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1 INTRODUCTION 

The use of aircraft as an aid to human activities has become indispensable in many areas. 

For some years now, next to traditional aircrafts, a steep growth is evident of a new class 

of aerial vehicle: drones, properly defined as (RPAS Remote Piloted Aircraft System), 

UAV (Unmanned Aerial Vehicle) or UAS (Unmanned Aerial System). As often 

happened with other technologies, such devices, first-born with military purposes, over 

time, have found a cost-effective use in civil applications.  

 

Figure 1-1 DJI Mavic Pro RPAS 

The advantages of using a drone with respect to a traditional aircraft are manifold: 

economic, safety, use in hazardous environments, just to name a few. If the first drones, 

those used for military purposes, had the size and weight of a conventional aircraft, in 

recent years, thanks to the evolution of onboard electronics (e.g. the spread of MEMS 

technology for the construction of gyroscopes, accelerometers, barometers and 

magnetometers) and materials used for the mechanical structure (composite materials, 

carbon fiber), it has been possible to make UAVs of dimensions of the order of tens of 

centimeters and weights even below the kilogram. 
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They thus created fields of application and use that until a few years ago were 

unthinkable, their use for indoor applications is an eloquent example. Currently the use 

of drones, ranges from agriculture to archaeology, drones are also used in scenarios of 

natural disasters, surveillance or for filming. 

Together with the spread of applications in which drones are demanded another need is 

growing up, the need of an autonomous guided RPAS. In fact, a plethora of applications 

would be feasible if only a RPAS could get rid of the human pilot. 

During these three years of doctorate a lot of steps have been made by the international 

players in that direction and in the last two years some firms started to publicize drones 

that can do some automatic tasks, like obstacle detection and target following. However 

these task are performed correctly only under certain environmental conditions and this 

pose a limit to the usage of such gizmo in a critical application. 

If the research and development divisions of the greatest drone manufacturers are 

promising always more accurate versions of autonomous RPAS, what keeps this market 

from take-off is the lack of common regulations between countries. 

Being this a newborn sector both national and international regulators don’t know how to 

move: RPAS are aircrafts, even if their size and weight can be relatively small they 

represent a hazard to the other flying objects populating the common airspace and 

moreover, because they fly typically at very low heights they are also hazardous for 

human ground activities. 

So a lot of countries decided for a severe restriction of potentially hazardous RPAS 

activities like for example autonomous flight. 
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Anyway the duty of research here is to provide a technology that can be universally 

considered secure in order to earn trust and to be freed by the weights of bureaucracy that 

keep them from flying free. 

In this work I firstly analyzed the state of the art in autonomous guidance, to be honest in 

three years the scientific progress has been important, so some limits that where true in 

2014 are now trespassed. However when I started the doctorate project one of the main 

limitation that the solutions proposed by research groups had, was the huge weight and 

size that obstacle detection systems occupied on drones. 

So I decided to design an autopilot platform bases on FPGA and DSP to bring a lot of 

computing power onboard the RPAS with a very low weight impact. 

The presence of FPGA guaranteed the possibility of making tough tasks like FFTs 

calculations. 

To test the autopilot capabilities, I had to learn how to pilot a RPAS, so I attended a course 

of 33 hours held at L’Aquila that gave me the fundamental notions needed by a RPAS 

pilot. After the course I also learned how to design a RPAS, and I designed a prototype 

on which I mounted Leonardo. 

After the design of Leonardo autopilot I made a research on the current available sensors 

technologies for obstacle detection 

I then implemented a system for altitude above ground level detection and avoidance, in 

chapter 5 I describe thoroughly the experiments made. 

I then focused on integrating more sensor technologies on a single multi-sensor system 

to exploit the particular feature of each technology. The research activity on the multi-
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sensor system is described thoroughly in chapter 6, several experiments has been done on 

the ground and onboard a RPAS to test and validate the developed obstacle detection 

system. 

Another research effort has been made also in the direction of integrating RPAS in 

common airspace, in chapter 7.2 I describe how I, together with Oben s.r.l. (a spin-off of 

University of Sassari) participated to a call for demonstration made by ENAC for a system 

to electronically identify and tracking of RPAS in the common airspace.   
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2 RPAS 

RPAS stands for Remotely Piloted Aircraft System, these vehicles also known as drones 

today are widespread and there are countless applications in which they can be employed. 

2.1 RPAS Classifications 

RPAS are divided in two main families: 

• Multicopters 

• Fixed Wing 

Multicopters are the heirs of the Helicopters RC models, with their parents they share the 

ability to hover and to fly freely in the three dimensions. What made the fortunes of these 

devices with respect to helicopters is the simplicity of the mechanics, because 

multicopters to move, don’t need to vary the angle of the propeller. Moreover having 

multiple rotors allowed for a smaller diameter of propellers thus making these devices 

less dangerous to operate than standard helicopters. 

 

Figure 2-1 Multicopter 
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Fixed Wing are very similar to standard airplanes, their main advantage with respect to 

multicopters is the flight autonomy, this is due to the fact that they fly thanks to the lift, 

so they don’t need the great amount of energy to keep flying. On the other side however 

this advantage turns to be a culprit when hovering or 3D maneuvers are needed. A Fixed 

Wing RPAS like any airplane simply can’t hover, because this would take the vehicle to 

stall and then to fall. 

 

 

Figure 2-2 Fixed Wing 

These characteristics make the two families of RPAS very complementary each other so 

they are both used time to time depending on the application. 

2.2 RPAS Applications 

The RPAS market is in continuous growth, like shown in Figure 2-3 the trends are for a 

doubling of the actual values (2017) only in the next five years, such a pace is incredible 

for a technology that just five years ago was only known by military. 
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Figure 2-3 U.S. RPAS Market Trends 

2.2.1 Agriculture and forestry 

Agriculture is one of the most promising fields in which drones are expected to be used 

more and more intensively. With drones, especially with fixed wings models, it is possible 

to map extended areas using for example multispectral cameras that can give to farmers 

important information for example on the soil moisture, this can reduce a lot the waste of 

water, pesticides and allow to do what is often called “precision agriculture” 

 

Figure 2-4 Soil analysis with agriculture drone 
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One important application of drones is in forestry. For example, European Union is 

financing the project FreshLIFE demonstrating remote sensing integration in sustainable 

forest management aimed at demonstrating, in four study sites in Italy, integration of data 

obtained through ground-based forest inventory techniques with remote sensing data, for 

spatial estimation at small-plot scale of indicators of sustainable forestry management. 

Our department (DIET) is participating at this project and interesting results are coming 

from the usage of RPAS and LiDAR.  

In 2016, the research group with which I am working published a work within this project, 

titled “Airborne LiDAR scanning for forest biomass estimation” (Balsi et al., 2016). In 

this work, we demonstrated that with airborne LiDAR scanning it is possible to 

reconstruct the Canopy Height Model (CHM) obtained by the difference between the 

Digital Surface Model (DSM) and the Digital Terrain Model (DTM).  

 

Figure 2-5 CHM extraction 

integration of data obtained through ground-
based forest inventory techniques with remote 
sensing data, for spatial estimation at small-plot 
scale of indicators of sustainable forestry 
management. 
The raw data obtained from the scan is organized 
in a natively 3D, accurately georeferenced point 
cloud. Echoes are obtained not only from the top 
of the canopy, but also from its lower layers, from 
trunks, and, most importantly from the ground. 
E.g. even in quite dense forest cover, with 25m-
tall trees covering completely the surface, a cloud 
containing 50-100 points/m2 has about 1-10 
points/m2 on the ground. Such densities are as 
much as one order of magnitude greater than 

what is normally obtained using conventional aircraft. 
For forestry management the most 
important and basic product obtained 
is a Canopy Height Model (CHM). 
This is built as the difference between 
the Digital Surface Model (DSM) 
obtained as a rasterized higher 
envelope of the cloud, and the Digital 
Terrain Model (DTM) obtained from 
the points automatically classified as 
belonging to the terrain starting from 
the lower envelope. Rasters at 0.3-
0.5m resolutions were produced. 
The CHM can be used for heuristic 
estimation of biomass, that is related 
to wood yield, and to capacity of CO2 
sequestration. 
More detailed analysis of the cloud 
can yield fine description of the forest, 
down to individual tree segmentation 
and characterization, and diversity 
statistics extraction. 
Collaboration between public and 
private research institutes, and commercial enterprises proved instrumental to the purposes of 
these projects. 
 
Keywords: 
RPAS, drone, 
LiDAR, 
forestry 
management, 
indicators, 
biomass  
 
 
 

 
fig. 2 – A CHM superimposed on Google Earth  

 
fig. 3 – CHM extraction 

From top to bottom: section of the point cloud, higher and lower 
envelopes superimposed, section of the DSM and DTM  
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vegetation 
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the point cloud 
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2.2.2 Energy 

Another growing sector is that of powerlines monitoring. With thousands of kilometers 

covered by power lines, it is very important for electrical companies to monitor the status 

of the lines in order to prevent harmful situations like vegetation falling on the lines like 

shown in Figure 2-6. Traditionally this work has been carried on with manned aircrafts 

with inherently high costs, today there is a growing interest in doing such tasks with 

RPAS thanks to the relative low cost of operation.  

 

Figure 2-6 Powerline monitoring 

 

However, it is not easy to pilot a RPAS in such a critical application, and moreover with 

the actual regulations the movements of the RPAS are limited to a strict radius around the 

pilot, so mapping a powerline which spans for kilometers is a very slow task if the RPAS 

can’t act autonomously. 

2.2.3 Surveillance 

One of the promising fields of applications of RPAS is that one of surveillance – security. 

As of today, several police forces all over the world are starting to use small UAVs as 
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tactical devices in applications that only few years ago required the use of a manned 

helicopter. 

 

Figure 2-7 RPAS used by Police 

RPASs are also starting to be used by watchmen in surveillance applications. 

In this field, autonomous flight would be an enabler for applications of home surveillance. 

One of the issues with video-surveillance today is the inherently high cost of the system 

when used on extended areas. Indeed, to monitor large areas it is necessary to deploy 

complex systems with tens of cameras, that leads to high costs of installation and it is also 

difficult to manage. 

An interesting approach is for example that of Sunflower Labs (Sunflower Labs, 2017), 

it is a Swiss startup that aims to diffuse home UAV surveillance integrated with a 

traditional motion detection system. They propose to place these sensors in the garden 

where it is desired to detect intruder’s presence. When a sensor detects a person, it sends 

wirelessly this information to the idle UAV that takes-off and flies to the position of the 

sensor. The UAV starts to transmit the video signal and the system notifies the owner 

through an app that will show real time video. 
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Figure 2-8 Sunflower Labs UAV Home Surveillance 

Such a product is interesting even if it is just a concept, the main concerns that are moved 

today to such applications is that commonly no autonomous flight is allowed, so in order 

for these applications to spread throughout the world it is necessary to have a common 

regulation on autonomous flight. 

2.3 RPAS Anatomy 

To better understand the next chapters is now important to discuss briefly the “anatomy” 

of an RPAS with its main blocks. 

Almost every RPAS is composed by these blocks: 

• FCU (Flight Control Unit) 

• Battery 

• GPS 

• IMU (Inertial Measurement Unit) 

• RF Receiver/Transceiver 



 
 

18 

• Motors 

• ESC (Electronic Speed Control) 

• Propellers 

2.3.1 Flight Control Unit 

Flight Control Unit also known as Flight Management Unit is the brain of the RPAS.  

 

Figure 2-9 Flight Management Unit block scheme 

Figure 2-9 shows the typical block scheme of a RPAS FMU.  

The Microcontroller Unit (MCU) gets the data coming from the Inertial Measurement 

Unit (IMU) to calculate the actual attitude of the RPAS, while the GPS is used to get the 

correct position and speed of the vehicle. With these information, the MCU is capable by 

means of flight mechanics calculations to establish the right torque to give to each motor 

in order to get the drone in the desired position. 

From the Radio Channel (RC) the MCU gets the information coming from the Ground 

Station or from the pilot Remote Controller and can also send data out for telemetry 

purposes. 

As of today, there are on the market plenty of Flight Control Units, both Open Source and 

proprietary ones. 
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Most famous commercially available Flight Control Units are those from DJI, a chinese 

manufacturer which produces FCUs spacing from cheaper ones (Naza) to more advanced 

types (A3, Matrice). 

In the Open Source world, also there are a lot of products, but as of today the most diffused 

are Ardupilot and PX4 (Pixhawk). 

While the former was among the firsts FCUs for RPAS the latter is very interesting, 

because has a more powerful platform (in terms of computation power) and is a project 

born in the ETH of Zurich. As of 2017 is a very active project with a big community of 

developers and actually is moving to an even more powerful platform (Pixhawk 2 

including and Intel Edison board) 

When I started this doctorate project PX4 was in its firsts days and studying that project 

I found it very promising even if in my opinion it still lacked elaboration power for Sense 

and Avoid, in fact the STM32 on board is a good MCU/DSP, but it is mostly used for the 

Kalman Filter IMU calculations leaving the other applications with not so much 

computing power. 

So, I decided to design Leonardo, my FCU based on PX4 but with a FPGA surrounding 

the STM32 to do the other tasks that the MCU alone couldn’t afford to do. 

2.3.2 ESC 

The ESC (Electronic Speed Control) has the important task of varying the motor rotation 

speed. It is powered by the main supply (battery) and provides a three-phase electric 

power to the motor. 
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Figure 2-10 ESC, Electronic Speed Control 

It is typically driven by a TTL PWM signal coming from the FCU and it can sustain 

currents in the order of tens of amperes. 

Some ESCs are also provided with BEC (Battery Eliminator Circuit) circuitry that allows 

them to provide regulated supply to other components of the UAV, for example the FCU. 

Modern ESC inputs are optically-isolated, this to prevent that noise coming from motors 

could compromise the signals. 

Actually, modern ESCs not only provide power to motors and other circuits but are also 

provided with safety features: for example, if an ESC detects low battery voltage it will 

reduce power to preserve the battery, this feature is particularly useful on fixed-wing 

RPAS, but not desirable on multi-rotors, because could take to odd behavior of the drone.  

In order to do such tasks ESCs are usually provided with a microcontroller that reads the 

pulses arriving from FCU and monitors other parameters like battery voltage and board 

temperature. 

An important parameter on ESCs is the frequency of the PWM signal, on multi-rotors it 

is particularly important to have a high PWM frequency (400 Hz typical) this is because 
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on multi-rotors the motor rotation determines the attitude of the vehicle. A slow reaction 

time to the signals coming from the FCU can be fatal to the RPAS. 

It seems clear that the ESC in RPAS is an intelligent device and not merely a speed 

controller, I think that this should take to a next generation of ESCs that is capable of 

actively monitoring the health of a motor and that one of the propellers. For example, an 

ESC could be equipped with an optical sensor to monitor the actual speed of the propeller 

and to transmit back this data to the motor, this could bring to a more accurate speed 

control and failure detection. 

2.3.3 Motor 

The motor, together with the propeller is the last ring of the chain, it is the responsible to 

transform the electric power in air movement. 

Today RPAS mount prevalently brushless motors, because they have several advantages 

over brushed ones, they are more reliable and more efficient, this technology as in fact 

allowed the spread of multi-rotors, because reliability of a motor is crucial in this RPAS 

design since in quad-copters a failure of a single motor makes the RPAS to fall down. 

Brushless motors divide in: 

• Outrunners 

• Inrunners 

In Outrunners the outer shell spins around its windings which are firm in the center. 

In Inrunners the rotational core is contained inside the motor’s can, like a standard 

motor. 
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Compared to Outrunners, Inrunners run very fast (well over 10000 rpm), but lack of 

torque, so to be used they need gears that reduce the spinning speed but increase the 

torque. 

Exactly for this reason Outrunners are the prime choice on multi-rotors, because the 

main parameter to drive big propellers is the torque. 

 

Figure 2-11 Brushless outrunner motor 

One important parameter that characterizes a brushless motor is the KV. It indicates the 

number of rotations that the motor can do for every Volt applied to it, so for example a 

400KV motor powered with a 3S LiPo battery will spin at maximum 11.1 * 400 = 4440 

rpm. 

In Table 1 are shown some experimental data on the AX-4005 D brushless outrunner 

motor powered with a 3S or 4S batteries and tested with different propellers (Masali, 

2015). 
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Propeller Voltage(V) Current(A) Power(W) Pull(g) RPM Pull efficiency 

(g/W) 

9050 11.5 4.45 51.2 395 6789 7.72 

9050 15.3 7.63 117 682 8750 5.84 

1047 11.5 7.80 89.7 605 6077 6.74 

1047 15.3 11.9 182 978 7565 5.35 

1147 11.5 10.5 120 800 5765 6.65 

1147 15.3 15.0 230 1160 6853 5.05 

 

Table 1 AX4005D 650 KV motor test data 

As it can be seen the consumed power increases with the dimension of the propeller, for 

a 9 inch propeller at 11.5V the consumed power is 51.2 W, if we put a 10 inch propeller 

without changing voltage the consumed power increase to 89.7 W. 

Another data that is clear from the table is that the higher the propeller diameter, the 

higher the pull of the motor. This however clashes with the power rating of the motor, a 

brushless motor, no matter of how big the propeller is, will always try to pull at the 

maximum speed, so if its power rating is lower than necessary it will go on and heat up 

until its destruction. 

2.3.4 Battery 

Batteries are one of the key components that enabled the multi-copter revolution, it is 

only a few years since the lithium batteries evolved with always more energy density and 

capability to supply very high currents. The lithium batteries usually found on RPAS are 

LiPo ones.  
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LiPo stands for Lithium Polymer, unlike standard Lithium ions battery LiPo batteries use 

a solid polymer electrolyte (SPE) like Poly Ethylene Oxide (PEO), Poly Acrylonitrile 

(PAN), Poly Methyl Methacrylate) (PMMA) or Poly Vinylidene Fluoride (PVdF). 

If compared with a NiCd or NiMH battery a LiPo battery have about four time the energy 

density they are also more resistant to impact or punctures w.r.t. other technologies 

however they are very sensitive to wrong charging/storage, if overcharged or bad stored 

can easily take fire or even explode. 

In Table 2 are shown the main features of LiPo batteries  

Energy/weight 130/200 Wh/kg 

Energy/volume 300 Wh/l 

Power/weight Up to 2800 W/kg 

Energy/price 0,5Wh/US$ 

Auto-discharge speed 5% a month 

Life cycles >500 

Nominal voltage 3.7V 

 

Table 2 Lipo battery data 

 

The charging time is a limit in LiPo batteries because to safely charge a battery one must 

not exceed 1C (one time the nominal Ah capacity of the battery), this means that a battery 

charged at 1C will be fully charged in no less than 1 hour. This is a strong limitation, 

especially with multi-rotors, in fact the typical endurance of a multi-rotor does not go 
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over 30 minutes (optimistically) with a single battery pack, thus forcing the pilot to halt 

the mission and change battery. 

Another main defect of LiPo batteries is their limited endurance in terms of 

charge/discharge cycles typical batteries don’t last over several hundred cycles. 

2.4 RPAS Regulations 

In order to allow drones to be autonomously guided, the obstacles to dodge are not only 

physical nor technological but also legal ones. 

In the world, the role of regulating flight of RPAS is the responsibility of the various 

agencies that also regulate the flight of ordinary aircrafts. ICAO is the International Civil 

Aviation Organization and 191 countries are members of it. The other main organizations 

are regional ones and are FAA (Federal Aviation Administration) for the USA, EASA 

(European Aviation Safety Agency) for European Union. 

At the moment of writing this thesis the world does not still have a common regulation 

for the flight of RPAS. Every country has its own rules, that differ a lot each other.  

Current common European rules only cover drones weighing above 150 kg, under this 

threshold national regulations pose a lot of fragmentation and limits to a broad takeoff of 

the drone market. 

However, the scenario is continuously changing and the international organizations are 

struggling to find a common point on this issue. 
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For what concerns to Europe, the Single European Sky Air Traffic management Research 

Joint Undertaking (SESAR) is working for a common regulation on drones, in particular 

they are working to make drone use in low-level airspace safe and secure. 

Just in 2017 SESAR announced that it will put in operation starting from 2019 the “U-

Space” project, it will cover the altitudes of up to 150 meters and hopefully will open the 

way to a common European drone services market. Operators will be requested to 

electronically identify their drones and they will need to have mechanisms of geo-fencing 

in order to make the drone fly in a well constrained airspace. 

From the paper published by SESAR the U-Space should be: 

• Safe: safety at low altitude levels will be just as good as that for traditional 

manned aviation. The concept is to develop a system similar to that of Air Traffic 

Management for manned aviation. 

• Automated: the system will provide information for highly automated or 

autonomous drones to fly safely and avoid obstacles or collisions. 

• Up and running by 2019: for the basic services like registration, e-identification 

and geo-fencing. However, further U-Space services and their corresponding 

standards will need to be developed in the future. 

2.4.1 Italian regulations 

As stated before, as for 2017 the regulations for drones under 150 kg still fall under 

national laws. In Italy, the entity that regulates the civil air traffic is ENAC (Ente 

Nazionale per l’Aviazione Civile). 

ENAC classifies RPAS in two main categories: 
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• Aircrafts with operational weight at takeoff below 25 kg; 

• Aircrafts with operational weight at takeoff over 25 kg and under 150 kg. 

ENAC distinguish operations in: 

• Not critical 

• Critical 

Are classified as not critical all the operations not involving the flight above congested 

areas, crowds of people, urban agglomerations or sensitive infrastructures. Is up to the 

operator to verify that these conditions don’t change during flight. 

If just one of the conditions cited above changes the operation becomes “critical”. 

For critical operations, the operator must achieve the authorization from ENAC. 

The RPAS must be equipped with a primary command system which software is certified 

to be compliant to the EUROCAE ED-12 or equivalent specification. The RPAS must 

also be equipped with systems that keep the control of the vehicle even if datalink should 

fail.  

Moreover, it is important that the RPAS must be equipped with a flight terminator device 

which is totally independent from the primary control system. In case of problems the 

flight termination must be done inside the buffer area. The buffer area is not easy to 

calculate because the operator, knowing the maximum speed of the RPAS with respect to 

the ground must consider that the flight terminator can be activated by the pilot in no 

more than 5 seconds from the damage and the possible ballistic trajectory and the effect 

of the wind. 
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ENAC also classifies operations in: 

• VLOS – Visual Line Of Sight 

• EVLOS – Extended Visual Line Of Sight 

• BVLOS – Beyond Visual Line Of Sight 

The first kind of operations is when the pilot directly sees the RPAS while operating it. 

For “directly” is intended that the altitude above ground level can’t be more than 150 

meters and that distance from the pilot can be more than 500 meters. 

 

Figure 2-12 VLOS operations 

The second type of operation, EVLOS, regards operation where the pilot doesn’t directly 

see the RPAS, he uses for example FPV goggles, but other operators can see the RPAS 

and can take the control of the vehicle should the pilot have any problems controlling it. 

EVLOS operations must be directly approved by ENAC even if are not classified as 

“critical”. The flight area is the same of VLOS, theoretically a EVLOS operation could 

extend for hundreds of kilometers provided that the pilot has got enough observers to 

follow the RPAS along its path. 
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The last type of operation is BVLOS, in this case the pilot operates the drone totally out 

of his sight. This kind of operation was totally forbidden just a few years ago, even today 

the operations in BVLOS must be approved by ENAC time by time, and can be done only 

in well fenced areas where no air traffic is possible.  

