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Abstract

The United Nations Educational, Scientific and Cultural Organization (UNESCO)
defines the Amazon region and adjacent areas, such as the Pantanal, as world
heritage territories, since they possess unique flora and fauna and great biodiversity.
Unfortunately, these regions have, increasingly, been suffering from anthropogenic
impacts. One of the main anthropogenic impacts in the last decades has been the
construction of hydroelectric power plants.

As a result, dramatic altering of these ecosystems has been observed, including
changes in water levels, decreased oxygenation and loss of downstream organic
matter, with consequent intense land use and population influxes after the filling
and operation of these reservoirs. These, in turn, lead to extreme loss of diversity in
these areas, due to large-scale deforestation. The fishing industry in place before
construction of dams and reservoirs, for example, has become much more intense,
attracting large populations in search of work, employment and income.

Environmental monitoring is fundamental for reservoir management, and several
studies around the world have been performed in order to evaluate the water
quality of these ecosystems. The Brazilian Amazon, in particular, goes through
well defined annual hydrological cycles, which are very importante since their study
aids in monitoring anthropogenic environmental impacts and can lead to policy-
and decision-making with regard to environmental management of this area. The
water quality of Amazon reservoirs is greatly influenced by this defined hydrological
cycle, which, in turn, causes variations of microbiological, physical and chemical
characteristics.

Eutrophication, one of the main processes leading to water deterioration in lentic
environments, is mostly caused by anthropogenic activities, such as the releases
of industrial and domestic effluents into water bodies. Physico-chemical water
parameters typically related to eutrophication are, among others, chlorophyll-a
levels, water transparency and total suspended solids, which can, thus, be used to
assess the eutrophic state of water bodies

Usually, these parameters must be investigated by going out to the field and
manually measuring water transparency with the use of a Secchi disk, and taking
water samples to the laboratory in order to obtain chlorophyll-a and total suspended
solid concentrations. These processes are time- consuming and require trained
personnel. However, we have proposed other techniques to environmental monitoring
studies which do not require fieldwork, such as remote sensing and computational
intelligence.

Simulations on different sample station of the study area were performed to
determine a relationship between these physico-chemical parameters and the spectral
response of the reservoir. Based on the in situ measurements, empirical models
were established in order to relate the reservoir reflectance measured by Landsat 7
Enhanced TM+ with the water optical parameters for Tucurui reservoir. Four images
for each year from 2007 to 2014 were calibrated and atmospherically corrected.

Statistical analysis using error estimation was employed, aiming to evaluate the
most accurate methodology. The ANN are trained by hydrological cycle, considered
full, emptying, dry and filling and are shown to be useful in estimating the physico-
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chemical parameters of water from reflectance of visible and NIR bands of satellite
images, with better results for the period with little rain and few clouds in the
analyzed region.
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Chapter 1

Introduction

In this chapter I will discuss the justification, importance of Research and motivation
and general search context of thesis.

I will describe the aims, etc...

1.1 Justification - Importance of Research and motiva-
tion

Water is one of the most essential components of human life. This natural resource
generates socioeconomic development for society in general, more specifically for
industry, agriculture and public use. Water quality involves physico-chemical and
biological processes. These processes are necessary for the existence of life as it is an
important factor for health. Therefore, the monitoring of water quality variables is
of fundamental importance for society in general.

The values of the physico-chemical parameters present in the water should be
within the standards allowed by the legislation, since the presence of components in
high concentrations can be harmful to human health and the ecosystem. However,
the presence of these components in the Water is important for the geochemical cycle
and environmental health, so it is necessary to analyze and periodically monitor
these components[1].

Due to the development and economic and population growth, Brazil is increas-
ingly constructing water reservoirs, thus increasing the demand for drinking water
and hydroelectric potential. [2]

Water reservoirs have different seasonal characteristics and several studies have
been developed to identify and characterize seasonal differences as well as physico-
chemical parameters in aquatic environments.[3] [4]

Some researches were developed with the objective of identifying physico-chemical
parameters in aquatic environments using Computational intelligence [5] [6] [7] [8].
However, these studies do not analyze the hydrological cycles of the regions.

In this context, this research proposes a method, using the techniques of compu-
tational intelligence to infer levels of the physico-chemical parameters in bodies of
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water in reservoirs, using historical data, collecting water several years, analyzing
and predicting the physico-chemical parameters per hydrological cycle.

In this sense, this project aims to investigate and propose a computational
solution, using computational intelligence and remote sensing techniques to infer
the levels of physico-chemical parameters present in the body of water.

Satellite images were used, captured in the same period of the water collection,
verified the reflectance of the substances in the images, so we developed a neural
network to predict these parameters.

In the study we intend to investigate the reflectance condition in water bodies of
two reservoirs, one in the Brazilian Amazon, considered a deep reservoir (reservoir
of the hydroelectric plant of Tucuruí) and another located in the United Kingdom,
Cefni, in order to validate the proposed model.

1.2 Context of research - Contextualization, conceptu-
alisation

The construction of hydroelectric power plants in the Amazon region has generated
social and environmental impacts in the last decades [9], and statistical data indicate
that renewable energy, including hydroelectric power, is expected to increase by
almost 85% between now and 2030. [10].

While Russia and China have natural gas and coal reserves, Brazil relies on hydro
power for 85% of its electricity needs [11].

The changes in the aquatic environment due to the construction of reservoirs
have been studied by several authors[12][13]. And these studies have shown that the
changes in physico-chemical parameters can directly affect water quality and local
biota because freshwater ecosystems are an important natural resource, essential
for multiple purposes such as drinking, domestic use, industrial cooling, power
generation, agriculture, waste disposal, and transportation routes.[14].

The presence of physico-chemical parameters in waterbody is also an important
component for the geochemical cycle and biodiversity, but high concentrations
can negatively influence ecosystems when they are in quantities not allowed by
legislation[5] [15] [16]. For these reasons, many scientists have studied the influence
of physico-chemical parameters in freshwater and how this affects ecosystems.

Studies involving Remote Sensing, Artificial Neural Networks (ANN), Wavelet
Transform, Adaptive neuro-fuzzy inference systems (ANFIS) with cross-validation
and Statistical Analysis have recently gained attention in the literature for the
monitoring of water quality. [17] [18] [19] [20] [21] [22][23] [24][25][26][27][28] [29]
Among the monitoring techniques used are those using remote sensing [30]and
computational intelligence [31].

The artificial neural network (ANN) technique is a tool for modeling real-world
problems and has been used to evaluate the physico-chemical parameters of water
cite sarkar2015river, cite samarasinghe2016neural.

Another technique that has also been gaining attention in prediction models for
water quality monitoring is the adaptive neuro-diffuse inference system (ANFIS)
[32]. In some studies, the performance of the ANFIS model was compared with



1.2 Context of research - Contextualization, conceptualisation 3

an artificial neural network model. The ANFIS model was able to provide greater
accuracy, particularly in the case of extreme events [19]. Considered an option with
greater precision and reliability for the treatment of forecasting problems involving
training and prediction of concentrations of various parameters.

Among the evaluated parameters, we can mention: Chlorophyll Levels (C), Total
Suspended Solids (TSS) and Transparency (T), these parameters can influence the
ecosystems and were considered important factors for monitoring water quality in
reservoirs[33][34] [35] [36].

All these parameters are currently evaluated, however, the methods currently
used for water analysis are very time-consuming, extremely expensive because they
require sample collection, trained personnel and specialized laboratories.

We propose a less expensive and more dynamic method to monitor these param-
eters, using techniques of artificial intelligence and remote sensing.

The proposed method uses satellite images and the "in situ" measurements made
by the responsible companies. The water samples were collected in 7 sampling
stations called: Caraipé 1 (C1), Caraipé 2 (C2), Breu Branco (MBB), Jacunda
(MJV), Upstrem 1 (M1) Upstrem 3 (M3), Ipixuna (MIP).

The Satellite Sensor chosen was Landsat 7 ETM +, which has a spatial resolution
of 30 m for the six reflective bands, 60 m for the thermal band, and includes a
panchromatic band (pan) with a resolution of 15 m.

Landsat 7 has a 378 gigabit(Gb) Solid State Recorder (SSR) that can hold 42
min (approximately 100 scenes) of sensor data and 29 h of housekeeping telemetry
concurrently (L7 Science Data User’s Handbook1).

We downloaded the satellite images of 2007, 2008, 2009, 2010, 2011, 2012,
2013 and 2014 from the Earth Explorer USGS 2. These images were classified and
converted into vector format, which served as inputs for the neural model. The
output of the neural network was validated with the samples analyzed in a chemical
laboratory performed by the companies responsible.

The ANFIS Wavelet technique was developed to monitor the physico-chemical
parameters. Leave-One-Out Cross Validation was used to validate the model tested
in two reservoirs: Tucurui and Cefni.

1http://landsathandbook.gsfc.nasa.gov/handbook.html
2https://espa.cr.usgs.gov/
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1.3 Objectives

The degradation of surface water quality occurs due to the presence of various types
of pollutants generated from human, agricultural, and industrial activities. Thus,
mapping concentrations of different surface water quality parameters (SWQPs),
such as turbidity, total suspended solids (TSS), chemical oxygen demand (COD),
biological oxygen demand (BOD), and dissolved oxygen (DO), is indeed critical for
providing the appropriate treatment to the affected waterbodies.

Traditionally, concentrations of SWQPs have been measured through inten-
sive field work. Additionally, quite a lot of studies have attempted to retrieve
concentrations of SWQPs from satellite images using regression-based methods.

However, the relationship between SWQPs and satellite data is complex to
be modelled accurately by using regression-based methods. Therefore, our study
attempts to develop an artificial intelligence modelling method for mapping concen-
trations of both optical and non-optical SWQPs.

In this context, a remote-sensing framework based on the back-propagation
neural network (BPNN) is developed to quantify concentrations of different SWQPs
from the Landsat7 ETM+ satellite imagery.

Compared to other methods, such as Support Vector Machine, significant coef-
ficients of determination (R2) between the Landsat7 surface reflectance and con-
centrations of SWQPs were obtained using the developed Landsat7-based-BPNN
models.

This research has the following general objective and specific objectives:

1.3.1 General objective

This project aims to develop computational solutions based on computer intelligence
paradigms to aid in the monitoring of water bodies in reservoirs. In this sense, this
proposal aims at the creation of computational solutions with remote sensing and
wavelet neural networks to analyze the reflectances of the satellite images and to
estimate the physico-chemical parameters concentrations present in the waterbody.
The goal is to create an artificial neural model to predict the parameters and infer
the future level of these substances.

1.3.2 Specific objectives

• Search for reflectance in the images and physico-chemical parameters in water
bodies of the reservoirs.

• Analyze the available historical data base of the physico-chemical parameters.
• Analyze the satellite images corresponding to the dates of the water samples

collected by the responsible company.
• Develop a neural model using Computational Intelligence techniques and

satellite imagery to monitor current collection points.
• Use data mining techniques to identify patterns of behavior in historical data

series.
• Propose a solution, low cost, using Computational Intelligence techniques to

infer levels of physico-chemical parameters present in the reservoirs water bodies,
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where the reflectance conditions manifest favorable to infer the future level of these
substances, from reservoir images.

