-V curves.

Reset I-V curves averaged over 30 cycles and over 4 different device of the type
Ti/HfO2/Ti for 3 different ramp rates (100V/s, 1000 V/s, 10000 V/s) are shown with
marks in Figure 2.12. Each curve was obtained averaging data from 30 reset curves. The
black solid lines represent the stationary HRS/LRS currents used to compute K with
equation 2.5. In order to correlate A with the number of active conductive channels at a
voltage V, a simplified approach is considered first. Within this context, the idea of a
filamentary path is nothing but a bunch of conductive channels of atomic dimensions.
We assume that during the reset process the channels are sequentially deactivated

following a Gaussian dependence with the applied voltage:
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f(V)= \/%G eXp[_(VZ;\Z/R)Z } 26

where Vk is the average reset voltage and o the standard deviation. Notice that equation

2.6 should not be confused with the reset voltage distribution obtained from cycle to

cycle.
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Figure 2.12 Reset I-V curves averaged over 30 cycles and over 4 different device for
each ramp rate. Black lines are the calculated current in the case of Ioy=Iomx and Io=Iomin.

Red lines are calculations during the transition for the 3 different ramp rates.

The convolution of A¥) with the Heaviside step function H gives the normalized

number of active conductive channel as a function of V:
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AV) = T HV —&)f (&)de = ;{1— erf (Vﬁ\(’: ﬂ ~{l+ep[nV -V )l 27

where erf is the error function and m=1.702/c [104]. The integral in equation 2.7
represents the area under the Gaussian curve from a voltage ¥ to o, which can be
approximated by a simple logistic function.

Experimental values for A(7) are calculated with equation 2.5 and shown in Figure. 2.13
with symbols. Dashed lines are the calculated curves using the logistic expression in
equation 2.7. As shown in the inset of Figure 2.13 the logistic curves seem to fit very
well the experimental results, but a closer inspection reveals that the calculated curves
largely depart from the experimental data for a low number of conductive channels.
This is outlined by the logarithmic scale of Figure 2.13. In order to improve the
description of the conductive channels deactivation process, a more complex dynamics is

considered next.
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10 w This work
Ramp Rate
10"
<
10°
107 |
0.5 1.0 \\\
10-¢ _ Voltage (V) , K \, &
0.5 1.0
Voltage (V)

Figure 2.13 Cumulative distribution of normalized conductive channels as a function of

the applied voltage in logarithmic scale. Markers are values extracted trough equation
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2.5. Dashed lines are the logistic curves. Solid lines are the generalized logistic curves

calculated with equation 2.9. In the inset data and calculations are shown in linear scale.

A variety of models have been proposed in literature to interpret specific growth
dynamics with limited resources[105-107]. Most successful predictive models are based
on extended forms of the classical Verhulst growth equation, a standard tool of
population dynamics [108 - 110]. A generalized form of the logistic growth model was

introduced by A. Tsoularis [111] as:

a

iy 277/11+ﬂ(1—7)(1_ﬂﬂ)7, 2.8

where 7, fand yare fitting constants related to the asymmetry of the A-V curve. fand y
are positive numbers which satisfy the condition [23_APL_2015] y< 1+1/B. We use this
model to represent the CC rupture dynamics in our RS devices. First of all, we notice
that f = y =1 in equation 2.8 corresponds to the logistic curve obtained in equation 2.7.
Then, y = 1 was considered by other authors [112] in order to represent the window
function in the state equation of nonlinear memristors. The differential equation 2.8 has

the analytic solution:

AV) = {1+ [B(y -1V -V, )]1_17}_;, 2.9

Vk is introduced here to account for the shift of the reset voltages obtained with the
three different ramp rates. For negative values of the argument (i.e., for V<Vg) A=1 is
posed. The solid lines in Figure 2.13 were calculated using equation 2.9. They exhibit
an excellent agreement with the experimental data in the whole investigate range.

Looking at the experimental curves in Figure 2.13, it can be observed that higher sweep
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rates imply larger reset voltages. In this connection, a logarithmic dependence of the
reset voltage shift with the ramp rate was found [95]. Remarkably, the transition
dynamics remains essentially the same as illustrated in Figure 2.14. Following Cagli e#
al. [113], we assume that the reset probability per unit time JPr/dt scales exponentially

with the applied voltage according to:

dP, 1 2.10
— =—exp(&V),
dt ¢ p( )
where 7and @ are constants. Since RR=dV/dt, integrating eq. (8) leads to:
2.11

Vy =a+bIn(RR).

where Fk is the reset voltage corresponding to the maximum current and « and & are
fitting constants. It is worth noticing that if the translation expressed in equation 2.11 is
used the three curves with different RR are superimposed. This is shown in Figure 2.14.
This result highlights once again that the dynamics ruling the conductive channels
deactivation process is not depending on the waveform features. Keeping in mind that A
is associated with the activated paths, dA/dV given by equation 2.8 expresses the
distribution of the channel deactivation voltages. It is clear that this distribution is more
complex than the Gaussian distribution initially assumed in 2.6. Figure 2.12 suggests an

asymmetric distribution with a longer tail towards the higher voltages range.
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o RR=100 V/s
o RR=1000V/s |
A RR=10000 V/s
Model ]

S(V)=V -|a+blog(RR)]

a=0.38Vv
b= 0.05V

0.5 1.0
& (V)

Figure 2.14 Derivative of A as a function of §(V). Markers are experimental data, and

lines are calculated values.

As a final demonstration of the proposed approach, partial reset I-V curves were
investigated. In this case the measurements correspond to a sequence of triangular
voltage ramps with ramp rate RR=10° V/s. The maximum voltage (Vsrop) was increased
in steps of 100 mV starting from 0.6 V and ending at 1.2 V. The measurement was
repeated 30 times and the average value of the current is shown with symbols in Figure
2.13 a) as a function of the sweep time. Equations 2.3, 2.4 and 2.9 were used to
calculate the current during the partial reset sweeps. In order to account for the
hysteretic behavior, the last value of A obtained at the end of each triangular waveform

was used as the starting value for the subsequent sweep.
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Figure 2.15 (a) Partial Reset voltage waveform (dashed line), measured current
(markers), and the calculated current (solid) are shown. Data were obtained averaging
30 cycles; I-V characteristic (b) and normalized number of activated channels A(c) are

also shown.

In Figure 2.15 b) the complete I-V characteristic was also reconstructed using this
approach. During partial reset at the end of every single triangular sweep a fraction of
the total normalized number of active channels was achieved following the generalized
logistic curve (Figure 2.15 c). The change of the state of the RS device is permanent in
the sense that after each successive sweep the initial current of the cell is the same
measured at the end of the previous one. These results point out that our RS devices

exhibit multiple memory states.
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The progressive reset transition between the low and high resistance states in HfO,-
based RS devices can be modeled using a diode-like conduction mechanism with a
series resistance combined with a generalized logistic model for the pre-exponential
diode amplitude factor. The dynamics has been interpreted in terms of the sequential
deactivation of multiple conduction channels spanning the dielectric film. Fitting results
indicate that the switching behavior dynamics can be described with the same equation
regardless of the voltage sweep rate. Finally, partial reset curves were characterized and

modeled using the same approach.

2.5 Device Geometry

The influence of the device geometry on switching behavior was investigated. In Figure
2.16, RESET/SET voltages (black dots and lines) and LRS/HRS (red dots and lines)
data were reported as a function of cell dimension. As one can see, no influence of cell
scaling is observed in both the kind of data. This clearly confirms switching being

driven by generation-disruption of a conductive filament.
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Figure 2.16 Area dependence of Set and Reset voltages (left coordinate axis) and set

and reset resistances (right coordinate axis) for TiN-Ti

While the device area size has no influence on the SET and RESET characteristics, it

has a strong influence on the Forming operation.

The forming time was monitored, with respect to device area (4) in the range 0.125
um?-2.544 um?. This investigation was performed only on Pt-Pt (S1) samples. Results
(each point is an average on 20 samples) are shown in Figure 2.17 for different values of

the pulse amplitude.
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Figure 2.17 Forming time vs area for three pulse amplitudes (samples S1).

As a result, it was found that above a critical area (4;) 7r tends to saturate. The
asymptotic value of zr is higher at lower values of Vp, in agreement with previous
results. Below A¢, we find the expected behavior: the smaller the area, the lower the
number of traps, the higher the time required for the filament forming. A¢ is inversely

related to Vp. This fact is a concern for RRAM device scaling, since the contemporary
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scaling of area and voltage implies a strong increase of forming time. To explain the
behavior of 7z at large areas, we can consider that after increasing the area the
probability to form a filament tends to unity. Probably more filaments add in parallel,
but this has no impact on the time for forming In the investigated case (Pt electrodes)
values of Ac are greater than what is foreseen by the ITRS for the next node of
nonvolatile memory, which implies that the region of interest for practical applications
is in the left side of Figure 2.17, where the forming time increases with area scaling.
The dependence of forming voltage on the cell size in 5nm thick Ti/HfO,/TiN MIM
device was reported in [114]. As a result, in that work a drastic increase of breakdown
voltage was found below a characteristic size. This is in complete agreement with the

results shown.

2.6 Dependence of Forming and RESET on Temperature

The temperature dependences of switching parameters are important in order to
highlight the physical mechanisms governing the behaviour of cells. First of all, the
forming dynamics vs temperature was investigated. Data of z» were collected over the
Pt-Pt (S1), Pt-TiN (S2) and TiN-TiN (S3) samples. The devices temperature (7) was
increased from room temperature (300K) up to 473 K. During the experiment the

forming pulse amplitude Vp was varied.
Here we assume that forming time is thermally activated in an Arrhenius dependence:

_Ea 2.12

where E, is the activation energy, £ the Boltzmann constant and 7 the temperature.

Paolo Lorenzi — PhD Thesis 73



Emerging Resistive Switching Memories and Neuromorphic Applications

Data of 7/T versus 1000/T (and Vp) are graphed in Figure 2.18 for samples S1, S2 and

S3. Dashed lines are the interpolations obtained with equation 2.12.

The only parameter which varied between the different samples was the hopping
activation energy. Average values of E, extracted from fits are 0.72 eV for S1 samples

and 0.56 eV for S2 and S3 samples.
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Figure 2.18 Data of forming time varying the temperature for S1, S2 and S3 samples.

Markers are experimental data, line is interpolation.

The hopping energy for samples with a bottom interface layer rich of oxygen vacancies

is lower than that for samples with Pt electrode, highlighting again the different
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physical mechanism governing the switching of the unipolar (S1) and bipolar (S2-S3)

devices.

Considering the RESET operation, voltage and current at the RESET switch were
monitored increasing the measurement temperature and the conductance just before the
RESET switch was calculated as G=Irgser/Vzeser: Data of G are plotted as function of
the inverse temperature in Figure 2.19 for 3 Ramp Rate: 100 Vs 1000 7/s and 10000
V/s. As one can see, the conductance of HfO, films in C1 (Pt-Pt) samples is lower than
in C2 (TiN-Ti) ones and increases with temperature, while the conductance of C2
samples does not change with temperature. The higher conductance of C2 samples can
be explained recalling that the effective thickness of the dielectric film is reduced respect
to C1 samples and considering the different microscopic phase of the HfO2 in the
filament for the two kind of samples. The different sensitivity of conductance to the
measurement temperature can be ascribed to the microscopic phase of the HfO2 too.
Interpolating data of conductance with the usual expression of conduction holding for
semiconductors one finds out a much lower value of the activation energy in C2 samples
than in C1 ones (shown in Figure 2.19). This picture allows to figure out the fact that
conduction is so favored in C2 that increasing temperature does not yield any
appreciable enhancement. (As a reference, the same model of LRS conductance was
applied in ZnO films extracting an activation energy of 0.4 eV [115]). On the other
hand, the presence of temperature activated mechanism of conduction could be also
taken into account to explain the sensitivity of conductance to temperature. As an
example, the LRS conductance in SiOj films was recently interpreted in terms of Poole-

Frenkel (PF) emission from traps [116]. In principle, an emission model could be
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applied to the case of C1 samples, but not in the case of C2 samples, where the step of
HT annealing could have reduced the trap density. However, three temperature values
are not enough to allow a meaningful extraction of the trap features and for this reason

any emission modeling is not carried on.
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Figure 2.19 G in the LRS state vs temperature in C1 (closed symbols) and C2 (open

symbols) samples, for three different ramp rates.