Nevertheless, this last kind of operation is the most interesting and promising, because 

for the mass diffusion of RPAS services it is fundamental that flight BVLOS is legally 

possible. The regulators are doing small steps in this direction, but first there is the need 

for enabling technologies before these operations go further. 
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3 AUTONOMOUS GUIDANCE 

Autonomous guidance of a RPAS refers to its ability to determine its trajectory from one 

location to another, adapting it in the presence of obstacles. 

3.1 State of the Art 

When we talk about autonomous driving UAV, one must first specify the environment in 

which the UAV will operate. To date there is no universal solution for both indoor and 

outdoor operations. For Indoor Operations an interesting study is that one of Grzonka et 

al. (Grzonka, 2012) where they propose a fully autonomous quadrotor, they address the 

issues of operating in GPS denied environments and propose an approach based on SLAM 

(Simultaneous Localization and Mapping) using LIDAR technology as the main sensor. 

This approach based on SLAM is interesting, however as they underlined in the 

conclusion of their study it has a drawback on the computation power required to conduct 

all the required tasks, they partially solved the problem by establishing a radio link   

between the quadrotor and the ground station in order to execute the toughest part of the 

algorithm on a Desktop Computer. Outdoor operations pose different issues to 

autonomous guidance because while in this case the GPS is typically available, other 

problems come into play, like light conditions, wind just to mention a few. Several works 

try to address a specific aspect of Outdoor autonomous guidance I tried to find the ones 

that try to fully address this problem and I find interesting the works of Nieuwenhuisen 

et al. (Nieuwenhuisen, 2013) (Nieuwenhuisen, 2014). They propose an autonomous 

octocopter with different kind of sensors on-board in order to try to cope with the different 
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kind of obstacles present in an outdoor environment. A multi-resolution map is created 

and updated by the information coming from the different sensors available on board 

(Stereo Cameras, Laser Scanner and ultrasonic sensors, a reactive collision avoidance 

layer accounts for fast UAV and environment dynamics. Their issue here is that for all 

the calculations required they carry a Core-i7 board at 2.7GHz, that force them to mount 

it on an octocopter because of its weight. Being this research field very active at the 

moment of writing this thesis other promising works have to be mentioned to possibly 

provide a more complete image of the scenario, a very promising technology that can 

reduce the resources needed for autonomous guidance is that one of the Event Cameras, 

described in section 3.4.5. 

3.2 Sense-And-Avoid 

Sense-And-Avoid ability for UAVs is the unmanned equivalent of the See-And-Avoid 

ability for human pilots. The FAA (Federal Aviation Administration) responsible of civil 

aviation in the USA defines See-And-Avoid in its regulations (14 CFR Part 91.113): 

“When weather conditions permit, regardless of whether an operation is conducted under 

instrument flight rules or visual flight rules, vigilance shall be maintained by each person 

operating an aircraft so as to see and avoid other aircraft”.  

See-And-Avoid is not an easy task a pilot is required to:  

• Detect conflicting traffic��

• Determine Right of Way��

• Analyze Flight Paths  
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• Maneuver  

• Communicate  

Sense-And-Avoid is to date an open issue and is subject of study and research. On UAVs 

this is a challenge even more competitive because of the limitations that a drone imposes 

to the usable technologies. On board a small UAV in fact there are space, payload (the 

maximum payload transportable) and power supply limitations. These constraints force 

you to find a trade-off in the choice of sensors, algorithms and available computing 

power.  

Sense And Avoid skills required for UAS are even more restrictive, in fact a UAS typical 

application is usually in aerial spaces where obstacles are present almost always, and are 

often moving, not-collaborative ones.�For all these reasons the issue of SAA on this type 

of devices is a challenge from both algorithmic and technological point of view, UAVs 

are required to deal with obstacles with characteristics very different from each other, and 

very often the kind of obstacle that presents itself in front of the vehicle affects the choice 

of the sensor.  

In fact, the detection of a small obstacle presents completely different problems than an 

extended obstacle. In addition to the size of the obstacle other parameters come into play 

such as its color, its movement and its morphology.  

In order to deal with different scenarios and obstacle types, often a single kind of sensor 

is not enough, radars for example are good active devices for obstacle detection but show 

limitations dealing with very small obstacles, optical flow sensor on the other side are 

very good in small obstacle avoidance but not behave as well with larger obstacles and 
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suffer in poor light conditions.  

3.3 AMSL vs AGL  

A less obvious kind of obstacle is the terrain itself, in order to know their altitude 

nowadays UAVs are equipped with a barometer that measures pressure which indirectly 

relates to the altitude above mean sea level (AMSL). A problem with this measurement 

is that it doesn’t take into account the terrain morphology and orography. In order for the 

UAV to avoid this kind of obstacle it is required that it keeps the correct distance from 

the ground by means of a sensor that measures its altitude above ground level (AGL).  

 
Figure 3-1 AGL vs AMSL 

3.4 Sensors Technologies 

The heart of every Sense and Avoid system is undoubtedly constituted by its sensors,  

3.4.1 SONAR 

SONAR (SOund Navigation And Ranging) uses sound waves reflection to detect a target. 

It is maybe the first modern technology used for ranging purposes, its use is very diffused 
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in a lot of applications. Its principle of operation bases on knowing the speed of sound in 

the air. By measuring the time a sound wave takes to travel towards an object and to come 

back when reflected one can easily measure the distance from the object. In practical 

implementations however SONAR are also provided with a temperature sensor to 

compensate the change of the speed of sound in the air due to temperature drift.  

 

Figure 3-2 SONAR principle of operation 

Using a SONAR with quadcopter seems a viable choice since it is cheap, low in weight 

and able to detect obstacles that are difficult to see with visual technologies like mirrors 

and windows. However, SONARs must be used carefully since they suffer the 

turbulences induced by propellers in flying drones. I personally experimented this 

problem mounting a SONAR on a quadcopter and seeing that when the quadcopter was 

flying the SONAR always detected an obstacle at 2 meters even if that obstacle didn’t 

exist at all.  

It is very important that the placement of the SONAR is made far away from the 

propellers airflow and that the SONAR is designed to filter that noise. 
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A good choice for drone applications are MaxBotix SONARs, they use ultrasonic waves 

in the range of 40 KHz and can detect obstacles up to 7 meters depending on their size.  

 

Figure 3-3 MaxBotix SONAR 

For example the MB1242 is characterized by a high FOV greater than 90° of aperture. 

SONARs are most efficient on hard surfaces, and have relatively wide main lobe. 

Normally, they are rather limited in range. 

3.4.2 RADAR 

RADAR (RAdio Detection And Ranging) is a technology that uses electromagnetic 

waves to measure the range, the velocity and the angle of a target. At a first glimpse the 

working principle is quite similar to that one of the SONAR, but the usage of radio waves 

takes with it a lot of differences with respect to the SONAR technology.  

RADAR technology is based on the physical phenomena of backscattering of the 

electromagnetic radiation when it hits an object whose dimensions are greater that the 

wavelength of the incident radiation. The backscattered radiation can be detected by a 

receiving antenna after an amount of time equal to two times the time that the 

electromagnetic wave takes to go from the antenna to the target. By knowing that 
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electromagnetic waves propagate at the speed of light it is clearly possible to calculate 

the distance to the target. 

The equation that describe the relation between transmitted and received signal is called 

RADAR equation: 

!" =
$%$"&'

(

(4+)-./
	!% 

where: 

Pr is the received power 

Pt is the transmitted power 

Gr is the antenna gain of the receiving antenna 

Gt is the antenna gain of the transmitting antenna 

s is the RCS (radar cross section) 

l  is the wavelength of the electromagnetic wave 

R is the distance between sensor and object 

As it is clear from the equation the receive signal power is reverse proportional to the 

fourth power of range and it is directly proportional to the RCS of an object. 

RCS is a parameter that indicates how much a target is a “good target” for a RADAR. 

RCS is measured in square meters (is a surface) and it is frequency dependent.  
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In Table 3 is shown the RCS of several kind of targets at 24 GHz, a typical frequency for 

RADAR devices. 

Object RCS (Radar Cross Section) 

Automobile 10 m2 

Metal sheet of 1m2 More than 100 m2 

Ship More than 1000 m2 

Human Being 0.5 – 1 m2 

Tree More than 1 m2 

 

Table 3 RCS of various objects at 24 GHz 

As it is clear from the Table a human is not a good RADAR target if we compare it to a 

metal sheet or a car. The physical explanation of such differences stems in the penetration 

of the electromagnetic wave through different kind of materials.  

While metal is not penetrated by microwaves plastic, wood clothes are easily penetrated, 

and so are not “seen” by a RADAR. While water is not a good target, with microwaves 

being adsorbed by it. This explains why in submarine applications RADARs are not used 

and SONARs are preferred. 
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Figure 3-4 RADAR block diagram 

Like shown in Figure 3-4 the radar system is basically composed by a transmitter, a 

receiver, one (monostatic) or more antennas (bistatic/multistatic) and a duplexer, a device 

that alternately switches the antenna between transmitter and receiver (in monostatic 

RADAR), to prevent the receiver from being destroyed by the high-power signal coming 

from the transmitter. 

RADAR can be divided in: 

• Continuous Waveform 

• Frequency Modulated Continuous Waveform  

• Pulsed 

3.4.2.1 Continuous Waveform RADAR 

This kind of RADAR is the simplest one, since it simply transmits a continuous 

electromagnetic wave at a known frequency and measures the perturbation of the received 

wave. The received “perturbation” is at a frequency due to the Doppler effect: 

12 = 214
5

6
6789 

where: 



 
 

39 

fd is the Doppler frequency 

fc is the carrier frequency 

v is the speed of the moving object 

c is the speed of light 

q is the angle between the RADAR-Target line and the actual direction of motion of the 

Target. 

As it is clear from the equation the information produced by this kind of RADAR is 

relative to the speed of the target and not to its distance. Moreover, since the Doppler 

effect changes with the direction of motion, continuous wave RADAR give also 

information about a target approaching or leaving the RADAR. For this kind of 

information to be produced however it is necessary to have an additional electronic 

onboard able to recover the sign of the radial speed between RADAR and Target, like 

shown in Figure 3-5. 

 

Figure 3-5 Double channel converter 
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SR (t) = A	cos( 2+ 1=> 	±	12 @ +	BC), 

SRIF (t) = B	cos( 2+	 ∙ 	1=>@). 

Where SR is the received signal and SRIF is the reference signal at intermediate frequency. 

At the output of the converter we will have both the in-phase component and the 

quadrature component. So, if the Doppler frequency is positive the quadrature component 

will precede the in-phase component and vice versa. 

Continuous Wave RADAR can be very compact and require low power to function, so 

they are used in a lot of applications where is important to detect movement. They are 

largely used for example in alarm systems, to detect intruders. 

 

Figure 3-6 CW low-cost RADAR 

3.4.2.2 FMCW RADAR 

The FMCW RADAR is an evolution of the CW one. In FMCW the Continuous Wave 

gets modulated in frequency with a particular modulating signal. With this approach, it is 

possible to detect not just the speed and direction of an object, but even its distance. 
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FMCW principle to calculate distance is in the fact that frequency of the transmitted 

waveform continuously change as a function of time, since the reflected signal is delayed 

with respect to the transmitted one, by simply comparing the received frequency versus 

the transmitted one distance can be measured.  

The mathematics behind FMCW is in this equation that describes the dependence of the 

measured differential frequency from distance: 

. =
6E1F
2Δ1

 

where: 

fD is the differential frequency 

Df is the frequency deviation 

T is the period of the modulating wave 

R is the distance of the reflecting object 

c is the speed of light 

To get a linear dependence between differential frequency and distance, the modulating 

signal must change linearly.  

The typical modulation patterns are Sawtooth or Triangular, with the former used for 

range measurements and the latter for both range and velocity. 
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Figure 3-7 FMCW Triangular Wave 

Like shown in Figure 3-7 in triangular modulation the transmitter frequency linearly 

changes, this allow to measure the distance on either the rising front or the falling one, 

without Doppler effect, the amount of frequency difference Df during the rising edge is 

equal to that one in the falling edge for a certain target. When the target starts to move 

the detected frequency difference changes between rising edge and falling edge, this is 

due to the Doppler effect that we have yet seen in CW RADAR 

1H =
Δ1I2 + Δ1J2

2
 

1F =
Δ1I2 − Δ1J2

2
 

In this way fR, the frequency relative to the range, is given by half the sum of the rising 

edge frequency deviation (DfUD) and the falling edge frequency deviation(DfBD), while fD, 

the frequency relative to the speed, is given the modulus of half the difference between 

DfUD and DfBD. One of the limitation of this method is that in presence of multiple 

reflective object, the measured Doppler frequencies cannot be uniquely related with a 

single target. This in practical scenarios leads to ghost targets like shown by arrows in 
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Figure 3-8. To overcome this problem one method is to measure cycles with different 

slope of the modulation pattern, and to show only the target position that doesn’t vary 

between a cycle and another. 

 

Figure 3-8 Ghost targets in FMCW 

An important point when talking of FMCW RADARs is the bandwidth of the modulating 

signal, the more the bandwidth is, the smaller is the range resolution of a RADAR. From 

the relationship between signal delay and range, we can easily calculate the range 

resolution. 

. =
6∆@

2
 

To better explain this point we can take as example the 24 GHz ISM Band available in 

Europe for RADAR applications, this band is 250 MHz wide, so a RADAR operating in 

these frequencies must be limited at a 250 MHz Bandwidth, with simple calculations we 

can calculate the range resolution of such a radar:  

.MNO = 	
4
P
∆Q

(
 = 0.6 m 
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Figure 3-9 shows the modulating wave of a FMCW RADAR in green and the signal at 

the IF output, in cyan. In the envelope of the IF output signal is clearly visible a signal at 

higher frequency, that signal is produced by an obstacle lying at about 6m distance. 

 

Figure 3-9 FMCW output signal 

 

When dealing with FMCW Radar it is important to estimate the range of frequency that 

the elaboration circuitry must accept in a specific range of distances. In Figure 3-10 it is 

shown how output frequencies relate with distance using the FMCW bandwidth as 

parameter.  

As expected the more the bandwidth the more the output frequency at the maximum 

distance. This fact then affects all the processing chain, because if a higher bandwidth is 

desirable because its increased range resolution however it requires higher acquisition 

rates of the Analog to Digital converter stage in the phase of elaboration of the signal. 



 
 

45 

 

Figure 3-10 FMCW Distance vs Bandwidth 

 

One of the non-idealities that must be accounted when working with RADARs is the 

noise at the output, produced by mixers that produce some of the input signal in the 

output, this is well visible in the cyan wave, this noise can be a problem when the target 

signal is feeble, because in this case a higher gain it is necessary, however the noise can 

easily saturate the output. To limit this problem, it is necessary to filter out the frequency 

of the modulating signal. 

3.4.3 Stereo Camera 

Stereo camera is a well know technology used in obstacle detection systems to create a 

depth map of the scene, it is a passive system, this fact implies several advantages and 

disadvantages with respect to other technologies. The main advantage is that the 

0 10 20 30 40 50 60
Distance [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fb
 [H

z]

#104 FMCW Distance vs Bandwidth

BW = 50MHz
BW = 100MHz
BW = 150MHz
BW = 200MHz
BW = 250MHz



 
 

46 

detectable range is not limited by an active illuminator, on the other side it is more prone 

to errors due to artifacts introduced in the acquired images by environmental lights. The 

work of Majumder et al. (Majumder, 2015) made an accurate study on the usage of such 

technology on RPAS applications, they tried the stereo-camera technology both in 

outdoor and indoor applications and they found that it is a good choice especially in 

indoor applications, in outdoor ones is still fairly good although presenting some errors 

in detected object size and distance particularly on small objects. 

 

Figure 3-11 Stereo-Cameras disparity map 

Figure 3-11 shows on the left a scene shot by two stereo-cameras, on the right side there 

is the disparity map calculated starting from the two images taken by the left and the right 

camera. As it can be seen in the figure the disparity map shows with brighter pixels the 

objects that lie nearer the camera thus producing a depth map.  

 In order to produce a disparity map of a scene there are several algorithms that can be 
used, like: 
 

• SAD Sum of Absolute Differences 
• SSD Sum of Squared intensity Differences 
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A limit of stereo-cameras due to the construction of the system of cameras is the 

maximum depth resolution strictly linked to the distance between the cameras (baseline) 

and the FOV of the optics used. For a good obstacle detection, it is necessary to have an 

high baseline distance, and it is clearly not feasible on small RPAS.  

Not last another disadvantage is the great amount of computing power necessary to 

reconstruct the depth map. 

3.4.4 Monocular Camera 

By simply comparing two frames in time instead of in space (like in the case of stereo-

cameras), it is possible to analyze the tridimensional environment using algorithms of 

Visual Odometry. For these algorithms to work it is necessary to associate the images 

taken from camera to inertial data coming from IMU. In this way, it is possible to deduce 

the spacing between points of an image and another taken an instant later. 

 One of the most effective algorithm is called SVO (Semi-Direct Visual Odometry), it has 

been developed by the ETH of Zurich (Forster, 2014).  

This algorithm is in the middle between feature based methods and direct methods that 

can exploit information from all image gradients but are too slow to be used in real time 

applications. This algorithm analyzes the frames coming from camera and uses a sparse 

approach to select pixels recognized to be at corners or along intensity gradient edges thus 

reducing a lot the computing time of dense approaches where every pixel is analyzed. 

The advantage of this algorithm is that it is fast and so can be used even on modern 

smartphones and still have a good response time down to 10 ms. 
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Figure 3-12 SVO algorithm 

Experiments have been done with this algorithm of navigation in GPS denied 

environments and it have proved good, however 10ms elaboration time per frame are still 

not good for a robust system. 

3.4.5 Event-Based Camera 

This kind of technology is promising and can have applications in a lot of fields. It is a 

very recent technology and important companies like Samsung and IBM are investing a 

lot in it. The first research group to exploit this kind of sensor for RPAS applications is 

the Robotics and Perception Group of the university of Zurich (Mueggler, 2017). In 

Figure 3-13 is shown the comparison between standard frame based cameras and event 

based cameras. From the figure it is clear how and event-based camera works, instead of 

producing as output a series of frames at a specified frame rate, the event-based camera 

outputs just the pixels that have changed from a sample to the next one. 

An advantage of this kind of cameras is the absence of motion blur during rapid motion, 

they respond to pixel-level brightness change with a microsecond latency. 
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Figure 3-13 Standard vs Event Camera 

 

The heart of an event-based camera is a DVS (Dynamic Video Sensor), in it every pixel 

has a comparator circuit that compares the brightness seen with a stored one, due to its 

circuitry, shown in Figure 3-14, the dimension of the single pixel is greater than that of a 

standard camera, the main part of the space is taken by the capacitance needed to 

differentiate. 

 

Figure 3-14 Pixel circuitry of DVS 

So at least for now these cameras can have relatively small resolutions up to 240x180, 

but with research this limit is expected to increase. 
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Another advantage of this kind of camera is its large intra-scene dynamic range, this is 

because every pixel responds to relative change of intensity. This leads to a dynamic range 

of approximately 120 dB that dwarves the typical limited dynamic range of normal 

cameras that is approximately 50 dB.  

This is clearly shown in Figure 3-15, where an Edmund gray scale chart is partially 

exposed to sunlight, the exposed part is at 780 lux, while the shadow is at 5.8 lux. The 

right figures show pictures taken by a normal camera: as it can be seen the camera must 

either increase the exposure time leading to an over-exposed scene in the 780 lux zone, 

or can decrease the exposure leading to an under-exposed scene in the 5.8 lux zone. 

The left figure shows the output of a DVS sensor under the same light conditions, the 

sensor has no problem to detect the whole scene. 

 

Figure 3-15 DVS contrast sensitivity 

3.4.6 Optical Flow 

A good definition of optical flow (or optic flow) is that of Horn (Horn, 1981): 
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“Optical flow is the distribution of apparent velocities of movement of brightness patterns 

in an image. Optical flow can arise from relative motion of objects and the viewer”. 

So the optical flow can be used to detect obstacles, because it gives information about the 

spatial arrangement of the objects viewed. 

Several techniques have been developed to calculate optical flow, one of the widely used 

is the Lucas-Kanade algorithm (Lucas, 1981). 

The algorithm assumes that when observing a sequence of images, if two images are 

separated by a small time Dt the objects have not displaced significantly, so it looks at the 

second image looking for a match of a pixel, and it works trying to guess the direction of 

motion of an object. 

So the optical flow equation can be assumed valid for pixels in a window centered at 

around a pixel P. 

∇S T, V ∙ 5 = 	−
WS(T, V)

W@
 

In nature, optical flow is widely exploited by living beings to move in the surrounding 

environment. If look at flying insects their senses relay a lot on optical flow, several 

studies have been made on their behavior and how it could be transferred on robots 

(Zufferey, 2008) (Fallavollita, 2012) with very promising results. 

An interesting device that exploits the optical flow is the PX4FLOW, it is developed by 

the PX4 team and is thought mainly as a positioning device in zones where the GPS signal 

is not available. 
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In the Honegger et al. work (Honegger, 2013) they explain the idea of pointing the optical 

flow camera towards the terrain, they study the optical flow and guess the direction of 

movement of the camera, and consequently of the RPAS.  

The camera however can’t work alone because it needs a distance sensor to quantify the 

movement in any direction, in their work they used a SONAR, thus limiting the maximum 

height at few meters above ground level. To estimate the optical flow they adopted the 

less costly algorithm based on SAD (sum of absolute difference) block matching. 

Onboard the PX4FLOW is present a Cortex M4 DSP, it comes with integer vector 

instructions, thus allowing for the computation of the SAD value of four pixels in parallel 

in a single clock cycle. The SAD value of a 8x8 pixel block is calculated within a research 

area of +/- 4 pixels in both directions.  

 

Figure 3-16 PX4FLOW position estimation 

In Figure 3-16 is shown a comparison between the PX4FLOW and a mouse sensor in 

position estimation. As it can be seen the results are comparable with a little drift of the 

PX4FLOW caused by brightness noise induced by obstacles on the ground. 

D. Outdoor Test

The presented flow sensor was also compared to the
ADNS-2080 mouse sensor. Both sensors were mounted on
a rigid test rig and carried along an outdoor trajectory on
typical road surface. The velocities were transformed to the
earth oriented coordinate frame using the estimated attitude
of the onboard IMU. The flow values of the mouse sensor
were scaled with the height measurements of the PX4FLOW
optical flow sensor. Figure 8 shows the integrated metric
output of both sensors.
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Fig. 8. Comparison of the ADNS-2080 mouse sensor and the PX4FLOW
module on a long outdoor trajectory.

Both sensors show similar results on a several hundred
meters long trajectory. The main benefit of the PX4FLOW
module is the application in indoor and low light conditions.
The resulting drift is mainly induced by metal structures and
objects on the trajectory that influence the magnetometer and
therefore affect the heading estimation.
Figure 9 shows the integrated metric output of the
PX4FLOW sensor with orthophoto overlay for a manual
flight with the PX4FMU autopilot on a 7”-propeller small
quad rotor along a promenade in a park. The plot shows
that the overall consistency with the aerial photo is very
high and that the trajectories when closing the loop largely
overlap. The estimated trajectory is the pure integration of
the measured velocity at each time step. In order to purely
show the sensor accuracy, we did not include any further
filtering or any motion model. The overall trajectory had a
length of 192.16 meters.