• To evaluate and propose the repositioning of the water sampling points of the
Tucurui hydroelectric reservoir through the interpretation of satellite images of these
reservoirs using paradigms of Computational Intelligence techniques, classification,
Clustering and Statistical Analysis

• To contribute to the debate on the issues investigated, presenting proposals
for contemporary solutions.

1.4 Problematic or Issue

- The growing energy demand results in the implementation of several hydropower
plants in the last decades.

- Need to monitor the variables of water quality..
- Physico-chemical parameters concentrations should comply with standards

established by environmental legislation.

1.5 Methodology

We studied physico-chemical parameters present in the water reservoir from 2007
to 2014. We applied a Neural Network Wavelet to infer the future levels of these
concentrations in two reservoirs. We then used statistics models to validate the
results.

- Use computational intelligence and remote sensing techniques to monitor
physico-chemical parameters considering the hydrological cycle of the study area.

The analyzed study area, Tucurui, has 4 hydrological cycles: Full, Emptying,
Empty, Filling as follows:

Full (March, April and May) Emptying (June, July and August) Empty (Septem-
ber, October , November) Filling (December, January, February)

Physico-chemical parameters Monitored:
Temperature (oC)
Secchi disk (m)
Conductivity (µS/cm)
pH
STS (mg / L)
Ammonia (mg / L)
NO3 (mg / L)
Chlorophyll (mg / L)
Turbidity (NTU)
dissolved oxygen (mg / L)
PO4 (mg / L)
P Total (mg / L).
The methodology used involves water collecting, satellite images from Landsat 7,

ANN and LOO as explained in the following:
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1.5.1 Water collection

The water data were provided by the Eletronorte/Eletrobras Company and the
points chosen are considered the most important by this company for water analysis.
These data were collected from January 2007 to December 2014. The relationship
between Chlorophyll-a Levels, Total Suspended Solids, Transparency and spectral
response of the riverwater was determined using the physico-chemical water samples
collected. These data have been extracted from the samples and analyzed. We
compared it to the proposed parameters level extracted from the remote sensing
images, analyzed with an ANN method, described below. This was done for the
entire hydrological cycle of the area.

1.5.2 Satellite Images

Thirty two satellite images from Landsat 7, sensor ETM+ were acquired. In order
to obtain directly the TSS, C and T concentration from the reflectance of the
satellite images, all satellite-image bands from visible and NIR were first calibrated
for radiance values and, subsequently, for reflectance values. Image-based methods
for atmospheric correction can estimate path radiance without using atmospheric
properties, their accuracy is highly dependent on what is captured in a scene, as
described in many papers: [37], [38], [39], [40], [41]. The characteristics of the
analyzed bands are reported in table 1.1

Table 1.1. Characteristics of Visible and NIR Bands of the Analyzed Sensors

Satellite Bands Spectral
Resolution(nm)

Spatial
Resolution(m)

Temporal
Resolution

Landsat7(ETM+) TM1 450-520 30 16 days
Landsat7(ETM+) TM2 520-600 30 16 days
Landsat7(ETM+) TM3 630-690 30 16 days
Landsat7(ETM+) TM4 760-900 30 16 days

The proposed method corrects the atmospheric effect by estimating the path
radiance spectrum based on the dark object subtraction (DOS) method so that the
spectrum meets general spectral characteristics of path radiance. The atmospheric
effects that influence the signal registered by remote sensors might be minimized in
order to provide reliable spectral information.

In aquatic systems, the application of atmospheric correction avoids the under or
overestimation of remote sensing reflectance (Rrs). Accurately Rrs provides better
information about the state of aquatic system establishing the concentration of
aquatic compounds more precisely [42].

In this study, the DOS method with semi-automatic classification plugin was
used, as described elsewhere [43][44]. Afterwards, a relative scattering model was
chosen based on the atmospheric conditions of the image at the acquisition time and
the initial haze value for the other spectral bands were then calculated.

Equations and parameters to convert calibrated Digital Numbers (DNs) to
physical units, such as at-sensor radiance and reflectance, have been presented in a
“sensor-specific” manner elsewhere [45].
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DN to Radiance: There are two formulas that can be used to convert DNs to
radiance; the method you use depends on the scene calibration data available in
the header file(s). One method uses the Gain and Bias (or Offset) values from the
header file. The longer method uses the LMin and LMax spectral radiance scaling
factors.

Conversion to spectral radiance is a substantial improvement over use of DNs in
analysis. When transformed, all individual sensor measurements are in comparable
physical units. This is generally accomplished through information supplied by the
instrument developer in the form [46],[47] :

radλ = LMINλ + (Qcal −Qcalmin)
(
LMAXλ − LMINλ

Qcalmax −Qcmin

)
, (1.1)

refi,j = CHi,j ×GAIN_BAND +OFFSET_BAND. (1.2)

where:
Lλ: Spectral radiance at the sensor’s aperture [W/(m2 × sr × µm)]
Qcal: Quantized calibrated pixel value [DN]
Qcalmin: Minimum quantized calibrated pixel value corresponding to LMINλ[DN]
Qcalmax: Maximum quantized calibrated pixel value corresponding to LMAXλ[DN]
LMINλ: Spectral at-sensor radiance that is scaled to Qcalmin [W/(m2 × sr × µm)]
LMAXλ: Spectral at-sensor radiance that is scaled to Qcalmax [W/(m2× sr×µm)]
GAIN_BAND: Band-specific rescaling gain factor [(W/(m2 × sr × µm))/DN ]
Brescale: Band-specific rescaling bias factor [W/(m2 × sr × µm)]
ESUN: Mean exoatmospheric solea irradiance
SEA: Sun elevation
SZA: 90.0 - SEA
OFFSET_BAND: The DN value where zero radiance is detected 1.2

Table 1.2. ETM+ spectral radiance range (W/m2 − sr − µm)

Band Number Low gain High gain
LMIN LMAX LMIN LMAX

1 - 6.2 293.7 -6.2 191.6
2 -6.4 300.9 -6.4 196.5
3 -5.0 234.4 -5.0 152.9
4 -5.1 241.1 -5.1 157.4

A group of thirty two (32) satellite images were acquired from Landsat ETM+
in the same period of collection of water made on situ. Images from 2007 to 2013
were used to train the system while the images from 2014 was used to validate the
methodology.The images acquisition date are presented in table 1.3

1.5.3 ANN and LOO

An ANN is a parallel-distributed processor that resembles the human brain by
acquiring knowledge through a learning process and, then, stores the knowledge in
the connection strength between computational units called neurons[48]. We used
for this purpose a simple feedforward neural network in which the information moves
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Table 1.3. Images used for Training and Validation

Training Validation
2007 2008 2009 2010 2011 2012 2013 2014

07-MAY 09-MAY 12-MAY 15-MAY 02-MAY 04-MAY 23-MAY 26-MAY
11-AUG 13-AUG 16-AUG 19-AUG 22-AUG 24-AUG 11-AUG 14-AUG
15-NOV 01-NOV 20-NOV 07-NOV 10-NOV 12-NOV 15-NOV 02-NOV
15-JAN 18-JAN 20-JAN 23-JAN 10-JAN 13-JAN 31-JAN 18-JAN

in only one direction, from the input to the output nodes. The preprocessed data
is given as the input of the ANN, and the outputs are: C, S and T. We used the
Leave-One-Out (LOO) method to partition the dataset into training (Tr) and test
set (Ts). We split the data set D of size N into N partitions of size 1 such that:

D = Q1 ∪Q1 ∪ ... ∪QN−1 ∪QN (1.3)

with Qi ∩ Qj = 0 for i 6= j. Each partition Qi is used systematically for testing
exactly once whereas the remaining partitions are used for training. Let Pi = D−Qi
be the training set with respect to the test partition Qi with i = 1, ..., N , then we
can compute the error for each test partition for the trained model. The average
error over all partitions is considered as the LOO Error. The reported result is the
one with the least LOO Error in the test.

Figure 1.1. ANN Model by TM

The Fig 1.1 shows Inputs for the neural network from image landsat satellite,
sensor ETM, band 1, band 2, band 3 and band 4. The process was repeated for each
year from 2007 to 2014. As a result, estimates for chlorophyll a (C), Transparency
(T) and Total Suspended Solids (TSS).



9

Chapter 2

State of the Art

Several researches have been done to identify and characterize seasonal variations
of physico-chemical parameters in aquatic environments. Among the most used
techniques are: ANFIS, multivariate analysis and artificial intelligence techniques.

Recently, the artificial neural networks have been examined for similar prediction
applications and showed great potential to tackle and detect its nonlinearity behavior.
According to the author [49]Heavy metal toxicity is a matter of considerable concern
for environmental researchers. A highly cause of heavy metal toxicity in the aquatic
environments is considered a serious issue that required full attention to understand
in order to solve it. Heavy metal accumulation is a vital parameter for studying the
water quality. Therefore, there is a need to develop an accurate prediction model
for heavy metal accumulation. The author developed a model radial basis function
neural network algorithm to investigate and mimic the relationship of heavy metals
with the climatic and pollution conditions in lake water bodies.

The model was implemented in different climatic conditions as well as polluted
and non-polluted lakes. Weekly records of physico-chemical data parameters (e.g.,
PH, EC, WT, DO, TDS, TSS, CL, NO3, PO4 and SO4) and Climatic parameters
(e.g., air temperature, humidity And rainfall) were used as input data for the
modeling, whereas the heavy metal concentration was the output of the model.
Three different scenarios for modeling the input architecture considering the climate,
pollution or both Have been investigated and the results obtained from all the
scenarios are positively encouraging with high-performance Accuracy. Furthermore,
the results showed that Isolated model for each condition achieves a better prediction
Accuracy level rather than developing one general Model for all conditions.

The author [50] determined ecological stream health (ESH) and analyze trophic
relations of nutrients (N, P) – chlorophyll and macroinvertebrate – fish, which is
associated with stream morphology, land-use patterns, and water chemistry. The
neural network modeling of a self-organizing map (SOM) suggested that clustering
of trained SOM units reflected stream morphology, land-use patterns, and water
chemistry, which influenced community structures and tolerances of top trophic level
fish species in the ecosystem. Lotic ecosystem health, based on a multi-metric ap-
proach (MF-IBI model), was clearly demonstrated by a multivariate analysis (PCA);
important factors were watershed characteristics (land-use patterns), nutrient levels
(N, P), organic matter (BOD, COD) regimes, and biological components (trophic
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and tolerance guilds). In the research [51] twenty-five water quality parameters,
including eight heavy metals, were studied at four sampling sites over a stretch of
63 km between Beas and Harike towns for pre-monsoon, post-monsoon and winter
seasons. Artificial neural network models were fitted to the data. Correlations
between the target values from ANN for turbidity, Biochemical Oxygen Demand
(BOD)and bands 2 (green), 3 (red) and 4 (near infra-red) were highly significant.