2.7 Constant Voltage Stress

In this paragraph aspects related to the field of reliability are examined. In particular the
case of electrical stress. An experiment of read disturb is performed on HfO, based
resistive memories [117]. The experiment elucidates the role of the forming conditions
and the electrode materials on the robustness of the low resistance state against electrical
disturb. It is performed in three steps: 1) two sets of samples with different electrodes

(TiN and Pt) are formed using voltage pulses with different amplitudes; 2) formed
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samples are subject to constant voltage stress of different entities; 3) the current flowing

through the MIM during stress is monitored and processed.

The complete setup used is sketched in Figure 2.20. In Figure 2.20(a) the four pads of a
device are drawn (TE and BE), but it should be noticed that only two terminals are
connected during measurements: during forming time measurements only the two
probes on the left are connected, while for the stress measurements the probes on the
right are connected. In b) the circuit used for measuring the forming time (7) is shown.
In this case, forming was achieved in pulsed condition as discussed in paragraph 2.3.3.
Typical waveforms are displayed in Figure 2.20 c). The right side of Figure 2.20 regards

the stress measurements.

CH1 a) TE d) TE
e || G —Jour(3] | e
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Figure 2.20 Experimental set-up: (a) Sketch of the pads of the device under test
(DUT); b) circuit used for measuring forming time; (c) waveforms detected on CH1
and CH2 of the oscilloscope; d) circuit used for the extraction of the resistance during

the stress; €) an example of the evolution of the resistance during the stress

We investigated the stability of the LRS when an electrical read disturb is applied. To
the aim, all the samples did undergo a Constant Voltage Stress (CVS) featuring the
same polarity of the RESET, but lower amplitude (Vsrzress). In Figure 2.20(d) it is

displayed the electrical connection between the semiconductor parameter analyzer and
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the device for monitoring the current flowing during the stress. Current data are then

processed to extract the resistance curve versus stress time, as shown in Figure 2.20(e).

Results obtained on TiN-Pt and Pt-Pt samples using a forming pulse featuring Vp= 6V
are displayed in Figure 2.21. In that experiment TiN/Pt samples were stressed for 1000
s applying a CVS at -0.3V (since they are bipolar), while Pt/Pt samples were stressed
with a CVS at +0.3V (since they are unipolar). This comparison is meaningful since the
RESET voltage had the same absolute average value (+0.8 V in the Pt-Pt case and -0.8
V in the Pt-TiN case). As one can see resistance of the Pt-Pt samples underwent

appreciable and progressive variations during the stress, whereas the TiN-Pt did not at

all.
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Figure 2.21 Comparison between TiN-Pt (blue dashed lines) and Pt-Pt (red solid

lines) samples: resistance curves during stress. Vp = 6V, | Vsrress | =03V

Influence of forming in combination with the Vsrress entity was analysed. Forming was

performed using trapezoidal voltage pulses with the same duration (7 = 500 ms) and
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the same rise/fall time (7xsz=50 ns). The pulse amplitude V» was varied: Vp=4V,5V,
6 V. On the basis of the preliminary characterization reported in paragraph 2.3.3, that
value of 7 is longer than the values of 7» in TiN-Pt and Pt-Pt samples distributions,
and we are confident that 1) the conductive filament close in stationary condition; 2) the
traps in the conductive path have time enough to settle and re-arrange; 3) the current
flows through the filament for a certain time, from its formation to the end of the 500
ms lasting pulse; 4) the temperature locally grows and the filament has time to
eventually vary its size. For TiN-Pt samples, the entity of the stress was further

increased, and results are shown in Figure 2.22 (Vyrress--0.6 V, -0.7 V).
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Figure 2.22 TiN-Pt samples: resistance curves during stress. Vp and Vyrgess are

indicated inside the plots.

First of all, it is possible to notice that still with a 1000 s long CVS at -0.6 V the LRS

looks rather robust. The number of samples showing an increase of resistance after a
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certain stress time becomes lower increasing Vp (scroll down the columns in Figure
2.22). On the contrary, that number increases whit Vzress (scroll horizontally the rows).
Devices exhibiting an increase of resistance by a factor 10x are addressed as failing ones.
Stress of lower entities were also applied, but the percentage of samples exhibiting an

appreciable increase of resistance was extremely low in any forming condition, and

results are not reported.

Experimental data for TiN-Pt have been simply processed and results are resumed in
the graph of Figure 2.23, where the percentage of TiN/Pt samples which has failed is

drawn as a function of the forming voltage, for the two stress conditions.
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Figure 2.23 TiN-Pt samples: percentage of samples which failed during stress as a

function of forming and stress voltages

The plot clearly outlines the higher robustness of the LRS to electrical disturb when
forming is achieved with the higher pulse voltage. This can be due to the fact that using
higher pulse amplitude the forming time is shorter as previously described. However,

the pulse duration was fixed to 500 ms, independently of the voltage amplitude.
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Therefore, in the case of higher Vp the percolation current flows between the two

electrodes for a longer time, during which the filament size can eventually increase.

Looking at Figure 2.22 it can be noted that the forming voltage amplitude has an
impact also on the value of the (high) resistance reached by devices at the end of the

CVS. This is particularly evident for Vsrress=-0.6 V.

In Figure 2.24 the box distributions of resistance at the end of the stress experiment
(called Riooo ) are drawn for the three forming conditions (stress at -0.6 V). The value of
the initial resistance (Ry) is also indicated with dashed line, as a reference. Each box
contains 50% of the occurrences (from 25% to 75%), the vertical bars indicate the tails,
the horizontal line is the median value. As one can see, both the distributions and the

medians tend to the value Rio0=Ro with increasing V»
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Figure 2.24 TiN-Pt samples: box distribution of the resistance measured after a 1000 s

long-stress performed at -0.6 V.
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All the data collected so far are coherent with two different pictures of the mechanism
involved in the RESET operation in Pt-Pt and TiN-Pt samples. In Pt-Pt samples, the
great and progressive sensitivity of the LRS samples to electrical disturb even at low
entity can be related to a local heating of the filament during the stress with consequent
migration of oxygen vacancies out of the filament [118,119]. This progressive
mechanism is sketched in Figure 2.25a where, independently of the voltage polarity, the
current flowing in the conductive filament may cause vacancy migration where the local
temperature is higher. On the contrary, in TiN/Pt samples the voltage stress does not
affect the LRS for stress of low entity. It seems that the stress voltage should be greater

than a certain critical value (which depends on the forming condition), after which the

LRS abruptly switches into the HRS.
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Figure 2.25 Sketch of filament rupture in Pt-Pt cells (empty circles are oxygen
vacancies); b) recombination of oxygen vacancies with oxygen ions from the O-rich
interface layer (blue circles) in TiN-Pt cells; ¢) different forming conditions give rise to
different sizes of the filament: thicker filaments are more robust against rupture

through vacancy-ion recombination.

82 Paolo Lorenzi — PhD Thesis



Chapter 2: Key aspects of Resistive Switching Memories operations: experimental analysis and modeling

This is coherent with a picture of the mechanism of RESET as related to the presence
of a barrier at the IL/HfO, interface that the oxygen ions injected from the IL must
overcome to recombine with vacancies in the filament [45,97,120,121] (O/V
recombination). This threshold mechanism is elucidated in Figure 2.25b, where there is
sketched the injection of oxygen ions and their recombination with vacancies in the
filament, nearby the injection side. In this case, V» determines how much effective is the
mechanism of O/V recombination in the filament rupture, since the forming conditions
determine the size of the filament. This is elucidated in Figure 2.25c, where two
filaments with different size are drawn: in the case of the thicker filament (formed with
higher values of Vp), the filament interruption via O/V recombination is more difficult,
given the same time and voltage stress [122]. Obviously, also the increase of
temperature has a role in favoring the filament rupture through O/V recombination,
since temperature increases the probability that oxygen ions overcome the IL/HfO,
barrier. This reflects in the fact that there is a distribution of the time-to-rupture in

Figure 2.22.

A similar experiment was performed also on the TiN-Ti samples. The resistance
evolution under constant voltage stress of both the low resistive state and the high
resistive state of the TiN-Ti cells is studied from an experimental and theoretical point
of view. A filamentary model based on ions hopping and oxygen vacancies generation
phenomena is used to interpret the behavior of the cells [123]. The gap between the tip
of the filament and the metal electrode is the parameter governing the device resistance.

The evolution of the cell resistance in both the HRS and the LRS is crucial for the

correct state reading with time and it is one of the key aspects of the memory reliability.
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Usual retention tests consist in accelerating resistance changes by applying proper

electrical stress [103, 117].

The memory cells were subject to electrical stress using positive constant voltages at the
bottom gate in the HRS, and using negative voltages in the LRS. The resistance was
systematically monitored at the same voltage of the stress. The CVS amplitude (Vsrress)
was varied in a wide range (0.3V-0.5V for the HRS and from -0.6V to -0.3V for the
LRS). In Figure 2.26 there are reported data collected on distinct samples at various

VSTRESS .
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Figure 2.26 Resistance of the HRS (up) and LRS (down) measured during a CVS

performed at the voltage values listed in the figure.

As for the HRS, in the studied timescale the monitored resistance did not change with
Vsrress= 0.3 V. Using Vsrress= 0.4 V the resistance changed abruptly from HRS to
LRS, with a wide time distribution. Finally, using Vsrress=0.5 V the switch could not
be monitored since it had already occurred at the time of the first measurement (100

ms). On the contrary, the stress in LRS made the resistance to vary progressively,
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showing a trend of the variation rate with the stress voltage (Figure 2.26 b). In
consequence of the stress, the LRS approached the resistance value of the HRS after a

considerable time, depending on the stress voltage amplitude.

As described in the previous chapter the switching mechanisms can be simplified into
the creation of a single dominant filament responsible of the conduction change in the
cell. The length of a tunnelling gap is the parameter governing the device resistance. In
this frame, the I-V current behaviour may be interpreted in terms of a mixed
conduction model which takes into account the gap formation and evolution. The

current equation can be written as follows:

| = Ioexp(—i)sinh(ij, 213
gmin VO

where the pre-factor I is related to the slope of the ON current, ¥} is a constant voltage
scaling term, g, is the minimum gap length which is finite and it is assumed to be
equal to the atomic distance « (0.25 nm, corresponding to the ON condition). The gap
() kinetics is calculated taking into account the electric field and temperature enhanced

oxygen ion hopping during RESET and oxygen vacancies generation for SET [97].:

E
OI—g:—faexp _ S ginn| 902V , 2.14
dt K,T K,TL

where E, is the hopping barrier, E; is the activation energy for oxygen vacancy
generation, f is the frequency attempt to escape, @ is the atomic distance, Kz the
Boltzmann constant and ¢ is the electron charge. We fixed: £, =1.5 eV, E, = 1.3 ¢V and
f =108 s'[97]. The local electric field is approximated with the formula F = yV/L,

where L is the film thickness (10 nm) and yis a field enhancement factor taking into
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account the local field modifications caused by the conductive filament and the strong
polarizability in high-k dielectrics. Such a field enhancement factor depends on the gap

length in the sense that it decreases with increasing g:

1
7:70_C093? 2.15

where yoand ¢ are fit parameters. The cubic dependence with the gap length was
obtained empirically by other authors [63]. The temperature 7"is the local temperature
in the filament which is greater than the room temperature T as described in paragraph

1.6.1:
T =Ty+& P =Ty+& VI, 2.16

where &jis an equivalent thermal resistance.