VIII. CONCLUSION

This paper has shown that a smart camera computing opti-
cal flow and compensating for rotations can be implemented
with low-cost components. The flow estimation performance
matches typical mouse sensors but works also without strong
infrared lighting in typical indoor environments.

Fig. 9. Integrated metric output of the PX4FLOW sensor with orthophoto
overlay for a flight along a promenade.

The software implementation and hardware design is open
sourced and available to the scientific community. Since the
system is light weight, it is suitable for any mobile robot or
micro aerial application.
Future work will include the augmentation of the compass
with a vision-based heading reference to overcome local
magnetic anomalies, which are induced regularly by large
metal objects in urban environments.
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The Honegger et al. work with the PX4FLOW is a good starting point for this technology 

and shows interesting results expecially in indoor applications.  

 

 

Figure 3-17 PX4Flow Camera 

3.4.7 LiDAR 

LiDAR sensors use a LASER source and analyze the reflected light to measure the 

distance of an obstacle.  

 

Figure 3-18 Principle of working of a Laser range finder 
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Due to the shorter wavelength of light LiDARs can be a lot more accurate than RADARs 

in detecting obstacles, at most the limitations are posed by the reflectivity of the target 

and by its form factor.  

A LiDAR is composed by a Laser generator that can be pulsed or continuous wave (CW), 

in the former the distance is calculated by estimating the round-trip time of the pulse, in 

the latter the distance is calculated by estimating the phase deviation between the source 

signal and the reflected. 

A LiDAR can measure a single spot distance, in this case it is also referred as Laser Range 

Finder, or it can provide a linear scan with several thousands of points per second. The 

scan is typically performed by using rotating mirrors. Today it is possible to mount this 

kind of LiDAR on an aircraft and obtain accurate point cloud surveys like the one shown 

in Figure 3-19 where a building is mapped by a LiDAR mounted onboard a Multirotor 

RPAS. 

 

Figure 3-19 LiDAR point cloud of building survey 
While the scanning LiDAR would be very good in detecting obstacles, however one of 

its main limitation is the weight, the Yellowscan Mapper for example is a good scanning 



 
 

55 

LiDAR with a field of view of 100° and 18500 shots per second, however its weight is of 

2.1 kg. This aspect clearly limits the use of scanning LiDAR as obstacle sensing devices 

on small RPAS, however on bigger aircraft some research has been done with good results 

(Sabatini, 2014). 

The evolution of the LiDAR technology is leading to solid state scanning LiDARs, this 

technology will provide lighter and faster devices and will allow LiDARs to be used in 

obstacle avoidance systems even on small drones. 

3.4.8 Time-of-Flight Camera  

Time-of-flight (ToF) camera is a particular kind of camera that operates by illuminating 

an area with modulated IR light. By measuring the phase change of the reflected signal 

the camera estimates the distance for every pixel in the scene thus creating a 3D depth 

map of the illuminated area. This kind of technology is relatively new compared to the 

others, it is very similar to LiDAR technology, in fact a time-of-flight camera is simply a 

class of scanner-less LiDAR, because ToF cameras acquire the entire image in a single 

shot while LiDAR systems scan the scene point by point. The clear advantage compared 

to LiDAR is that the frame rate is very high, over than 160 fps. 

 

Figure 3-20 ToF camera concept (courtesy of perception.inrialpes.fr) 
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As of today there are several technologies of ToF cameras: 

• RF-modulated light sources with phase detectors 

In this kind of cameras, the outgoing light beam is modulated by a RF carrier, then 

the range is estimated by measuring the phase shift between the carrier and its 

copy on the receiver side. With this approach, the maximum range is limited by 

the RF carrier wavelength, that introduces ambiguity over one wavelength 

distance.  

• Range gated imagers 

These cameras have built-in electronic shutters that opens and closes at the same 

rate of the output pulse. At the received side the amount of light received is 

proportional to the distance between the target and the camera. 

• Direct Time-of-flight imagers 

These cameras measure directly the time-of-flight of a single Laser Pulse in the 

path from the camera to the target and back to the camera.  

3.4.9 GNSS 

It may sound strange to have GNSS between the sensor technologies for Sense and Avoid, 

however, this technology is ubiquitous when positioning is needed, and in Sense and 

Avoid applications is very important to know the actual RPAS position in order to avoid 

obstacles. 

GNSS is the acronym for Global Navigation Satellite System, it is the global name that 

refers to the systems that provide navigation data to users equipped with the appropriate 

receivers. 
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Actually, worldwide there are several systems that implement GNSS: 

• GPS (Global Positioning System)  

It is maybe the most famous and is provided by the USA 

• GLONASS (Global'naja Navigacionnaja Sputnikovaja Sistema) 

It is provided by Russia 

• GALILEO 

It is a European project that has entered in full operation in December 2016, it is 

more accurate than NAVSTAR GPS and should guarantee Europe an alternative 

to the GPS. 

• BeiDou (that stands for Big Dipper in Chinese) 

It is the Chinese Satellite Navigation System, however it is for now just a 

regional system since with 4 satellites it works only in China 

Other countries like India are developing Regional positioning system, because this 

technology is of military strategic interest. 

In fact, the first satellite navigation systems were developed by USA during the cold war, 

the first system was the Transit and it was thought for military use for navigation of 

Americans vessels, it provided a 2D positioning, but was inherently slow and impractical 

for dynamic uses like onboard airplanes. So USA decided to start the GPS project. 

GPS is a complex system formed by a satellite constellation of 24 satellites arranged in 6 

orbital planes with 4 satellites per plane (Kaplan, 2006). A worldwide ground 

control/monitoring network monitors the health and status of the satellites. 
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GPS can service unlimited users since the receivers operate passively, the system utilizes 

the concept of one-way time of arrival (TOA) ranging. 

In order to lessen the costs of receivers a very accurate time-base atomic clock is onboard 

GPS Satellites. The GPS signal can work on two frequencies L1 and L2 (1572.42 MHz 

and 1227.6 MHz) with a technique of CDMA (Code Division Multiple Access). Civil 

receivers like the ones included in our smartphones use only L1 frequency, while L2 

frequency is reserved for military and professional uses. 

For a long while, during the cold war and even after the GPS signal for civil use was 

intentionally degraded in order to guarantee military supremacy to US Army. From year 

2000 with an order of then president of the USA Bill Clinton this degradation of the signal 

was removed, so nowadays military have few advantages with respect to professionals in 

the use of GPS. 

As shown in Table 4 the accuracy of GPS in good civilian receivers can achieve up to 3 
meters. 

 

 

Table 4 Comparison of typical performance range across various receivers (from Kaplan) 
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To achieve better accuracies, it is necessary to go for the GPS augmentation systems that 

can take GPS accuracy to centimeters, and even millimeters. 

The augmentation systems available for GPS are based on DGPS (Differential GPS), it is 

a method that increase the accuracy of the GPS receiver by taking as reference one or 

more ground stations at known locations, each station sends GPS information to the 

receiver through a datalink. 

DGPS services can be over a local area or also over an entire continent. WAAS (Wide 

Area Augmentation System) is a USA service, while for Europe there is the EGNOS 

(European Geostationary Navigation Overlay Service). 

For local area DGPS a promising technology is the RTK (Real-Time Kinematic), contrary 

to other DGPS technologies it can achieve centimeter-level accuracy not just using the 

information content of the signal, but through the measurements of the phase of the carrier 

of the GPS signal. 

 

One strong limitation of GPS that limits its use in critical applications is that the signal 

can be corrupted/altered voluntary or not, for example due to jamming or simply because 

of an error in the ground control section. Jamming, intentional or not, are common and 

are a well-known problem, even if jamming GPS signal is illegal. 

However, GPS is evolving with added frequencies and anti-jamming capabilities. 

Galileo system seems to be a good alternative to GPS since it addresses right at the 

limitation of the actual GPS system. 
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For what concerns to RPAS application this problem is obviously of primary importance 

since a completely autonomous system must be confident on reliable GNSS signal. 
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4 LEONARDO AUTOPILOT 

4.1 The idea 

As I stated before, the idea behind Leonardo Autopilot was born after viewing the state 

of the art of open source autopilots at that time (2013-2014). I decided to design Leonardo 

to provide an autopilot for drones with FPGA on board.  

 
Figure 4-1 Leonardo Autopilot PCB 

 

Let’s see what are the main characteristics of Leonardo: 

• FPGA EP4CE22E144 Altera Cyclone IV FPGA with 22k Logic Elements 

• DSP STM32F405RGT6 32bit ARM Cortex M4 running at 168 MHz 

• IMU LSM9DS0 with 9 degrees-of-freedom containing both Accelerometer, 

Gyroscope and Magnetometer on a single chip 

• LPS331 Barometer 
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• On board GPS MAX7 from U-Blox 

• Up to 12 buffered Outputs for driving ESCs and 12 Inputs compatible with R/C 

interfaces 

•  MicroSD card slot 

• CAN Transceiver 

•  RS485 Transceiver 

•  Up to 3 UART interfaces 

• USB interface with Micro USB connector 

All these features are integrated in a 60x90mm board in order to be easily mounted on a 

small RPAS. 

When I designed Leonardo I decided to make it compatible with the PX4 stack, in order 

to exploit the features and the advances yet made by the PX4 team, and that soon revealed 

as a good choice, because after a work of porting their software on my hardware I could 

test and debug my Leonardo more easily. 

Having an FPGA companion chip brings several advantages: 

- Computation loads can be shared between the units 

- System is more reliable, since if the DSP fails or locks up, the FPGA can trigger 

a failsafe procedure 

- FPGA being a programmable hardware can easily do calculations that are very 

heavy for standard CPU architectures 

Obviously, there are also disadvantages – drawbacks: 
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- Overall increase of power consumption, this is true only partially because it 

depends on the algorithms running on FPGA/DSP 

- Increase of development times, because programming an FPGA requires specific 

skills and debugging FPGA code can be time consuming because of the 

compilation/simulation times 

- It becomes necessary to manage the communication between the two ecosystems 

(FPGA – DSP), this can be a bottleneck and must be carefully evaluated. 

On this last point in particular I concentrated my attention, because there was the risk of 

having two powerful units not communicating each other. So I included ten lines of 

interface between the DSP and FPGA, four of these lines are dedicated to an SPI interface, 

while the others are GPIO. The fulcrum of the communication between the FPGA and 

the DSP is precisely the SPI, this choice has been taken mainly because the SPI interface 

is the fastest one available on STM32. 

The PCB layout of the Leonardo autopilot also has been somewhat complicated to route 

because of its density, the choice has been to use a 4 layers PCB with inner layers of 

ground and power routing, the technology used for passive components is 0402, this has 

been for me a bit challenging because then I soldered every passive component by hand. 

I also had to buy a hot air station to solder QFN components (IMU and barometer) that 

else couldn’t be soldered. 

In order to get everything working I had to do a porting of the PX4 stack to Leonardo, the 

porting has to be made since Leonardo has got some hardware differences when compared 

to Pixhawk. The main difference is the IMU that in Leonardo is all included in a single 

module, LSM9DS0, the other difference is the barometer, at the moment of design I chose 
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LPS331, a new MEMS chip from ST that on paper had better performance than the 

barometer used by Pixhawk. This choice has revealed not so good indeed, because the 

component has got several accuracy problems and has been removed by ST from its 

linecard. 

So I had to write the drivers for IMU and Barometer. 

4.2 FPGA code 

On the FPGA side I had to write the interface between the remote control and the STM32, 

the receiver that I used (Turnigy 9xr) has got separated output for every channel input, 

since I have a limited number of pins for communication between FPGA and STM32 I 

chose to write the interface for conveying single channel information into a PPM stream. 

PPM, also known as Pulse Position Modulation, is a standard often used in RC receivers 

to pass multiple channels into a single channel, a good representation of this modulation 

is depicted in Figure 4-2, as you can see the distance between one pulse and the sequent 

is the PWM duty cycle of that channel. 

 

Figure 4-2 Pulse Position Modulation 

The advantage to have this step integrated in FPGA is that you can eventually choose to 

change the behavior of the RC, or check that all data is good before routing it to the DSP. 
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4.2.1 NIOS 2 experiment 

During the first debugging phase I decided to test the FPGA capabilities and pilot all the 

drone from it. It has been a good exercise and helped me to prove that everything was 

working as expected. 

 Cyclone IV FPGAs come with an embedded RISC 32 bit microcontroller IP core that 

can be programmed inside the logical elements alongside with the other logic its name is 

Nios 2.  

The IP core is generated inside the Altera Quartus II interface (QSys) and the user can 

choose the features to enable in it. Obviously the more the features the more the space 

occupied inside the FPGA, so it is important to constrain opportunely the dimensions to 

leave enough space for other eventual applications. For this application, I chose to enable 

just the minimum features required to test the basic Leonardo functionalities: 

• CPU 

• 32KB On Chip Memory 

• 32 bit Timer 

• 2 SPI interfaces 

The SPI interfaces are required to read the IMU values, one is for the barometer, the other 

is shared between the accelerometer, the gyroscope and the magnetometer.  

While the 32 bit timer is necessary to handle the control tasks. 

So, I’ve written a sample C code with a PID controller to drive the ESCs a SPI interface 

to read the IMU and an interface to read the input RC commands. 
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Total logic elements 2676/22320 (12%) 

Total combinational functions 2433/22320 (11%) 

Dedicated Logic registers 1642/22320 (7%) 

Total registers 1644 

Total pins 30/80(38%) 

Total memory bits 273408/608256(45%) 

Embedded Multiplier 9-bit 0/132 (0%) 

Total PLLs 1/4 (25%) 

 

Table 5 FPGA Occupation summary 

4.3 PX4 Autopilot stack 

The PX4 autopilot as already said is an open-source autopilot designed in the ETH of 

Zurich by the research team of Lorenz Meier. I decided to make my autopilot compatible 

with this stack because it is thought for research applications, it is fully editable and there 

is a wide community working everyday on it. 

The block scheme on how the autopilot works is shown in Figure 4-3. The autopilot 

estimates its position and attitude through inertial sensors, GPS and eventually computer 

vision, a position estimator then is used to feed the navigator block and the attitude 

estimator block (actually a Kalman filter). The estimated attitude and position are then 

used as an input to the position and attitude control blocks, these two blocks go to the 

mixer block which distributes power between motors. 
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Figure 4-3 PX4 block scheme 

As shown in Figure 4-4 the navigator block is responsible to define the route of the RPAS, 

it can be fed directly by the user through the commander block that translates the 

commands of the Remote Controller into instructions to the navigator, or it can be fed 

with instructions of a flight-plan defined by the user before the flight.  

 

Figure 4-4 PX4 block scheme: navigator 
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As a feedback to the commander block and to the navigator block, the position and 

attitude estimators, and the mixer block send their live data to the Mavlink block like 

shown in Figure 4-5.  

Mavlink is a protocol for telemetry thought for RPAS, it is better described in section 7.1. 

Through Mavlink all the information useful for tracking the drone are sent to the ground 

station. 

 

Figure 4-5 PX4 block scheme: Mavlink 
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4.4 Quadcopter design 

To test the capabilities of the Leonardo autopilot I built a quadcopter, I started with the 

dimensioning of the system and, for the calculations I used ecalc an online tool that helps 

the dimensioning of a quadcopter, like shown in Figure 4-6 the tool allows to insert the 

desired configuration and through simple gauges indicates if a model is well dimensioned 

or will have problems in flight, problems may come from motors heating too fast, or ESCs 

too small for the current driven from motors. 

The calculator gives also an idea of the maximum payload that the multicopter can carry 

with the chosen motors/propellers. 

 

Figure 4-6 ecalc screenshot 
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Figure 4-7 Quadcopter built for testing Leonardo Autopilot 

In Figure 4-7 the quadcopter that I built is shown, in a first time I tested it with a 

PIXHAWK open-source autopilot, this gave me the possibility to test its functionalities 

with a well-known platform. The choice of PIXHAWK was made also because it allows 

the use of the PX4 autopilot stack, that is the same that I chose for Leonardo.  

The main features of the quadcopter are reported in Table 6: 

Propellers 10x4.5 inches 

Motors NTM 2830-800kV 

Weight 1320g (without battery) 

Battery 3700mAh 4S 400g 

Maximum payload 1Kg 

Hovering Time 11 minutes 

Maximum Speed 43 km/h 

 

Table 6 Quadcopter specifications 
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4.5 Modifications to the PX4 stack 

As said above, in order to make the Leonardo autopilot work with the PX4 stack I had to 

add the drivers for the IMU and the BAROMETER, then I had to change the default 

output pins for driving motors routing them to the FPGA pins. The input signal coming 

from the RC controller has been converted with the FPGA in the PPM format and then 

sent to the STM32. 

To comply with the coding standard of the PX4 stack the drivers are derived from the 

drivers of similar interfaces, the barometer driver for the LPS331 has been derived from 

the MS5611. The main difference is how the data is fetched from the sensor, here is the 

snippet of code: 

 

/* fetch data from the sensor */ 

memset(&raw_report, 0, sizeof(raw_report)); 

raw_report.cmd = ADDR_PRESS_POUT_XL_REH | DIR_READ | ADDR_INCREMENT; 

transfer((uint8_t *)&raw_report, (uint8_t *)&raw_report, 

sizeof(raw_report)); 

 

report.timestamp = hrt_absolute_time(); 

report.error_count = 0; // not recorded 

int32_t pressure_int =  (int32_t)(raw_report.press_h)<<16 | 

(int32_t)(raw_report.press_l)<<8 | (int32_t)raw_report.press_xl; 

int16_t temperature_int = (int16_t)(raw_report.temp_h)<<8 | 

(int16_t)(raw_report.temp_l); 

double pressure_dbl = (double)pressure_int/4096.0;//pressure in 

millibar 
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double temperature_dbl = 42.5 + 

(double)temperature_int/480.0;//temperature in C 

 

Unfortunately, as said before, the LPS331 revealed to be noisy, so to reduce its noise I 

decided to filter its output data in this way: 

/* START – Low Pass Filter */ 

const double alpha = 0.002; 

static bool filter_starting = true; 

static double pressure_av_prev = 0, pressure_av = 0; 

if(filter_starting) 

{ 

 pressure_av_prev = pressure_dbl; 

 if(pressure_dbl > 200 && pressure_dbl < 1200) 

 { 

   

  filter_starting = false; 

 } 

} 

pressure_av = alpha * pressure_dbl + (1 - alpha) * pressure_av_prev; 

pressure_av_prev = pressure_av; 

 

 

/* END – Low Pass Filter */ 

report.pressure= pressure_av; 

report.temperature= temperature_dbl; 

 
The IMU driver for the LSM9DS0 has been split in two drivers, one for the Gyroscope 

that is a modified version of the L3GD20 driver, and the other for the Magnetometer and 

the accelerometer, that is a modified version of the LSM303 driver. The full version of 

these modified drivers is too long to be included in this thesis, but it is available for the 

interested reader on my GitHub account https://github.com/gcarmix/leofmu_addons 

The code available there is compatible with the PX4 stack and can be easily included in 

it by patching the original PX4 code.  
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5 AGL CONTROL SYSTEM 

To control the Altitude above Ground Level a drone must be equipped with proper sensors 

and must elaborate the information coming from the sensor. 

As stated before a barometer is useless in this task, so my attention focused on distance 

sensors, traditional airplanes are equipped with RADAR altimeters, they are good on long 

range, but for small UAVs since the distances are a lot smaller it is advisable to use a 

sensor with less range, but with a lot more precision like a laser range finder, the chosen 

laser range finder, the LidarLite as a range of approximately 40m with an accuracy of few 

centimeters. 

One of the problems that I faced when thinking at an AGL control system is that, in order 

to calculate the correct trajectory to take, the distance sensor must be pointed forward 

with respect to the drone otherwise it is impossible to react correctly to abrupt AGL 

changes. 

As a starting point, I decided to mount the LidarLite at 45° angle with respect to the 

ground in order to have good ground range and good foreseeing capabilities, anyway the 

LidarLite was mounted on a mechanical “arm” driven by a servo motor in order to change 

the angle of detection when needed like shown in Figure 5-1. Another advantage to have 

the sensor mounted on a servo motor is that the angle of measurement can be changed on 

the fly when the autopilot detects a variation in the pitch of the vehicle in order to detect 

the terrain always at the same angle. 
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Figure 5-1 LidarLite mounted under a quadcopter for AGL experiment 

To demonstrate the correct working of the system I tested it by passing over a pile of 

books arranged like a four steps stair on the ground, the results are good like shown in 

Figure 5-2. 

 

Figure 5-2 Test passage with AGL measurement 

 

 

Figure 5-3 Model of Altitude correction 
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I made a second experiment with the AGL system and the RPAS passing over vegetation, 

this time I compared the barometer altitude with the AGL measurement. 

  

Figure 5-4 AGL Experiment scenario 

In Figure 5-5 the comparison between barometer and AGL is shown. As it can be seen 

from the graph, the measured data of the AGL sensor corresponds to that of the barometer 

less than an offset that is due to the inclination of the AGL sensor. 

In the experiment, I did approach the RPAS to the obstacle (the oleander shrub), and the 

moments when I approached the RPAS are well visible in the graph, they in fact 

correspond to a sudden loss in AGL distance not followed by a loss on the barometer 

height.  
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Figure 5-5 AGL System flight over vegetation 

This is a good result, so I decided to go a step further, I’ve written a code on the autopilot 

linking the sensor distance with a change in the altitude set-point of the autopilot, to avoid 

odd behavior I made that this option could be disabled by the remote-control sticks. 

In order to do this, I modified the pos_control module on the PX4 stack, by adding a new 

parameter: ALT_CTRL. I also modified the mavlink protocol to include the telemetry of 

the measured distance from ground. 

The current distance measurement is sent directly to the position control module by the 

driver of the LidarLite, it is then compared with the altitude control parameter coming 

from the remote control in this way: 

if(_range.current_distance < params.alt_ctrl && params.alt_ctrl > 0.5f) 

{ 

 pos_sp(2) = _pos(2) – 1.0f; 

} 
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 pos_sp(2) is the set-point of the position on the z axis (x= 0, y=1, z=2). If the current 

distance is less than the distance set on the params.alt_ctrl and the 

params.alt_ctrl is greater than 0.5 meters (to avoid the drone to crash on the 

obstacle) then the position set-point is set to the actual position on the z axis _pos(2) 

minus 1 m. 

Also, here the results were promising, with the drone increase of altitude whenever it 

went near the obstacle, the results are shown in Figure 5-6. 

The red line shows when the AGL control is activated, it starts in a disabled state. 

The Violet and the Cyan lines indicate respectively the Altitude set-point of the autopilot 

and the Vertical speed set-point of the autopilot. 

The Green line is the distance measured by the AGL sensor, and the Blue line is the 

barometer altitude. 

Starting from ground level and with the control disabled the RPAS takes-off, at 16:59:40 

the control is enabled and the red line goes up. After the AGL sensor detects a low 

distance from ground the autopilot reacts by asking the motor to increase speed setting 

the set-point of the Altitude to a higher level (in the graph the altitude set-point is negative, 

so for a better understanding it must be interpreted as an absolute value). Also, the 

Vertical velocity set-point is changed and it controls how fast the RPAS should go up or 

down to avoid the obstacle. 