The degradation of water quality is a major problem worldwide and often leads
to serious environmental impacts and concerns about public health [52]. The water
quality monitoring and assessmen of the Lakes has been done by many authors as
following:

In the Koumoundourou Lake, a brackish urban shallow lake located in the
northeastern part of Elefsis Bay (Greece), were evaluated. A number of water
quality parameters (pH, temperature, dissolved oxygen concentration, electrical
conductivity, turbidity, nutrients, and chlorophylla concentration) were analyzed in
water samples collected bimonthly over a 1-year period from five stations throughout
the lake. Statistical analysis was performed in order to evaluate the water quality
of the lake and distinguish sources of variation measured in the samples. Satellite
images of Landsat 5 Thematic Mapper were used in order for algorithms to be
developed and calculate the concentration of chlorophyll-a (Chl-a). The trophic
status of the lake was characterized as oligotrophic based on phosphorus and as
mesotrophic–eutrophic based on Chl-a concentrations. The results of the remote
sensing application indicated a relatively high coefficient of determination (R2)
among point sampling results and the remotely sensed data, which implies that
the selected algorithm is reliable and could be used for the monitoring of Chl-a
concentration in the particular water body when no field data are available[52].

In binh dai ben tre, Vietnam, Monitoring surface water quality was also one of
the essential missions especially in the context of increasing freshwater demands and
loads of wastewater fluxes. The method of Fault Movement Potential (FMP) was
used to assess the Surface water resources played a fundamental role in sustainable
development of agriculture and aquaculture. Recently, remote sensing technology
has been widely applied in monitoring and mapping water quality at a regional scale
replacing traditional field-based approaches. This study assessed the application of
the Landsat 8 (OLI) images for estimating Chemical Oxygen Demand (COD) as
well as detecting spatial changes of the COD concentration in river reaches of the
Binh Dai district, Ben Tre province, a downstream area of the delta. The results
applied the Artificial Neuron Network (ANN) approach. [53]

A model that predicts the monthly water quality for a reservoir was constructed
based on a newly developed programming system, the genetic algorithm operation
tree (GAOT) was recently proposed. GAOT, which consists of genetic algorithm
(GA) and operation tree (OT), is to find the best function, and to explore complex
relationships between inputs and outputs when physical models cannot be defined in
advance. In this study, was applied GAOT to estimate the total phosphorous (TP)
in Feitsui Reservoir of Taiwan. From GAOT, the three significant input variables
was extracted from 15 input variables, including the TP concentration of the Diyu
Creek tributary, the TP concentration of main inflow Peishih Creek, the maximum
rainfall in the watershed and TP concentration in reservoir, and expressed them
appropriately in a sophisticated mathematical manner with accepted complexity.
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The sensitivity analyses reconfirm the effectiveness of the selected variables in the
nonlinear mathematical equations [54].

Another research worked issues inherent to the design of navigation planning
and control systems required for adaptive monitoring of pollutants in inland waters.
Proposed a new system for estimating water quality, in particular the chlorophyll-A
concentration, by using satellite remote sensing data. The aim was to develop
an intelligent model based on supervised learning, with the goal of improving the
precision of the evaluation of chlorophyll-A concentration. To achieve this, an
intelligent system based on statistical learning was used to Classify the waters
a priori, before estimating the chlorophyll-A concentration with neural network
models. therefore, was developed several models for the same surface of water, based
on the spectral signature of the samples acquired in-situ. A control architecture
was proposed to guide the trajectory of an aquatic platform to collect in-situ
measurements It uses a multi-model classification/regression system to determine and
forecast the spatial distribution of chlorophyll-A. Experimental results were presented
to validate the approach using data collected on Lake Winnipeg in Canada[55] .

Remote-sensing framework based on the back-propagation neural network (BPNN)
also wass developed to quantify concentrations of different surface water quality
parameters (SWQPs) from the Landsat8 satellite imagery. Estimating turbidity,
total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen
demand (BOD), and dissolved oxygen (DO), Considering the mapping concentrations
of different SWQPs critical for providing the appropriate treatment to the affected
waterbodies. [56]

In the Albufera de Valencia, Spain, also was develop an integrated algorithm for
data fusion and mining of satellite remote sensing images to generate daily estimates
of some water quality parameters of interest, such as chlorophyll a concentrations and
water transparency, showed that the spatiotemporal variations of water transparency
and chlorophyll a concentrations may be assessed simultaneously on a daily basis
throughout the lake for environmental management using a genetic programming
(GP) models[57].

Although these studies demonstrate the application of artificial intelligence and
remote sensing to water quality monitoring, none of these studies addresses the
application of this technique to water quality monitoring considering the regional
hydrological cycle, seasonally, mainly in Amazon reservoirs where Cycle changes
four times a year. Thus, this research becomes a pioneer in the application of
artificial intelligence and the monitoring of water quality in reservoirs through
remote sensing images, training the Neural Network Wavelet by hydrological cycle,
that is, a network for each cycle, demonstrating that it is possible to achieve the
objective of the research using these techniques.

Chlorophyll_a, TSS and Transparency have evaluated in this research in this
research.Chlorophyll-a is an important constitutent reflecting both water quality
status and ecosystem state because it is required for phytoplankton existence and
can be considered an indicator of algal growth or an indirect indicator of nutrients
[58]. Excessive growth of algae blooms in oceans and coastal areas decreases the
amount of dissolved oxygen and causes eutrophication in rivers and streams. Because
measuring chlorophyll-a is relatively simpler than algae biomass, chlorophyll-a is
more often used as a trophic indicator[59].
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Chlorophyll-a measurement is costly and time consuming, but remote sensing
can provide a spatial view and long term trend of this parameter. Reflectance of
chlorophyll-a concentration varies between blue and green sections. In other words,
a higher concentration of chlorophyll-a increases reflectance in blue wavelengths and
increases the reflectance in green wavelengths[60].

Dissolved organic matter (except phytoplankton) in the water as well as chlorophyll-
a concentration can affect this ratio, however; radiation is highly absorbed by
chlorophyll-a at about 450 and 670 nm[60][61] concluded that the peak reflectance
of different concentrations of chlorophyll-a in a lake is about 700 nm wavelength.
Most empirical ocean color algorithms for determining chlorophyll-a concentration
are based on the correlations between chlorophyll-a concentration and spectral
blue-to-green upward spectral radiance.

Maximum absorption of chlorophyll-a occurs in the blue waveband located in the
maximum phytoplankton absorption (440 nm); however, the minimum phytoplankton
absorption (550–555 nm) occurs in the green waveband [62]. Uncertainties may
occur in determining chlorophyll-a concentration during cyanobacteria blooms[63] or
in monitoring surface water with high suspended sediment concentration. In eithor
case above, the conventional blue-green ratio is less applicable because the blue light
signal decreases with increasing chlorophyll-a concentration. The fluorescence signal
will be more efficient in eutrophic waters for monitoring chlorophyll-a concentration,
however, because (a) chlorophyll-a has a dominant spectral signature, (b) simple
atmospheric correction is not required, and (c) fluorescence increases with intensifying
chlorophyll-a concentration [64].

Hyperspectral remote sensing is more reliable for monitoring chlorophyll-a con-
centration than multispectral remote sensing because it can measuring the reflectance
of the extremely narrow wavebands[61], and therefore has high potential to monitor
chlorophyll-a concentration in water bodies [63].

Suspended sediments play an important role in transporting nutrients and
contaminants because a considerable amount derives from soil and bedrock erosion.
The presence of suspended sediments in surface waters has negative effects on aquatic
life. In addition, a high concentration of suspended sediments shortens the beneficial
and efficient life of lakes and reservoirs [65]

Turbidity and SSSC are related to the suspended sediment fluxes in rivers lakes,
and reservoirs, and can help monitoring the sediment discharge, and more generally
the sediment budget within catchments, seasonal variability and evolution over time.
In turn, the sediment budget is controlling the silting of the dams, which impacts
the sustainability of hydroelectric structures and the supply of water for treatment
plants. SSSC in inland waters also contributes to pollution and public health issues.
Indeed, a signifi- cant correlation exists between the concentration of parasites and
bacteria and several water quality parameters including SSSC and turbidity[66].

Suspended particles can carry viruses and bacteria pathogenic to humans [67]
and foster their development [68].

High SSSC and turbidity can therefore be considered as a vector of microbiological
contaminants which cause diarrheal diseases[65].

Water turbidity and SCCC in lakes or reservoirs may evolve through time, for
instance in response to land use changes, modifi- cation of soil erosion, transport
and deposition over the watershed, as well as exceptional rainfall events [65].
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The quality ofin-situ monitoring networks depends on the number of sampling
stations, their spatial representativeness and the frequency of the measurements.
In many regions of the world, monitoring networks are decreasing[69], and in some
regions, such as West Africa, they are very poor or non-existent.

The Surface Suspended Sediments (SSS) absorb and scatter light, thereby affect-
ing the spectral response of surface waters. Turbidity refers to optical properties of
water and has been shown to impact water reflectance in the visible and near-infrared
domain. In that context, remote sensing may be a solution in mitigating the data
gaps or lack of in-situ network in many areas worldwide[65].

Satellite data and field data were integrated for monitoring tributaries of the
Amazon River in Peru, and found that MODIS images could be used to study the
SSSC and, combined to river discharge data, to assess the sediment discharge[65].

The objectives of our study are Estimate turbidity, TSS and chlorophyll and
analysis of its spatio-temporal variability in two reservoirs (Tucurui and Cefni) using
LandSat satellite data. So we can do comparisons between the results obtained from
two reservoirs and improve the already existing techniques, thus contributing to the
state of the art.
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Chapter 3

Materials and Methods

3.1 Study Area

Studies for the construction of a hydroelectric power plant on the Tocantins River
to make use of the area’s exploitation potential began in 1957, with the Tucuruí
hydroelectric power plant inaugurated in 1984. This plant was built to supply energy
for aluminum production, stimulate the regional industry, articulate the links and
produce energy to power the country on a national scale [70]. The first stage of
deployment occurred between 1975 and 1989, with twelve main units with a total
capacity of 3960 MW. Subsequently, two auxiliary units increased capacity to 4000
MW. The second stage opened in late 2008 increased the installed capacity to 7960
MW. The damming led to the formation of a large lake of about 200 km in extension
and an area of approximately 2875 km2.

The construction of the Tucuruí hydroelectric power plant caused a large increase
in the surrounding population and displacement of the rural population due to flood-
ing of the area, development of mining projects in adjacent regions and agricultural
colonization in the vicinity of the Trans-Amazon Highway. The wide availability of
fishing resources generated by the reservoir also attracted a large number of people
looking for work, employment and income, causing extreme anthropogenic impacts
in this area[70].

For development of this project were chosen two reservoirs: the reservoir of the
hydroelectric plant of Tucurui[71], [72], viewed as a deep reservoir with a maximum
depth of 77 m average depth of 198m and Cefni reservoir, viewed as a shallow
reservoir [73].