Application of an electrical stress can imply a degradation of the memory state, in the
sense that the cell can vary its resistance state during the stress. In fact, when a negative
CVS is applied in the LRS, the resistance increases its value and when a positive CVS is
applied in the HRS, the resistance decreases. Referring to the conductive filament
picture, this can be regarded as whether the gap increases or decreases its length,
respectively. The conduction model and the gap dynamics expressed in equations 2.13-
2.16 are now used to simulate the resistance value evolution under the effect of the
electrical stress. First, we focus on the LRS and try to interpolate the curves sketched in
Figure 2.26. Calculation of the LRS resistance was obtained with the equations 2.13-
2.16. The simulated curves are displayed in Figure 2.27 with solid lines, superimposed

to experimental data (symbols).
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Table 3
7 55
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All the curves were obtained using the parameter values listed in Table 3 and varying

only the value of the applied voltage.
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Figure 2.27 Calculated curves of LRS resistance obtained with the equations 2.13-2.16

(lines) and experimental data collected on samples for different Vsrress (symbols).

The gap calculated integrating equation 2.14 is plotted in Figure 2.28a. At time zero
(ON state) an initial (minimum) gap length g=0.25nm is assumed, to which the
minimum resistance corresponds. The stress progressively widens the gap as shown in
the figure. The higher the stress voltage, the faster gap widening. The local temperature
in the filament is calculated using equation 2.16 of the model. Results are shown in

Figure 2.28b. As expected, the maximum value of temperature is in the ON state and
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rapidly decreases with the gap widening, since the flowing current decreases, as well as

the Joule dissipated power.

Turning to the HRS evolution during stress, it can be noted that it strongly depends on
the stress voltage. In fact, in one case (Vsrress=0.3V) the resistance does not change in
the time range monitored, while in another case (Vsrress=0.5V) the device switches its
state at the first measured point (100ms), thus denoting a threshold behavior of the cell.
When Vsrress=0.4V the devices exhibit an abrupt change of the resistance in a wide

time range(10's — 10's).
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Figure 2.28 (a) Curves of the gap and (b) local temperature in the filament during the

CVS calculated with the model for different values of Vsrress. Inset: dependence of the

gap on VsrrEss.

We focused on this case in order to understand this variability in the cell behavior.
Equations 2.13-2.16 were used to describe the HRS evolution during the stress. A
parameter gy representing the starting gap length was adopted in order to consider the
different resistance starting value at the first measured point. This different starting

configuration of the devices influences the parameter y responsible of the enhancement

88 Paolo Lorenzi — PhD Thesis



Chapter 2: Key aspects of Resistive Switching Memories operations: experimental analysis and modeling

of local electric the field in the oxide. y defined in equation 2.15 is a global parameter

that approximates in a simple dependence with the gap length all the possible

conductive filament configurations that modify the local electric field. In the case of

HRS it is well known that there is a wider dispersion of the resistance value [124, 125]

respect to the LRS. In Figure 2.29 are reported the HRS evolution during the CVS at

0.4V for four different samples. Markers are experimental data and lines are the

calculated values using equations 2.13-2.16 and parameter listed in table 3 excepting c.
The starting gap was varied between gy=1.17nm and go=0.7nm and, in order to take into
account the wide time range of the abrupt resistance change, also the parameter ¢y was

varied. An empirical dependence of the type cp=a+bgy (a=0.622 and 4=-5.37) was found

(inset of Figure 2.29)
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Figure 2.29 Solid lines are

obtained with the model for Vsrress=0.4V. Experimental data collected on 4 samples
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calculated HRS resistance evolution during the stress

1.2mn

r - -1 P 3
g,=0.9nm ", c =(2.5/m)

g,=0.7nm", ¢ =(2.9/nm)’

10°

are reported with symbols. In the inset linear relation of ¢y with the initial gap is shown.
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Calculations of the gap evolution during the positive CVS for the HRS are shown in
Figure 2.30 a. Comparing results shown in Figure 2.28 a, it is possible to see the
differences in the dynamic of the processes for the two resistive states. In Figure 2.28 a
the gap increasing is gradual, while the gap decreasing in Figure 2.30 a is abrupt. In
fact, looking to equation 2.15, the relation of the enhancement factor y with the gap
expresses a decreasing of its value increasing g. Also the temperature decreases due to

the increasing of the gap length and the consequent reduction of the current.
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Figure 2.30 (a) Curves of the gap and (b) local temperature in the filament during the

CVS calculated with the model for Vstress=0.4V.

This can be seen like a negative feedback: increasing the gap decreases the enhancement
factor and, as a consequence, the electric field and the temperature. On the contrary,
when the gap is reducing its value y increases and so the electric field, the current and
the temperature. In this case the phenomenon can be seen as a positive feedback self-

accelerated process [66].

To clarify how the parameter variability influences the behavior of the cell in the HRS e

LRS a Gaussian distribution of ¢, was adopted:
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=t 5, 2.17

0_mean

where dy is a zero mean value normal distribution with a standard deviation o of 10%
of the mean value cy_nean. Results are shown in Figure 2.31 a and 2.31 b. For clarity, only
one starting gap go was considered in the HRS. As one can see, the same variability of
the same parameter gives a wider time range dispersion in the HRS state, while in the
LRS the variability of ¢, reflects in a slightly slower or faster increase of the gap length
during the electrical stress. The HRS case is a typical behavior of positive feedback
systems, where small variations in parameters values give strong variations in the output

[126].
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Figure 2.31 30 Curves of the gap evolution calculated with a Gaussian distribution of

c0 for the HRS (a) and the LRS (b).
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3 NEUROMORPHIC
APPLICATION

In this chapter, an introduction of the neuromorphic bio-inspired architectures will be
given in terms of biological basics, neurons and synapses electrical models and circuits.
Bio-inspired learning paradigm Spike Time Dependent Plasticity (STDP) will be
described and adopted for simulations. Different approaches in RRAM based networks
architectures and simulations will be described and results on visual pattern recognition

will be discussed.

92 Paolo Lorenzi — PhD Thesis



Chapter 3: Neuromorphic Application

3.1 Introduction

Neuromorphic computing refers to an emerging interdisciplinary field that takes its
inspiration from biological neural architectures and computations occurring inside the
brain or the cerebral cortex. It comprises principles and knowledge from neurobiology,
computational neuroscience, computer science, machine learning, VLSI circuit design,
and more recently nanotechnology. According to Vonn Neumann architecture a
computing machine is composed by different units: a unit that performs calculations, a
unit responsible of controlling the sequence of the operations, a storage unit that holds
data and program and inputs and outputs devices (Figure 3.1). In non-Von Neumann
neuromorphic architectures, computing hardware and processing are not completely
isolated tasks. Memory is intelligent and participates in processing of information.

Neuromorphic computing may also referred to as Cognitive computing.

Central Processing Unitt

Output
Control Unit Device

Arithmetic/Logic Unit

Input
Device

Memory Unit

Yon Neumann Architecture

Figure 3.1 Von Neumann Architecture
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Neuromorphic and bio-inspired computing paradigms have been proposed as the third

generation of computing or the future successors

of von-neumann machines as

described in Figure 3.2.
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Figure 3.2 Computing architectures, circuits and devices

Architectures abstracted from neural systems provide a promising solution to different

cognitive tasks like the object detection and the speech recognition, inspiring new

paradigms, which can drastically improve the performance and efficiency of computing

systems [127]. Due to the configurable and multiparallel architecture constituted by a

complex network of ~10' neurons and 10" synapses, the human brain is able to

perform a wide range of cognitive tasks with a power consumption of less than 20 W

[128]. This value is much lower respect to the modern multi-core based computers that

require 10,000 times more power [129].

The superior efficiency of the brain in

performing fuzzy and fault-tolerant computation has motivated engineers to mimic the
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key algorithmic and computational features of the brain in software and silicon-based
hardware [130]. So, low power consumption and fast calculations are main goals in
implementation of Artificial Neural Networks (ANNs). Dedicated hardware ANN
architectures, compared to software implementations, can offer very high computational
speed [131] at very low cost with high reliability, due to the redundancy of the
architecture [132]. In the past years, pre-trained ANNs have been implemented in
CMOS technology, with flexible design and a variety of architectures featuring good
computing performances [133]. However, CMOS networks still have limitations in
density and power consumption [134]. For example, in SRAM based ANNSs, the
synaptic weights are stored in volatile memories, which implies a considerable power

leakage due to the subthreshold current [135].

In this scenario, Non-Volatile Memories synapses stand out for their excellent power
management and integration due to their small sizes that allow high density structures.
Resistive switching memories are most attractive for very large-scale system
demonstration [136]. Today, RRAMs are considered among the most promising
devices to realize neuromorphic systems capable of implement learning algorithms based
on pulses [137]. This is due to several advantages offered by this technology: the
simplicity of operation and low energy consumption (~0.1 p]/bit) [138], the
compatibility with CMOS technology and the possibility of 3D crossbar integration in
back-end-of-line[139], the good scaling properties of the elemental cell (minimum size
below 10 nm[33]), the excellent reliability (~10'> SET/RESET cycles [33]), the short
programming time (~ns [33]), the online learning algorithms in which appropriate

pulses update the synaptic weights.

Paolo Lorenzi — PhD Thesis 95



Emerging Resistive Switching Memories and Neuromorphic Applications

3.1.1 Biological basics

Neurons are the basic functional units of the nervous system, and they generate
electrical signals called action potentials, which allow them to quickly transmit
information over long distances. Neurons, like other cells, have a cell body (called the
soma). The nucleus of the neuron is found in the soma. Various processes (appendages
or protrusions) extend from the cell body. These include many short, branching
processes, known as dendrites, and a separate process that is typically longer than the

dendrites, known as the axon (Figure 3.3).

Soma (cell body)

Dendrite

Synapse

- ® N
s (o)
Neuro o \

transmitter V
Axon terminal

Postsynaptic cell

Figure 3.3 Neurons structure. In the inset a zoom of the synapse

The first two neuronal functions, receiving and processing incoming information,

generally take place in the dendrites and cell body. Incoming signals can be either
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excitatory — which means they tend to make the neuron fire (generate an electrical

impulse) — or inhibitory — which means that they tend to keep the neuron from firing.

Most neurons receive many input signals throughout their dendritic trees. A single
neuron may have more than one set of dendrites, and may receive many thousands of
input signals. Whether or not a neuron is excited into firing an impulse depends on the
sum of all of the excitatory and inhibitory signals it receives. If the neuron does end up
firing, the nerve impulse, or action potential, is conducted down the axon. An axon is a
special cellular extension (process) that arises from the cell body at a site called the axon
hillock and travels for a distance, as far as 1 meter in humans or even more in other
species. We can consider the dendrites as the inputs of the neuron and the axon as the

output.

Connections between the neurons are made onto the dendrites and cell bodies of other
neurons. These connections are known as synapses. They are the sites at which
information is carried from the presynaptic neuron, to the target neuron uusally called

postsynaptic neuron (Inset of Figure 3.3).

The information is transmitted in the form of chemical messengers called
neurotransmitters. When an action potential travels down an axon and reaches the axon
terminal, it triggers the release of neurotransmitter from the presynaptic cell.
Neurotransmitter molecules cross the synapse and bind to membrane receptors on the

postsynaptic cell, conveying an excitatory or inhibitory signal.