The increase of altitude is promptly done by the RPAS as it can be seen in the blue line 

showing the barometer altitude. When the obstacle is passed the RPAS descends. I 
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repeated the same task several times always getting roughly the same behavior as it can 

be seen by the successive passes. 

The experiment gave good results, the behavior of the RPAS is a little crisp when it reacts 

to obstacles, but that can be smoothed by acting on the vertical velocity parameters. 

 

Figure 5-6 AGL altitude control experiment 
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6 MULTISENSOR SYSTEM 

When I started the development of Leonardo the goal was to integrate in a single platform 

a complete system that could do complex tasks such as Sense and Avoid. 

In this phase, I focused my attention on the “Sense” part.  

As seen in chapter 3.4 several technologies are good candidates for obstacle detection, 

however every technology does only part of the job, due to the different characteristics of 

every obstacle. In order to have a reliable detection it is thus important to blend the 

information coming from different type of sensors. 

They have been chosen to be practical for use on board a light and low-cost UAV. The 

three technologies integrated in the multi-sensor system are characterized by being 

complementary w.r.t. nature of targets, to get the widest spectrum of detected obstacles: 

• RADAR 

• SONAR 

• LiDAR 

Every sensor, to be mounted on a RPAS, needs to be lightweight, small in physical 

dimensions and with low power consumption. 

6.1 Sensors 

In this section I will show the characteristics of the chosen devices that will constitute the 

multi-sensor system. 
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6.1.1 IVS 167 Radar 

The chosen RADAR device is a IVS-167 with integrated antenna, from Innosent.  

This device is mainly meant to be used in Industrial applications, for traffic monitoring 

or for water level measurement. This device operates in the K band and is capable of 

FMCW/FSK, so it can measure distance of stationary objects, it is stereo (dual channel) 

so it can also detect the direction of motion. 

 

Figure 6-1 IVS 167 FMCW Radar 

The IVS 167 is provided with a 5 pin connector with this pinout: 

Pin In/Out Description Comment 

1 Out IF1 Signal In Phase 

2 Out IF2 Signal Quadrature 

3 In GND Analog Ground 

4 In VCC Supply Voltage 

5 In Vtune Varactor Tuning 

Table 7 IVS 167 pinout 
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In Table 8 the RADAR main characteristics are shown. 

 

Table 8 IVS 167 Characteristics 

The RADAR is powered with 5V and sinks about 33 mA of current, leading to a power 

consumption of roughly 165 mW. 

To use it in FMCW operation it is necessary to drive the Vtune input of the VCO. No data 

(apart from the table shown above) was provided by Innosent on how the frequency varies 

with the Vtune voltage, however by using a spectrum analyzer I have seen that a 0 to 5 V 
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voltage is enough to drive changes of the carrier frequency over the whole span of 250 

MHz. 

The full beam width in both horizontal and vertical direction is 11°, with a side lobe 

suppression of 15 dB like shown in Figure 6-2. This leads to a quite narrow “FOV” of the 

sensor. 

 

Figure 6-2. IVS-167 Antenna vertical (blue) and horizontal (red) pattern 

6.1.2 LidarLite LiDAR 

The chosen sensor is LidarLite (PulsedLight3D, 2015), a low-cost laser range finder 

characterized by low weight and good ranging capabilities up to 30-40m depending on 

the obstacle reflectivity. 

 

Figure 6-3 LidarLite range-finder from PulsedLight 
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LidarLite is a device with an integrated FPGA on-board, that uses a patented algorithm 

to estimate the correct distance of a target. 

This Laser Product is designated Class 1 during all procedures of operation. 

Parameters Laser Value 

Wavelength 905nm (nominal) 

Total Laser Power - Peak 1.3Watts 

Mode of operation Pulsed (max pulse train 256 pulses)  

Pulse Width 0.5µSec (50% duty Cycle) 

Pulse Repetition Frequency  10-20KHz nominal 

Energy per Pulse <280nJ 

Beam Diameter at laser aperture  12mm x 2mm 

Divergence 4mRadian x 2mRadian (Approx) 

 

Table 9 LidarLite Laser Specifications 

 

It is equipped with two kinds of interface: 

• PWM 

• I2C 

For my experimental system, I chose to interface the LiDAR through the I2C interface. 

In Table 10 the LidarLite pinout is shown. 
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Pin Description 

1 POWER_IN – 4.75-5.5V DC Nominal, Maximum 6V DC. Peak current draw 

from this input (which occurs during acquisition period) is typically < 100 mA 

over a duration from 4 to 20ms depending on received signal strength. Unless you 

use power management, the unit will draw 80 mA between acquisition times. 

2 POWER_EN - Active high, enables operation of the 3.3V micro-controller 

regulator. Low puts board to sleep, draws <40 µA. (Internal 100K pull-up) 

3 Mode Select – Provides trigger (high-low edge) PWM out (high) 

4 I2C Data (SDA) 

5 I2C Clock (SCL) 

6 Signal/power ground. 

 

Table 10 LidarLite Pinout 

6.1.3 Maxbotix SONAR 

The SONAR used in this experiment is the MB1242 shown in Figure 3-3. It is designed 

for robot/ UAV applications and can detect obstacles up to 7 meters far, depending on the 

material and shape of the obstacle. It is provided with an I2C interface that allows it to be 

easily interfaced with a microcontroller. 

 

Figure 6-4 MB1242 connection 
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Sensor reading rate changes depending on the distance from the obstacle, for close 

obstacles the rate is up to 40 Hz, for far obstacles the rate must be slowed down to 15 Hz. 

The ultrasonic signal frequency is 42 KHz. When supplied at 5 V its average current 

consumption is of 4.4 mA, with peaks of 100 mA. 

6.2 Rule Sieve 

Before putting raw data into a Kalman filter, the information must first be manipulated 

and suitably “sieved”. A rule filter has been implemented which does a coarse selection 

of the data to be passed to the Kalman filter. Rules applied to data are the following: 

1. Maximum and minimum Range constraints  

2. Measurements sanity check 

6.2.1 Maximum and minimum Range constraints:  

Every sensor has its own operating range, therefore data coming e.g. from the ultrasound 

sensor near its full-scale range get dropped by the filter, in order to avoid invalid 

(saturated) readings that would impair the estimation. In Table 11 the chosen range 

constraints are shown. 

 Min Range (m) Max Range (m) 

RADAR 2 40 

LiDAR 0.1 30 

SONAR 0.1 7 

 

Table 11 Range constraints 
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6.2.2 Measurements sanity check:  

Even if a measurement appears to be correct, it can be distorted by the limits of the 

technology of a sensor. For instance, LiDAR sensor measurements are usually very 

precise if compared to the ones of FMCW RADAR and SONAR, however they can be a 

lot less accurate than the other two because LiDAR sensors have very tight FOV, so they 

can miss obstacles that have narrow form factors like nets or wires. 

The rule filter compares the measurements coming from the three sensors and if the other 

two sensors have taken a valid measurement and measure a distance shorter than that one 

of the LiDAR, the latter gets dropped. Dropping a measurement means to invalidate it by 

passing a 0 value into the H matrix of the Kalman filter for that measurement. 

6.3 Data Fusion – Kalman Filter 

Kalman filters are often used in data fusion because of their ease of implementation, and 

optimality in a mean-squared error sense (Khalegi, 2013). To implement the Kalman filter 

we have used the well-known equations for the two-step discrete Kalman filter cycle 

(Welch, 2006) 

Time update (prediction) 

TX
Y = ZTXY[

Y + \]XY[
Y  

!X
Y = Z!XY[

Y Z^ + _ 

Measurement update (correction) 

X̀ = !X
Ya^ a!X

Ya^ + . Y[ 
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TX = TX
Y + X̀ bX − aTX

Y  

!X = S − X̀a !X
Y 

Here the desired physical quantity in output from the filter is the distance of a target. 

Distance has been chosen as the state of the filter (TX is the distance estimation) and the 

three measurements (zk), coming from sensors, are fed into the filter in the measurement 

update phase, where the a posteriori state estimate is computed. X̀ is the Kalman filter 

gain. The remaining Kalman filter parameters are defined as follows: 

Z = 1 . =
dH 0 0
0 df 0
0 0 dHg

\ = 0

_ = 10Yh a =
ℎHX
ℎfX
ℎgX

 

- A is the state transition matrix, because it represents the evolution of the single state of 

the system (the distance). 

- B, the control matrix is zero, because we assume of not having any external input (uk) 

to the system. 

- H matrix indicating the observation model, is a 3×1 matrix containing the three values 

(hRk, hLk, hSk) where the R, L and S subscripts refer to RADAR, LiDAR and SONAR 

respectively. These values can be ones or zeros depending on whether the measure of 

each of the three sensors has passed or not the previous rule filter. 
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- R is the measurement noise covariance and is populated with the noise of the three 

sensors (rR=0.36, rL=0.0025, rS=0.01) as it is obtained from technical specs of each 

sensor. 

- Q is the process noise covariance, its value is not so obvious and often must be guessed 

as a first assumption and then tuned by experimentation. Here I have chosen a low value 

of Q assuming a low process noise. 

The last parameter to define is !C , the initial estimate error covariance. It is not critical, 

it just needs to be different from zero, so we set !C = 1. 

6.4 First experimental setup  

The first experimental setup was realized by interfacing the three sensors with a PC 

running Matlab. 

6.4.1 LiDAR and SONAR interfaces 

For what regards LiDAR and SONAR the choice has been to acquire the data through 

Arduino, and then reading it into Matlab through the USB Virtual COM port of the PC. 

The actual connection is shown in Figure 6-5. 
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Figure 6-5 LiDAR and SONAR connection to Arduino 

The code for reading these two sensors on Arduino is quite simple: 

In the declaration part are defined the address of registers that will be used: 

#include <I2C.h> 

#define UltraSound_ADDRESS 0x70 
#define LIDARLite_ADDRESS  0x62 
#define RegisterMeasure  0x00 
#define MeasureValue  0x04 
#define RegisterHighLowB  0x8f 

In the loop phase the software continuously prompts each sensor for an updated measure. 

In the snippet below the code is shown for the ultrasound sensor, the LiDAR one is much 

similar: 

nackack = 100; 

while (nackack != 0) 

{ 

nackack = I2c.write(UltraSound_ADDRESS,0x00,0x51); 

delay(1); 

} 

delay(100); 
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nackack = 100 

while (nackack != 0) 

{ 

nackack = I2c.read(UltraSound_ADDRESS,0x02,2,distanceArray_U); 

delay(1); 

} 

 

  distance_u = (distanceArray_U[0] << 8) + distanceArray_U[1]; 

  Serial.println(distance_u); 

On Matlab side it is necessary to open a serial interface, and wait for data to come: 

delete(instrfindall); 
s = serial(‘serialportname’); 
fopen(s); 
flushinput(s); 
fgetl(s); 
reading = fgetl(s); 
misure = textscan(reading,'%d,%d'); 
laserdist = double(misure{1})/100; 
ultradist = double(misure{2})/100; 
fclose(s); 
 

6.4.2 RADAR  interface 

For the RADAR the interface has been somewhat more complicated since the signal 

coming out from the device is analog. Therefore, it was necessary to develop a signal 

conditioning circuit and then to convert the signal to digital through an ADC. 

The analog part has been made with a prototyping board and wire-wrapped with a 

soldering iron. 
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Figure 6-6 Shematic of Analog conditioning circuit 

I have taken RADAR output at the IF pin in base-band frequencies. The output signal at 

this pin is in the order of few mV, and furthermore it presents spurious frequencies that 

feed into the output signal from the input modulating signal. To this purpose, I designed 

a filter-amplifier chain like shown in Figure 6-6.  

In the first stage, there is a passive high-pass RC network made by R1 and C1 with a high-

pass frequency of roughly 159 Hz, this is to block the high swing signal leaking from the 

transmitter in the IF output.  

The first op-amp, with its passive network R2, R3, R4, C2 constitute a gain block of 100 

with a low-pass filter at approximately 72 KHz. The second op-amp is tied in a Sallen-

Key high-pass filter configuration with high-pass frequency calculated to be around:  

14I% =
1

2+ .5	.6	l5	l6
	≈ 1061	ab 
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 This filter stage is designed to cut out the 100 Hz noise coming from the transmitter and 

to attenuate the low frequencies in which the RADAR would have a too high dynamic to 

be correctly read. 

Next, after a bypass capacitor C8, there is another amplification stage of 100 with a low 

pass filter constituted by: R9, R10, C9, R11.  

The fourth op-amp (IC1D) is used to fix the common-mode at the center of the dynamic 

of the ADC. 

Lastly there is a passive low-pass filter R12, C10, used as an anti-aliasing filter for the 

ADC.  

The difficulties that I encountered here were in limiting the noise of the circuit to get a 

good signal-to-noise ratio at the output, so we chose a low noise op-amp (MAX44252) 

and operated in dual supply to minimize the common-mode noise. In Figure 6-7 the 

response of the filter (simulated in PSpice) in magnitude and phase is shown. 

 

Figure 6-7. Response of the FMCW Radar Filter – magnitude (solid), phase (dotted) 

As it can be seen, it behaves like a band-pass filter starting from 2 kHz up to 20 kHz. 
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Figure 6-8 Behringer UCA202 Audio A/D interface 

A UCA202 from Behringer has been used as an analog to digital converter interface, it is 

an audio device with good characteristics that met our needs. Its specifications are shown 

in Table 12: 

A/D Resolution 16 bit 

Sample Rate 32.0 kHz, 44.1kHz, 48.0 kHz 

THD 0.05% typ. @-10dBV, 1kHz 

Crosstalk -77dB @0 dBV, 1kHz 

Signal-to-noise ratio A/D 89 dB typ. @ 1kHz, A-weighted 

D/A 96 dB typ. @ 1kHz, A-weighted 

Frequency response 10Hz to 20kHz, +/- 1dB @44.1 kHz sample rate 

10 Hz to 22kHz,+/- 1dB @48.0 kHz sample rate 

 

Table 12 UCA-202 specifications 

This device has a USB interface and gets detected by the PC as a sound card. 

The actual wiring between RADAR and PC is shown in Figure 6-9 
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Figure 6-9 RADAR interface wiring diagram 

 

 

Figure 6-10. FMCW Radar Waveform 

The converted signal looks like in Figure 6-10 where the modulating signal applied to the 

RADAR is shown in blue, while the output amplified and filtered IF signal is shown in 

red.  
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The frequency of the modulating signal has been chosen such that the relationship 

between the detected distance and the relative peak frequency is well inside the ADC 

sampling frequency capabilities. 

As discussed before, the distance and velocity information is contained in the IF signal as 

frequencies following these equations. 

Distance = 
(nIo		p	n2qrO)	∙	4	∙	^_%"NtOu	

/v>
, 

Velocity = 
|nIo	Y	n2qrO|	∙	4	∙	^_%"NtOu	

/v>
, 

Where fUP and fDOWN are the peak frequencies contained in the IF signal corresponding 

to the UP/DOWN ramp of the transmitted signal.  

 

Figure 6-11 Frequency vs Distance graph at 100Hz 

Figure 6-11 shows how target distance relates to the peak frequency in the IF signal. In 

our case for 100 Hz modulating signal and 48 kHz ADC sampling rate we should be 

reading good signals up to 40 m. 
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So, once the signal from RADAR arrives to Matlab it is necessary to elaborate it to extract 

the frequency components in order to find the peaks corresponding to a possible target. 

This elaboration is made by means of a Discrete Fourier Transform. 

 

 In Matlab the signal is elaborated using the FFT function. 

To avoid noise and non-idealities FFT must be done on the portion of signal that contains 

most of the information, this signal is just a chunk of the IF signal as shown in Figure 

6-12: 

 

Figure 6-12 Up and Down chunk selection for FFT 

The green part is the UP chunk and the violet part is the DOWN chunk. 

Since doing FFTs on chunks of signal is the same as multiplying the signal with a 

rectangular window, the effect in the FFT is the leak of energy out from the mainlobe to 
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the sidelobes. In Figure 6-13 a good graphical representation is reported, taken from 

(Cheung, 2011), that helps to understand the problem. 

 

Figure 6-13 Windowing effect 

While a sinusoid transforms to a Dirac impulse in the frequency domain, a rect transforms 

into a sinc, the results of the multiplication in time domain produces the distorted result 

in frequency domain. 

The effects are even more clear by looking at Figure 6-14, in which the mainlobe to 

sidelobes ratio is evident. 
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Figure 6-14 Details of Windowing effect 

The remedy to such a problem is to avoid discontinuity in the windowing function, this 

will reduce leakage and consequently the side lobes. The effect of windowing in time is 

shown in Figure 6-15: 

 

Figure 6-15 Applying windowing function to signal 

The effect in frequency is shown in Figure 6-16, where different windowing functions are 

compared each other. In my application, at first, I used a Hanning window: 



 
 

99 

a @ =
1

2
1 + cos	

2+@

E
 

which is characterized by very low aliasing. Further experimentation can be done to find 

which windowing function fits best this application. 

 

Figure 6-16 Effects of windowing in frequency domain 

The snippet of code below reports the Matlab loop that analyzes every sample coming 

from the ADC and selects for every window the highest peak. 

while ( (k+winSize-1) <= n_samples ) 
  
    FrameSignal_up = rec_up(k:k+winSize-1); 
    FrameSignal_down = rec_down(k:k+winSize-1); 
         
    %%%%%%%%%% Start process FFT %%%%%%%%%%%%%%%%% 
    w = hanning(winSize);   
     
    wdata_up = [FrameSignal_up(:).*w; zeros(NFFT-SAM,1)]; 
    wdata_down = [FrameSignal_down(:).*w;zeros(NFFT-SAM,1)]; 
     
    P_up = fft(wdata_up)/SAM; 
    P_down = fft(wdata_down)/SAM; 
     
    M_up = abs(P_up(1:NFFT/2+1)).^2; 
    M_down =abs(P_down(1:NFFT/2+1)).^2; 
     
    M_up = (M_up + M_old_up)/2; 
    M_down = (M_down + M_old_down)/2; 
     



 
 

100 

    M_old_up = M_up; 
    M_old_down = M_down; 
     
         
    f = Fs/2*linspace(0,1,NFFT/2+1); 
         
    [M_max_up(i), id_up] = max(M_up(1+jump:end)); 
  
    if(M_max_up(i)>1e-7) 
        f_pulse_up(i) = f(id_up + jump);     
        [M_max_down(i), id_down] = max(M_down(1+jump:end)); 
            f_pulse_down(i) = f(id_down + jump);  
    else 
        f_pulse_up(i)=Fs/2; 
        f_pulse_down(i)=Fs/2; 
    end 
    Marks(i,1)=M_max_up(i); 
    Marks(i,2)=f_pulse_up(i);     
    a= 0.5; 
    f_pulse_up_filt(i+1) = a*f_pulse_up_filt(i) + (1-a)*f_pulse_up(i); 
    f_pulse_down_filt(i+1) = a*f_pulse_down_filt(i) + (1-
a)*f_pulse_down(i); 
    t(i+1) = t(i)+ 2*5e-3; 
    i = i + 1; 
     
   k = k + SAM; 
end 

 

As it can be seen in the code, a zero-padding technique has been used. This is because the 

FFT has been done with a power-of-two window, and the samples contained in a single 

slope are too many for 128 samples and too few for 256 samples window. 

The constraint of using a power-of-two window in FFT comes from the fact that the final 

implementation will be made on hardware, and in hardware the FFT implementation is 

constrained to be radix-2 or radix-4 perhaps. 

The actual RADAR distance calculation is done with these commands: 

c = 3e8; 
T_triang = (10e-3)./2;   %semiperiod 
delta_f = 250e6; 
dist = (f_pulse_up_filt + f_pulse_down_filt)*c*T_triang/(4*delta_f); 
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dist_unf = (f_pulse_up  + f_pulse_down)*c*T_triang/(4*delta_f); 
speed = (abs(f_pulse_up_filt - 
f_pulse_down_filt))*c*T_triang/(4*delta_f); 

 

6.4.3 Rule sieve and Kalman filter 

After getting the distance on every sensor, it is now time to pass the data through the rule 

sieve that will clean the samples as defined in section 6.2. 

The Matlab code below shows the rule sieve implementation, Readings is the vector 

containing the distance samples for every sensor, the z matrix will contain the 

measurements in input to the Kalman filter, while the H matrix is the observation matrix 

and its values are put to zero whenever the measurement doesn’t pass the rule sieve filter. 

%1 RADAR 
%2 LIDAR 
%3 SONAR 
 
for i=1:N 
    if(Readings(i,3) < 7) 
        z(3,i)=Readings(i,3); 
        H(3,i)=1; 
    else 
        z(3,i)=0; 
        H(3,i)=0; 
    end 
    if Readings(i,2)==0 
        z(2,i)=0; 
        H(2,i)=0; 
    else 
        z(2,i)=Readings(i,2); 
        H(2,i)=1; 
    end 
    if Readings(i,1) < 2 
        z(1,i)=0; 
        H(1,i)=0; 
    else 
        z(1,i)=Readings(i,1); 
        H(1,i)=1; 
    end 
    if(z(2,i)>z(1,i)+2 && H(1,i)==1) 
        H(2,i)=0; 
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    end 
    if(z(2,i)>z(3,i)+2 && H(3,i)==1) 
        H(2,i)=0; 
    end 
    if(z(1,i)>z(3,1)+2 && H(3,i)==1) 
        H(1,i)=0; 
    end 
  
end 

 

After passing the rule sieve filter, data is passed to the Kalman filter: 

Q=1e-5; 
R=[0.36 0 0;0 0.0025 0;0 0 0.01]; 
x=zeros(1,N); 
p=zeros(1,N); 
p(1)=1; 
A=1; 
B=0; 
for i=1:N 
[x(i+1),p(i+1),K(i,:)]=kalmanC(z(:,i),x(i),p(i),0,A,B,H(:,i),Q,R); 
end 

 

the kalmanC function is my Matlab implementation of the Kalman filter. Even if Matlab 

offered a Kalman filter implementation, I decided to do it on my own because such 

approach helped in the next phase when I had to write the Kalman filter for the DSP: 

function [x1,P1,K]=kalmanC(z,x0,P0,u0,A,B,H,Q,R) 
%A state evolution matrix 
%B input matrix 
%H observation matrix 
%Q process covariance matrix 
%R measurements covariance matrix 
x = A * x0 + B * u0; 
P = A * P0 * A' + Q; 
y = z - H * x; 
S = H * P * H' + R; 
K = P * H' * inv(S); 
x1 = x + K * y; 
P1 = (eye(size(P)) - K*H)*P; 
end 
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Figure 6-17. First Experimental setup 

 

6.5 Second experimental setup (DSP) 

The first experimental setup has proven good, giving promising results, anyway it is far 

from being a viable solution because it is not integrated. So, the next step has been to 

design an embedded system for this integration. Truly the Leonardo autopilot could have 

been used, but unfortunately it lacks the analog circuitry necessary to the purpose, so I 

decided to build an integrated interface that could also be connected to Leonardo but that 

also has a DSP on board (of the same class of Leonardo one) in order, in the future, to 

compare DSP performance with FPGA performance. 