3.1.1 The Tucurui reservoir

The Tucuruí hydroelectric power plant is located in the state of Pará, Brazil. The
reservoir is located at coordinates: latitude 03o 45’ 03”S, longitude 49o 40’ 03”W.
The plant was constructed in Tocantins river, about 7 km from the town of Tucuruí
and 300 km from the city of Belem, the state capital. The reservoir has a total
flooded area of approximately 2,850 m2, with approximately 50.8 million m3 of
water. It is the first large-scale (25 units) hydroelectric project in the Brazilian
Amazon rainforest, with an installed capacity of 8370 MW. The main purpose of
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the dam is hydroelectric power production to the Brazilian states of Maranhão and
Pará and navigation between the upper and lower Tocantins river[71].

Tucurui is considered as a deep reservoir, with a maximum depth of 77 m and
an average depth of 19-8 m. The power plant reservoir was built in Tocantins river,
about 7 km from the city of Tucuruí. The reservoir has a total flooded area of
approximately 2850km2, with approximately 50.8 million m3 of water.

In the Brazilian amazon region there are 5 reservoirs in operation: Couracy
Nunes, Curua Una, Tucurui, Balbina, and Samuel. The UHE Tucuruí plant is a
large-scale hydroelectric power plant that is located in the state of Para on the
Tocantins River[74].

3.1.2 Physico-chemical Parametres analyzed in Tucurui Reservoir

One of the main impacts in the Brazilian Amazon in the last decades has been the
construction of hydroelectric power plants, with their accompanying dams and reser-
voirs, resulting in dramatic alterations to these ecosystems, such as loss of diversity
and large-scale deforestation. Monitoring is fundamental for reservoir management
and the evaluation of anthropogenic environmental impacts. The water quality of
reservoirs in the Brazilian Amazon is greatly influenced by hydrological cycles, that
in turn cause variations of microbiological, physico-chemical characteristics. There
are, however, scarce reports in areas that suffer well-defined hydrological cycles, such
as the Brazilian Amazon. In this context, this study presents an alternative method
for predicting PTotal, FeTotal, Turbidity, Transparency, Fe2, Total Suspended Solids,
PO4, Fe3, Temperature and Chorophylla in the Tucuruí Hydroelectric Power Plant
reservoir, in the Brazilian Amazon, by applying Wavelet transformation of data
obtained from remote sensing images, taking into account the hydrological cycles of
the area, from 2007 to 2014, which were then analyzed by Artificial Neural Networks
and compared to laboratory results.

The Figure 3.1, the components PTotal, FeTotal, Turbidity, Transparency, Fe2,
Total Suspended Solids, PO4, Fe3 are strongly related to Factor 1. The analysis
has been done using the IBM SPSS Statistics Software. This table contains the
unrotated factor loadings, which are the correlations between the variable and the
factor. Because these are correlations, possible values range from -1 to +1.

The figure 3.1 shows the loadings (extracted values of each item under 6 variables)
of the 20 variables on the six factors extracted. The higher the absolute value of
the loading, the more the factor contributes to the variable (We have extracted
six variables where in the 20 items are divided into 6 variables according to most
important items which similar responses in component 1 and simultaneously in
components 2, 3, 4, 5 and 6).

The resuls obtained by Component Matrix showed good correlation for PTotal,
FeTotal, Turbidity, Transparency, Fe2, Total Suspended Solids, PO4, Fe3, Tem-
perature and Chorophylla, indicating that the proposed techniques can be used to
analyze these components.
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Figure 3.1. Component Matrix

3.1.3 Identification and Location of Collection Stations - Tucuruí

For this study, the following sampling stations were chosen: C1, C2, M1, M3, MR,
MBB, ML, MBL, MP, MJV 3.2.

The water collections occurred at the ten points indicated above[75]. these
water collection points have established important differences in morphometry of the
system, which directly influenced the circulation of the flow of water in the region.
The table 3.3 shows some of the relevant descriptions of each point, which will make
it possible to understand of the results found:

3.1.4 Sampling Stations: Tucurui reservoir

Description of the collection stations in Tucurui Reservoir:
Sampling Station: Montante 1(M1)
Located 2 km upstream from the dam on the original Tocantins river channel.

This is important in the monitoring, because it represents the water to be captured
by the generating units and also the water to be sent downstream. When the
reservoir is at the maximum operating level (74m in relation to the sea) depths up
to 70m can be verified.

Sampling Stations: Caraipé 1 (C1) e Caraipé 2 (C2)
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Table 3.1. Geographical location of sampling points located upstream and downstream of
the Tucuruí Hydroelectric Power Plant dam, Brazil- Tucuruí

Sampling Stations Name Latitude Longitude
C1 Caraipé 1 04°32.91’9”S 49°26.44’2”W
C2 Caraipé 2 04°29.46’2”S 49°31.54’2”W
M1 Montante 1 03°45.84’5”S 49°39.54’4”W
M3 Montante 3 04°25’21.7" S 49°30’29.4"W
MR Montantante Novo Repartimento 04°13.05’7”S 49°41.96’3”W
MBB Montante Breu Branco 03°49.75’0”S 49°38.89’5”W
ML Montante Lontra 04°29’20.2"S 49°31’17.5"W
MBL Montante Belauto 04°14’04.3"S 49°27’55.0"W
MP Montante Pucuruí 04°21’22.8"S 49°46’05.7"W
MJV Montante Jacundá Velho 04°32’58.5"S 49°26’24.5"W

Table 3.2. Water collection stations along the reservoir of the Tucurui Hydroelectric Power
Plant - BRAZIL - PA

MSE Validation by Cycle
Parameters Sampling Stations Full Emptying Dry Filling

CHLOROPHYLLa
C1 1.1593 17.1529 0.2679 5.4940
C2 0.1555 4.3905 0.4366 0.0889

MBB 0.3346 0.0070 0.8778 0.1564

TRANSPARENCY
MJV 0.1789 0.0736 0.0156 0.0828
M1 0.0010 0.4436 0.4957 0.0272
M3 0.0966 0.2470 0.2272 0.2318

TSS
M3 0.0444 1.1343 0.0006 1.6069
MJV 0.0106 1.1881 0.0471 0.2483
MIP 1.1363 0.0135 11.3284 0.7024

Located on the left bank of the reservoir in the region currently called "Caraipé
Region" where since 2002 the Sustainable Development Reserve (RDS) . In this
region there are many inhabitants, around 5.000 inhabitants, with a high level of
anthropization characterized by the high level of deforestation in this region. The
two stations are located in the old channel of the Caraipé region presenting depths
of up to 28m and 22m (when the reservoir is full).

Sampling Stations: Montante Breu Branco (MBB)
Located on the right bank of the reservoir, in front of the city of Breu Branco,

region where much of the surface drainage of the city is launched. The sampling
station has a maximum depth of 32 m. This region is located near the urban nucleus
of the municipality of Breu Branco, with few areas of primary forest.

Sampling Stations: Montante Belauto (MBL)
Located on the right bank of the reservoir, full protection area (ie, no residents

allowed). In this region, there are large areas with primary forest, however this part
of the reservoir is characterized by having a retention time superior to the average of
the reservoir, contributing to the fact that the water in this region presents different
physico-chemical characteristics. It has a maximum depth of 26 meters.
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Table 3.3. Characteristics of the sampling points of the Hydroelectric Tucuruí - Pará -
Brazil

Sampling Stations Name Characteristics
C1 Caraipé 1 Islands
C2 Caraipé 2 Islands
M1 Montante 1 Next to dam
M3 Montante 3 Lake - Central channel
MR Montantante Novo Repartimento Lake - left bank of the reservoir
MBB Montante Breu Branco Next to dam
ML Montante Lontra Lake - Central channel
MBL Montante Belauto Lake - right bank of the reservoir
MP Montante Pucuruí Lake - left bank of the reservoir
MJV Montante Jacundá Velho Lake

Sampling Stations: Montante Repartimento (MR ) e Montante Pu-
curuí (MP)

Located on the left bank of the reservoir, in the region of the Sustainable
Development Reserve (RDS). This region is the most dendritic of the reservoir,
that is, it occupied large area, but presents low depth. However, the two stations
have maximum depths of 20m (MP) and 32m (MR) due to their location in the
old pipeline of the Pucuruí and Pucuruizinho streams, respectively. In this region,
there is a place of fish landing "in natura" called "Polo Pesqueiro" to follow the
municipality of Novo Repartimento.

Sampling Stations: Montante Jacundá Velho (MJV)
Located on the right bank, where there was the old urban nucleus of the city of

Jacundá. In this region, there are two landing sites for fresh fish, one of which is
called "Porto Novo" and "Porto da Colônia". This region is quite anthropized with
small areas of native vegetation. The sampling station is located in the old Jacundá
river channel with a depth of up to 22 m (when the reservoir is full).

Sampling Stations: Montante Lontra (ML)
Located on the right bank, near the Indigenous Land of the Parakanã Indians

(today the largest extension continues with native vegetation in the Lake of Tucuruí
region), located in the old Bacuri channel, presenting a maximum depth of 22 m
(when the reservoir is full ).

Sampling Stations: Montante 3 (M3)
Located in the central part of the reservoir, distant approximately 60 km straight

from the Tucurui dam, located in the old Tocantins river, it has a maximum depth
of up to 52 meters (when the reservoir is full).

Sampling Stations: Montante Ipixuna (MIP)
Located in the central part of the reservoir, approximately 130 km straight from

the Tucurui dam, located in the old trough of the river Tocantins. When in the
filling period of the reservoir, it presents depths of up to 42 meters. This presents
the characteristic of behaving like reservoir in the period of full and like river in the
dry period.
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Figure 3.2. Sampling Stations Tucurui Reservoir - Amazon Region

3.1.5 Pre-processing satellite images: Tucurui Reservoir

The satellite images were obtained from the ESPA (https://espa.cr.usgs.gov), cap-
tured by the LandSat 7 of the reservoir from 2007 to 2014. Four images were
collected per year, corresponding to each hydrological cycle for all sampling stations.

Initially a point is chosen for analysis, from this it is cut out an image A in its
surroundings corresponding to 32x32 pixels. Obtaining an array containing 1024
pixels of information. For the next step, the wavelet transform with 1 level of
decomposition is applied, resulting in a reduced image of 16x16 pixels, with 3 images
(H, V, D) of 16x16 pixels representing the Horizontal, Vertical of reduced image.

For the input of the neural network, the matrices H, V and D were converted to
their respective column-arrays and then merged with H, V and D images, generating
a T column vector of size 768. This procedure was performed for the images of
2007,2008,2009, 2010, 2011, 2012, 2013, 2014, generating an input M matrix.