Thus, the axon and the axon terminals carry out the function of communicating

information to target cells.
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When a neurotransmitter binds to its receptor on a receiving cell, it causes ion channels
to open or close. This can produce a localized change in the membrane potential—
voltage across the membrane—of the receiving cell. In some cases, the change makes
the target cell more likely to fire its own action potential. In this case, the shift in
membrane potential is called an excitatory postsynaptic potential, or EPSP. In other
cases, the change makes the target cell less likely to fire an action potential and is called
an inhibitory post-synaptic potential, or IPSP. An EPSP is depolarizing: it makes the
inside of the cell more positive, bringing the membrane potential closer to its threshold
for firing an action potential. Sometimes, a single EPSP isn't large enough bring the
neuron to threshold, but it can sum together with other EPSPs to trigger an action
potential. IPSPs have the opposite effect. That is, they tend to keep the membrane
potential of the postsynaptic neuron below threshold for firing an action potential.

IPSPs are important because they can counteract, or cancel out, the excitatory effect of

EPSPs.

A neuron constantly integrates or sums all the incoming PSPs, that it receives at its
dendrites, from several pre-synaptic neurons. The incoming EPSPs and IPSPs lead to a
change in the resting potential of the membrane. When the membrane potential
depolarizes beyond a certain threshold, it leads to spiking or action potential generation

inside the post-synaptic neuron, as shown in Figure 3.4.
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Figure 3.4 Action Potential

The weight of a synapse is defined by the strength of change that it can induce in the
membrane potential of a post-synaptic neuron when an action potential is generated.
The ability of a synapse to change its strength, in response to neuronal stimuli is defined

as synaptic plasticity.

One of the most diffused and widely accepted model of the synaptic plasticity is the so
called: Spike Timing Dependent Plasticity (STDP) [140,141]. According to this
learning paradigm, the synaptic weights update according to relative spiking time of pre
and post-synaptic neurons. According to STDP, when repeated pre-synaptic spikes
arrive just before post-synaptic spikes the synapses weights increases following a long-
term potentiation (LTP) (right part of Figure 3.5) . On the contrary, repeated spikes
arriving after post-synaptic spikes leads to long-term depression (LTD) of the same
synapses weights (left part of Figure 3.5). Thus, inputs that might be the cause of the

post-synaptic neuron's excitation are made even more likely to contribute in the future,
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whereas inputs that are not the cause of the post-synaptic spikes are made less likely to
contribute in the future. Note that the relative change of synaptic strength is more
profound if the time difference (A4#) between the spikes is smaller. As Az increases, the

effect of LTD and L'TP becomes less profound like an exponential decay.
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Figure 3.5 Illustration of spike timing dependent plasticity time windows, taken from
[142]. Depending on the precise time difference between a post- and a pre-synaptic

spike, the synaptic weight can be either depressed or potentiated.

3.2 Neuron electrical models and circuits

It is possible to find various models of biological neurons (and synapses), with different
degrees of complexity and abstraction in literature. The complexity and the proper
choice of a model depends on the context and on the application. In medical or

biological fields, having a detailed model that takes in to account the dynamics at the
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level of individual ion-channels and underlying biophysical mechanisms is fundamental
to understand the working of the biological neurons. In neuromorphic computing,
simple behavioral models are sufficient to describe, with a certain accuracy, the neuron

features that are exploited in such applications.

One of the earliest and simplest neuron models is the Leaky Integrate-and-Fire (LIF)
[143]. In this model, a neuron is represented by a simple capacitive and resistive
differential equation, where Cm denotes the neuron membrane capacitance and Rm

denotes the membrane resistance:

Vi (t dv, (t
,(t)_%zcm, cTt()’ 3.1

m
The LIF model takes into account the leakage-effect of the neuron membrane potential
by drift of some ions, assuming that the neuron membrane is not a perfect insulator.
The spiking events are not explicitly modelled in the LIF model. Instead, the neuron
constantly sums or integrates the incoming pre-synaptic currents and when the

membrane potential reaches a certain threshold voltage (Vth ) it instantaneously fire,

generating an action potential.
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Figure 3.6 Schematic of LIF neuron

Paolo Lorenzi — PhD Thesis 101



Emerging Resistive Switching Memories and Neuromorphic Applications

From a circuital point of view the LIF neuron can be implemented with an integrator, a
comparator, switches, and eventually control logic. In the example in Figure 3.6 [144]
the integrator has an inverting output; hence, the output decreases as the current
flowing through the memristor is accumulated on the capacitance Cm. As soon as the
integrator output goes down below a certain threshold voltage V5, the comparator

output goes high (logic “1”), and it can be recognized by the control logic as the neuron

has fired.

In application where we want to include more biological aspects in the neuron model a
deeper description is needed. In neuromorphic architectures, time represents itself and
so the neuron (and synapse) circuits must process input data in the moment when they
are available, producing output responses as much as possible in real time. In order to
interact with the real-world sensory signals efficiently, neuromorphic systems must use
synchronized with the real-world events circuits that have biologically plausible time
constants (tens of milliseconds) [145]. This constraint is not easy to satisfy using analog
VLSI technology [146-148]. A way to overcome this problem is to use current mode
design techniques [149] and subthreshold circuits [150-154]. When MOSFETs
operate in the subthreshold domain, the carrier diffusion is the main physical
mechanism governing the behavior of the transistor. Therefore, MOSFETSs have an
exponential relationship between drain current Ip and gate voltage Vs, at very low
currents regime. The time constants of MOS subthreshold circuits are inversely
proportional to the reference currents and directly proportional to the circuit
capacitance, thus allowing the integration of relatively small capacitors in integrated

circuits in order to implement temporal circuits that are both compact and have
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biologically realistic time constants, ranging from tens to hundreds of milliseconds. A

sub-threshold neuron circuit is shown in Figure 3.7. It is composed by:

input differential pair integrator (DPI) circuit used as a low pass filter (LPF)
(ML1-ML3)
o  spike-event generating amplifier with current-based positive feedback (IMA1-
MAG)

e  spike reset circuit with refractory period functionality (MR1-MR6)

spike-frequency adaptation mechanism implemented by an additional DPI

LPF (MG1-MGS).

Vdd

Figure 3.7 Adaptive exponential neuron circuit schematic. The input DPI circuit
(ML1-3) models the neuron’s leak conductance. A spike event generation amplifier
(MA1-6) implements current-based positive feedback (modeling both sodium
activation and inactivation conductances) and produces address—events at extremely

low-power operation. The reset block (MR1-6) resets the neuron and keeps it in a
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resting state for a refractory period, set by the Vref bias voltage. An additional LPF

(MG1-6) integrates the spikes and produces a slow after-hyperpolarizing current Iahp

responsible for spike-frequency adaptation.

104

The DPI block ML1-3 models the neuron’s leak conductance; it produces
exponential subthreshold dynamics in response to constant input currents. The
neuron’s membrane capacitance is represented by the capacitor Cyen, while sodium
channel activation and inactivation dynamics are modeled by the positive-feedback
circuits in the spike-generation amplifier MA1-6. The reset MR1-6 block models
the potassium conductance and refractory period functionality. The spike-frequency
adaptation block MG1-6 models the neuron’s calcium conductance that produces
the after-hyperpolarizing current Ia/p, which is proportional to the neuron’s mean
firing rate. A first order set of differential equations describes the dynamics of the
current:

|
(1+|I;h]z-i Imem + Imem (1+Ia_hp} B Imemm+ f(Imem)

T

3.2

Where I,... is the subthreshold current that represents the real neuron’s membrane
potential variable, I is the slow variable responsible for the spike-frequency
adaptation mechanisms, and #(2) is a step function that is unity for the period in
which the neuron spikes and null in other periods. Term f{Imem) is a function that
depends on both membrane potential variable and positive-feedback current a. The

other parameters are defined as (referring to Figure 3.7 for the symbols):
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_ CmemVT . _ CDVT
T
T Tahp 3.3
| ! ’
_ 'ih . _thap
Imemm - | (Iin_lahp_lr)1|ahp00 - ICa
T Tahp

Where I and Iuap represent currents through n-type MOSFETS not present in Figure

3.7. For values of Iiy>>1: it is possible to simplify equation 3.3 in:

A ey L 3.4

mem mem in mem ?
dt o

Where f{Lun)~(I/T,)Len. So, under these conditions, the circuit of Figure 3.7
implements a generalized Integrate and Fire neuron model [155]. Learning and long-
term memory of information in biological neurons is due to calcium flux controlled by
N-Methyl-D-Aspartate (NMDA) channel induced synaptic plasticity [156, 157].
Biological NMDA receptors have been shown to demonstrate spike timing dependent
plasticity. Synaptic weights can learn to associate positive or negative correlations with
the differential timing patterns of pre- and post-synaptic spikes. Since the conception of
this theory, biological neuron activity has been shown to exhibit behavior closely -
modeling such calcium-based Hebbian learning [157-160]. Since calcium concentration
decays exponentially, this behavior can be easily implemented on hardware using
subthreshold transistors. The calcium signal integrates the postsynaptic spike sequence

and accumulates according to:

1 Ia_ICa 3.5

where I, is the postsynaptic calcium variable and is a function of postsynaptic spiking

activity, with a long time constant 7.
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3.3 Synapses
Several different hardware implementation of artificial synapses exist in literature. A
complete summary on this topic is out of the scope of this thesis. In this paragraph we
consider just the CMOS synapse implementation described in [145] that was the
starting point for the results described in the following paragraph 3.4.3 and the RRAM

based synapses characteristics.

3.3.1 CMOS implementation

Synapses are the ports in which both biological and silicon neurons receive and compile
information from downstream neurons, thus playing a crucial role in neural learning.
This silicon synapse is based on an integrator that is capable of emulating short-term
plasticity, well as NMDA receptor behavior, and produces biologically plausible
Excitatory-Post-Synaptic-Currents (EPSCs) [145]. An example of a full excitatory
synapse circuit is shown in Figure 3.8. The input spike (the voltage pulse Vin) is applied
to both MD3 and MS3. The output current Isyn, sourced from MD6 and through
MG2, rises and decays exponentially with time. The temporal dynamics are
implemented by the DPI block MD1-6. The circuit time constant is set by V7 while the
synaptic efficacy, which determines the EPSC amplitude, depends on both Vw0 and

Vth. The circuit dynamic is described by the equation:

d I 3.6
=1, =1 |2+1],
dt syn syn(l ]

Equation 3.6 says that the change in circuit response increases with every spike, by an
amount greater than one, for as long as condition Isyn<<Ith is satisfied. As Isyn

increases, this condition starts to fail, and eventually the opposite condition (Isyn >>15)
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is reached. This is the condition for linearity, under which the circuit starts to behave as

a first-order LPF.

Vdd  Vdd Vdd

Ve °_l
Vin °—I

I

Figure 3.8 Complete DPI synapse circuit, including short-term plasticity, NMDA
voltage gating, and conductance-based functional blocks. The short-term depression
block is implemented by MOSFETs MS1-3; the basic DPI dynamics are implemented

by the block MD1-6; the NMDA voltage-gated channels are implemented byMN1-2,

and conductance-based voltage dependence is achieved withMG1-2

3.3.2 RRAM based synapses

Two-terminal RRAM devices have been proposed as artificial synapses in
neuromorphic circuits thanks to the capability of analog gradual resistance modulation,
strong device area scalability, low power consumption, compatibility with CMOS
technology combined with a 2-terminal structure. Due to these characteristics, RRAMs
naturally satisfy the requirements to act as a connection for communication between a

pre-synaptic neuron and a post-synaptic neuron. The RRAM resistance state can be

Paolo Lorenzi — PhD Thesis 107



Emerging Resistive Switching Memories and Neuromorphic Applications

considered inversely proportional to the synaptic weight w. Different resistive switching
devices were used for practical implementations, such as: phase change [161,162],
ferroelectric [163,164], and oxide-based RRAMs [165,161]. When RRAMs are
employed in neuromorphic networks, two main operational modes are used, binary and
analog. The binary operations is based on the two limits states HRS and LRS, and it is
proved to be effective in specific applications [161,165,166]. At the same time, gradual
analog resistance modulation is desirable to improve the performances of the network
[167- 169].However, the difficulty of operating RRAM in an analog way, especially in
transitions from HRS to a more conductive state, implies challenging hardware

implementations of the networks [168].