The system architecture of the designed system is reported in the block diagram below 

(Figure 6-18) 
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Figure 6-18 System Architecture 

In this configuration, the DSP does all the job except the analog filtering. The schematic 

of the digital section of the system is reported in appendix at 10.2.1. 

As it can be seen from the schematic, the DSP interfaces directly with LidarLite and 

Maxbotix SONAR through the I2C interface, the system has an UART serial interface to 

transmit distance and debug data. 

The analog-to-digital conversion circuitry is redundant, I’ve implemented several 

possibilities, the system can alternatively use: 

• 12 bit internal ADC of the STM32 

• 14 bit external ADC LTC2312-14 

• 24 bit external ADC PCM1808 

I’ve provided those three choices for several reasons, the first solution to use the internal 

ADC is the most effective in costs and easiness of use together with a still good resolution 

of 12 bit. 

The 14 bit external ADC is a bit more powerful than the first choice and would be a good 

choice to be used with an FPGA for its easy serial hardware interface. 
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The last ADC is a 24 bit audio converter and I’ve provided it for testing should the other 

two configurations not be good enough in results. 

The core of the multi-sensor system is a DSP from ST Microelectronics, STM32F446RC. 

This unit offers a high performance-to-cost ratio.  In Table 13 some key data from its 

datasheet are reported (ST, 2015): 

STM32F446RC 
Architecture ARM Cortex M4 32 bit + 

FPU Performance 180 MHz - 225 DMIPS 
Flash 

memory 

256 kB 
RAM 

memory 

128 kB 
Table 13. STM32F446RC Specifications 

 

Figure 6-20 shows the system integrated on a PCB. 

 

Figure 6-19 DSP Multi-sensor Board 

The PCB shown here has got every part of the system that is needed for the multi-sensor 

to work, moreover it has additional circuitry that will be useful to interface the system to 

Leonardo. 
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6.5.1 Firmware  

The firmware for this system was written in C using the OpenSTM32 interface from ST, 

that is available free of charge being a platform based on Eclipse and GCC. 

The backbone of the firmware is generated by STM32 Cube MX: it is a configurator in 

which the user can choose the interfaces of the DSP that will be used in the project and 

can do basic configurations like clock frequency, ADC conversion frequencies, which 

interrupt must be enabled. 

Let’s analyze now the C source code for the multi-sensor system, it can be divided in 

several main sections: 

• Radar driver 

• Matrix library 

• Sonar and LiDAR driver 

• Kalman filter 

• FFT 

6.5.1.1 Sonar and LiDAR driver 

Sonar and LiDAR are operated through the I2C interface. Due to some limitation in 

LiDAR firmware it can happen sometimes that the LiDAR hangs and does not respond 

to I2C commands anymore. This issue is documented on PulsedLight datasheet and has 

been resolved in a new version of the LiDAR. To overcome this issue, I’ve written a state-

machine that regularly checks if the LiDAR is still up and responding, otherwise it will 

be restarted through the I2C interface. 
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The state machine is made of three states: IDLE, BUSY, WAIT_DATA. The states of the 

machine are scanned at the RADAR triangle rate which is 100 Hz. A timeout variable 

accounts to end the current request and start a new request if necessary. 

if(Lidar_State == IDLE) 
{ 
 Lidar_State = BUSY; 
 I2C_WriteBuf = 0x04; 
 HAL_I2C_Mem_Write_IT(&hi2c1, LIDAR_ADDRESS, 0, 1, &I2C_WriteBuf, 
1); 
} 
else if(Lidar_State == BUSY) 
{ 
 if(Lidar_Cnt++ == 40) 
 { 
  HAL_I2C_Mem_Read_IT(&hi2c1, LIDAR_ADDRESS, 0x8F, 1, 
&I2C_ReadBuf[2], 2); 
  Lidar_State = WAIT_DATA; 
  Lidar_Cnt = 0; 
  Lidar_Timeout = 0; 
 } 
} 
else if(Lidar_State == WAIT_DATA) 
{ 
 Lidar_Timeout++; 
 if(Lidar_Timeout > 80) 
 { 
  Lidar_Timeout = 0; 
  HAL_I2C_DeInit(&hi2c1); 
  HAL_I2C_Init(&hi2c1); 
  Lidar_State = IDLE; 
 } 
} 

As it can be seen by the code the I2C request is interrupt based, so when there is activity 

on I2C a callback function is called: 

  if(hi2c->Devaddress == SONAR_ADDRESS) 
  { 
   Sonar_State = IDLE; 
   Sonar_Range = I2C_ReadBuf[1] + 256 * I2C_ReadBuf[0]; 
   Sonar_Timeout = 0; 
  } 
 
  if(hi2c->Devaddress == LIDAR_ADDRESS) 
  { 
   Lidar_State = IDLE; 
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  Lidar_Range = I2C_ReadBuf[3] + 256 * I2C_ReadBuf[2]; 
  Lidar_Timeout = 0; 
  } 

6.5.1.2 RADAR driver 

The RADAR management is more complicated if compared with the other two 

technologies because the sensor is not provided with a digital interface. 

The DAC converter inside the DSP is used to drive the Vtune pin (together with an analog 

amplifier/filter) and it is configured to generate a triangle wave and to synchronize it to 

Timer 6, this timer is also used to synchronize all the other events of the system: 

    /**DAC channel OUT1 config  
    */ 
  sConfig.DAC_Trigger = DAC_TRIGGER_T6_TRGO; 
  sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; 
  if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK) 
  { 
    Error_Handler(); 
  } 
 
    /**Configure Triangle wave generation on DAC OUT1  
    */ 
  if (HAL_DACEx_TriangleWaveGenerate(&hdac, DAC_CHANNEL_1, 
DAC_TRIANGLEAMPLITUDE_4095) != HAL_OK) 
  { 
    Error_Handler(); 
  } 

 

The RADAR state machine is made of six states: RADAR_IDLE, ACQ_UP, 

WAIT_DOWN, ACQ_DOWN, WAIT_ELAB, ELAB. 

When the SM is in its RADAR_IDLE state and a front of the triangle is detected the ADC 

is started by the following command  

if(Rising_front == 1) 
{ 
if(Radar_State == RADAR_IDLE) 
{ 
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  Radar_State = ACQ_UP; 
  HAL_ADC_Start_DMA(&hadc1, ADCBuffer, 2*ADC_BUFFER_LEN); 
} 
… 

The ADC is used with DMA. DMA stands for Direct Memory Access and is a feature 

that allows ADC to acquire samples and storing them directly in memory without 

interrupting the normal operation of the DSP, then when the acquisition is ended, an 

interrupt is issued and the DSP can elaborate ADC data. In this case, this is done with the 

code shown below: 

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef * AdcHandle) 
{ 
 if(Radar_State == ACQ_UP) 
 { 
  Radar_State = WAIT_DOWN; 
 } 
 else if(Radar_State == ACQ_DOWN) 
 { 
  Radar_State = WAIT_ELAB; 
 } 
} 
 
When the RADAR enters in the ELAB state the FFT is done on the acquired ADC data 

FFTRealPtr = (int16_t *)ADCBuffer; 
//FFT calculation 
   myfft(FFTRealPtr, FFTImg, 8); 
 

the function myfft does the job, it implements a Fixed-Point Fast FFT at 16 bit, the 

algorithm is optimized for low resource usage, today is one of the most used and it was 

written by Tom Roberts in 1989. 

The algorithm uses a precomputed table of 1024 elements to implement sine 

multiplication thus saving a lot of computing time. 

However the execution time of this function on the DSP is of about 10 ms. 

After the FFT the code will look for peak values: 
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//Max absolute value search 
MaxIdx = 0; 
MaxValue = 0; 
for(i=0;i<FFTBINS/2;i++) 
{ 

Modulo32ptr[i]=(int32_t)FFTRealPtr[i]*(int32_t)FFTRealPtr[i]+(in
t32_t)FFTImg[i]*(int32_t)FFTImg[i]; 
 if(Modulo32ptr[i] > MaxValue) 

{ 
MaxValue = Modulo32ptr[i]; 
MaxIdx = i; 

} 
} 
 
fpeak_d_up = (Fs/2)*MaxIdx/(FFTBINS/2); 
 

The same is done for the down slope, after the down slope peak search the range and 

speed measured by RADAR for the main peak is calculated as follows: 

freq_r = (fpeak_d_up + fpeak_d_down)/2; 
freq_d = fabs(fpeak_d_up - fpeak_d_down)/2.0; 
if(MaxValue < MIN_THRESHOLD) 
{ 

Radar_Range = 0; 
Radar_Speed = 0; 

} 
else 
{ 

Radar_Range = freq_r * 3.0e8 * (1.0/(100.0*2.0))/(2.0*230.0e6); 
Radar_Speed = 3.0e8 * freq_d / (2 * 24e9); 

} 
Radar_Range_filt = Radar_Range_filt * 0.9 + Radar_Range * 0.1; 
Radar_Speed_filt = Radar_Speed_filt * 0.9 + Radar_Speed * 0.1; 
 

The speed and range is updated only if the peak value is above a noise threshold 

(MIN_THRESHOLD). 

6.5.1.3 Filtering sensor data 

Once the data measured by the three sensors is ready it can be sent to the Sieve Filter and 

then passed to the Kalman Filter: 

SieveFilter(Radar_Range_filt,(double)Lidar_Range/100.0,(double)Sonar_R
ange/100.0, &z, &H); 
kalmanC(KO.x1,KO.P1,&z,&H); 



 
 

111 

 

The SieveFilter function is the C implementation of the Matlab code: 

void SieveFilter(double dRadar,double dLidar,double dSonar, MATRIX * 
z, MATRIX *H) 
{ 
 // 0 RADAR 
 // 1 LIDAR 
 // 2 SONAR 
 if((dSonar < 7) && (dSonar > 0.1)) 
 { 
  FillMatrix(z,2,0,dSonar); 
  FillMatrix(H,2,0,1); 
 } 
 else 
 { 
  FillMatrix(z,2,0,0); 
  FillMatrix(H,2,0,0); 
 } 
 
 if(dLidar == 0) 
 { 
  FillMatrix(z,1,0,0); 
  FillMatrix(H,1,0,0); 
 } 
 else 
 { 
  FillMatrix(z,1,0,dLidar); 
  FillMatrix(H,1,0,1); 
 } 
 
 if(dRadar < 2) 
 { 
  FillMatrix(z,0,0,0); 
  FillMatrix(H,0,0,0); 
 } 
 else 
 { 
  FillMatrix(z,0,0,dRadar); 
  FillMatrix(H,0,0,1); 
 } 
 if((dLidar > dRadar + 2) && (elem(H,RADAR,0) == 1)) 
 { 
  FillMatrix(H,LIDAR,0,0); 
 } 
 else if((dLidar > dSonar + 2) && (elem(H,SONAR,0) == 1)) 
 { 
  FillMatrix(H,LIDAR,0,0); 
 } 
 if(dRadar > dSonar + 2 && (elem(H,SONAR,0) == 1)) 
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 { 
  FillMatrix(H,RADAR,0,0); 
 } 
} 
 

This function is quite lightweight, it takes approximately 300 µs to execute on the DSP. 

After passing the SieveFilter data is sent to the Kalman filter through the function 

kalmanC shown below: 

void kalmanC(double x0,double P0,MATRIX * z,MATRIX * H) 
{ 
 
 double x; 
 double P; 
/*function [x1,P1,K]=kalmanC(z,x0,P0,u0,A,B,H,Q,R) 
x = A * x0 + B * u0; 
P = A * P0 * A' + Q; 
y = z - H * x; 
S = H * P * H' + R; 
K = P * H' * inv(S); 
x1 = x + K * y; 
P1 = (eye(size(P)) - K*H)*P; 
end*/ 
 
 x = x0; 
 P = P0 + Q; 
 Matrix_SCALMPY(H,&H0,x); 
 Matrix_SUB(z,&H0,&y); 
 Matrix_TRANSP(H,&HT); 
 Matrix_SCALMPY(&HT,&PHT,P); 
 Matrix_MPY(H,&PHT,&HPHT); 
 Matrix_SUM(&HPHT,&R,&S); 
 Matrix_INV3(&S,&INVS); 
 Matrix_MPY(&HT,&INVS,&HTINVS); 
 Matrix_SCALMPY(&HTINVS,&K,P); 
 Matrix_MPY(&K,H,&KH); 
 Matrix_MPY(&K,&y,&Ky); 
 KO.x1 = x + elem(&Ky,0,0); 
 KO.P1 = (1 - elem(&KH,0,0))*P; 
} 
 

This function takes about 2.1ms to execute on the DSP @ 180 MHz 

One of the difficulties that I found in translating the Matlab code into C is that C lacks a 

native matrix elaboration library, so I’ve written it on my own, the functions shown above 
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in the Kalman Filter function are part of this library that the interested reader can find in 

the Appendix section. 

If we take together all the code involved in the elaboration phase the average time of 

execution is 23 ms, thus taking to a frequency of roughly 43 Hz. 

The main amount of time is taken by the FFT function that must be computed for the two 

slopes. 

Figure 6-20 shows the system mounted on a plastic box. 

 

Figure 6-20. Second Experimental setup 

6.6 Third experimental setup (Leonardo Autopilot) 

Looking at the second experimental setup you can see that most of the computation time 

is spent calculating the FFT, this kind of computation, very heavy for microprocessors, 

can be done in hardware with an FPGA thus reducing a lot the computation time. 

The third phase of the experiment is to test the multi-sensor system on the Leonardo 

autopilot, one could obviously write all the code inside the STM32 DSP available on 
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Leonardo but this would waste a good part of the DSP resources in doing FFT calculations 

for the RADAR section, leaving little room for the other tasks and, as shown in before, 

slowing down the whole autopilot. 

So I decided to implement the RADAR part on the FPGA while leaving the other sensors 

connected to the STM32 being the I2C interface almost effortless for the DSP. 

The Kalman filter too can be implemented on FPGA, thus reducing the time for 

calculation. To this purpose, I’ve written the code for a micro CPU that executes the 

instructions of the Kalman filter on FPGA. 

The whole project has been written in VHDL, the FPGA clock rate has been set at 100 

MHz. The development platform is Altera Quartus II web edition 14.1. 

As stated before, Leonardo lacks the analog section to read the RADAR, moreover it 

lacks the ADC connections to FPGA. Anyway, the DSP system designed before has the 

required interfaces to connect the RADAR directly to the FPGA. 

In this case, the ADC chosen to interface with Leonardo is the LTC2312-14, a 14 bit ADC 

from Linear Technologies. 
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Figure 6-21 Block diagram of LTC2312-14 

The pinout of the ADC is of just 8 pins with a very small package TSOT23, so it could 

be embedded in the Leonardo autopilot in a future development of the platform. In Table 

14 ADC characteristics are shown: 

Resolution 14 bit 

Sampling frequency 500 ksps 

SINAD 77dB @ 5V, 72.6 dB @ 3V 

SFDR 88dB 

 

Table 14 LTC2312-14 characteristics 

On the FPGA side, I had to implement the ADC interface, the information of the timings 

can be found on the datasheet of the part and it is shown in Figure 6-22. Just 3 pins are 

necessary, a rising front on the CONV pin starts the conversion which is timed via an 

internal oscillator. After a time tCONV-MIN = 1300 ns the device enters a so-called NAP 

mode, which is a low-power idle mode in which the device sits waiting for commands to 

come.  
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Now a negative transition on the CONV pin will make the ADC exit from NAP mode 

and prepare the MSB bit of the sample on the SDO pin, further transitions on the SCK 

pin will make the ADC shift out the other bits to the SDO pin till it is arrived to LSB. 

This section lasts at least tACQ-MIN = 13.5 * tSCK + t2 + t9 = 700 ns. 

This takes to a total tTHROUGHPUT = tCONV-MIN + tACQ-MIN = 1300 + 700 = 2000 ns. 

 

Figure 6-22 LTC2312-14 Timing 

On the FPGA ADC entity interface is: 

entity adc_if is 
port( 
 clk  :  in std_logic; 
 rstn  :  in std_logic; 
 
 --Serial interface 
 sclk  :  out std_logic; 
 sdi  :  in std_logic; 
 conv  :  out std_logic; 
 
 channel :  in std_logic; 
 req  : in std_logic; 
 ready :  out std_logic; 
 data :  out std_logic_vector(13 downto 0) 
 ); 
end adc_if; 
 
The interface will be driven by a control entity with a mechanism of request-ack. The 

channel input let the controller to choose which ADC to read, while a pulse on the req 
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pin will start a conversion on the ADC, when the data is ready the ready pin will rise 

and the data will be available at data pins. 

The internal code of the ADC interface is made of a state machine which handles the 

ADC waiting times. In the first tests, I found that some sample of the ADC occasionally 

came with 0 value, thus creating noise peaks in the FFT. To smooth the incoming data, I 

decided to apply a median filter to the ADC, this filter has the advantage of totally filtering 

out single outliers, so it seemed the correct remedy for this problem. I also opened a ticket 

to Linear Technologies, but I’m still waiting for a satisfying response. 

The median filter entity is shown here: 

entity median is 
port( 
 clk  :  in std_logic; 
 rstn  :  in std_logic; 
 
 Ain : in signed(13 downto 0); 
 Bin : in signed(13 downto 0); 
 Cin : in signed(13 downto 0); 
 Med : out signed(13 downto 0); 
 Req : in std_logic; 
 Ready : out std_logic 
 ); 
end median; 
 

It basically takes three individual samples Ain, Bin, Cin, and outputs the median value 

of the three on the Med pin, this is always managed on a request-acknowledge base, on 

the Req and Ready pins. 

After the ADC interface there is the windowing block that takes the samples coming from 

ADC and sends the correct chunks to the FFT block. 

The entity of the winblock is shown here: 

entity winblock is 
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port( 
  clk   : in std_logic; 
  rstn   : in std_logic; 
   
  --to adc_if 
  adcready  : in std_logic; 
  adcdata : in std_logic_vector(13 downto 0); 
  adcchan : out std_logic; 
  adcreq : out std_logic; 
   
  --to fft256 
  fft_sop : out std_logic; 
  fft_eop : out std_logic; 
  fft_real : out std_logic_vector(13 downto 0); 
  fft_ready: in std_logic; 
  fft_valid: out std_logic; 
   
  --from ext 
  start  : in std_logic 
  ); 
end winblock; 
 

In the entity code there are the two interfaces, the former towards the ADC and the latter 

towards the FFT block, there is also a start pin that is used by the windowing block to 

synchronize the start of the window with the correct position in the modulating waveform. 

While the ADC samples arrive they are stored in a FIFO memory, this is to give enough 

time to the logic sitting past the ADC to multiply the data by the Hanning function. In 

VHDL this is performed by using a hardware multiplier and a ROM memory, in this 

memory are saved pre-calculated values for the Hanning function. When data is ready, 

the state machine will p send everything to the FFT block. In the appendix the source 

code of the winblock entity is shown. 

The modulating waveform itself is generated by another block, the triangle generator, that 

generates the triangle in the form of a PWM signal at the output pin triangle_out. 

The sync pin generates a pulse at every change in slope of the triangle wave, the entity 

of the triangle generator is shown below: 
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entity triangle_gen is 
port 
( 
 clk : IN std_logic; 
 rstn: IN std_logic; 
 triangle_out : OUT std_logic; 
 sync : OUT std_logic 
); 
end triangle_gen; 
 
The FFT block is proprietary from Altera. I could have implemented it on my own, 

however the Altera version is optimized for the Cyclone IV FPGA and is very efficient. 

The setting up of the FFT block is easy and is done using Altera QSYS configurator, the 

chosen configuration is: 

• 256 bins 

• Burst type 

The Altera FFT IP core can operate in four different ways: Variable Streaming, 

Streaming, Buffered Burst, Burst. The first two are for pure Floating Point 

mathematics, but waste a lot of FPGA area. Buffered Burst can operate in Fixed 

Point but still trade area for speed, Burst is the method that operates in Fixed 

Point and consumes less area on FPGA thus paying a bit on the throughput. 

• Block Floating Point Output 

The output format of the FFT is Block Floating Point, it is a particular format that 

is a trade-off between fixed-point and full floating-point. 

In fixed-point FFT the data precision must be large enough to represent all the 

values of the transform computation. For large FFT transform sizes the data width 

can become excessive or you can have a loss of precision. 
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On the other hand, floating-point FFTs, representing every value with an 

independent mantissa, allow to manage huge numbers, but floating-point logic is 

more complicated and to keep precision high it requires a lot of resources. 

 

• Natural Order Input-Output 

The output order of samples can be natural, bit-reversed or digit-reversed. These 

output modes depend on the internal structure of the FFT, and normally to have 

a reduced latency one must accept to have outputs bit-reversed or digit-reversed. 

In this case, because we can accept an additional latency I chose natural order for 

both input and output. 

The code for the fft256 entity is: 

entity fft256 is 
 port ( 
  clk  : in std_logic := '0'; 
  reset_n : in std_logic := '0'; 
  sink_valid : in  std_logic := '0'; 
  sink_ready : out std_logic; 
  sink_error : in std_logic_vector(1 downto 0) := (others => 
'0'); 
  sink_sop : in std_logic := '0'; 
  sink_eop : in std_logic := '0'; 
  sink_real : in std_logic_vector(11 downto 0) := (others 
=> '0'); 
  sink_imag : in std_logic_vector(11 downto 0) := (others 
=> '0'); 
  inverse : in std_logic_vector(0 downto 0) := (others => 
'0'); 
  source_valid : out std_logic; 
  source_ready : in  std_logic := '0'; 
  source_error : out std_logic_vector(1 downto 0); 
  source_sop : out std_logic; 
  source_eop : out std_logic; 
  source_real : out std_logic_vector(11 downto 0); 
  source_imag  : out std_logic_vector(11 downto 0); 
  source_exp   : out std_logic_vector(5 downto 0) 
 ); 
end fft256; 
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Figure 6-23 FFT block timing 

Figure 6-23 shows the timing for the FFT block, when the data is ready the windowing 

block puts it in sink_real register, raises the sink_ready bit and issues a pulse on 

the sink_sop bit, at every clock cycle the windowing block shifts a new sample in the 

FFT block, till it arrives at 256 samples, on the last sample the windowing block issues a 

pulse on the sink_eop bit and it lowers the sink_ready bit. 

After a certain latency time the FFT block outputs the transformed data in this way: 

Puts the data in the source_real, source_imag, source_exp signals, where 

source_exp is the exponent of the block floating point notation, it raises the 

source_ready signal and issues a pulse on the source_valid signal. The FFT 

block continues to shift out all the FFT samples till it arrives at 256 samples, on the last 

sample the FFT block issues a pulse on the source_eop bit and it lowers the 

source_ready bit. 