During the validation of the Neural Network, the images of 2014 were used, and it
is necessary to perform the same image processing performed on the previous images.
The process described from image A to generation of the M matrix and subsequent
submission to the analysis and training in the neural network was performed by
hydrological cycle for each point of water collection.
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Figure 3.3. Pre processing: Satellite Image

3.1.6 Wavelet transform and ANN applied to the remote sensing
images

The wavelet transform is an integral transform whose kernel is a class of special
functions, called wavelets [76]. The main advantage of this method compared to
other methods is its spectral location capability in space and frequency, which allows
for the analysis of non-stationary signals in their various scales [77]. The wavelet
transform used in the present study was the discrete transformed, with allows for the
multi-resolution analysis of a signal, decomposing said signal into approximations and
details. The approximations are high ranges, i.e., low-frequency signal components.
The details are the low ranges, i.e., high frequency components[78]. The Haar family
with a degree of decomposition in the Matlab software package was used [79].

One sampling station was initially chosen for analysis and a geographics image
of the water sampling station, of 32x32 pixels, was cropped, corresponding to an
array containing 1024 pixels. Each digital pixel value corresponds to an average
of radiance values, emittance or backscatter of the different targets that can be
contained in the pixel from the vicinity of the water sampling stations, as displayed
in an example in Fig. 3.6

Subsequently, the wavelet transform was applied, with only one level of decom-
position, resulting in a matrix array of 16x16 pixels for each of the following three
components: Horizontal (H), vertical (V) and diagonal (D).

The conversion of the arrays to the H, V and D components to their respective
column-matrices was performed, and subsequently a concatenation of the three
arrays (each containing 256 pixels) was executed, generating a vector with column
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Figure 3.4. Pre Processing Satellite Image: Conversion Matrix Column

size (256 x 3).
This data, the image of the geographical area containing the water sampling

collection point, decomposed via wavelet into its three wavelet components, was
used as the ANN input. Tests were conducted considering the image representations
isolated for each wavelet component, with satisfactory results.

However, when the input data of the three wavelet components was considered,
the approximations were even better, which motivated the choice of this arrangement
in the proposed solution.

The digital values of the pixels of the images cut in the vicinity of the collection
stations of water samples were used as input for the ANN. The digital pixel value
is an average of radiance values, emittance or backscatter of the different targets
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Figure 3.5. Pre processing3: Satellite Image

Figure 3.6. Example of a pixel matrix and it corresponding digital values

that can be contained in the pixel. Thus, the possible differences between the digital
values of the images of the different hydrological cycles used in the study were related
to the output data of chlorophyll-a levels, water transparency and total suspended
solids, forming the input/output pairs for the ANN training. The figure 3.7 displays
a pixel matrix and its corresponding digital values.

The data obtained in the laboratory (estimated) refer to the ANN execution,
which are then compared to the data really observed in 2014. This validates the
ANN output data.

The images from the satellites were obtained during the same timeframe as the
water samplings. For example, if a water sampling was conducted in March 2008, a
satellite image was retrieved in March 2008.

After processing, satellite images were used as inputs to the neural network.
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Figure 3.7. Digital values of the pixels of the images cut in the vicinity

3.1.7 Neural networks

Neural networks are parallel distributed systems consisting of two basic types of
components: the processing units, arranged in one or more layers, interconnected,
called neurons; and the synapses, which are the connections between the processing
units. In the present study, the ANN paradigm applied was the Direct Multilayer
Perceptron, developed using the Matlab software package (Matworks, 2009). Post-
processed images of the ten sampling sites per water cycle were used for the ANN
input and the output variables were the variables chlorophyll-a, total suspended
solids and transparency. The architecture of the ANN consisted of three layers: the
input layer, the hidden layer and the output layer. The validation process of the
ANN was conducted with 2014 images processed according to the method described
in section 2.4. Figure 3.8 displays the architecture ANN with the column vector Pi
(i = 1,2, .., 728) as input. The ANN was trained with the following parameters:

• Learning rate: 0.01.

• Transference function: tansig in all the neurons of the hidden layer and purelin
in the output layer.

• Network training function: Gradient descent with momentum and adaptive
learning rate backpropagation.

The digital values of the pixels of the images cut in the vicinity of the collection
stations of water samples were used as input data for the ANN. Thus, the possible
differences between the digital values of the images of the different hydrological
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Figure 3.8. Schematic of the ANN architecture used in the present study

Figure 3.9. Schematic of the ANN architecture used in the present study

cycles used in the study were related to the output data of chlorophyll-a levels, water
transparency and total suspended solids, forming the input/output pairs for the
ANN training.

The Figure 3.10 shows the procedure performed with the 2007, 2008, 2009, 2010,
2011, 2012, 2013 images, generating an ANN input matrix with 768x7 dimensions
for each measurement of the hydrological cycle (full, emptying, dry and filling) of
the investigated study years. Water samples were collected from the 12 sampling
points, but for 2 points located south of the reservoir (downstream) there were
missing images within the four analyzed years, which would undermine the analysis
in the study. So only the following points sampling points were analyzed:C1, C2,
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M1, MBB, MR, MP, M3, ML, MJV , MIP.

Figure 3.10. Conversion of the image of a water sampling station, by integrating the
wavelet transform and artificial neural network techniques

3.2 The Cefni reservoir

Cefni Reservoir is a reservoir in the centre of Anglesey, Wales which is managed by
Welsh Water and Hamdden Ltd, while the fishery is managed by the Cefni Angling
Association, area: 86 ha and length: 2.3 km Cefni Reservoir on the Isle of Anglesey
was overflown as part of the UK Natural Environment Research Council (NERC).
The lake is shallow, with a maximum depth of approximately 4 m and contains
beds of submersed, floating-leaved and emergent aquatic macrophyte species. It is
also known to support dense growths of toxic blue-green algae during summer. The
reservoir is surrounded by an approximately 100-m wide plantation of coniferous
trees with agricultural fields beyond[73].

3.2.1 Physico-chemical Parametres

Physico-chemical parameters of the water such as PH , CONDUCTIVITY, COLOUR,
CHLOROPHYLLA are important variables for the analysis of Freshwater ecosystems,
that are significant not only for human populations but also essential for plant and
animal diversity.
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Figure 3.11. Conversion of the image of a water sampling station, by integrating the
wavelet transform and artificial neural network techniques

Figure 3.12. Conversion of the image of a water sampling station, by integrating the
wavelet transform and artificial neural network techniques

Freshwater lakes are significant not only for human populations but also essential
for plant and animal diversity. These aquatic systems are unique and rich in
biodiversity at the same time are under constant threat due to bludgeoning human
populations and their demand for land[80].
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The concentration of the hydrogen ion in water is usually measured in terms of
pH. The pH or negative logarithm of the hydrogen ion concentration is a master
variable in water quality because the hydrogen ion influences many reactions. The
optimum pH range for most aquatic organisms is 6.5–8.5, and the acid and alkaline
death points are around pH 4 and pH 11, respectively. Most living organisms do not
tolerate large variations in pH and may die. [81][82].

The pH of natural waters is strongly influenced by the concentration of carbon
dioxide, which is considered an acid gas[82]. Because dissolved carbon dioxide is
acidic, rainwater that is saturated with this gas is naturally acidic—usually about
pH 5.6.[81].

Water bodies with moderate to high alkalinity are well-buffered against wide
daily swings in pH resulting from net removal of carbon dioxide by photosynthesis
during daytime and return of carbon dioxide to the water by respiratory process at
night when there is no photosynthesis. [81]

Conductivity defines the ability of water to conduct electricity.This parameter
provides a good indication of changes in the composition of water as pollutant
particles. This type of measurement accesses the concentration of ions in a solution.
More the ions higher will be the conductivity. For water to be pure it’s conductivity
should be poor.

Generally there are two types of conductivity sensors: two electrodes and multiple
electrodes from which two electrodes sensor is commonly used. It is made by using
two platinum plates deposited on two parallel glass or inner wall of glass tube.
Conductivity of water measures in µs/cm or mA [83].

Colour is water quality parameters that detract from the appearance of water,
colour refers to Transparency condition of water,organic material that has dissolved
into solution and important in determining Secchi disk depths among reservoir [84].

The Chlorophyll-a (Chl-a) concentration is commonly used as a proxy for phyto-
plankton biomass and as indicator for eutrophication and it can be retrieved from
remote sensing data[85].Chl-a is a direct indicator used to evaluate the ecological
state of a waterbody, such as algal blooms that degrade the water quality in lakes,
reservoirs and estuaries[86].

Many scientists have studied on the influence of freshwater physico-chemical
parameters to the changing ecosystems. Studies involving the statistical analysis,
wavelet signals, neural network, remote sensing and water sampling have been used
in the monitoring of ecosystems [25][26][27][28] [29].

Several operational monitoring systems based on remote sensing are in place to
monitor the reservoir. However, evaluations of reservoir monitoring systems based
on satellite data are scarce. The methods currently used for water analysis are time-
consuming, extremely costly, because it requires sample collection, trained people
and specialized laboratories. Predicting these parameters helps decision-making in
the present and planning in the future.

Artificial neural network algorithm can be used for simulates human learning
processes through establishment and reinforcement of linkages between the input
and output data and can make relationship of a dependent variable with independent
variables.

Even with a correct model applied by a well-trained analyst, all predictions
remain subject to fundamental uncertainties, especially with regards to variation
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in aspects such as actual weather conditions[87].In order to reduce this uncertainty,
many investigations are conducted to find a more efficient model that allows the
researchers to infer with greater precision the estimation of water quality parameters.

Predictions based on time series are efficient for treatment of uncertainty. Thus
arises interest in prediction physico-chemical parameters, in which the difficulty
involves to estimate these parameters through the reflectance of satellite images
associating a set of data available in data collection.

In the context of water quality parameters, we propose an alternative for retrieval
through prediction with ANFIS that are adjusted, or trained, so that a given input
leads to a specific target output.

To this end, a case study with the data of the Cefni reservoir was applied, aiming
to clarify the benefits of the ANFIS, emphasizing its efficiency and simplicity of
implementation.

3.2.2 Pre-processing satellite images: Cefni Reservoir

For Cefni Reservoir we intent analyze remote sensing images were obtained from
the ESPA satellite image bank, captured by a Landsat 8 satellite and Sentinel 2
satellite from 2007 to 2016, using the spectral band 1, band 2, band 3 and band 4.
The combination of the three basic colors (blue, green and red), landsat 8, for Cefni
reservoir is shown in figure 3.13
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Figure 3.13. Cefni Reservoir: Pre processing satellite imagens
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Chapter 4

Application of the Methodology
and Results

4.1 Factor Analysis
Descriptive statistics were used to analyze the physico-chemical Parameters of water.
Factor analysis on the database for validity was performed using tests contained in
SPSS. Exploratory Factor Analysis (EFA) was applied to the all parameters. Tests
Used In Factorial Analysis: Bartlett’s sphericity test and Kaiser-Meyer-Olkin (KMO).
Kaiser-Meyer-Olkin (KMO): This measure is represented by an index (KMO) that
assesses the adequacy of the factorial analysis, being calculated by:

KMO =

∑ ∑
j 6=k

r2
jk∑ ∑

j 6=k
r2
jk +

∑ ∑
j 6=k

q2
jk

(4.1)

where the correlation matrix is R = [rij ] and the partial covariance matrix is
Q = [qij ]. The overall KMO measure of sample adequacy is given by the above
formula taken over all combinations and j 6= k.