<

—>

Synapse as a
variable resistor

7\

spiking
post-
neuron

spiking
pre-
neuron

RRAM Synapse

Figure 3.9 Basic RRAM based synapse scheme connecting a pre-synaptic neuron and a

post-synaptic neuron

In Figure 3.9 is sketched the basic connection scheme of a pre-synaptic and a post-
synaptic neuron through a RRAM based synapse. As previously said, the memory cell
resistance value is linked to the weight of the synapse. In neuromorphic network, the
evolution of the weight is responsible of the learning of the circuit. Essentially, during

the training of the network, a defined learning paradigm is adopted in order to obtain
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an evolution of the weights in a way that the network learned a certain task. So the use
of a proper learning paradigm responsible of the evolution of the RRAM resistive state

is a key aspect for the entire behavior of the network.

In the following paragraphs, different approaches will be considered in neuromorphic
networks simulations with RRAM based synapses for visual pattern recognition

applications:

° PSPICE simulation of a small network
e Matlab simulations of a large network based on STDP

e  Brian (Python) simulations of a large array based on a modified version of the

STDP

3.4 Networks

A neuromorphic network has the neurons divided into subgroups of fields and elements
in each subgroup are usually placed in a row or a column. Each subgroup is called layer
of neurons in the network. A neuromorphic network may have input layer that supply
the input signals for the neurons in the next layer, output layer where output is
generated and in between them hidden layer(s) that process information between input
and output layers. Two neurons are connected with a weight (synapse) that can have
various values. Basically, the raw output of a neuron in a simple network is a weighted

sum of its inputs multiplied by weights connected to it.
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Figure 3.10 Basic scheme of a neuron with the weights and the inputs

A single neuron processes multiple inputs applying an activation function on a linear

combination of the inputs:

i=t

\ 3.7
Yi = [zvvijxj +bij’

where {x;} is the set of inputs, w; is the synaptic weight connecting the 7 input to the
i neuron, &; is a bias, @i(-) is the activation function, and y; is the output of the

i neuron considered. The activation function is usually strongly nonlinear.
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3.4.1 PSPICE simulated network
The leaky integrate and fire (LIF) model, described in previous paragraphs, was adopted

to implement the neurons. A neuromorphic network composed by a first 25 sensory

neurons layer and a second layer made of 10 output neurons connected through 250

RRAM synapses was used (Figure 3.11) [170].

012 34
5hT 89

5 X 5 pixel
Input Image

Sensory Neurons

Q/Ll RRAM Synapses

Output Neurons
] |

Figure 3.11 Circuit architecture: 5x5 pixel binary input image, 25 sensory neurons, 250

RRAMs and 10 output neurons

TiN/HfO2/Ti RRAMs were electrically characterized and modeled to be used as
synapses. The steady-state current voltage (I-V) characteristics for SET and RESET is

displayed in Figure 3.12. In order to simulate the I-V characteristic of the cells, a
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physically based simplified model (as described in Chapters 1 and 2) was used to

reproduce the I-V characteristics. The equation adopted are included in the figure.

10° -
F| o RESET
10 o SET
10
107
=
-4
= 10
o
319°F a=19-10mss

10° a,=59e-7 m/s

cp=50 nm-" lp=2.5 mA
107 L Yreser=T3 0p=0.25 nm
ESETZQE VD=D45 vV
1[}'5 ; ] : 1 : I ; ] ; ] :
-15 -1.0 -0.5 0.0 0.5 1.0 1.5
Voltage (V)

Figure 3.12 RRAM experimental (markers) current-voltage characteristic and model

(solid line). Current and tunneling gap dynamic equations are also shown.

Starting from these equations a PSPICE behavioral model was implemented in order to
perform circuital simulations. SPICE (Simulation Program with Integrated Circuit
Emphasis) is a general-purpose, open source analog electronic circuit simulator. It is a
program used in integrated circuit and board-level design to check the integrity of
circuit designs and to predict circuit behavior. The proposed model is based on the
equations in Figure 3.12. In the following page is listed the PSPICE code used. The
RRAM device is described with two main blocks: the first one is an integrator
composed by a capacitor and a source of current. This part is devoted to integrate the

differential equation related to the gap dynamics. The second block is a voltage
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controlled current source that represents the conduction current dependent on the

actual value of the gap.

* SPICE model for RRAM devices, Created by Paolo Lorenzi
* Connections: TE - top electrode BE - bottom electrode
. SUBCKT MEMRISTOR-LORENZI TE BE

.PARAM al=-1.9199e-10 al 2=-5.9199e-07 a2=0.0025 c0=50
gamma0=73 gini=0.26gmin=0.25 g0=0.25 tens0=0.45 gmax=10
gammal_ set=95

.func Arg(vl,v2) = {LIMIT(0.9667* (gammaO set-
c0*Vv2)*v1,1000,-5800) }
*function F(V1l, V2, V3) - Describes the SV motion (V2 is

the gap), V1 is the applied voltage, V2 * is the limited
sinh argument and V3 is the gap; 0.9667 in the sinh
considers a/ (l*ke*T)

. func
F(V1,Vv2,V3)={IF(V1<=0,al*sinh(V2),IF(V3<=gmin,0,al 2*sinh(V
2)))}

* IV Response - Hyperbolic sine due to MIM structure
*az2=10, V2=gap, tens0=V0
.func IVRel (V1,V2) = {a2*exp(-V2/g0)*sinh(V1/tens0)}

* Circuit to determine state variable

* dx/dt = F(V(t),x(t))

Cx XSV 0 1

Rx XSV 0 1g

.IC V(XSV) = 0.26

Ex 2 0 value={ Arg(V(TE,BE),V(XSV,0))}

Gx 0 XSV value={ F(V(TE,BE),V(2,0),V(XSV,0))}
* Current source for memristor IV response
Gm TE BE value = {IVRel (V(TE,BE),V(X3V,0))}
.ENDS MEMRISTOR-LORENZI

The entire system was adopted in order to recognize 5X5 pixel binary images
representing numbers between “0” and “9” (Figure 3.11). The network operations are
divided in two distinct phases: the training and the testing ones. During the training
phase, all the memory cells started in LRS and voltage pulses of -1.2V were applied to
the resistive switching devices. The output spike of the sensory neurons were used to

modify the resistance values of RRAMSs. The simulated resistance behavior, with the
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PSPICE model described above, as a function of the number of sensory neuron pulses is
shown in Figure 3.13 for three different pulse widths. For this simulations the same
parameters used to fit the I-V experimental characteristic shown in Figure 3.12 were
adopted. Unfortunately it was not possible to compare the pulsed simulated values with
experimental data on our samples. However, it is clear that the trend is in agreement
with already published works in literature [63]. For the training, a simple protocol was
adopted: every neuron was trained separately to recognize one of the 10 numbers just
applying training pulses of -1.1 V in correspondence of black pixels in the number

image.
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Figure 3.13 PSPICE RRAM resistance evolution as a function of training pulse
number for three different pulse width. In the inset an example of the sensory neuron

training pulse

In the following, binary images represented by just low and high resistive state will be
considered. During the testing phase an input image is applied (numbers between “0”

and “9”). Low voltage pulses (0.1V), corresponding to black pixels, were applied to
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RRAM previously trained and integrated by output neurons. When the voltage across
the capacitor reaches the threshold voltage (Figure 3.14), the winner neuron stops the
others through a feedback network (not shown here) and the recognition is completed.
In Figure 3.14 an example is shown: during testing an image corresponding to a “0” is
applied to the network. All the output nodes start the integration of the spikes coming
from the synapses. The output neuron trained to recognize the number “0” was the first

one reaching the threshold voltage.

25F | T T |

—Ng
——N8

—N7 N2
—N6  ——NO _
—N5 —n1|| Input image

INTEGRATOR (V)

V

0 410° 810°
Time (s)

Figure 3.14 Voltage at the integrator node of all the output neurons during the testing

phase with “0” as input image.

The performances of the circuit were tested in two ways. The first one was to apply the
same inputs image adding a noise (Figure 3.15). In particular, noisy pixel with random
timing features were added to the input images with different percentage (4% - 20%). It
was found that if the noise level was under the 10% (corresponding to 2 pixels) the
network recognized correctly all the patterns. The second way to evaluate the

performance of the network was to build an home-made test set as shown in Figure
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3.16 and monitoring the success rate of recognition. A test set of 100 images composed
by 10 different representations of numbers between “0” and “9”. A success rate of the
44% was achieved with the test set used. Obviously, in order to increase the
performances of the network, it is mandatory to improve the learning paradigm during
the training phase. Furthermore, the adoption of a meaningful data set is fundamental

to give robustness to the network. These points will be addressed in the following

paragraph.
Noisy e
E E Pixels Recognition
o All patterns were recognized
0%
successfully.
o All patterns were recognized
4%
— successfully.
;.:— o All patterns were recognized
— 8%
successtully.
n 129, Failed to recognize pattern 3.
’ Failed to recognize pattern 2.
169, Failed to recognize pattern 3.
I ’ Failed to recognize pattern 2.
E El 20% Failed to recognize pattern7.

Figure 3.15 The effect of noisy pixels on the recognition of the input image “3” is
shown on the left. Network recognition performance as function of the noisy pixels is

resumed.
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Figure 3.16 Test set used to evaluate the success rate

3.4.2 STDP-based network for handwritten digits recognition

A fully connected brain inspired neuromorphic network composed by 784 input
neurons, M output neurons (with M ranging between 100 and 2000) and 784xM
TiN/HfO2/Ti Resistive RAM synapses was simulated. The proposed network has been
trained with the biologically inspired learning paradigm Spike Time Dependent
Plasticity in order to recognize handwritten digits between “0” and “9” from the Mixed
National Institute of Standards and Technology (MNIST) database. The MNIST
database is composed by 60000 training and 10000 testing images. Every image is made
by 28x28 pixels (784 in total) coded in a grey scale of 256 levels. The MNIST database
represents a classic data set used as a benchmark for pattern recognition algorithms. In

Figure 3.17 an example of the images composing the MNIST database in shown.
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Figure 3.17 Subset of the handwritten digits taken from the MNIST database

A network composed by 784 input neurons and an output layer made of M neurons
connected through 784xM synapses was considered [171]. The measured high and low

resistance values of the TiN/HfO2/Ti Resistive RAMs fix the boundaries of the

synapses weights.
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Figure 3.18 Sketch of the matrix made of 784 input sensory neurons and M output

neurons. Synapses connect input and output neurons

The neurons were modeled as leaky integrators inspired by the leaky integrate and fire
(LIF) model. In the training phase, input neurons emit spikes corresponding to black
pixels of the input training image. When the input neuron spikes, a positive voltage is
applied to the RRAM connected to that neuron. This voltage induces a synaptic current
small enough to maintain unchanged the state of the resistive memory. The synaptic
current is added to the other synaptic currents coming from the RRAMs belonging to
the same column. The output neuron spikes when its voltage drop reaches an arbitrary
predefined threshold that is the same for all neurons. Then, the synapse weight changes
according to the STDP paradigm, as shown in Figure 3.19. Unfortunately, besides the
quasi static I-V characteristics of the RRAM, no experimental data about the trained

and recognized characteristics of the neuromorphic network were collected. Although,
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the simulated results seems to lack the link with the real device, the curve represented in
Figure 3.19 has a shape comparable with the same curve that is possible to find in
various works in literature [165, 172] where RRAMs are used to implement STDP
learning rule. Different methods are described in literature to obtain the STDP curve
using RRAM devices. Most of them are based on the overlapping of waveforms coming
both from the pre-synaptic and the post-synaptic neuron [172, 173]. In these work the
curve in Figure 3.19 was used as a starting point for the simulation of the network and it
was not derived from experimental data. Only the limits of the range of resistances that
the RRAM could explore were fixed by experimental data. So the high limit was fixed

at 10kohms, while the low limit was fix at 5000hms.
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Figure 3.19 Ratio between initial and final RRAM resistance vs simulation step. The

dashed curve represents the STDP paradigm

To train the network, the entire MNIST training set (60,000 examples) was used. A

new image was presented to the input layer when an output neuron emitted a spike.
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After training, a class was assigned to each neuron, based on its highest response to the
ten classes of digits between “0” and “9” over the presentation of the training set. The
recognized class was determined by averaging the responses of each neuron per class and
then choosing the class with the highest number of spikes. The response of the neurons
with the assigned class was then used to measure the classification accuracy of the
network on the MNIST test set. After the classification, the network was tested with
10000 testing images without updating the RRAM resistance values. All the
simulations were performed in MATLAB. In Table 4 it is shown the overall success
rate in recognizing actual numbers for different values of the output neuron number (M
between 100 and 2000). As a result, increasing M up to 500, the overall success rate
increases and then it assess around 83%. Beyond this limit, the success rate becomes

independent on M.