This interface is very convenient, since it easily connects with a FIFO memory. 
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The output of the FFT block is then analyzed by the fft_analyzer block, which seeks the 

peaks in the FFT and outputs it on UART. The code for the fft_analyzer entity is written 

below: 

entity fft_analyzer is 
PORT 
( 
 clk    : in std_logic; 
 rstn    : in std_logic; 
  
 fft_ready : out std_logic; 
 fft_sop   : in std_logic; 
 fft_eop   : in std_logic; 
 fft_valid : in std_logic; 
 fft_real  : in std_logic_vector(11 downto 0); 
 fft_imag  : in std_logic_vector(11 downto 0); 
 fft_exp   : in signed(5 downto 0); 
 
 UART_TX : out std_logic; 
 UART_RX : in std_logic 
); 
 
END fft_analyzer; 
 

The timing diagram above shows the RADAR processor for a single slope of the FMCW 

triangle signal, the time elapsed is about 8 µs  

 

Figure 6-24 Timing of the RADAR processor system 
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The results of the synthesis of the RADAR signal processor is shown above, the 

occupation of the FPGA resources is about the 20%: 

Timing Models Final 

Total logic elements 4,661 

Total combinational functions 3,664 

Dedicated logic registers 3,605 

Total registers 3605 

Total pins 9 

Total virtual pins 0 

Total memory bits 17,088 

Embedded Multiplier 9-bit elements 38 

Total PLLs 1 

6.6.1 Implementation of the Kalman Filter on FPGA 

As shown before in 6.3 the operations involved in a Kalman filter are mainly matrix 

addition and multiplications plus a matrix inversion. These kind of matrices operations 

can have high computational costs even for a relative small Kalman filter like the one 

used in our multi-sensor system that only counts 3x3 matrices. As stated before, the 

execution of a single cycle of the Kalman filter on the STM32F4 DSP lasted about 2.1ms, 

for our application can be still enough, however exploiting the pipelining inside the FPGA 

more interesting results can be achieved. 

In my implementation, to limit the resources on the FPGA I built a simple processor 

architecture inspired to the Harvard model, like shown in Figure 6-25. The Program 

Memory block contains all the instructions necessary to execute a Kalman filter cycle, 

the ALU block contains the basic floating point arithmetic units to perform additions, 
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subtractions, multiplications and divisions, the Data Memory block will keep the 

variables used during the operations. The Processing Unit is the brain of the Kalman Filter 

processor, it is capable of doing matrix operations like inversion or matrix multiplications. 

 

Figure 6-25 Block scheme of the Kalman processor 

6.6.1.1 ALU Block 

The ALU block entity is formed by two 32-bits-wide inputs for the operands IN1, IN2, 

these inputs are single precision floating point IEEE-754 format.  

The OPER input, 2 bits wide for the operator. The EN input to enable the ALU. 

The VALID output that is pulled HIGH by the ALU when at least one operation is 

finished and a valid data is available at the RESULT output. 

The entity declaration of the ALU block is shown below: 

entity alu is 
port( 
  clk   : in std_logic; 
  rstn   : in std_logic; 
   
  IN1   : in std_logic_vector(31 downto 0); 
  IN2   : in std_logic_vector(31 downto 0); 
  RESULT  : out std_logic_vector(31 downto 0); 
 
  OPER  : in std_logic_vector(1 downto 0); 
  EN          : in std_logic; 
  VALID  : out std_logic 
 



 
 

125 

  ); 
end alu; 

 

The behavior of the ALU block is shown below: 

 

Figure 6-26 Timing of the ALU block 

When the ALU block is enabled through the alu_en signal the ALU block takes the inputs 

IN1, IN2 and OPER and starts counting the time according to the expected duration of 

the selected operation, the expected times are: 

• Addition/Subtraction component: 10 cycles 

• Multiplication component: 10 cycles 

• Division component: 14 cycles 

For the interested reader in the source code of the ALU block is available in the Appendix. 

6.6.1.2 Processing Unit Block 

The Processing Unit executes the program stored in a ROM memory hardcoded inside 

the FPGA.  

The entity of the Processing Unit is called CPU and is shown below: 

entity cpu is 
generic( 
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 PROGRAM_LEN : integer := 13 
 
 ); 
port( 
  clk   : in std_logic; 
  rstn   : in std_logic; 
 
  START_in  : in std_logic; 
   
  x0   : in std_logic_vector(31 downto 0); 
  P0   : in std_logic_vector(31 downto 0); 
 
  H   : in std_logic_vector(2 downto 0); 
 
  z1   : in std_logic_vector(31 downto 0); 
  z2   : in std_logic_vector(31 downto 0); 
  z3   : in std_logic_vector(31 downto 0); 
 
  x1   : out std_logic_vector(31 downto 0); 
  P1    : out std_logic_vector(31 downto 0); 
 
  DONE        : out std_logic 
); 
end cpu; 

 

The entity accepts as input the Kalman variables x0 (that is the actual state of the system), 

P0 that is the actual process noise of the system, H that is the observation matrix and z1, 

z2, z3 that are the measurements coming from the three sensors. 

The program is started with by raising the signal START_in, at the end of the program 

the Processing Unit put the output on the x1 and P1 outputs and raises high the DONE 

signal. 

The Processing Unit is made by a single finite states machine made by 25 states, the main 

states are: 

IDLE: in this state the machine waits indefinitely for a high signal on the START input, 

when the start input is detected the program counter signal is reset and the machine 

advances to the START state. 
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START: in this state the inputs of the CPU block are loaded in the data memory and the 

machine starts loading the first instruction. 

LOAD: in this state the instruction is loaded and the machine goes to the state of execution 

requested by the program. 

The instruction is 28 bits wide and is composed by 3 operands of 8 bits each, 1 operator 

of 4 bits.  

EXECx: these are the states in which the processing unit performs the matrix operations. 

The code is written to maximize the pipelining of the operations in order to minimize the 

time for each instruction. 

PC_FWD: in this state the program counter is advanced, if the program has reached the 

end the DONE output goes high and the signals x1 and P1 are available at the output. 

One of the toughest operation to perform in a Kalman Filter is the matrix inversion, this 

operation is necessary to resolve the following equation: 

X̀ = !X
Ya^ a!X

Ya^ + . Y[ 

To calculate the inverse of a 3x3 matrix the first step is to calculate the minors, this step 

is necessary both for calculating the determinant and the adjugate (the transpose of the 

cofactor matrix): 
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In order to calculate the minors in pipeline I prepared a table with the succession of 

elements of the matrix that must be multiplied and then subtracted in sequence. The 

elements will build the adjugate matrix: 

 

1) a22,a33 

2) a23,a32 

3) a13,a32 

… 

18)  a12,a21 

In this way the calculation of the inverse matrix is very efficient, and it takes about 

126 clock cycles, that is 4.6 µs at 100 MHz clock. 

 

Figure 6-27 Timing of the Kalman Processor 
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I synthesized the above block in the FPGA, the VHDL of the cpu entity contains also 

the alu block, so the synthesis gives the occupation of the whole Kalman processor on 

the FPGA, the results of the synthesis are shown below: 

Top-level Entity Name cpu 

Family Cyclone IV E 

Device EP4CE22E22C8 

Timing Models Final 

Total logic elements 13,693 

Total combinational functions 13,023 

Dedicated logic registers 3,216 

Total registers 3216 

Total pins 231 

Total virtual pins 0 

Total memory bits 5,137 

Embedded Multiplier 9-bit elements 23 

Total PLLs 0 

 

The occupation is roughly the 50% of the FPGA space in terms of logic elements. 

 

The next step is to put all the system together, both the fmcw block and the kalman 

processor block and synthesize it on the FPGA, after the correct synthesis of the system, 

the design is fitted in the physical FPGA through the Fitter (Place & Route) step, the 

result is shown above: 

Top-level Entity Name fmcw_top 

Family Cyclone IV E 

Device EP4CE22E22C8 
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Timing Models Final 

Total logic elements 18,024 / 22,320 ( 81 % ) 

Total combinational functions 16,789 / 22,320 ( 75 % ) 

Dedicated logic registers 6,728 / 22,320 ( 30 % ) 

Total registers 6728 

Total pins 12 / 80 ( 15 % ) 

Total virtual pins 0 

Total memory bits 22,225 / 608,256 ( 4 % ) 

Embedded Multiplier 9-bit elements 61 / 132 ( 46 % ) 

Total PLLs 1 / 4 ( 25 % ) 

The FPGA is almost full, but the design fits correctly inside it.  

The difference in performance between the STM32 solo implementation and the FPGA-

STM32 implementation is huge: 

 

On the RADAR signal elaboration side: 20 ms roughly for two FFT calculations on 

STM32 vs roughly 16 µs on FPGA. 

 

On the Kalman processing side: 2.1 ms roughly for a single Kalman cycle on STM32 vs 

4.7 µs roughly on FPGA. 

 

In Figure 6-28 the test setup is shown: 
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Figure 6-28 Leonardo Autopilot test setup 

6.7 Case studies 

In order to test the assumptions made so far, several tests have been carried out. The 

experiments have been realized in our laboratories and in an outdoor environment and we 

analyzed various kinds of obstacles known to pose problems in detection with current 

technologies, so we focused on poles, nets, vegetation, windows and persons. 

 

In the following subsections, the various case studies addressed in this work are shown. 

Measurements are made by pointing the device towards the target for 5 seconds with an 

output rate of 2 Hz. 

6.7.1 Wall 

As a first case study, here we propose a brick wall, clearly it’s a simple obstacle, but we’ll 

take this case as reference for the other tests. Figure 6-29 shows the output of the three 

sensors and in the line with circle markers shows the output from our Kalman filter. 
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Figure 6-29. Wall at 3m distance 

Figure 6-30 shows the results for the same wall at 10m distance, this example shows how 

the Kalman output ties to the LiDAR output, since it is more confident of its 

measurements, while the rule sieve has discarded the SONAR measurement altogether. 

 

Figure 6-30. Wall at 10m distance 

6.7.2 Window 

The second case study is a window (Figure 6-31). This kind of obstacles stress the 

difficulties of the LiDAR technology that is deceived by the glass. 
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Figure 6-31. Window used for the experiment 

 This is evident in Figure 6-32: in fact, the LiDAR data is totally wrong most of the time. 

Nevertheless, the Kalman filter output is still good, because the rule filter discarded the 

measurements of the LiDAR. 

 

Figure 6-32. Window at 5m distance 

6.7.3 Pole 

A difficult obstacle is a pole (Figure 6-33), due to its long and thin form factor it is hard 

to detect at distance with sensors characterized by a narrow FOV. 
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Figure 6-33. Experimental setup, Pole 

As it is shown in Figure 6-34, at 5m distance, pointing the sensors straight to the pole, it 

is correctly detected by all sensors, so the Kalman filter gives more trust to the LiDAR 

which has the smaller measurement noise.  

 

Figure 6-34. Pole at 5m distance, 0° angle 

Figure 6-35 is taken again at 5m, but slightly tilting the sensors by few degrees. The 

LiDAR is no more pointing correctly to the pole thus measuring the background scene, 

while SONAR and RADAR correctly detect the pole. The Kalman filter output follows 

the latter two sensors. Tilting the sensors more, like in Figure 6-36, causes the RADAR 

to lose the target that gets detected just by the SONAR. Another test has been done by 

approximately pointing straight to the pole at 15m distance (Figure 6-37). The obstacle is 

detected just by the RADAR sensor and the Kalman filter converges slightly more slowly. 
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Figure 6-35. Pole at 5m distance, 5° Angle 

 

Figure 6-36. Pole at 5m distance, 10° Angle 

 

Figure 6-37 Pole at 15m distance, 0° Angle 
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6.7.4 Metal Net  

A challenging obstacle is a Metal Net (Figure 6-38), this kind of target is difficult to be 

detected using a LiDAR or a SONAR due to its form factor while the RADAR easily 

detects it. 

 

Figure 6-38. Metal Net, experimental setup 

Figure 18 is taken at 3m distance, where RADAR and SONAR correctly detect the target, 

LiDAR is yet failing to give correct measurements.  

 

Figure 6-39 Metal Net at 3m distance 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

2

4

6

8

10

12

14

16

18

20

Di
st

an
ce

 (m
)

Net at 3m

KALMAN
RADAR
LIDAR
SONAR



 
 

137 

At 5m even the SONAR fails to correctly detect the distance, as shown in Figure 6-40.  

 

Figure 6-40 Metal Net at 5m distance 

 

The behavior is like the previous one even increasing the distance from the target as 

shown in Figure 6-41. 

 

Figure 6-41. Metal Net at 10m distance 

A dynamic test has been performed with the multi-sensor system pointing towards the net 

starting from 5m and then closing up to the net like shown in Figure 6-42: 
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Figure 6-42 Net obstacle approaching from 5m to 2m 

The results show that even in this case the RADAR is very useful to the detection of the 

obstacle, because the LiDAR often fails to see it, the SONAR behaves a little better but 

only sees well the obstacle when it is at a very close distance. 

6.7.5 Person 

Another interesting case study is the detection of persons. Figure 6-43 shows the detection 

of a person at 5m distance, here the worst sensor is the SONAR that fails to detect the 

human as an obstacle. However, LiDAR and RADAR behave correctly and the system 

detects the person successfully.  

 

Figure 6-43. Person at 5m distance 
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Going further at 10m distance as shown in Figure 6-44, the RADAR too sometimes 

doesn’t see the obstacle but the overall system continues to correctly detect it. 

 

 

Figure 6-44. Person at 10m distance 

6.7.6 Vegetation  

Vegetation (Figure 6-45) can be a tough obstacle to detect due to the heterogeneity of its 

form factor.  

 

Figure 6-45. Vegetation obstacle 
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As can be seen by the evidence of the experiment in Figure 6-46 Ultrasonic sensor is 

easily deceived by this obstacle, while the best behavior here is the one of LiDAR, Figure 

6-47 and Figure 6-48. 

 

Figure 6-46. Vegetation at 3m 

 

Figure 6-47. Vegetation at 7m 
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Figure 6-48. Vegetation at 15m 

A dynamic test has been done with the sensors aimed at the vegetation, in this case a 

hedge, starting from a distance of 8m and then approaching progressively until reaching 

2m. 

As shown in Figure 6-49 the multi-sensor system correctly detects the hedge from the 

beginning, however, due to the distance the SONAR doesn’t see the hedge until the sensor 

reaches a distance of roughly 5m, from this moment on, every sensor correctly detects the 

obstacle. 

 

Figure 6-49 Vegetation at 8m approaching 
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6.7.7 Test Flight with sensor mounted onboard a RPAS 

Once demonstrated that the system has a good behavior on several kinds of tough 

obstacles, the system, mounted in a plastic box, has been mounted on-board a lightweight 

RPAS (2 Kg), as shown in Figure 6-50. 

 

Figure 6-50 Multi-sensor system mounted on a RPAS 

To better understand the operation of the multi-sensor system, a camera has been mounted 

on the RPAS aimed in the same direction of the sensor. The camera is a GoPro Hero 3+, 

it is an action camera with a fisheye optic that can acquire videos at 1920x1080 pixels at 

60 fps. 

The tested scenario is flying towards a metal net, like shown in Figure 6-51 the drone is 

pointing a metal net and it is at a distance of 5 meters from it.  
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Figure 6-51 RPAS flying towards a metal net 

The multi-sensor system detected the metal net correctly, with respect to the static case 

shown in section 6.7.4 the response of the radar is noisier, and the other sensors suffer 

from the noise onboard the RPAS also, however the Kalman filter behavior is correct and 

the net is correctly detected. The first seconds of acquisition are at different heights, this 

is normal, because the sensors here are slightly pointing the ground, because of the 

different FOVs of the three sensors the distances are detected differently on the ground. 

 

Figure 6-52 Metal net detected by multi-sensor system 

 

Another test has been made pointing towards a building, like shown in Figure 6-53, the 

building is a relatively simple obstacle, however it presents parts like windows, that can 

deceive an obstacle detection system made by a single sensor. 



 
 

144 

 

Figure 6-53 RPAS flying towards a building 

Figure 6-54 shows the building being detected by the system, this time the best sensor is 

the LiDAR, while the RADAR is too noisy and the SONAR is out of range. 

 

Figure 6-54 Building detected by multi-sensor system 

The last case shown is the drone flying towards a tree as shown in Figure 6-55. 
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Figure 6-55 RPAS flying towards a tree 

The drone flies at roughly 12 m from the tree and the obstacle is correctly detected by the 

system, as shown in Figure 6-56. 

 

Figure 6-56 Tree detected by multi-sensor system 

6.8 Considerations 

The multi-sensor approach to obstacle detection using Kalman filter gives promising 

results: the three sensors complementary capabilities are exploited by the filter, giving an 

accurate estimation of obstacle distance.  
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Moreover, the data coming from FMCW RADAR itself are very interesting. In fact, such 

technology behaves particularly well in all those situations where optical systems fail. 

However, often practical implementations of obstacle detection systems for UAVs lack 

this kind of technology because RADAR systems are typically bulky and power thirsty. 

In this research work I also have demonstrated that miniaturization of this technology has 

made possible the integration even on UAVs. For instance, the setup shown in this work 

has a power consumption of approximately 2W and a weight of less than 0,2 Kg. 
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7 INTEGRATION IN SHARED AIR SPACE 

As stated early in chapter 2.4 one of the most important task to be fulfilled to enable 

autonomous guidance of RPAS is the integration in a shared airspace. Today our skies 

are busy with millions of flights of traditional planes, in order for this to be possible even 

with RPAS it must be necessary for them to communicate with other aircrafts and with 

the air traffic control authority to identify, signal their own position, ask right of fly and 

so on.  

As of today there’s nothing of it and when a RPAS must do an operation in a zone that 

could be busy with other air traffic, the RPAS operator must signal it to the local authority 

that must emit a NOTAM (notification to air men). This system is somewhat sluggish 

because the bureaucracy times are in the order of days if not weeks. 

So this is a bottleneck to the broad diffusion of RPAS operations. 

The regulators are moving to overcome these obstacles and are trying to converge on a 

system for automatically trace the presence of RPAS and to allow or deny their flight. 

As stated before, for RPAS weighing less than 150 kg regulations are different country 

by country. In Italy starting from July 1st 2016 every RPAS must have an electronic device 

onboard that guarantees its identification and that allows the transmission in real time of 

the information about the owner, the operator and the fundamental flight data, and should 

be able to register them. Characteristics of the system are fixed by ENAC, the Italian 

regulator (the practical application of this regulation is still in process of being defined). 
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7.1 Data link 

The data link is one of the side problems that must be considered when thinking at the 

integration of RPAS in common air-space. Today drones are typically piloted using 

remote controls directly taken by the RC model world. In Europe it is normally used the 

2.4 GHz band, a band that is full of devices from other technologies like WiFi and 

Bluetooth. RCs used to pilot drones transmit the data necessary to move the drone in the 

air and in the more advanced models they even include some telemetry information. 

Video signal is also often necessary in drones application, today another transmitter is 

present on drones commonly in the band of 5.8 GHz. If one has to convey more advanced 

telemetries the 433 MHz band is often used as a viable channel for this information.  

As a result, for a single drone different channels are commonly used and the reliability of 

communications is often left to the operator that must verify himself the goodness of 

communication before to start a mission. 

Moreover, the communication between drone and ground station, by coming from the 

amateur world, is often unencrypted leaving the side uncovered to eavesdropping. 

 

Figure 7-1 RC remote used in RPAS applications 
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A common solution must be found that establish clearly the band occupation of a single 

RPAS and that together guarantees reliability of the link. 

A promising solution seems to be MAVLINK, a Micro Air Vehicle Communication 

Protocol, it is open source and it was first released in 2009 by Lorenz Meier. 

MAVLINK protocol is lightweight as it has got a small overhead, it is message based and 

it is well suited to be encapsulated in a UDP protocol. 

MAVLINK is stateless, it is up to the ground-station to verify if the system is still alive 

using the heartbeat message, the heartbeat message rate is flexible and can be configured 

to be every 60, 30, 10 or 1 second, even if 1 second is strongly recommended. A system 

will be considered connected only if the heartbeat arrives. 

 

Figure 7-2 MAVLINK frame 

Figure 7-2 shows the structure of the MAVLINK frame. It is interesting to see how the 

header part is limited to just 6 Bytes, leaving much room free for the payload, the 

checksum is relatively strong with two bytes at the end of the packet. 

The SEQ byte indicates the sequence of the packet and help the system to reconstruct the 

correct sequence of messages especially in case of loss of packets, event very frequent in 

a wireless link. 
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Byte 

Index 

Content Value Explanation 

0 Packet start sign V1.0: 0xFE Indicates the start of a new packet. 

1 Payload length 0-255 Indicates length of the following payload. 

2 Packet sequence 0-255 Each component counts up his send 

sequence. Allows to detect packet loss 

3 System ID 1-255 ID of the SENDING system. Allows to 

differentiate different MAVs on the same 

network. 

4 Component ID 0-255 ID of the SENDING component. Allows 

to differentiate different components of 

the same system, e.g. the IMU and the 

autopilot. 

5 Message ID 0-255 ID of the message - the id defines what the 

payload “means” and how it should be 

correctly decoded. 

6 to 

(n+6) 

Data (0 – 255) bytes Data of the message, depends on the 

message id. 

 

(n+7) 

to 

(n+8) 

Checksum (low 

byte, high byte) 

ITU X.25/SAE AS-4 hash, excluding packet start sign, so 

bytes 1..(n+6) Note: The checksum also includes 

MAVLINK_CRC_EXTRA (Number computed from 

message fields. Protects the packet from decoding a 

different version of the same packet but with different 

variables). 

Table 15 MAVLINK frame content 
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In order to be a good candidate for drone communication MAVLINK needs to be secure, 

actually it is unencrypted, but these limits should be overcome with sMAVLINK, an 

encrypted extension of the protocol. 

sMAVLINK comes with symmetric key cryptography for performance and power 

consumption limits, it uses the following cryptographic algorithms: 

-AES-GCM (Galois Counter Mode), it will provide authenticated encryption 

-SHA-256 for key derivation 

sMAVLINK is still a work in progress but is in the right direction because it is thought 

just for drones applications, and is not adapted from other fields. 

7.2 Participation to ENAC Call for Demonstration 

In fall 2015, in view of integration of RPAS into shared airspace, ENAC issued a call for 

demonstration for a system of Electronic Identification that permit the transmission from 

the RPAS of flight information like: 

• Altitude 

• Speed 

• Operator identification data 

• Position 

The requirements for the system were: 

• Transmission of flight data from RPAS to a remote platform 

• Recording and storage of flight data to a remote platform 
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• Data availability both Real-time and delayed 

In response to the call of ENAC the research group in which I study, in collaboration with 

Oben s.r.l., a spin of the university of Sassari, we prepared a demonstrative system based 

on a small embedded board that I developed for Oben: TAG board. 

7.2.1 TAG Board 

TAG is a board born for the synchronization of the images taken by a camera on board a 

drone when used in photogrammetry applications.  

 

Figure 7-3 Photogrammetry example 

Photogrammetry is a technique that allows to make measurements from photographs. 

Oben is a startup that does surveys and elaborations with RPAS, one of the main problems 

that Oben encounters when doing photogrammetry is the huge time spent in the pre-

elaboration phase, where the acquired pictures must be sorted and georeferenced. This 

phase is often done by hand, pasting the GPS data with every single image, moreover, the 

software used for reconstruction takes a lot of time to reconstruct the angle and the 
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direction at which the picture was taken. From this problem starts the need of Oben for a 

device that simplifies the pre-elaboration phase by joining together three information: 

• Camera attitude 

•  GPS positioning 

• picture shot timing 

In order to do these tasks TAG is equipped with: 

• GPS receiver with enhanced timing capabilities 

• 32 bit 100 MHz microcontroller 

• uSD slot to store the events recorded by the board 

• IMU to record the actual attitude of the camera at the time of the shot 

• Isolated inputs, outputs to drive the camera shutter 

• Serial Expansion interface to add for example a rf telemetry interface 

• can be positioned close to the camera (that can be a DSLR camera or a thermal-

camera as well) and it is directly plugged to its remote shutter port. 