If the partial correlation is near to zero, the PCA can perform efficiently the
factorization because the variables are highly related: KMO ∼= 1.

First, the Keiser-Meyer-Olkin (KMO) test for sampling adequacy and Bartlett’s
test for sphericity was done. The KMO value was 0.78, in this case, KMO is over
then 0.5, indicate that Factor Analyses Method is appropriate for this analyses.

The Bartlett’s test checks if the observed correlation matrix R=(rij)(p x p)
diverges significantly from the identity matrix (theoretical matrix under H0: the
variables are orthogonal). Principal Component Analysis (PCA) is the most widely
used unsupervised dimensionality reduction approach. In recent research, several
robust PCA algorithms were presented to enhance the robustness of PCA model[88].
The PCA can perform a compression of the available information only if we reject
the null hypothesis [89].

In order to measure the overall relation between the variables, we compute the
determinant of the correlation matrix |R|. Under H0, |R| = 1; if the variables are
highly correlated, we have |R|= 0. The Bartlett’s test statistic indicates to what
extent we deviate from the reference situation |R| = 1. It uses the following formula.
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X2 = −
[
(n− 1)−

(2P + 5
6

)]
ln |R| (4.2)

Where:
n: sample size
p: number of variables
|R|: determinant of the correlation matrix

Under H0, it follows a distribution with a [p x (p-1) / 2] degree of freedom.
The Bartlett test presented significant value. Six factors were obtained with

total variance explained of 68.68. Fig. 4.2 shows the factors, total and cumulative
variances. The method of factor extraction was Principal Components and the
orthogonal varimax rotation.

In Fig. 4.4 Component Matrix, the parameters PTotal, FeTotal, Turbidity,
Transparency, Fe2, Total Suspended Solids, PO4 and Fe3 accounted for the greatest
amount of common variance compared to the rest of components.

This is again reflected in Fig. 4.3 the scree plot for physico-chemical Parameters.
It had six values above the eigenvalue of 1. Even though the seven score (0.92),
and eight score (0.86) and nine score (0.71) were below eigenvalue of 1 and did not
contribute sufficiently to the model, its presence, nevertheless, was indicative that
with sufficient power, its score could increase to above eigenvalue of 1. This could
result in the formation of more three components.

The Principal Component Analysis(PCA) extraction method component matrix
clearly demonstrated that PTotal, FeTotal, Turbidity, Transparency, Fe2, Total
Suspended Solids, PO4, Fe2 and Fe3 parameters were related to Factor 1, observed
in Fig. 4.5 , this means a strong correlation between these parameters.

The figure 4.1 refers to commonalities, which are quantities of variance, that is,
correlations of each variable explained by the factors. High value of commonality
means that the variable has great power of explanation. The minimum acceptable
value is 0.5 and the maximum is 0.8.

The figure 4.4 in this case showed the relation of the elements PTotal, FeTotal,
Turbidity, Transparency, Fe2, Total Suspended Solids, PO4 and Fe3, grouped in
Factor 1 (F1), with a strong correlation between these parameters. We can conclude
that these elements present great reflectance in bodies of water, being possible the
analysis through satellite images.

Table 4.1. KMO and Bartlett’s Test

KMO and Bartlett’s Test
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.78

Bartlett’s Test of Sphericity
Approx. Chi-Square 1414.6

df 190.00
Sig. 0.00

Figure 4.1Extraction Method: Principal Component Analysis.
Figure 4.2 Extraction Method: Principal Component Analysis.
Figure 4.4Extraction Method: Principal Component Analysis. 6 components

extracted.
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Figure 4.5 Extraction Method: Principal Component Analysis. Rotation Method:
Varimax with Kaiser Normalization. Rotation converged in 8 iterations.

Figure 4.6 Extraction Method: Principal Component Analysis. Rotation Method:
Varimax with Kaiser Normalization.

Figure 4.7 Extraction Method: Principal Component Analysis. Rotation Method:
Varimax with Kaiser Normalization. Component Scores.

4.2 Artificial Neural Network Results

The integration of water quality parameters is essential in environmental monitoring
and very important for decision-making. Advanced techniques to manage are required
in complex evaluation process. We here propose a ANN hybrid model to assess
reservoir water quality using Remote Sensing and Wavelet Transform.

Surface water quality is a major environmental concern as it is a main source of
fresh water for human consumption governed by the complex anthropogenic activities
and natural processes[90].

The changes in the water body ecosystem especially in rivers and lakes have
a major impact on human welfare and the aquatic environment [91]. Continuous
deposition of solid waste material and contaminants in the water of lakes and rivers
has become a global health concern as these are a major source of water supply for
human consumption and domestic purposes [92].

In Brazil due to a large demand for electricity, there is a growing number of
hydroelectric power plants in the water reservoirs to generate energy. Monitoring
the reservoirs is important for the decision-making process.

The parameters selected for analysis are strongly related to the water quality
monitoring, such Chlorophyll-a, TSS and transparency, PTotal, FeTotal, Turbidity,
Transparency, Fe2, PO4, Fe3. For example Clorophyll-a levels are responsible for
the photosynthetic process and reflect the phytoplankton biomass in the ecosystem,
while water transparency allows for estimations regarding the depth of the photic
zone, i.e. the vertical depth of sunlight penetration in the water column, which
indicates the level of photosynthetic activity in the reservoir [93] and, TSS can,
among other effects, cause damage to aquatic life by settling at the bottom of
the reservoir, destroying organisms and retaining bacteria and organic waste by
promoting anaerobic decomposition [93], [24]. In this sense, these characteristics are
routinely used to measure the trophic status of lakes.

These parameters, as mentioned previously, require extensive fieldwork in col-
lecting the samples, which are then analyzed by trained personnel in laboratory
conditions. Usually, the applied measurement techniques for some of these parame-
ters are sophisticated, such as determination of clorophyll-a by spectrophotometry
after extraction with hot ethanol and turbidity by nephelometric method, then
scattered angle from the beam directed at the water sample [94].

In this research we propose the use of remote sensing techniques for the monitoring
and prediction of water quality parameters. Nowadays, with advanced hardware
and software, processing and analyzing satellite images have become easier and less
costly, alongside the improvement of spatial and temporal resolution of the satellite
imagery, in addition to algorithm optimization, has led to the acknowledgment of
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the incredible potential of this technique to monitor and, consequently, improve,
water quality [95].

Global estimations of chlorophyll concentrations for example, have been investi-
gated by several marine-specific satellite missions for the visible wavelength range,
including SeaWiFS, MERIS and the planned Ocean and Land Colour Imager [96],
[97].

Trophic classifications have been obtained based on these methods, by applying
IRS-1C satellite imaging in monitoring chlorophyll content, for example, in specific
water bodies, such as lakes, while anthropogenic impacts have also been demonstrated
using these techniques, such as in the very recent study conducted in the Amazon
that analyzed 40 years of Landsat-MSS/TM/OLI images to monitor the impacts of
mining activities near the Tapajós River and observed that TSS concentrations were
directly related to the mining activities [98].

The coupling of remote sensing with other statistical and computation techniques
has, increasingly, been applied and proven valid in monitoring water quality. The
alternative method described in the present study with wavelet transformation of
the remote sensing images and analysis by ANN, thus, would contribute positively
to laboratory analysis in the determination of the mentioned parameters, which is
obviously advantageous for numerous reasons. Thus, the application of predictive
methods as the one proposed in the present study are of interest since they provide
alternative methods to obtain good accuracy and are less expensive than the pro-
cedures presently used in environmental monitoring programs conducted in these
ecosystems.

Accordingly, the proposal established herein is to work with past data from
previous years, classified per hydrological cycle, to predict the values for future
hydrological cycles, hence, the fact that we used data from previous hydrological
cycles, from 2007 to 2014 in the Tucurui reservoir, and data from the 2014 hydrological
cycle for validation. The ANN training results of the wavelet transformed remote
sensing images for each sampling stations and the four stages of the well- defined
hydrological cycle were considered adequate, with low mean square errors (MSE)
displayed in Table 4.2 for the following sampling stations: C1, C2, M1, M3, MBB,
MIP, ML, MP, MP in the Tucurui Reservoir - Amazon region.

Following ANN training, the methodology was validated by comparing laboratory-
obtained results for chlorophyll-a levels, TSS and transparency with the results
obtained by the proposed methodology for the year 2014. Table 4.3 displays the
approximation errors between the values obtained in the laboratory and those
calculated by the proposed methodology per sampling station and hydrological cycle
for the year 2014. The approximation errors were calculated as follows 4.3 :

Err(i) = V_lab(i)− Y (i) (4.3)

Where:
V_lab (i): Is the value obtained in the laboratory for this parameter
Y(i): Is the output variable obtained by the ANN.

The figures 4.8, 4.9, 4.10, 4.11 shows the validation results for 2014 for Chloro-
phylla in the C1, C2, MBB, MR sampling stations, with the laboratory results
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Table 4.2. Mean Square Errors (MSE) in the ANN training conducted in the present study

MSE
Parameters Station Full Emptying Dry Filling

C1
Transparency 2.73× 10−24 2.34× 10−23 4.60× 10−22 4.65× 10−23

TSS 1.29× 10−24 3.57× 10−23 3.72× 10−22 9.18× 10−25

Chlorophylla 3.49×1 0−22 4.31× 10−23 3.93× 10−24 2.4× 10−23

C2
Transparency 1.43× 10−22 3.51× 10−21 4.08× 10−22 1.58× 10−21

TSS 1.88× 10−23 8.44× 10−23 1.68× 10−23 6.52× 10−23

Chlorophylla 8.69× 10−24 5.24× 10−24 1.84× 10−23 2.25× 10−23

M1
Transparency 1.14× 10−22 9.09× 10−23 1.47× 10−22 1.90× 10−22

TSS 9.89× 10−23 9.95× 10−22 2.57× 10−21 1.18× 10−22

Chlorophylla 1.63× 10−24 9.49× 10−23 2.25× 10−24 4.74× 10−24

M3
Transparency 1.45× 10−21 1.21× 10−23 1.32× 10−22 6.02× 10−23

TSS 2.32× 10−24 9.94× 10−23 2.14× 10−23 8.16× 10−25

Chlorophylla 7.00× 10−24 3.44× 10−23 3.05× 10−24 2.71× 10−22

MBB
Transparency 4.14× 10−22 5.59× 10−22 1.20× 10−23 5.00× 10−23

TSS 3.22× 10−24 9.94× 10−24 6.05× 10−24 2.55× 10−22

Chlorophylla 2.92× 10−25 1.22× 10−22 1.33× 10−23 3.65× 10−24

MIP
Transparency 2.41× 10−21 1.25× 10−22 1.77× 10−22 2.27× 10−21

TSS 5.97× 10−25 6.10× 10−22 6.74× 10−23 6.18× 10−22

Chlorophylla 9.75× 10−24 8.09× 10−23 3.83× 10−24 4.03× 10−24

ML
Transparency 3.65× 10−23 3.36× 10−21 1.19× 10−22 1.99× 10−22

TSS 1.27× 10−22 2.24× 10−22 2.15× 10−22 2.06× 10−22

Chlorophylla 2.47× 10−24 5.43× 10−24 1.99× 10−24 1.48× 10−24

MP
Transparency 3.86× 10−22 2.51× 10−22 2.64× 10−22 3.08× 10−22

TSS 3.02× 10−24 2.04× 10−22 8.44× 10−25 1.85× 10−23

Chlorophylla 1.33× 10−22 7.57× 10−24 7.61× 10−24 4.28× 10−24

MR
Transparency 2.76× 10−23 2.34× 10−24 4.20× 10−22 4.09× 10−21

TSS 1.35× 10−22 4.92× 10−23 3.99× 10−23 8.55× 10−24

Chlorophylla 3.16× 10−24 8.84× 10−24 2.47× 10−23 2.10× 10−22

being the “observed values” and those obtained by wavelet transformation of the
remote sensing images and subsequent analysis by ANN, proposed herein, being the
“estimated values”, regarding chlorophyll-a, total suspended solids and transparency.
The X-axes of figures represent the hydrological cycles (1, 2, 3 and 4, respectively,
the full, emptying, dry and filling stages). The Y-axis represents the quantitative
value of the analyzed parameter in a given hydrological cycle.