Table 4

Test
Nu 0 1 2 3 4 5 6 7 8 9 TOT
M

100 83.54 92.16 79.12 91.45 45.49 42.57 96.48 93.04 32.14 55.26 73.75

500 99.99 95.25 93.74 96.04 82.51 64.13 84.69 88.44 59.52 56.3 82.062

1000  96.12 99.53 97.64 852 82.83 73.75 957 87.42 76.19 51.09 84.594

2000  96.63 95.56 95.41 89.27 74.03 79.33 89.64 84.25 64.82 53.59 83.02

The confusion table of the 784x1000 network is displayed in Table 5. It reports the

percentage of recognized numbers as function of the actual numbers over the 10000 test
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images. The diagonal gives the correct recognitions. The most failing tests regards
number “9”, which exhibits around 40% failures in total, and number “8”, which exhibits
more than 20% failures. These failures are strictly related to the intrinsic similarity
between symbols in the MNIST database. Recognition rates greater than 80% are
achieved for seven of the ten numbers, while the most unsatisfying results refer to

confusion between numbers “9”, “4” and “7”.

Table 5

0 96.12 0 050 197 0.75 1045 297 030 8.76 2.60
1 0 9953 020 0.20 0.64 1.42 0 0.71 0.54 1.56
2 0.53 0 96.94 260 0.21 0.59 055 235 3.67 0.52
3 0.53 0 0.40 8520 0.10 7.83 0 0.10 4.43 1.14
4 0 0 0.50 0.72 82.83 0.83 0.22 5.52 1.62 27.42
5 0.21 0 020 562 0.53 73.75 0.22 0 4.00 0.31
6 1.39 0 0.20 020 1.28 2.13 95.70 0 0.10 0.10
7 0.10 0.46 0.20 0.62 0.42 0.11 0 87.42 0.10 12.30
8 1.07 0 0.81 281 128 261 022 1.53 76.19 291
9 0 0 0 0 11.90 0.23 0.11 2.04 0.54 51.09

Some neural networks proposed in literature in the last few years and used for MNIST
classification are reported in Table 6. They should be compared with the present work,

keeping in mind that the network proposed here is moved by the feasibility of an easy
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hardware realization. As one can see, the best performance in terms of success rate is
achieved using feedforward multilayer perceptron topology with backpropagation
algorithm [174]. However, due to the complexity of the network and the use of a
supervised and computationally demanding algorithm, this architecture does not
represent the best option for an easy hardware implementation. In [175], a very good
success rate is obtained with an array architecture using a STDP algorithm. That result
was achieved with the additional use of two techniques known as Homeostasis, that
dynamically adapts the spiking thresholds of the output neurons in order to uniform the
firing activities, and Lateral Inhibition, that is the capability of an excited neuron to
reduce the activity of its neighbors. Unfortunately, Homeostasis and Lateral Inhibition
increase the complexity and the network is therefore definitely not suitable for easy
hardware implementation. Finally, the architecture proposed in [176], features 784
input neurons and 300 output neurons, is based on RRAMs and uses a STDP
unsupervised algorithm. It is very similar to the one proposed here in terms of topology
and learning paradigm and achieves very good success rate (93%), but, again, it takes
advantage of the Homeostasis technique which allows a better distribution of the
neurons activity. The use of STDP learning paradigm in conjunction with Homeostasis
makes the hard implementation likely more difficult than using STDP only. Anyway, in
order to obtain an higher success rate for the MNIST recognition a more complex

scheme is needed.

Table 6
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Present Work [174] [175] [176]
Total Success
85% 93% 95% 99.7%
Rate
784x2500x2000x
Architecture 784x1000 784x300 784x6400
1500x1000x500x10
Supervised/Un
Unsupervised Unsupervised Unsupervised Supervised
supervised
STDP +
Learning STDP +
STDP Homeostasis + Back Propagation
paradigm Homeostasis
Lat. Inhibition

ReRAM

Yes Yes No No

Based
Suitable for

Yes Yes? No No

Hardware

3.4.3 Spiking Neural network with adapted STDP learining rule

A spiking neural network (SNN) has been simulated on a typical machine learning task:
the recognition of the handwritten digits of the MNIST database [177]. In addition to
neuronal and synaptic state, SNNs also incorporate the concept of time into their
operating model. The idea is that neurons in the SNN do not fire at each propagation
cycle, but rather fire only when a membrane potential reaches a specific threshold.
When a neuron fires, it generates a signal which travels to other neurons which, in turn,
increase or decrease their potentials in accordance with this signal. In the context of
spiking neural networks, the current activation level (modeled as some differential
equation) is normally considered to be the neuron's state, with incoming spikes pushing

this value higher, and then either firing or decaying over time. Various coding methods

124 Paolo Lorenzi — PhD Thesis



Chapter 3: Neuromorphic Application

exist for interpreting the outgoing spike train as a real-value number, either relying on

the frequency of spikes, or the timing between spikes, to encode information.

The proposed network has been implemented in the BrianSimulator software [178].
BrianSimulator is a simulating environment implemented in Python and it is an open-
source library for simulating spiking neural networks. The Brian toolbox provides a
flexible platform to customize parameters from network architectures, down to the

differential equations that govern individual neuron and synapse dynamics.

The considered network architecture (Figure 3.20) consists of a single feedforward layer
composed of 784 input neurons fully connected by plastic synapses to 100 outputs
neurons (a total of 78400 synapses). The MNIST images are coded by Poisson input
spikes with a spike frequency proportional to the intensity of the pixel. These Poisson-
distributed spike trains are assumed to adequately provide the stochasticity needed to
emulate noisy biological and hardware systems. In particular, the maximum spiking
frequency has been set at 25Hz and the minimum at OHz. Every training image was
presented for 250ms to the network. Neurons in the output layer have no lateral
connection and are subdivided into pools of size 10, each selective to a particular digit.
In addition to the signal from the input layer, the output neurons receive additional
signals from inhibitory and teacher populations. The inhibitory population is composed
by 20 neurons and it provides a signal proportional to the coding level of the stimulus
and serves to balance the excitation coming from the input layer. A stimulus-dependent
inhibitory signal is important, as it can compensate for large variations in the coding

level of the stimuli. The non-plastic synapses shown in Figure 3.20 were used to weight
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the contribution of the inhibitory population. They did not change their value during

the training.

Teacher Signal (On: 2000Hz, Off=0Hz)

RRAM based QOutput Layer:

| tL : 28x28 Poi
nputtayer: sx elssen Plastic Synapses #Neurons * #Classes (100)

Input neurons

S04 [/ —
qa 2\ 3

Pixel Intensity coded by
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Figure 3.20 Sketch of the network architecture

Teacher signals are commonly used in machine learning tasks to train outputs by
selectively applying a gain to the training neuron. The teacher population is active
during training and imposes the selectivity of the output pools with an additional
excitatory signal forcing the selected neurons to spike in a determined frequency range.
The excitatory teacher signal controls the output neuron to raise the spiking frequency
to a value where the probability of weight potentiation is high. Following learning, the
response of the output neurons to a given stimulus can be analyzed by selecting proper
threshold frequencies to determine which neurons are considered active (express a vote).
The classification result is determined using a majority rule decision between the

selective pools of output neurons.
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The learning rules used in this network are based on ones proposed by Brader et al. in
2007 [179] that have been shown to execute STDP algorithms to solve classification
problems both in software and hardware simulations. In this model, the internal
synaptic strength is represented by the weight variable w, and is restricted to the range
(Wmin > W > Whax). The weight can update in the presence of presynaptic spikes; and the
updates can push the weight towards long-term potentiation (L'TP) if there is a positive
weight step Aw+, or long-term depression (L'TD) if there is a negative weight step Aw-.
Referring to the neuron equations (3.2-3.5) described in the previous paragraph 3.2,
weight updates can only occur if L, and Ic, which are both dependent on the past
average firing rate, are within the appropriate range. When a presynaptic spike arrives at

the soma, the weight updates according to the following rules:

W— W+ AW+ if Imem (tpre) > l9mem and ‘9l:P < ICa (t Pfe) < lguhp 3.8

W - W_ AW* if Imem (tpre ) S lgmem and l9EIjOWFI < ICa (t pre) < l9(;10er

Where Aw+ and Aw- are the positive weight step sizes, Gy is the membrane threshold

and 0’ ,0" , O'sun, O 4w are the calcium variable thresholds.

Considering the synapses, the synaptic weights w can be linked to the RRAMs
conductance values. The RRAM experimental evidences suggest that the device
conductance can be incrementally adjusted by tuning the duration and sequence of the
applied programming voltage. For example, the application of potentiating voltage
pulses incrementally increases the resistive switching device conductance, and the
application of depressing voltage pulses incrementally decreases the memory
conductance. Among these interesting capabilities, some critical aspects of using

RRAMs as synapse should be also taken in consideration. For example, these devices
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suffer of variability of the states. In particular, applying the same programming or
erasing (SET/RESET) voltage pulse, even at the same cell, it is possible to obtain

different conductance values.

TiN/HfOx/Pt RRAMs devices were fabricated by the Institute of MicroElectronics and
MicroSystems (IMM) of the Research National Council (CNR), Agrate, Brianza, Italy
[180]. The devices were defined through the pattering of the top electrode into 40x40
pm? pads by optical lithography. A sketch of the device structure is reported in the inset
of Figure 3.21 a). Devices were measured applying voltage or current to the top
electrode and grounding the bottom electrode. The measurements were carried out
mainly through a custom board interfacing the sample with the Source Pulse
Generator Unit (SPGU) and the Source. Devices were subjected to trains of
identical pulses and the resistance was read after each pulse at 200 mV. Pulses were 30
ms-long with time and fall times of 1 m s. Their maximum voltage was 1.1 V for LTD
and -0.8 V for LTP. The state dependent switching has been verified on 10 different

devices for 10 to 150 LTD/LTP cycles (not showed here).
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Figure 3.21 a) Potentiation curves obtained with 300 pulses at -0.8V; b) depression
curves obtained with 300 pulses at 1.1V. Markers are experimental data and lines are

the fitting.

In Figure 3.21 typical potentiation (LTP) and depression (LTD) curves are shown. To

fit the two curves a fitting model was derived:

R=R,, +apIn(n)

) 3.9
R=Ry,+ap (n—ﬂ—lj

where the first equation is for the depression and the second is for potentiation.
Referring to the symbols Ry, , a. and f are fitting parameters and 7 is the number of
the applied pulses. To take into account the variability of the RRAM devices a
stochastic terms was added in the simulations when the variability was included. In
order to link the RRAM resistance value with the weight (w) of the synapse a simple

inverse proportion relation was adopted.