• USB interface for configuration 

 

Figure 7-4 TAG Board 
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The IMU is on a remote board, the choice to put it separately from the main board has 

been made because the main board can be put fixed on the drone frame, while the IMU 

board can be put directly on the camera, in order to measure the attitude of a gimballed 

camera separately from the attitude of the RPAS. 

For the IMU board I chose to use a BNO055 Intelligent 9-axis absolute orientation sensor 

from BOSCH. The key features of this IMU are that it can output directly the fused sensor 

data which is provided on the I2C bus in the form of Euler angles or of quaternions. The 

IMU is connected to the main board through a 6 pins connector.  

 

Figure 7-5 Block scheme of BNO055 

The IMU board is very small, just 25x25mm, in Figure 7-6 it is compared with a 20 cents 

coin. 
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Figure 7-6 TAG IMU board 

7.2.2 The demonstration system 

Like shown in Figure 7-7 the system is composed by three entities that have to interact 

with each other: 

• TAG board (onboard drone) 

• Base Station (at ground) 

• Remote Server 

TAG board will acquire every second the information required. Through the RF link the 

information is sent to the base station that can be a PC on which it is running a software 

that captures data from the RF link and sends it through internet to a remote server. 

The remote server reads the ID of the system and stores the data in database. 

Always on the server side the operator can monitor in real-time the actual air traffic status 

through a web interface. 
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Figure 7-7 Working principle of the system 

The database application is very simple, and based on MySQL and PHP, basically the 

BASE STATION once received the telemetry data from TAG board uploads it on ENAC 

SERVER by executing this PHP script:  

 
<?php 

    // Connect to MySQL 

    include("dbconnect.php"); 

    // Prepare the SQL statement 

    $SQL = "INSERT INTO ENAC_SERVER_DB.drone (uavid, lat, lon, hMSL) VALUES 

('".$_GET["uavid"]."', '".$_GET["lat"]."', '".$_GET["lon"]."', 

'".$_GET["hMSL"]."')";     

    // Execute SQL statement 

    mysql_query($SQL); 

    // Go to the review_data.php (optional) 

    header("Location: review_data.php"); 

?> 

 

Where the dbconnect.php is the connection/authentication part: 

 
<?php 

$MyUsername = "RPASuser1";  // enter your username for mysql 

$MyPassword = "";  // enter your password for mysql 

$MyHostname = "localhost";      // this is usually "localhost" unless your 

database resides on a different server 

 

$dbh = mysql_pconnect($MyHostname , $MyUsername, $MyPassword); 

$selected = mysql_select_db("ENAC_SERVER_DB ",$dbh); 

?> 
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The web interface is shown in Figure 7-8, the interface, based on a Google API, shows 

every RPAS acting in that area, shows its trail corresponding at every valid packet 

received by the transponder, the last position is shown by a bigger marker and a popup 

window contains the main information needed by the operator to track the RPAS. 

In view of a broad diffusion of such application the communication part between every 

base station and the server could be implemented with protocols like MQTT that would 

allow for less overhead in the communication enabling lot more connections to the single 

server. 

 

Figure 7-8 TAG Interface transponder demonstration 
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8 CONCLUSIONS 

When I started this research project three years ago the autonomous guidance of drones 

was addressed by the research world just with huge devices occupying a lot of space and 

consuming a lot of energy. This was because every system was essentially based on 

SLAM and other resource-thirsty algorithms running on notebooks or bulky embedded 

PC. Today even COTS drones are equipped with Sense and Avoid features but are always 

far from being ready for autonomous guidance since they are typically slow in detection 

of sudden obstacles or have limitations in detecting tough obstacles like wires, nets or 

windows. 

As of today the research is moving towards technologies based on the perception and very 

promising results are coming from Event Cameras, that join the information available 

from camera vision to the need of fast onboard computing. However, these approaches 

are at their very start and as of today they can’t represent a unique solution to the 

autonomous guidance problem. In this vision, the Multi-Sensor system proposed in this 

thesis is of interest because no sensor has the truth about the surrounding environment, 

only with fusion of the data coming from multiple sources it is thinkable to have a reliable 

vision of the surrounding environment that is as accurate as possible. 

A further development of this doctorate project is to integrate the multi-sensor system 

developed in these years with an event camera visual odometry system and fuse the data 

coming from the two worlds in a single obstacle information, the system would be able 

to move accurately in the surrounding environment thanks to the camera system and then 

it would be able to avoid for example a window that a camera would not see at all. 
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Compared to when I started my PhD project in 2014, now in 2017 the computing power 

to do these tasks on a limited weight and size is starting to be available on large scale. 

The technology developed for modern smartphones provide that integration, moreover 

meanwhile the FPGA manufacturers moved towards integrated SoC solutions where an 

FPGA is always more often accompanied with an ARM high-end microprocessor. This 

kind of device could be the best candidate for an evolved Leonardo autopilot that includes 

both multi-sensor analysis of RADAR, LIDAR and SONAR and Visual Odometry. 

However, for a safe deployment of an autonomous system this is not enough. It is also 

important to enforce communication security between RPAS and the ground station, at 

the moment of writing there is the need of a single protocol/channel that enables RPAS 

to share data with the ground station. Every manufacturer goes on its own path, but 

together with a shared airspace they share the RF spectrum too, so it is necessary to agree 

to a standard for RPAS communication, because in a RF spectrum that is day by day 

always busier with broadband communications it is fundamental that the vital link 

between a RPAS and its pilot must be reliable 100% of the time. 

Finally, a full autonomous system must be able to enter a shared airspace and actively 

communicate its position and identification information, the approach proposed in this 

work goes in this direction, the limitation here is that it should be also provided with 

standard technologies of identification like ADS-B that it would enable other aircrafts 

(both manned and unmanned) to detect the RPAS.  

Most likely the solution to this problem will come from projects like the SESAR “U-

Space” that will be operational in the coming years and the whole community of RPAS 

manufacturers and operators will need to conform to the new standards.   
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10 APPENDIX 

10.1 SOURCE CODES 

10.1.1 Code for PPM signal generation 

library ieee; 
 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
USE ieee.std_logic_signed.all; 
 
entity ppm_encoder_us is 
generic(NCHANS : integer :=8); 
port( 
clk: in std_logic; 
clk1M : in std_logic; 
rstn: in std_logic; 
channel: in std_logic_vector((NCHANS-1) downto 0); 
ppm_out : out std_logic 
); 
end ppm_encoder_us; 
 
 
architecture behavior of ppm_encoder_us is 
type fsm is (idle,S1,S2); 
signal start_ppm_seq, channel0_q,clk1M_front,clk1M_q,clk1M_q1: 
std_logic; 
signal state : fsm; 
signal wait_time, on_time : std_logic_vector (15 downto 0); 
type Wordreg is array(0 to NCHANS - 1) of std_logic_vector(15 downto 
0); 
signal pwm_duty : Wordreg; 
signal j : integer range 0 to 10; 
 
component pwm_rx 
port( 
clk: in std_logic; 
clk1M : in std_logic; 
rstn: in std_logic; 
pwm : in std_logic; 
duty_out: out std_logic_vector(15 downto 0) 
); 
end component; 
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begin 
 
clk1M_front <= clk1M_q1 and not clk1M_q; 
start_ppm_seq <= channel0_q; 
process(clk,rstn) 
begin 
 if rstn='0' then 
  clk1M_q <= '0'; 
  clk1M_q1 <= '0'; 
  channel0_q <= '0'; 
  wait_time <= (others => '0'); 
  on_time <= (others => '0'); 
  state <= idle; 
  ppm_out <= '1'; 
  j <= 0; 
   
 elsif rising_edge(clk) then 
  channel0_q <= channel(0); 
  clk1M_q1 <= clk1M; 
  clk1M_q <= clk1M_q1; 
  case state is 
  when idle => 
   j <= 0; 
   if start_ppm_seq = '1' then 
    state <= S1; 
   else 
    state <= idle; 
    end if; 
  when S1 => 
   if j<NCHANS then 
   if pwm_duty(j) > conv_std_logic_vector(800,16) then 
    if pwm_duty(j) < conv_std_logic_vector(2000,16) 
then 
      wait_time <= pwm_duty(j); 
     else 
      wait_time <= 
conv_std_logic_vector(2000,16); 
      end if; 
     else 
      wait_time <= 
conv_std_logic_vector(800,16); 
     end if; 
     ppm_out <= '0'; 
     on_time <= (others => '0'); 
     state <= S2; 
    else 
     ppm_out <= '1'; 
     wait_time <= (others =>'0'); 
     state <= idle; 
    end if; 



 
 

163 

   when S2 => 
    if clk1M_front = '1' then 
     wait_time <= wait_time - x"0001"; 
     on_time <= on_time + x"0001"; 
    end if; 
    if on_time > conv_std_logic_vector(400,16) then 
-- 400uS 
     ppm_out <= '1'; 
    else 
     ppm_out <= '0'; 
    end if; 
    if wait_time = 0 then 
     j<= j + 1; 
     state <= S1; 
    else 
     state <= S2; 
    end if; 
   when others => 
    null; 
  end case; 
 end if; 
end process; 
 
pwms_inst: for i in 0 to NCHANS - 1 generate 
 
inst_pwm_rx: pwm_rx 
port map( 
 clk => clk, 
 clk1M => clk1M, 
 rstn => rstn, 
 pwm => channel(i), 
 duty_out => pwm_duty(i) 
); 
end generate; 
 
end architecture; 
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10.1.2 Code for the FFT Windowing Block 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
entity winblock is 
port( 
  clk   : in std_logic; 
  rstn   : in std_logic; 
   
  --to adc_if 
  adcready  : in std_logic; 
  adcdata : in std_logic_vector(11 downto 0); 
  adcchan : out std_logic; 
  adcreq : out std_logic; 
   
  --to fft256 
  fft_sop : out std_logic; 
  fft_eop : out std_logic; 
  fft_real : out std_logic_vector(11 downto 0); 
  fft_ready: in std_logic; 
  fft_valid: out std_logic; 
   
  --from ext 
  start  : in std_logic 
  ); 
end winblock; 
 
architecture behaviour of winblock is 
 
component fifo256 
 PORT 
 ( 
  clock  : IN STD_LOGIC ; 
  data  : IN STD_LOGIC_VECTOR (11 DOWNTO 0); 
  rdreq  : IN STD_LOGIC ; 
  sclr  : IN STD_LOGIC ; 
  wrreq  : IN STD_LOGIC ; 
  almost_full  : OUT STD_LOGIC ; 
  empty  : OUT STD_LOGIC ; 
  full  : OUT STD_LOGIC ; 
  q  : OUT STD_LOGIC_VECTOR (11 DOWNTO 0) 
 ); 
END component; 
 
component multiplier 
 PORT 
 ( 
  clock0  : IN STD_LOGIC  := '1'; 
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  dataa_0  : IN STD_LOGIC_VECTOR (11 DOWNTO 0) :=  
(OTHERS => '0'); 
  datab_0  : IN STD_LOGIC_VECTOR (11 DOWNTO 0) :=  
(OTHERS => '0'); 
  result  : OUT STD_LOGIC_VECTOR (23 DOWNTO 0) 
 ); 
END component; 
 
component hann_rom 
 port( 
 
  address  : IN STD_LOGIC_VECTOR (7 DOWNTO 0); 
  clock  : IN STD_LOGIC  := '1'; 
  q  : OUT STD_LOGIC_VECTOR (11 DOWNTO 0) 
 ); 
END component; 
signal start_int,rst: std_logic; 
signal adcfifo_empty,adcfifo_rd,adcfifo_wr,adcfifo_almost_full : 
std_logic; 
signal adcfifo_q,rom_q: std_logic_vector (11 downto 0); 
signal mult_res: std_logic_vector(23 downto 0); 
signal rom_addr : unsigned(7 downto 0); 
signal waitmult,fft_count : integer; 
type fsm1 is (IDLE,REQ_ADC,WAIT_ADC); 
type fsm2 is (IDLE,FFTSTART,FFTSEND,FFTEND); 
signal state : fsm1; 
signal state2 : fsm2; 
 
 begin 
  
 rst <= not rstn; 
 start_int <= start; 
 adcchan <= '0'; 
 
-- adc to fifo 
process(clk,rstn) 
begin 
if rstn = '0' then 
 adcfifo_wr <= '0'; 
 state <= IDLE; 
 adcreq <= '0'; 
elsif rising_edge(clk) then 
 case state is 
 when IDLE => 
 adcreq <= '0'; 
 adcfifo_wr <= '0'; 
 if start_int = '1' then 
  state <= REQ_ADC; 
  adcreq <= '1'; 
 end if; 
 when REQ_ADC => 
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 adcreq <= '0'; 
 if adcfifo_almost_full = '1' then 
  adcfifo_wr <= '0'; 
  state <= IDLE; 
 else 
  adcfifo_wr <= '0'; 
  state <= WAIT_ADC; 
 end if; 
 when WAIT_ADC => 
 if adcready = '1' then 
  adcfifo_wr <= '1'; 
  state <= REQ_ADC; 
  adcreq <= '1'; 
 end if; 
  
 when others => 
  null; 
 end case; 
end if; 
end process; 
 
inst_fifo_adc :  fifo256 
 PORT MAP 
 ( 
  clock  => clk , 
  data  => adcdata, 
  rdreq  => adcfifo_rd, 
  sclr  => rst, 
  wrreq  => adcfifo_wr, 
  almost_full => adcfifo_almost_full , 
  empty  => adcfifo_empty, 
  full  => open, 
  q   => adcfifo_q 
 ); 
 
 
inst_hann_rom :  hann_rom 
 port map( 
 
  address  => std_logic_vector(rom_addr), 
  clock  => clk, 
  q  => rom_q 
 ); 
inst_fixmult : multiplier  
 PORT map 
 ( 
  clock0  => clk, 
  dataa_0  => rom_q, 
  datab_0  => adcfifo_q, 
  result => mult_res 
 ); 
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fft_real <= mult_res(23 downto 12); 
 
process(clk,rstn) 
begin 
if rstn = '0' then 
 rom_addr <= (others => '0'); 
 state2 <= IDLE; 
 adcfifo_rd <= '0'; 
 fft_valid <= '0'; 
 fft_eop <= '0'; 
 fft_sop <= '0'; 
 waitmult <= 0; 
 fft_count <= 0; 
elsif rising_edge(clk) then 
 case state2 is 
  when IDLE => 
   fft_valid <= '0'; 
   fft_eop <= '0'; 
   fft_sop <= '0'; 
   rom_addr <= (others =>'0'); 
   if adcfifo_almost_full = '1' then 
    state2 <= FFTSTART;  
    waitmult <= 0; 
   end if; 
  when FFTSTART => 
   adcfifo_rd <= '1'; 
   rom_addr <= rom_addr + 1; 
   if waitmult = 3 then 
    fft_sop <='1'; 
    fft_valid <= '1'; 
    fft_count <= 0; 
    state2 <= FFTSEND; 
    waitmult <= 0; 
   else 
    waitmult <= waitmult + 1; 
    fft_sop <= '0'; 
    fft_valid <= '0'; 
   end if; 
 
    
  when FFTSEND => 
 
   fft_sop <= '0'; 
   if fft_count = 254 then 
    fft_count <= 0; 
    state2 <= FFTEND; 
    fft_eop <= '1'; 
   else  
    fft_count <= fft_count + 1; 
    fft_eop <= '0'; 
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    rom_addr <= rom_addr + 1; 
   end if; 
 
   if adcfifo_empty = '0' then 
    adcfifo_rd <= '1'; 
   else 
    adcfifo_rd <= '0'; 
   end if; 
  when FFTEND => 
   state2 <= IDLE; 
   fft_eop <= '0'; 
   fft_valid <= '0'; 
  when others => 
  null; 
 end case; 
end if; 
end process; 
 
  
end architecture; 
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10.1.3 Code for ALU block of the Kalman Processor 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
entity alu is 
port( 
  clk   : in std_logic; 
  rstn   : in std_logic; 
   
  IN1   : in std_logic_vector(31 downto 0); 
  IN2   : in std_logic_vector(31 downto 0); 
  RESULT  : out std_logic_vector(31 downto 0); 
 
  OPER  : in std_logic_vector(1 downto 0); 
  EN          : in std_logic; 
  VALID  : out std_logic 
 
  ); 
end alu; 
 
architecture behaviour of alu is 
 
signal add_sub_int,valid_int,en_int,en_q,en_front : std_logic; 
signal t_oper,oper_cnt : integer; 
signal oper_int : std_logic_vector (1 downto 0); 
signal 
a_mul,b_mul,a_sum,b_sum,a_div,b_div,a_sub,b_sub,res_mul,res_sum,res_di
v : std_logic_vector(31 downto 0); 
 
component fp_sub  
 PORT 
 ( 
  add_sub  : IN STD_LOGIC ; 
  clock  : IN STD_LOGIC ; 
  dataa  : IN STD_LOGIC_VECTOR (31 DOWNTO 0); 
  datab  : IN STD_LOGIC_VECTOR (31 DOWNTO 0); 
  result  : OUT STD_LOGIC_VECTOR (31 DOWNTO 0) 
 ); 
END component; 
 
component fp_mul 
 PORT 
 ( 
  clock  : IN STD_LOGIC ; 
  dataa  : IN STD_LOGIC_VECTOR (31 DOWNTO 0); 
  datab  : IN STD_LOGIC_VECTOR (31 DOWNTO 0); 
  result  : OUT STD_LOGIC_VECTOR (31 DOWNTO 0) 
 ); 
END component; 



 
 

170 

 
component fp_div 
 PORT 
 ( 
  clock  : IN STD_LOGIC ; 
  dataa  : IN STD_LOGIC_VECTOR (31 DOWNTO 0); 
  datab  : IN STD_LOGIC_VECTOR (31 DOWNTO 0); 
  result  : OUT STD_LOGIC_VECTOR (31 DOWNTO 0) 
 ); 
END component; 
 
begin 
 
inst_fp_mul :  fp_mul 
 PORT MAP 
 ( 
  clock  => clk , 
  dataa  => a_mul, 
  datab  => b_mul, 
  result  => res_mul 
 ); 
 
inst_fp_div :  fp_div 
 PORT MAP 
 ( 
  clock  => clk , 
  dataa  => a_div, 
  datab  => b_div, 
  result  => res_div 
 
 ); 
 
inst_fp_sub :  fp_sub 
 PORT MAP 
 ( 
  add_sub  => add_sub_int, 
  clock  => clk , 
  dataa  => a_sum, 
  datab  => b_sum, 
  result  => res_sum 
 
 ); 
 
VALID <= valid_int and EN; 
oper_int <= OPER; 
en_front <= en_int and not en_q; 
en_int <= EN; 
process (clk,rstn) is 
begin 
 if rstn = '0' then 
  a_mul <= (others => '0'); 
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  b_mul <= (others => '0'); 
  a_sum <= (others => '0'); 
  b_sum <= (others => '0'); 
  a_sub <= (others => '0'); 
  b_sub <= (others => '0'); 
  a_mul <= (others => '0'); 
  a_div <= (others => '0');  
  RESULT <= (others => '0'); 
  en_q <= '0'; 
  t_oper <= 0; 
  valid_int <= '0'; 
  add_sub_int <= '0'; 
  oper_cnt <= 0; 
 
 elsif rising_edge(clk) then 
   
  en_q <= en_int; 
   case oper_int is 
    when "00" =>--MUL 
     a_mul <= IN1; 
     b_mul <= IN2; 
     RESULT <= res_mul; 
     t_oper <= 10; 
    when "01" =>--SUM 
     a_sum <= IN1; 
     b_sum <= IN2; 
     RESULT <= res_sum; 
     add_sub_int <= '1'; 
     t_oper <= 10; 
   when "10" =>--SUB 
     a_sum <= IN1; 
     b_sum <= IN2; 
     add_sub_int <= '0'; 
     RESULT <= res_sum; 
     t_oper <= 10; 
    when "11" =>--DIV 
     a_div <= IN1; 
     b_div <= IN2; 
     RESULT <= res_div; 
     t_oper <= 14; 
    when others => 
     null; 
  end case; 
 
   
 
 
  if en_int = '1' then 
   if en_front = '1' then 
    oper_cnt <= t_oper; 
   else 
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    if(oper_cnt > 0) then 
     oper_cnt <= oper_cnt - 1; 
     valid_int <= '0'; 
    else 
     valid_int <= '1'; 
    end if; 
   end if; 
  else  
   valid_int <= '0'; 
   oper_cnt <= t_oper; 
  end if; 
    
 end if; 
end process; 
 
 
 
end architecture; 
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10.1.4 Code for Processing Unit block of the Kalman Processor 

 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
entity cpu is 
generic( 
 PROGRAM_LEN : integer := 13 
 
 ); 
port( 
  clk   : in std_logic; 
  rstn   : in std_logic; 
 
  START_in  : in std_logic; 
   
  x0   : in std_logic_vector(31 downto 0); 
  P0   : in std_logic_vector(31 downto 0); 
 
  H   : in std_logic_vector(2 downto 0); 
 
  z1   : in std_logic_vector(31 downto 0); 
  z2   : in std_logic_vector(31 downto 0); 
  z3   : in std_logic_vector(31 downto 0); 
 
  x1   : out std_logic_vector(31 downto 0); 
  P1    : out std_logic_vector(31 downto 0); 
 
  DONE        : out std_logic 
); 
end cpu; 
 
architecture behaviour of cpu is 
 
type ROM is array ( 0 to 13) of std_logic_vector(27 downto 0); 
 
constant rom_mem : ROM :=( 
  0 => x"0708090",--RAM(9) = RAM(7)+RAM(8) 
  1 => x"0A06001",--H0 = H*x 
  2 => x"030A0D2",--y = z - H0 
  3 => x"0A09001",--PH' = H'*P 
  4 => x"0000003",--HPH' = H * PH' 
  5 => x"0000004",--S = HPH' + R 
  6 => x"00001C5",--INVERSE 
  7 => x"1013166", --MPY 
  8 => x"1010007", --SCAL_MPY 
  9 => x"0010138", --MPY KH 
  10 => x"0D100D8",--MPY KY 
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  11 => x"0D060D0",--SUM X+KY 
  12 => x"2E13139",--SUB 1 - KH 
  13 => x"130913A"--MPY (1 - KH)*P 
  ); 
 
type RAM is array (0 to 46) of std_logic_vector(31 downto 0); 
 
signal ram_mem : RAM := 
( 
 0  => x"00000000",--H1 
 1  => x"00000000",--H2 
 2  => x"00000000",--H3 
 3  => x"00000000",--z1 
 4  => x"00000000",--z2 
 5  => x"00000000",--z3 
 6  => x"00000000",--x 
 7  => x"00000000",--P0 
 8  => x"3727c5ac",--Q  
 9  => x"00000000",--P 
 10  => x"00000000",--H0_1  PH_1 
 11  => x"00000000",--H0_2  PH_2 
 12  => x"00000000",--H0_3  PH_3 
 13  => x"00000000",--y_1   K*y 
 14  => x"00000000",--y_2    
 15  => x"00000000",--y_3    
 16  => x"00000000",--HPH'_1_1  S_0_0 K_1 
 17  => x"00000000",--HPH'_1_2  S_0_1 K_2 
 18  => x"00000000",--HPH'_1_3  S_0_2 K_3 
 19  => x"00000000",--HPH'_2_1  S_1_0 K*H 
 20  => x"00000000",--HPH'_2_2  S_1_1  
 21  => x"00000000",--HPH'_2_3  S_1_2  
 22  => x"00000000",--HPH'_3_1  S_2_0 
 23  => x"00000000",--HPH'_3_2  S_2_1 
 24  => x"00000000",--HPH'_3_3  S_2_2 
 25  => x"3eb851ec",--R_1 0.36 
 26  => x"3b23d70a",--R_2 0.0025 
 27  => x"3c23d70a",--R_3 0.01 
 28  => x"00000000",--sminor_1 
 29  => x"00000000",--sminor_2 
 30  => x"00000000",--sminor_3 
 31  => x"00000000",--sminor_4 
 32  => x"00000000",--sminor_5 
 33  => x"00000000",--sminor_6 
 34  => x"00000000",--sminor_7 
 35  => x"00000000",--sminor_8 
 36  => x"00000000",--sminor_9 
 37  => x"00000000",--sminor_10 
 38  => x"00000000",--sminor_11 
 39  => x"00000000",--sminor_12 
 40  => x"00000000",--sminor_13 
 41  => x"00000000",--sminor_14 det(S) 
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 42  => x"00000000",--sminor_15 
 43  => x"00000000",--sminor_16 
 44  => x"00000000",--sminor_17 
 45  => x"00000000",--sminor_18 
 46  => x"3f800000" --1 
 ); 
type MINORS_t is array(0 to 17,0 to 1) of integer; 
constant minors : MINORS_t :=( 
(20,24),--S_1_1*S_2_2 + 
(21,23),--S_1_2*S_2_1 
 