The figures 4.12, 4.13, 4.14, 4.15, 4.16, 4.17 shows the validation results for 2014
for TSS in the M1, M3, MIP, MJV, ML, MP sampling stations.

The figures 4.12, 4.13, 4.14, 4.15, 4.16, 4.17 shows the validation results for 2014
for TSS in the M1, M3, MIP, MJV, ML, MP sampling stations.

The figures 4.18, 4.19, 4.20, 4.21, 4.22, 4.23 shows the validation results for 2014
for Transparency in the M1, M3, MBB, ML, MP, MR sampling stations.

As previously stated, we propose remote monitoring of the reservoir using
LandSat7 to predict the physico-chemical parameters of the water in seven (7) points
as can be seen in fig 3.2. The following sampling stations C1, C2, M1, M3, MBB,
MJV, MIP were selected.

The collection of water in these points were done periodically 4 times a year
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corresponding to the hydrological cycle: full, empyting, dry and filling. The different
cycles are a consequence of the differences in rainfall during the year and they
influence a lot the water monitoring. Hydroelectric plants currently constitute an
indispensable component for supplying renewable energy. However, this reservoir,
as the others in the Amazon region, has had several impacts on the ecosystem:
loss of biodiversity of terrestrial and aquatic fauna and flora, high concentration
of organic matter in the water bottom due to vegetation inundation, chemical
changes in the water downstream, large volume of anoxic water in the reservoir and
downstream, loss of water quality (low dissolved oxygen, high conductivity, low pH,
high content of dissolved and particulate, organic matter), high concentration of
aquatic macrophytes and reduction of fisheries downstream.

The reservoir has impacted also on the human settlements in the area by weak-
ening physical infrastructure, decreasing efficiency in land use, creating resettlement
problems and influencing mining operations on the reservoir itself [99]. For these
reasons, the area is of highly interest and water monitoring is one of the important
things that have to be in place to ensure the sustainability of the reservoir.

The ANN training results for the monitoring of this important reservoir by
sampling stations and hydrological cycle water are shown in the table 4.7, the values
are considered low, mean square errors (MSE) for neural network training as follows
for Chlorophyll_a, Transparency and Total Suspended Solids.
The Relative Errors were calculated by the equation (4.4) and showed in 4.9 :

RelativeError(Er) = |Xe −Xo|
Xo

(4.4)

where:
Xe: Estimated Value
Xo: Observed Value

Figures 4.24, 4.25, 4.26 shows the validation results for 2014 for C1, C2, M1,
M3, MBB, MJV and MIP sample stations, with the laboratory results being the
“observed values” and those obtained by wavelet transformation of the remote sensing
images and subsequent analysis by ANN, proposed herein, being the “estimated
values”, regarding chlorophyll-a, total suspended solids and transparency. The
X-axes of figures represent the hydrological cycles (1, 2, 3 and 4, respectively, the
full, emptying, dry and filling stages). The Y-axis represents the quantitative value
of the analyzed parameter in a given hydrological cycle.

As the results given in table 4.8 and 4.9 show the errors between expected and
observed values are quite low. In particular, the bests results were obtained during
the dry season cycle 3 (September-October-November) for Total Suspended Solids.
This period corresponds to the less cloudy period in the region. This facilitate the
analysis based on satellite images and allows to obtain most accurate results.

In general, the errors are considered low and neural network showed good results
and can aid in the evaluation of physico-chemical parameters, which in turn allows
the identification of possible anthropogenic impacts, being relevant in environmental
management and in political decision-making processes.

The results estimated by the method proposed in the present study, when
compared with those observed in the laboratory proved extremely close to each other,
demonstrating adequate efficiency of the proposed method. As the relationship
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between the estimated data and in-situ data is reliable, it would therefore be
possible to estimate and chart the water quality of this reservoir back to the first
satellite images obtained for the area, which would be interesting in order to track
anthropogenic impacts rates throughout the years, from 1984 until today.

Potential sources of error when using remote sensing images can be due to varying
atmospheric conditions. These include bad weather conditions, such as clouds, which
affect the amount of incoming solar radiation reaching the water surface and the
fraction of light leaving the water surface that reaches the satellite sensor[100]. In
fact, clouds have been shown to interfere significantly in the monitoring of physico-
chemical water characteristics and novel methods are being developed to surpass
this issue, such as a model based on the ratio of green and blue band reflectance
considering the bio-optical property of chlorophyll-a combined to ordinary kriging,
which model was highly capable of predicting the chlorophyll-a concentration in
regions covered by clouds and thus, effective in monitoring water quality in tropical
shallow waters[101].

In addition, sun glint, the specular reflection of light from water surfaces towards
the satellite sensor, is also a serious confounding factor for remote sensing of water
column properties and benthos [97] .

Retrieval of information such as chlorophyll content, benthic features or bathymetry
in these cases requires both high measurement sensitivity and a robust algorithm
that can separate and remove the effect of glint [97]. Sun glint correction methods
have been previously applied, such as use of wind speed and direction, application
of neural networks [102], scaling depending on the brightest and darkest points of
the images [103], use of the depth of the 760 nm oxygen absorption band [104] or
methods using predictions of reflection based on water surface models (applied in
operational ocean color data processing spatial resolutions of 100–1,000 m) and those
that use in-scene information with the assumption of no near-infrared wavelength
radiance leaving the water surface (applied to high resolution images of coral reefs
and other shallow waters with pixel sizes of around 1–10 m) [29], [105].

Novel methods such as applying neural networks to separate the effects of the
aerosol scattering, water-leaving radiance and glint are also being developed[97].

In the present study, slightly different values between estimated and in-situ data
were observed in some cases, attributed to either the presence of clouds or sun glint
in the remote sensing images, corroborating previous studies [100].

This should, thus, be taken into account when applying this type of methodology
to environmental monitoring of reservoirs, even though differences were very slight,
and corrections to these issues were done using the Dark Object Subtraction (DOS)
method, providing better results in this research.

Even though atmospheric conditions influenced estimated and in-situ data in
the present study, the proposed method is still shown to be reliable in comparison
to other studies that also suffered atmospheric interferences, such as a study that
evaluated the performance of images obtained from the sensor Operational Land
Imager (OLI) onboard the Landsat-8 satellite in determining Chl-a concentrations
and aiming at classifying a Brazilian tropical reservoir in the state of São Paulo with
regard to trophic status, that showed reasonable results but impaired performance
due to atmospheric influences [34].

On the other hand, the use of Support Vector Machines in conjunction with a
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Radial Base function using TM/Landsat-5 time-series images showed more interesting
results, albeit applied to observe differences in Land Use and Land Cover in a
Hydroelectric system located between the states of Rio de Janeiro and São Paulo,
also in Brazil [35].

Another study estimated the coloured dissolved organic matter absorption co-
efficient at 440 nm at another Brazilian reservoir in São Paulo using operational
land imager (OLI)/Landsat-8 images and created distribution maps based on the
adjusted algorithm. The authors of that study were able to adequately analyze this
inland water body by the proposed method, but state that future research is needed
to confirm if this model can be used in other reservoirs [33].

We intend to overcome these issues in this research and apply the methodology
in other water reservoirs, in order to validate the proposal in a broader and concise
way. This is also the case in the present study, where future studies are still required
since, even though the data was very satisfactory regarding eutrophic categorization,
there is no information of the application of this model in other ecosystems, which
shall be the basis for future studies in order to demonstrate wider applicability.

4.3 Final Considerations

The present study demonstrated the application of wavelet Neural Network for
estimating Chlorophyll-a levels, Transparency and Total Suspended Solids using
concentration of the water samples collected in the Amazon reservoir. Satellite
images, landsat7, ETM + sensor, band 1 (TM1), band 2 (TM2), band 3 (TM3) and
band 4 (TM4) were used to train the ANN by hydrological cycle (full, emptying,
dry, fillying) for 4 years.

A time series was analyzed and parameters were predicted with good acuracy
considering the well-defined seasonal characteristics of the region. The method
resulted in satisfactory approximations of laboratory results regarding the same
water samples.

The neural network demonstrated good results between observed and estimated
after Atmospheric corrections in satellites images. The ANNs showed in the results
are useful to estimate these concentrations using remote sensing and wavelet trans-
form. Therefore, the techniques proposed and applied in the present study are very
importante since they can aid in evaluating important physico-chemical parameters,
which, in turn, allows for identification of possible anthropogenic impacts, being
relevant in environmental management and policy decision-making processes.

It is clear that the method proposed in this study is specific for reservoirs such
as Tucuruí, which have well defined hydrological cycles, although nothing prevents
this method from being used in the monitoring of waters of other reservoirs, which,
in turn, must consider the seasonal differences from each region. Thus, the results
can help in environmental monitoring by proposing a less expensive alternative in
environmental decision-making processes.

This research contributes the evaluation of different methods accuracy in esti-
mating of physico-chemical parameters, from multispectral satellite images. Future
studies will be conducted regarding atmospheric interferences and corrections and
different ecosystem characteristics. The method proposed allows the identification
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of possible anthropogenic impacts, being relevant in environmental management, in
order to mitigate these impacts and attempt the recovery of degraded water bodies.
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Figure 4.1. Communalities
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Figure 4.2. Total Variance Explained

Figure 4.3. Scree Plot
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Figure 4.4. Component Matrix
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Figure 4.5. Rotated Component Matrix

Figure 4.6. Component Transformation Matrix
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Figure 4.7. Component Score Coefficient Matrix

Figure 4.8. Predicting Chlorophylla in hydroelectric power plant reservoir by wavelet
transformation of spectral bands for sample station: C1
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Table 4.3. Approximation errors of the proposed method for 2014 per sampling station,
evaluated parameter and hydrological cycle.