Due to simulation time constrains, a reduced set of the complete MNIST database was
used in order to evaluate the performances of network. 2000 Training images were used
during the learning phase and the entire test set (10000 images) was used to test the
recognition performances of the proposed architecture. After completing the training
the teacher signals were switched off and a threshold per each pool was calculated based
on the spiking frequency of the neurons during the presentation of a validation set of
images (1000) taken from the training set. The test images were presented to the
network for a duration of 350ms. The network was tested with and without the RRAM

variability.
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Figure 3.22 Features maps (weights of the synapses organized in a matrix form) of the

trained network; a) with and b) without variability

In Figure 3.22 are depicted the features maps of the network (the weights of the
synapses) for the two cases. On the left the case with variability (a) and on the right the
case without (a). The first thing we notice is that some digits are clearly represented
(numbers: 0, 1, 7), some other are possible to be distinguished (2,3,6 and 9) while
numbers 8 and 5 are very confused. This is due to the large variability in these numbers
of the MINIST database. As we can see, there is not an appreciable difference in the two
features map. This suggests that the RRAM variability does not affect the behavior of
the network. Unfortunately, the success rate for the recognition of the test set, averaged
over 10 runs of the simulation, was 42%. This value is not comparable with success rate
of networks that is possible to find in literature [168, 174-176]. However, we should
keep in mind that these results are still remarkable considering the fact that we were
simulating a network based on silicon neurons that emulate the biological response of

real neurons and RRAM devices, including the experimental variability. Anyway, in
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order to get better performances, further improvements are needed, in particular: an
optimization of the learning algorithm, in order to fit better the behavior of the RRAM
cells, a more sophisticated conversion of the of the RRAM conductance value and the
synaptic weights and a more complex network architecture. Improvements on this

study are still on going.
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4 SUMMARY AND
CONCLUSIONS

With the recent strong increase in the demand for data storage, NAND Flash has
solidified its leading position among different storage devices for the smallest chip size
and cheapest bit cost. The scaling in NAND Flash technology has progressed
aggressively and successfully and during the past years, the dimension of the cell has
shrunk dramatically. Due to this aggressive scaling, in the last decade the chip
production cost has become cheaper year-to-year by ~40% and consequently the market
demand for NAND Flash memory has rapidly increased in many new consumer
electronic applications such as MP3, SSD, USB pen drives, Tablets, Smart Phones and
Memory Cards. However, the competition of scaling down technology is getting harder
in the NAND industry. The current NAND Flash cell, the Floating Gate (FG)

structure, is facing new technological challenges approaching the 10nm dimension.
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Major concerns are related to physical dimension, electrical isolation and read window
margin. The key issue in scaling down the physical dimensions of the FG cell is that the
scaling in horizontal direction cannot be followed by the scaling in the vertical
dimension. The electrical gate coupling factor in FLASH memories should be kept
higher than 0.6 in order to achieve good control. To get this coupling value, scaling of
tunnel oxide and IPD thickness is very critical and has to be managed very
conservatively. Furthermore, the scaling of the cell dimension and consequently the
reduction of the floating gate capacitance reduces the number of electrons stored in the
FG per unit voltage and the reliability strongly deteriorates as the number of electrons
available for data storage becomes less than 10. As the design rule of NAND Flash
memory is scaled down, parasitic capacitors surrounding the floating gate influence the
FG voltage more and more. Hence, a phenomenon called “floating-gate interference,”
or cross-talk occurs, in which change of a cell accompanies threshold voltage shift of the
adjacent cells by floating-gate voltage shift. In this scenario, in order to keep pursuing
the scaling, there are two guide lines to follow: the optimization of the FG basic cell
and array architecture and the proposal of new device structures with innovative
operating concepts. Both the guide lines are currently experienced worldwide. So, in the
last years, innovative concepts have been proposed alternative to the conventional FG
technology. Among these, Resistive Switching Memories, often referred as RRAM are

one of the most promising candidates for Non-Volatile Memory applications.

The expectation for RRAMs is that it will be a memory technology that can be easily
integrated with conventional CMOS technology, using materials compatible with the

conventional CMOS fabrication environment and process temperatures that allow it to
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be fabricated in the Back End Of Line (BEOL). The ultimate target is integration on
the metal layers or within the contact vias to the source and drain of a metal—- oxide—
semiconductor field-effect transistor (MOSFET) of a CMOS chip. In its basic form,
the device structure is an oxide material sandwiched between two metal electrodes,
called bottom and top electrodes (BE and TE). The stack is a well-known metal—
insulator—metal (MIM) structure. A wide range of binary metal oxides have been found

to show resistive switching phenomena. Most of them are transition metal oxides.

According to the current-voltage (I-V) characteristics, it is possible to classify the RS
devices in two general categories: unipolar (nonpolar) and bipolar: in unipolar resistive
switching mode the switching direction does not depend on the polarity of the applied
voltage and generally occurs at higher voltage amplitude that of bipolar switching,
where the memory operations are polarity dependent. A fresh memory device with high
initial resistance state can be switched in to a low-resistance state (LRS) by applying a
proper voltage. This process occurs just one time and it is called forming. After the
forming process, the memory cell can be switched to a high-resistance state (HRS),
generally lower than the initial resistance, by the application of a particular voltage
called reset voltage. This process is called RESET. Switching again from a HRS to a
LRS is called ‘SET’. In the SET process, generally, the current is limited by an external
current compliance in order to avoid irreversible device damage. In bipolar resistive

switching mode, the SET and RESET occur in the opposite polarity.

The first big advantage of the RRAM, compared to the FLASH technology, is the low
voltage needed to program and erase (SET/RESET) the cells. While for FLASH more

than 15V are needed, for RRAMs voltages lower than 3V are enough to perform the
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SET and RESET operations. This means that high voltage generation peripheral
circuitry is not needed, thus reducing drastically the area occupied by the total memory
chip. Moreover, this beneficial aspect is enhanced by the capability of RRAM to be
stacked in the BEOL of the CMOS process. The second important advantage of RS
devices is the high speed of data reading, but especially the very high speed of
writing/erasing. Compared to FLASH, they can be 1000 times faster. While the data
retention values are comparable for FLASH and Resistive Switching memories, the
endurance for RRAMs can be even 8 orders of magnitude greater than the NAND: 10%

SET/RESET cycles have been demonstrated.

It is widely accepted that the physical mechanisms governing the switching phenomena
in the oxide RRAM are based on the migration of oxygen vacancies and ions with
related electrochemical reactions. This ion drift is responsible for the formation and
modification of a conducting filament (CF) between electrodes. During the RESET a
gap region is created and the conductive filament is partially ruptured. The size of the
gap between the tip of the filament and the electrode is the state variable determining

the device resistance value.

While most of the scientific community observes a linear or ohmic behavior in the LRS,
on the HRS different electron transport mechanisms interpretations are reported:
Poole-Frenkel emission, Schottky emission, the space charge limited current (SCLC)
characteristic, quantum point contact depending on the material properties. The
dielectric bandgap, the defect trap proprieties and the fabrication process conditions like
the depositions of both metals and dielectric and the interface between the oxides and

the electrodes proprieties.
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Although RRAM devices show very promising aspects for the next future Non Volatile
Memory, still there are some open issues. In particular, the key point of RRAM cells is
the variability of the switching parameters. Due to the stochastic nature of ionic
migration, defects characteristics and material properties like the grain boundaries in
polycristalline materials, the filament shape varies from device to device and also from

cycle to cycle in the same device.

In this scenario, the present Ph.D. thesis studies systematically RRAM operation
features from both the experimental and modeling viewpoints and explores the
potentialities of RRAM artificial synapsis in neuromorphic application. Key aspects of
the behavior of the cell were addressed. Experimental characterization and modeling of
the influence of the applied voltage waveform, device geometry, external temperature,
and electrical stress were performed. An introduction of the neuromorphic bio-inspired
architectures was given in terms of biological basics, neurons and synapses electrical
models and circuits. Bio-inspired learning paradigm Spike Time Dependent Plasticity
(STDP) was described and adopted for simulations. Different approaches in RRAM
based networks architectures and simulations were described and results on visual

pattern recognition were discussed.

In the tested devices HfO, was used as insulating layer, while different combination of
metal electrodes, including Platinum (Pt), Titanium (Ti) and Titanium Nitride (TiN)
were adopted. To initiate switching a preliminary forming operation is required and it
appeared that the Ti presence strongly decreases the forming voltage. Pt-Pt samples

were found to be unipolar (non-polar), while samples TiN-Pt, TiN-TiN and TiN-Ti

were bipolar. They required positive voltage applied on TiN electrode except in case

136 Paolo Lorenzi — PhD Thesis



Chapter 4: Summary and Conclusions

with Ti where devices need positive voltage applied to Ti to achieve SET. This behavior
suggested that the presence of an interlayer rich of oxide vacancies plays a fundamental
role in determine the polarity of the switching of the devices. The influence of the
voltage ramp speed (rate) defined as the ratio RR=AV/At¢ on the switching voltage was
investigated. It was found that both |Vkgserl and Vser increased with the front speed
following a logarithmic behaviour with same slope. The fact that the dynamics for SET
and RESET was the same can be attributed to the predominance of the ion drift
diffusion over other mechanisms, for both the closure and dissolution of the conductive
filament. |Vzeserd data for the samples with Pt as top electronde (C1) and samples with
Ti as top electrode (C2) (both with TiN as bottom electrode) were compared as
function of the RR, at room temperature. The C1 curve stands at higher values than the
C2 curve due to the different barrier energy to extract oxygen ions from the TiON and
TiOx interlayers. Both the curves increased with the ramp rate and they were parallel,
indicating that the dynamics of filament interruption is the same, governed by the same

hopping barrier of ion diffusion, and is not influenced by the electrode.

Regarding the RESET dynamics, it was demonstrated that the progressive reset
transition between the low and high resistance states in HfO,-based RS devices could
be modeled using a diode-like conduction mechanism with a series resistance combined
with a generalized logistic model for the pre-exponential diode amplitude factor. It was
shown that a Verhulst logistic model does not provide accurate results. The proposed
dynamics was interpreted in terms of the sequential deactivation of multiple conduction
channels spanning the dielectric film. Fitting results indicated that the switching

behavior dynamics could be described with the same equation regardless of the voltage
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sweep rate. Partial reset curves were characterized and modeled using the same
approach, thus giving further support to the proposed picture. This part of the work was
done in collaboration with Prof. E. Miranda at the Autonomous University of

Barcelona, where I spent three months working on this topic.

The influence of the device geometry on switching behaviour was investigated. No
dependence of RESET/SET voltages and LRS/HRS on the cell dimensions on was
found. This clearly confirmed switching being driven by generation-disruption of a
conductive filament. While the device area size had no influence on the SET and
RESET characteristics, a strong influence on the Forming operation was found. For
smaller device the forming was higher. The lower number of traps in devices with
smaller area explained this behaviour. As a consequence, the time required for the

filament forming is higher.