(21,22),--S_1_2*S_2_0 - 
(19,24),--S_1_0*S_2_2 
 
(19,23),--S_1_0*S_2_1 + 
(20,22),--S_1_1*S_2_0 
 
(18,23),--S_0_2*S_2_1 - 
(17,24),--S_0_1*S_2_2 
 
(16,24),--S_0_0*S_2_2 + 
(18,22),--S_0_2*S_2_0 
 
(17,22),--S_0_1*S_2_0 - 
(16,23),--S_0_0*S_2_1 
 
(17,21),--S_0_1*S_1_2 + 
(18,20),--S_0_2*S_1_1 
 
(18,19),--S_0_2*S_1_0 - 
(16,21),--S_0_0*S_1_2 
 
(16,20),--S_0_0*S_1_1 + 
(17,19)--S_0_1*S_1_2 
 
); 
 
 
 
 
type fsm is (IDLE,START,LOAD,EXEC1,EXEC2, 
   EXEC3, 
   EXEC4, 
   EXEC5,EXEC5_1,EXEC5_2,EXEC5_3,EXEC5_4, 
   EXEC6,EXEC6_1,EXEC6_2,EXEC6_3,EXEC6_4,EXEC6_5, 
   EXEC7,EXEC7_1,EXEC7_2, 
   EXEC8, 
   EXEC9,EXEC9_1,EXEC9_2, 
   PC_FWD); 
signal state : fsm; 
signal pc,op1,op2,op3,temp : integer; 
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component alu  
port( 
  clk   : in std_logic; 
  rstn   : in std_logic; 
   
  IN1   : in std_logic_vector(31 downto 0); 
  IN2   : in std_logic_vector(31 downto 0); 
  RESULT  : out std_logic_vector(31 downto 0); 
 
  OPER  : in std_logic_vector(1 downto 0); 
  EN          : in std_logic; 
  VALID  : out std_logic 
 
  ); 
end component; 
 
signal alu_IN1,alu_IN2,alu_RESULT: std_logic_vector(31 downto 0); 
signal alu_OPER: std_logic_vector(1 downto 0); 
signal alu_EN, alu_VALID, DONE_int: std_logic; 
begin 
 
DONE <= DONE_int; 
 
inst_alu: alu 
port map( 
 clk  =>  clk, 
 rstn  =>  rstn, 
 IN1   => alu_IN1, 
 IN2   => alu_IN2, 
 RESULT  => alu_RESULT, 
 
 OPER  => alu_OPER, 
 EN    => alu_EN, 
 VALID  => alu_VALID 
  
 ); 
 
process (clk,rstn) 
begin 
 if rstn = '0' then 
  DONE_int <= '0'; 
  pc <= 0; 
  op1 <= 0; 
  op2 <= 0; 
  op3 <= 0; 
  alu_EN <= '0'; 
  alu_OPER <="00"; 
  alu_IN1 <= (others => '0'); 
  alu_IN2 <= (others => '0'); 
 elsif rising_edge(clk) then 
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  case state is 
  when IDLE => 
   if START_in = '1' then 
    DONE_int <= '0'; 
    pc <= 0; 
    state <= START; 
   end if; 
  when START => 
   if H(0) = '0' then 
    ram_mem(0) <= x"00000000"; 
   else  
    ram_mem(0) <= x"3f800000"; 
   end if; 
 
   if H(1) = '0' then 
    ram_mem(1) <= (others => '0'); 
   else  
    ram_mem(1) <= x"3f800000"; 
   end if; 
 
   if H(2) = '0' then 
    ram_mem(2) <= (others => '0'); 
   else  
    ram_mem(2) <= x"3f800000"; 
   end if; 
 
   ram_mem(3) <= z1; 
   ram_mem(4) <= z2; 
   ram_mem(5) <= z3; 
   ram_mem(6) <= x0; 
   ram_mem(7) <= P0; 
   state <= LOAD; 
  when LOAD => 
   op1 <= to_integer(unsigned(rom_mem(pc)(27 downto 
20))); 
   op2 <= to_integer(unsigned(rom_mem(pc)(19 downto 
12))); 
   op3 <= to_integer(unsigned(rom_mem(pc)(11 downto 
4))); 
 
   case rom_mem(pc)(3 downto 0) is  
   when "0000" => --element sum  
    alu_OPER <= "01";--sum 
    state <= EXEC1; 
   when "0001" => --scal mpy 
    alu_OPER <= "00"; 
    state <= EXEC2; 
   when "0010" => --sub 
    alu_OPER <= "10";--sub 
    temp <= 0; 
    state <= EXEC3; 
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   when "0011" => --mpy 3x1* 1x3 
    alu_OPER <= "00"; 
    state <= EXEC4; 
   when "0100" => --sum 3x3 + 3x3 
    alu_OPER <= "01";--sum 
    state <= EXEC5; 
   when "0101" => --matrix_inv 
    alu_OPER <= "00"; 
    state <= EXEC6; 
   when "0110" => --mpy 1x3 * 3x3 
    state <= EXEC7; 
    --op1 <= 16; 
    --op2 <= 19; 
    --op3 <= 22; 
    alu_OPER <= "01";--sum 
   when "0111" => --scal mpy 
    state <= EXEC8; 
    alu_OPER <= "00";--mpy 
    --op1 <= 16; 
    --op2 <= 16; 
   when "1000" => -- mpy 1x3 3x1 
    state <= EXEC9; 
    alu_OPER <= "00";--mul 
    temp <= 0; 
   when "1001" => 
    alu_OPER <= "10";--sub 
    state <= EXEC1; 
   when "1010" => 
    alu_OPER <= "00";--mul 
    state <= EXEC1; 
   when others => 
    null; 
   end case; 
 
  when EXEC1 =>--simple operation [1] + [1] 
   alu_IN1 <= ram_mem(op1); 
   alu_IN2 <= ram_mem(op2); 
    
   alu_EN <= '1'; 
   if (alu_VALID = '1') then 
    ram_mem(op3) <= alu_RESULT; 
    state <= PC_FWD; 
   end if; 
  when EXEC2 =>--scalar mpy [3x1]*[1] 
   if (ram_mem(0)(29) = '1') then 
    ram_mem(op1) <= ram_mem(op2); 
   else  
    ram_mem(op1) <= x"00000000"; 
   end if; 
 
   if (ram_mem(1)(29) = '1') then 
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    ram_mem(op1 + 1) <= ram_mem(op2); 
   else  
    ram_mem(op1 + 1) <= x"00000000"; 
   end if; 
 
   if (ram_mem(2)(29) = '1') then 
    ram_mem(op1 + 2) <= ram_mem(op2); 
   else  
    ram_mem(op1 + 2) <= x"00000000"; 
   end if; 
   state <= PC_FWD; 
 
  when EXEC3 => 
   alu_IN1 <= ram_mem(op1); 
   alu_IN2 <= ram_mem(op2); 
   op1 <= op1 + 1; 
   op2 <= op2 + 1; 
   if alu_VALID = '1' then  
    if temp < 3 then 
     ram_mem(op3) <= alu_RESULT; 
     op3 <= op3 + 1; 
     temp <= temp + 1; 
    else 
     state <= PC_FWD; 
    end if; 
   else  
    alu_EN <= '1'; 
   end if; 
 
  when EXEC4 => 
     
   if (ram_mem(0)(29) = '1') then 
    ram_mem(16) <= ram_mem(10); 
    ram_mem(17) <= ram_mem(10); 
    ram_mem(18) <= ram_mem(10); 
   else  
    ram_mem(16) <= x"00000000"; 
    ram_mem(17) <= x"00000000"; 
    ram_mem(18) <= x"00000000"; 
   end if; 
 
   if (ram_mem(1)(29) = '1') then 
    ram_mem(19) <= ram_mem(11); 
    ram_mem(20) <= ram_mem(11); 
    ram_mem(21) <= ram_mem(11); 
   else  
    ram_mem(19) <= x"00000000"; 
    ram_mem(20) <= x"00000000"; 
    ram_mem(21) <= x"00000000"; 
   end if; 
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   if (ram_mem(2)(29) = '1') then 
    ram_mem(22) <= ram_mem(12); 
    ram_mem(23) <= ram_mem(12); 
    ram_mem(24) <= ram_mem(12); 
   else  
    ram_mem(22) <= x"00000000"; 
    ram_mem(23) <= x"00000000"; 
    ram_mem(24) <= x"00000000"; 
   end if; 
     
   state <= PC_FWD; 
  when EXEC5 => 
   alu_IN1 <= ram_mem(16); 
   alu_IN2 <= ram_mem(25); 
   alu_EN <= '1'; 
   state <= EXEC5_1; 
  when EXEC5_1 => 
   alu_IN1 <= ram_mem(20); 
   alu_IN2 <= ram_mem(26); 
   state <= EXEC5_2; 
  when EXEC5_2 => 
   alu_IN1 <= ram_mem(24); 
   alu_IN2 <= ram_mem(27); 
   if (alu_VALID = '1') then 
    ram_mem(16) <= alu_RESULT; 
    state <= EXEC5_3; 
   end if; 
  when EXEC5_3 => 
   ram_mem(20) <= alu_RESULT; 
   state <= EXEC5_4; 
  when EXEC5_4 => 
   ram_mem(24) <= alu_RESULT; 
   state <= PC_FWD; 
  when EXEC6 => 
   alu_IN1 <= ram_mem(minors(op1,0)); --S_2_2 
   alu_IN2 <= ram_mem(minors(op1,1)); --S_3_3 
   if(op1 < 17) then  
    op1 <= op1 + 1; 
   end if; 
   alu_EN <= '1'; 
   if(alu_VALID = '1') then 
    if(op3 < 46) then 
     ram_mem(op3) <= alu_RESULT; 
     op3 <= op3 + 1; 
    else  
     state <= EXEC6_1; 
     alu_EN <= '0'; 
     op2 <= 28; 
     op3 <= 28; 
     alu_OPER <= "10";--sub 
    end if; 
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   end if; 
  when EXEC6_1 =>  
   alu_IN1 <= ram_mem(op2); 
   alu_IN2 <= ram_mem(op2 + 1); 
   alu_EN <= '1'; 
   if(op2 < 44) then 
    op2 <= op2 + 2; 
   end if; 
   if(alu_VALID = '1') then 
    if(op3 < 37) then 
     ram_mem(op3) <= alu_RESULT;--store minors 
from 28 to 37 
     op3 <= op3 + 1; 
    else  
     state <= EXEC6_2; 
     alu_OPER <= "00";--mul 
     alu_EN <= '0'; 
     op3 <= 28; 
     op1 <= 16; 
    end if; 
   else  
   end if; 
  when EXEC6_2 => 
   alu_IN1 <= ram_mem(op3); 
   alu_IN2 <= ram_mem(op1); 
   alu_EN <= '1'; 
   if(op3 < 31) then  
    op3 <= op3 + 1; 
    op1 <= op1 + 1; 
    op2 <= 37; 
   else  
    if alu_VALID = '1' then 
     if(op2 < 40) then 
      ram_mem(op2) <= alu_RESULT; 
      op2 <= op2 + 1; 
     else  
      state <= EXEC6_3; 
      alu_EN <= '0'; 
      alu_OPER <= "01";--sum 
     end if; 
    end if; 
   end if; 
  when EXEC6_3 => 
   alu_IN1 <= ram_mem(37); 
   alu_IN2 <= ram_mem(38); 
   alu_EN <= '1'; 
   if(alu_VALID = '1') then 
    ram_mem(40) <= alu_RESULT; 
    state <= EXEC6_4; 
    alu_EN <= '0'; 
   end if; 
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  when EXEC6_4 => 
   alu_EN <= '1'; 
   alu_IN1 <= ram_mem(40); 
   alu_IN2 <= ram_mem(39); 
   if alu_VALID = '1' then 
    op3 <= 28; 
    op2 <= 16; 
    ram_mem(41) <= alu_RESULT; 
    state <= EXEC6_5; 
    alu_EN <= '0'; 
    alu_OPER <= "11";--div 
   end if; 
  when EXEC6_5 => 
   alu_EN <= '1'; 
   alu_IN1 <= ram_mem(op3); 
   alu_IN2 <= ram_mem(41); 
   if op3 < 37 then 
    op3 <= op3 + 1; 
   end if; 
   if alu_VALID = '1' then 
    if op2 < 25 then 
     op2 <= op2 + 1; 
     ram_mem(op2) <= alu_RESULT; 
    else 
     state <= PC_FWD; 
    end if; 
   end if; 
  when EXEC7 => 
   if ram_mem(0)(29) = '0' then 
    ram_mem(op1) <= x"00000000";--16 
    ram_mem(op1+1) <= x"00000000"; 
    ram_mem(op1+2) <= x"00000000"; 
   end if; 
   if ram_mem(1)(29) = '0' then 
    ram_mem(op2) <= x"00000000";--19 
    ram_mem(op2+1) <= x"00000000"; 
    ram_mem(op2+2) <= x"00000000"; 
   end if; 
   if ram_mem(2)(29) = '0' then 
    ram_mem(op3) <= x"00000000";--22 
    ram_mem(op3+1) <= x"00000000"; 
    ram_mem(op3+2) <= x"00000000"; 
   end if; 
   state <= EXEC7_1; 
  when EXEC7_1=> 
   alu_IN1 <= ram_mem(op1); 
   alu_IN2 <= ram_mem(op2); 
   if alu_VALID = '1' then 
    ram_mem(op1) <= alu_RESULT; 
    state <= EXEC7_2; 
    alu_EN <= '0'; 
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   else  
    alu_EN <= '1'; 
   end if; 
  when EXEC7_2=> 
   alu_IN1 <= ram_mem(op1); 
   alu_IN2 <= ram_mem(op3); 
   if alu_VALID = '1' then 
    alu_EN <= '0'; 
    ram_mem(op1) <= alu_RESULT; 
    if(op1 < 18) then 
     op1 <= op1 + 1; 
     op2 <= op2 + 1; 
     op3 <= op3 + 1; 
     state <= EXEC7_1; 
    else 
     state <= PC_FWD; 
    end if; 
   else  
    alu_EN <= '1'; 
   end if; 
  when EXEC8 =>--calcolo K = P * H'INVS 
   alu_EN <= '1'; 
   alu_IN1 <= ram_mem(9);--P 
   alu_IN2 <= ram_mem(op1); 
   op1 <= op1 + 1; 
   if alu_VALID = '1' then 
    if op2 < 19 then 
     ram_mem(op2) <= alu_RESULT; 
     op2 <=op2 + 1; 
    else  
     state <= PC_FWD; 
    end if; 
   end if; 
  when EXEC9 => 
   alu_IN1 <= ram_mem(op1); 
   alu_IN2 <= ram_mem(op2); 
   op1 <= op1 + 1; 
   op2 <= op2 + 1; 
   if alu_VALID = '1' then  
    if temp < 3 then 
     ram_mem(op3) <= alu_RESULT; 
     op3 <= op3 + 1; 
     temp <= temp + 1; 
    else 
     op3 <= op3 - 3; 
     alu_EN <= '0'; 
     alu_OPER <= "01";--sum 
     state <= EXEC9_1; 
    end if; 
   else  
    alu_EN <= '1'; 
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   end if; 
 
  when EXEC9_1 => 
   alu_IN1 <= ram_mem(op3); 
   alu_IN2 <= ram_mem(op3 + 1); 
   if alu_VALID = '1' then 
    ram_mem(op3) <= alu_RESULT; 
    state <= EXEC9_2; 
    alu_EN <= '0'; 
   else  
    alu_EN <= '1'; 
   end if; 
  when EXEC9_2 => 
   alu_EN <= '1'; 
   alu_IN1 <= ram_mem(op3); 
   alu_IN2 <= ram_mem(op3+2); 
   if alu_VALID = '1' then 
    ram_mem(op3) <= alu_RESULT; 
    state <= PC_FWD; 
   end if; 
  when PC_FWD => 
   if(pc < PROGRAM_LEN) then 
    pc <= pc + 1; 
    state <= LOAD; 
   else  
    state <= IDLE; 
    x1 <= ram_mem(13); 
    P1 <= ram_mem(19); 
    DONE_int <= '1'; 
   end if; 
   alu_EN <= '0'; 
  when others => 
   null; 
  end case; 
 
 end if; 
end process; 
 
 
end architecture;  
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10.1.5 Matrix calculation C library 

#define idx(i,j,cols) (i * cols + j) 
 
void initMatrix(MATRIX * A,int r,int c) 
{ 
 A->M = (double *)calloc(r * c, sizeof(double)); 
 A->r = r; 
 A->c = c; 
} 
 
void Matrix_MPY(MATRIX * A,MATRIX * B,MATRIX * C) 
{ 
 int i,j,k; 
 memset(C->M,0,C->r * C->c * sizeof(double)); 
 for(i = 0; i < A->r;i++) 
  for(j=0;j< B->c;j++) 
   for(k=0;k<B->r;k++) 
   {  
    C->M[i*B->c + j]+=A->M[i*A->c + k] * B->M[k*B-
>c + j]; 
   } 
} 
void Matrix_SCALMPY(MATRIX * A, MATRIX *B,double scal) 
{ 
 int i,j; 
 for(i = 0; i < A->r;i++) 
   for(j=0;j< A->c;j++) 
    FillMatrix(B,i,j,elem(A,i,j) * scal); 
} 
void Matrix_TRANSP(MATRIX * A, MATRIX *B) 
{ 
int i,j; 
  for(i = 0; i < A->r;i++) 
   for(j=0;j< A->c;j++) 
    FillMatrix(B,j,i,elem(A,i,j));  
} 
void Matrix_SUM(MATRIX * A,MATRIX * B,MATRIX * C) 
{ 
 int i,j; 
  for(i = 0; i < A->r;i++) 
   for(j=0;j< A->c;j++) 
   { 
    C->M[i*A->c + j]=A->M[i*A->c + j] + B->M[i*B->c 
+ j]; 
   } 
} 
 
void Matrix_SUB(MATRIX * A,MATRIX * B,MATRIX * C) 
{ 
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 int i,j; 
  for(i = 0; i < A->r;i++) 
   for(j=0;j< A->c;j++) 
   { 
    C->M[i*A->c + j]=A->M[i*A->c + j] - B->M[i*B->c 
+ j]; 
   } 
} 
 
double elem(MATRIX * A,int r,int c) 
{ 
 return (A->M[r * A->c + c]); 
} 
 
void FillMatrix(MATRIX * A,int r, int c,double value) 
{ 
 A->M[r*A->c + c] = value; 
} 
 
double Matrix_DET(MATRIX *A,int ord) 
{ 
 double det = 0; 
 
 if(ord == 1) det = elem(A,0,0); 
 else if (ord == 2) 
 { 
  det = elem(A,0,0)*elem(A,1,1)-elem(A,0,1)*elem(A,1,0); 
  /* code */ 
 }  
 else if(ord == 3) 
  { 
   det = 
   elem(A,0,0)*elem(A,1,1)*elem(A,2,2) + 
     elem(A,0,1)*elem(A,1,2)*elem(A,2,0) + 
     elem(A,0,2)*elem(A,1,0)*elem(A,2,1) - 
     elem(A,2,0)*elem(A,1,1)*elem(A,0,2) - 
     elem(A,2,1)*elem(A,1,2)*elem(A,0,0) - 
     elem(A,1,0)*elem(A,0,1)*elem(A,2,2); 
  } 
 return det; 
} 
void Matrix_Print(MATRIX *A) 
{ 
 int i,j; 
 printf("\r\n"); 
 for(i=0;i<A->r;i++) 
 { 
  printf("|"); 
  for(j=0;j<A->c;j++) 
  { 
   printf("%3.3f ",elem(A,i,j)); 



 
 

187 

  } 
  printf("|\r\n"); 
 } 
} 
void Matrix_INV3(MATRIX * A,MATRIX * INVA) 
{ 
 double det = Matrix_DET(A,3); 
 /* 
 0,0 0,1 0,2 
 1,0 1,1 1,2 
 2,0 2,1 2,2*/ 
 FillMatrix(INVA,0,0,+(elem(A,1,1)*elem(A,2,2)-
elem(A,1,2)*elem(A,2,1))/det);//0,0 
 FillMatrix(INVA,1,0,-(elem(A,1,0)*elem(A,2,2)-
elem(A,1,2)*elem(A,2,0))/det);//0,1 
 FillMatrix(INVA,2,0,+(elem(A,1,0)*elem(A,2,1)-
elem(A,1,1)*elem(A,2,0))/det);//0,2 
 FillMatrix(INVA,0,1,-(elem(A,0,1)*elem(A,2,2)-
elem(A,0,2)*elem(A,2,1))/det);//1,0 
 FillMatrix(INVA,1,1,+(elem(A,0,0)*elem(A,2,2)-
elem(A,0,2)*elem(A,2,0))/det);//1,1 
 FillMatrix(INVA,2,1,-(elem(A,0,0)*elem(A,2,1)-
elem(A,0,1)*elem(A,2,0))/det);//1,2 
 FillMatrix(INVA,0,2,+(elem(A,0,1)*elem(A,1,2)-
elem(A,0,2)*elem(A,1,1))/det);//2,0 
 FillMatrix(INVA,1,2,-(elem(A,0,0)*elem(A,1,2)-
elem(A,0,2)*elem(A,1,0))/det);//2,1 
 FillMatrix(INVA,2,2,+(elem(A,0,0)*elem(A,1,1)-
elem(A,0,1)*elem(A,1,0))/det);//2,2 
  
} 
 
void deleteMatrix(MATRIX * A) 
{ 
 free(A->M); 
} 
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10.2 SCHEMATICS 

10.2.1 Digital section of DSP Multi-sensor system 
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10.2.2 Leonardo autopilot schematic 
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