Temperature impact on the forming dynamics and current conduction during RESET
was addressed. A thermally activation Arrhenius dependence for the forming time was
found. The comparison between different samples highlighted the activation energy
dependence on the MIM stack composition. In particular higher activation energy for
Pt-Pt sample was found. The conductance of HfO, films in C1 (Pt-Pt) samples was
found to be lower than in C2 (TiN-Ti) ones and increased with temperature, while the
conductance of C2 samples did not change with temperature. The higher conductance
of C2 samples was explained recalling that the effective thickness of the dielectric film is
reduced respect to C1 samples and considering the different microscopic phase of the

HfO2 in the filament for the two kind of samples.
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Specific aspects related to the RRAM reliability were also examined, as the case of
electrical constant voltage stress (CVS). An experiment of read disturb was performed
and the role of the forming conditions and the electrode materials on the robustness of
the low resistance state against electrical disturb was investigated. It was performed on
two sets of samples with different bottom electrodes (TiN and Pt) and the same Pt TE.
The stress included three steps: 1) The samples were formed using voltage pulses with
different amplitudes; 2) formed samples were subject to CVS of different entities; 3) the
current flowing through the MIM during stress was monitored and processed. As a
result, it was found that: a) the electrode material has an impact on the stability of the
low resistance state, since the mechanism involved in the interruption of the conductive
path is different if the electrode is inert or reactive with HfO»; b) samples with inert
electrodes more easily switch into a high resistance state; ¢) samples formed with higher
forming pulses are more robust (as if a stronger filament is formed) and it is more
difficult to interrupt it; d) switching to a higher resistance state is favored by increasing
the stress entity; e) the value of the (high) resistance achieved by the failing device
depends on the forming condition in the sense that the portion (or portions) of filament
undergoing rupture decreases for stronger forming, and the corresponding value of

resistance is lower.

A similar experiment was performed also on the TiN (BE)-Ti (TE) samples. The
resistance evolution under constant voltage stress of both the low resistive state and the
high resistive state of the TiN-Ti cells was studied from an experimental and theoretical
point of view. An analytical model was used to simulate the resistance degradation in

the LRS and HRS during CVS. The degradation during stress was interpreted in terms
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of an increase or decrease of the tunnelling gap, that is the distance between the tip of
the conductive filament inside the oxide and the metal electrode. The gap evolution was
ruled by oxygen ions hopping and oxygen vacancies generation. Differences in the
dynamic of the processes for the two resistive states were observed and modeled. In the
HRS stress the gap increasing was gradual, while the gap decreasing in the LRS stress
was abrupt and it occurred in a wide time range. This phenomena were interpreted in
terms of negative or positive feedback related to the enhancement factor of the electric
field. The variability of parameters were also investigated and a stronger influence in the

LRS stress was found.

Finally, possible neuromorphic applications were investigated. Neuromorphic
computing refers to an emerging interdisciplinary field that takes its inspiration from
biological neural architectures and computations occurring inside the brain or the
cerebral cortex. It comprises principles and knowledge from neurobiology,
computational neuroscience, computer science, machine learning, VLSI circuit design,
and more recently nanotechnology. In non-Von Neumann neuromorphic architectures,
computing hardware and processing are not completely isolated tasks. Memory is
intelligent and participates in processing of information. Architectures abstracted from
neural systems can provide a promising solution to different cognitive tasks like the
object detection and the speech recognition, inspiring new paradigms, which can

drastically improve the performance and efficiency of computing systems.

Due to the configurable and multiparallel architecture constituted by a complex network
of ~10% neurons and 10" synapses, the human brain is able to perform a wide range of

cognitive tasks with a power consumption of less than 20 W-This value is much lower
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respect to the modern multi-core based computers that require 10,000 times more
power. The superior efficiency of the brain in performing fuzzy and fault-tolerant
computation has motivated engineers to mimic the key algorithmic and computational
teatures of the brain in software and silicon-based hardware. Dedicated hardware
Artificial Neural Networks (ANN) architectures, compared to software
implementations, can offer very high computational speed at very low cost with high
reliability, due to the redundancy of the architecture. In this scenario, Non-Volatile
Memories synapses stand out for their excellent power management and integration due
to their small sizes that allow high density structures. RRAMs are considered among
the most promising devices to realize neuromorphic systems capable of implement
learning algorithms based on pulses. This is due to several advantages offered by this
technology: a) the simplicity of operation and low energy consumption (~0.1 pJ/bit), b)
the compatibility with CMOS technology and the possibility of 3D crossbar
integration in back-end-of-line, ¢) the good scaling properties of the elemental cell
(minimum size below 10 nm), d) the excellent reliability (~102 SET/RESET cycles),
e) the short programming time (~ns) and the online learning algorithms in which

appropriate pulses update the synaptic weights.

Neurons and synapses are the the basic functional units of the nervous system.
Connections between the neurons are made through synapses. One of the most diffused
and widely accepted model of the synaptic plasticity is the so called: Spike Timing
Dependent Plasticity. According to this learning paradigm, the synaptic weights update
according to relative spiking time of pre and post-synaptic neurons. According to

STDP, when repeated pre-synaptic spikes arrive just before post-synaptic spikes the
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synapses weights increases following a long-term potentiation (LTP). On the contrary,
repeated spikes arriving after post-synaptic spikes leads to long-term depression (L'TD)
of the same synapses weights. Thus, inputs that might be the cause of the post-synaptic
neuron's excitation are made even more likely to contribute in the future, whereas inputs
that are not the cause of the post-synaptic spikes are made less likely to contribute in the
tuture. The Leaky Integrate and Fire (LIF) model descripts the behavior of biological
neurons. In this model, a neuron is represented by a simple capacitive and resistive
differential equation. The spiking events are not explicitly modelled in the LIF model.
Instead, the neuron constantly sums or integrates the incoming pre-synaptic currents
and when the membrane potential reaches a certain threshold voltage (Vth ) it
instantaneously fire, generating an action potential. From a circuital point of view the
LIF neuron can be implemented with an integrator, a comparator, switches, and
eventually control logic. In application where we want to include more biological aspects
in the neuron model a deeper description is needed. Subthreshold CMOS circuits are
an option to emulate neurons and synapses behavior. MOSFETs have an exponential
relationship between drain current Ip and gate voltage Ves, at very low currents regime.
The time constants of MOS subthreshold circuits are inversely proportional to the
reference currents and directly proportional to the circuit capacitance, thus allowing the
integration of relatively small capacitors in integrated circuits in order to implement
temporal circuits that are both compact and have biologically realistic time constants,

ranging from tens to hundreds of milliseconds.

Two-terminal RRAM devices have been proposed as artificial synapses in

neuromorphic circuits thanks to the capability of analog gradual resistance modulation,
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strong device area scalability, low power consumption, compatibility with CMOS
technology combined with a 2-terminal structure. Due to these characteristics, RRAMs
naturally satisfy the requirements to act as a connection for communication between a
pre-synaptic neuron and a post-synaptic neuron. When RRAMs are employed in
neuromorphic networks, two main operational modes are used, binary and analog. The
binary operations is based on the two limits states HRS and LRS. At the same time,
gradual analog resistance modulation is desirable to improve the performances of the
network. The RRAM resistance state can be considered inversely proportional to the

synaptic weight w.

In the Ph.D. thesis, different approaches were considered in neuromorphic networks
simulations with RRAM based synapses for visual pattern recognition applications: a)
PSPICE simulation of a small network, b) Matlab simulations of a large network based
on STDP and ¢) Brian (Python) simulations of a large array based on a modified

version of the STDP.

A neuromorphic network composed by a first 25 sensory neurons layer and a second
layer made of 10 output neurons connected through 250 RRAM synapses was
considered in PSPICE simulations. TiN/HfO2/Ti RRAMs were used as synapses.
Starting from gap dynamics and current conduction equations a PSPICE behavioral
model was implemented in order to perform circuital simulations. The RRAM device
was described with two main blocks: the first one was an integrator composed by a
capacitor and a source of current. This part was devoted to integrate the differential
equation related to the gap dynamics. The second block was a voltage controlled current

source that represents the conduction current dependent on the actual value of the gap.
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The entire system was adopted in order to recognize 5X5 pixel binary images
representing numbers between “0” and “9”. The network operations were divided in two
distinct phases: the training and the testing ones. For the training, a simple protocol was
adopted: every neuron was trained separately to recognize one of the 10 numbers just
applying training pulses of -1.1 V in correspondence of black pixels in the number
image. During the testing phase an input image is applied. Low voltage pulses (0.1V),
corresponding to black pixels, were applied to RRAM previously trained and integrated
by output neurons. When the voltage across the capacitor reached the threshold voltage
the winner neuron stopped the others through a feedback network and the recognition
was completed. The performances of the circuit were tested in two ways. The first one
was to apply the same inputs image adding a noise. It was found that if the noise level
was under the 10% (corresponding to 2 pixels) the network recognized correctly all the
patterns. The second way to evaluate the performance of the network was to build an
home-made test set. A success rate of the 44% was achieved with the test set used.
Obviously, in order to increase the performances of the network, it was mandatory to
improve the learning paradigm during the training phase. Furthermore, the adoption of
a meaningful data set was alos fundamental to give robustness to the network. To this
aim, a fully connected brain inspired neuromorphic network composed by 784 input
neurons, M output neurons (with M ranging between 100 and 2000) and 784xM HfO,
Resistive RAM synapses is presented here. The network was trained in Matlab system
level simulations using an unsupervised algorithm of the class “winner take all” with
60000 images of the MINIST database in order to recognize handwritten digits between

“0” and “9”. The neuromorphic architecture was tested with 10000 testing images
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without updating the synapses. The measured high and low resistance values of the
Resistive RAMs fix the boundaries of the synapses weights. A success rate of 85 % over

10* test images representing the entire test dataset was obtained at best.

In order to explore networks that were closer to the biological behavior, a spiking neural
network (SNN) was simulated on the recognition of the handwritten digits of the
MNIST database. This work was done in collaboration with the S.Spiga group of IMM
group of the CNR, Agrate and the prof. G. Indiveri of the Institute of
Neurolnformatics, ETH and UZH, Zurich, Switzerland where I spent three months
working on this topic. In addition to neuronal and synaptic state, SNNs also incorporate
the concept of time into their operating model. The network was implemented in the
BrianSimulator software. The considered network architecture consisted of a single
teedforward layer composed of 784 input neurons fully connected by plastic synapses to
100 outputs neurons (a total of 78400 synapses). The MNIST images were coded by
Poisson input spikes with a spike frequency proportional to the intensity of the pixel.
Every training image was presented for a certain time to the network. Neurons in the
output layer have no lateral connection and are subdivided into pools of size 10, each
selective to a particular digit. In addition to the signal from the input layer, the output
neurons received additional signals from inhibitory and teacher populations. Following
learning, the response of the output neurons to a given stimulus can be analyzed by
selecting proper threshold frequencies to determine which neurons are considered active
(express a vote). The classification result is determined using a majority rule decision
between the selective pools of output neurons. The learning rules used in this network

were based on ones proposed by Brader et al. in 2007 that is a modified version of the
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STDP paradigm. In particular it is based on a set of thresholds to be compared with the
neurons membrane potential and an auxiliary variable Calcium linked to the post-
synaptic firing activity. Considering the synapses, the synaptic weights w can be linked
to the RRAMs conductance values. The RRAM experimental evidences suggested that
the device conductance could be incrementally adjusted by tuning the duration and
sequence of the applied programming voltage obtaining potentiation (LTP) and
depression (L'TD) curves. At the same time an intrinisc variability is present, in
particular, applying the same programming or erasing (SET/RESET) voltage pulse,
even at the same cell, it is possible to obtain different conductance values. To fit the
behavior of the RRAM synapses a fitting model was derived and a stochastic
contribution was added to take in to account the variability. Due to simulation time
constrains, a reduced set of the complete MNIST database was used in order to evaluate
the performances of network. The test images were presented to the network for a
duration of 350ms. The network was tested with and without the RRAM variability.
The features maps of the network highlighted that a learning was performed after the
training, since some digits were clearly represented, while some other were
distinguishable. Considering or not the variability had no effect on the network
performances. Unfortunately, the success rate for the recognition of the test set,
averaged over 10 runs of the simulation, was only 42%. However, we should keep in
mind that this result is still remarkable considering the fact that we were simulating a
network based on silicon neurons that emulate the biological response of real neurons
and RRAM devices, including the experimental variability. Anyway, in order to get

better performances, further improvements are needed, in particular: an optimization of
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the learning algorithm, in order to fit better the behavior of the RRAM cells, a more
sophisticated conversion of the of the RRAM conductance value and the synaptic

weights and a more complex network architecture.
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