FULL
Station Variable Error Lab Ann

C1
Transparency 0.2814 1.4 1.6814

TSS 2.6139 1.33 3.9439
Chlorophylla 5.9924 2.38 8.7924

C2
Transparency 0.2192 2.8 3.0192

TSS 0.0823 1.4 1.3177
Chlorophylla 0.8967 4.76 5.6567

M1
Transparency 0.5216 1.8 2.3216

TSS 1.1455 1.6 2.7455
Chlorophylla 6.0581 2.62 8.6781

M3
Transparency −0.328 1.2 0.0872

TSS 3.9784 5 8.9784
Chlorophylla 0.8267 5.95 6.7767

MBB
Transparency 0.1356 2.2 2.3356

TSS −0.2081 2 1.7919
Chlorophylla −1.4084 3.81 2.4016

MIP
Transparency 0.0627 0.5 0.5627

TSS 16.4403 24 40.4403
Chlorophylla −1.92 5.78 3.86

ML
Transparency 0.4832 1.4 1.8832

TSS 0.1003 4.1 4.2003
Chlorophylla −4.678 5.155 0.477

MP
Transparency −0.097 2.7 2.603

TSS 1.6706 1.6 3.2706
Chlorophylla 0.3362 6.19 6.5262

MR
Transparency −0.2057 2.5666 2.3609

TSS −1.7169 2.8 1.0831
Chlorophylla −1.2658 8.57 7.3042
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Table 4.4. Approximation errors of the proposed method for 2014 per sampling station,
evaluated parameter and hydrological cycle.

Emptying
Station Variable Error Lab Ann

C1
Transparency 0.2792 2.8 3.0792

TSS 1.0023 1.4 2.4023
Chlorophylla 0.6872 3.81 4.4972

C2
Transparency −0.5621 3.45 2.8879

TSS 0.8448 1 1.8448
Chlorophylla −2.5848 9.045 6.4602

M1
Transparency 0.0009 4.2 4.2009

TSS −0.2141 0.4 0.1859
Chlorophylla 2.0696 1.9 3.9696

M3
Transparency −0.4106 3 2.5894

TSS −0.125 1.2 1.075
Chlorophylla 0.7833 5.47 6.2533

MBB
Transparency −0.6815 4.3 3.6185

TSS 0.9171 1 1.9171
Chlorophylla 0.1938 3.57 3.7638

MIP
Transparency −0.3955 1.9 1.5045

TSS 5.3545 1.8 5.3345
Chlorophylla 0.29309 3.09 6.0209

ML
Transparency −0.5521 3.2 2.6479

TSS 0.1969 1.4 1.5969
Chlorophylla 1.8254 5.47 7.2954

MP
Transparency −0.9233 2.9 1.9767

TSS 0.7272 1.5 2.2272
Chlorophylla −0.1882 6.305 6.1168

MR
Transparency −0.5146 3.066 2.552

TSS 0.3851 1.3 1.6851
Chlorophylla 2.478 5.83 8.308
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Table 4.5. Approximation errors of the proposed method for 2014 per sampling station,
evaluated parameter and hydrological cycle.

Dry
Station Variable Error Lab Ann

C1
Transparency −0.4642 3 2.5358

TSS −0.0085 1.2 1.1915
Chlorophylla −2.7352 4.76 2.0248

C2
Transparency 0.61 1.6 2.21

TSS −1.823 4 3.177
Chlorophylla −4.3263 12.14 7.8137

M1
Transparency 0.3704 4.2666 4.637

TSS −0.637 0.8 0.163
Chlorophylla −1.9406 1.9 −0.0406

M3
Transparency −0.3566 2.7 2.3434

TSS 0.7951 0.8 1.5951
Chlorophylla 1.1384 4.76 5.8984

MBB
Transparency 1.0036 3.6 4.6036

TSS −0.4702 1.8 1.3298
Chlorophylla −0.3239 5.47 5.1461

MIP
Transparency 1.2495 1.1 2.3495

TSS −1.788 3.4 1.612
Chlorophylla −5.1001 3.81 −1.2901

ML
Transparency 0.0592 1.8 1.8592

TSS −0.7169 3.5 2.7831
Chlorophylla 3.4678 9.64 113.1078

MP
Transparency 0.2012 1.9 2.1012

TSS 3.5004 4.6 8.1004
Chlorophylla −1.1722 12.61 11.4378

MR
Transparency −0.8117 2.3333 1.5216

TSS −0.9255 2.4 1.4745
Chlorophylla −1.0767 4.52 3.4433
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Table 4.6. Approximation errors of the proposed method for 2014 per sampling station,
evaluated parameter and hydrological cycle.

Filling
Station Variable Error Lab Ann

C1
Transparency −0.4097 2.8 2.3903

TSS 2.5042 1.8 4.3042
Chlorophylla −1.1741 6.66 5.4859

C2
Transparency −0.7294 1.95 1.2206

TSS 3.5761 3.8 7.3761
Chlorophylla 14.9382 13.39 28.3282

M1
Transparency 2.3255 1.5333 3.8558

TSS 0.0816 2.3 2.3816
Chlorophylla 0.1989 2.62 2.8189

M3
Transparency −0.0499 1.3 1.2501

TSS −1.1787 5.2 4.0213
Chlorophylla 1.6353 6.9 8.5353

MBB
Transparency 0.3015 1.6 1.9105

TSS 0.0929 2.2 2.2929
Chlorophylla 0.08846 2.86 3.7446

MIP
Transparency −0.2286 0.8 0.5714

TSS 12.6127 24.75 37.3627
Chlorophylla −1.8653 5.71 3.8447

ML
Transparency 0.0279 0.8 0.8279

TSS −1.0154 9.2 8.1846
Chlorophylla 3.2846 5.95 9.2346

MP
Transparency 0.1187 0.95 1.0687

TSS −2.2222 8.45 6.2278
Chlorophylla 4.0724 10.83 14.9024

MR
Transparency −0.2366 2.5 2.2634

TSS −0.6972 2.5 1.8029
Chlorophylla 2.5624 7.14 9.7024
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Figure 4.9. Predicting Chlorophylla in hydroelectric power plant reservoir by wavelet
transformation of spectral bands for sample station: C2

Figure 4.10. Predicting Chlorophylla in hydroelectric power plant reservoir by wavelet
transformation of spectral bands for sample station: MBB
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Figure 4.11. Predicting Chlorophylla in hydroelectric power plant reservoir by wavelet
transformation of spectral bands for sample station: MR

Figure 4.12. Predicting Total Suspended Solids in hydroelectric power plant reservoir by
wavelet transformation of spectral bands for sample station: M1
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Figure 4.13. Predicting Total Suspended Solids in hydroelectric power plant reservoir by
wavelet transformation of spectral bands for sample station: M3

Figure 4.14. Predicting Total Suspended Solids in hydroelectric power plant reservoir by
wavelet transformation of spectral bands for sample station: MIP
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Figure 4.15. Predicting Total Suspended Solids in hydroelectric power plant reservoir by
wavelet transformation of spectral bands for sample station: MJV

Figure 4.16. Predicting Total Suspended Solids in hydroelectric power plant reservoir by
wavelet transformation of spectral bands for sample station: ML
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Figure 4.17. Predicting Total Suspended Solids in hydroelectric power plant reservoir by
wavelet transformation of spectral bands for sample station: MP

Figure 4.18. Predicting Transparency in hydroelectric power plant reservoir by wavelet
transformation of spectral bands for sample station: M1
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Figure 4.19. Predicting Transparency in hydroelectric power plant reservoir by wavelet
transformation of spectral bands for sample station: M3

Figure 4.20. Predicting Transparency in hydroelectric power plant reservoir by wavelet
transformation of spectral bands for sample station: MBB
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Figure 4.21. Predicting Transparency in hydroelectric power plant reservoir by wavelet
transformation of spectral bands for sample station: ML

Figure 4.22. Predicting Transparency in hydroelectric power plant reservoir by wavelet
transformation of spectral bands for sample station: MP



56 4. Application of the Methodology and Results

Figure 4.23. Predicting Transparency in hydroelectric power plant reservoir by wavelet
transformation of spectral bands for sample station: MR

Table 4.7. Mean Square Errors (MSE) in the ANN training conducted in the present study

MSE
Parameters Station Full Emptying Dry Filling

CHLOROPHYLLa
C1 1.25× 10−23 3.70× 10−07 1.35× 10−22 6.68× 10−24

C2 4.44× 10−22 3.97× 10−24 5.61× 10−22 2.73× 10−07

MBB 1.27× 10−22 5.37× 10−09 1.33× 10−23 2.04× 10−22

TRANSPARENCY
MJV 3.78× 10−06 3.72× 10−08 2.43× 10−22 1.11× 10−22

M1 5.39× 10−08 2.78× 10−07 5.83× 10−07 1.88× 10−10

M3 1.14× 10−08 9.67× 10−09 3.15× 10−22 4.67× 10−21

TSS
M3 4.63× 10−07 2.43× 10−08 9.88× 10−23 3.83× 10−23

MJV 3.10× 10−05 7.70× 10−09 1.31× 10−21 3.80× 10−23

MIP 4.89× 10−24 5.06× 10−09 3.01× 10−04 1.66× 10−22

Table 4.8. Approximation errors for 2014 per sampling station, evaluated parameter and
hydrological cycle.

MSE Validation by Cycle
Parameters Station Full Emptying Dry Filling

CHLOROPHYLLa
C1 1.1593 17.1529 0.2679 5.4940
C2 0.1555 4.3905 0.4366 0.0889

MBB 0.3346 0.0070 0.8778 0.1564

TRANSPARENCY
MJV 0.1789 0.0736 0.0156 0.0828
M1 0.0010 0.4436 0.4957 0.0272
M3 0.0966 0.2470 0.2272 0.2318

TSS
M3 0.0444 1.1343 0.0006 1.6069
MJV 0.0106 1.1881 0.0471 0.2483
MIP 1.1363 0.0135 11.3284 0.7024
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Table 4.9. Relative Error (Er) per sampling station, evaluated parameter and hydrological
cycle.

Relative Error
Parameters Station Full Emptying Dry Filling

CHLOROPHYLLa
C1 0.0800 0.5791 0.1392 0.3128
C2 0.0421 0.6663 0.0751 0.0479

MBB 0.1106 0.0229 0.2067 0.0886

TRANSPARENCY
MJV 0.4824 0.0979 0.0793 0.2423
M1 0.0180 0.1885 0.1416 0.0307
M3 0.3495 0.1421 0.1479 0.1731

TSS
M3 0.0440 0.4702 0.0303 0.1960
MJV 0.0229 1.1978 0.0682 0.0647
MIP 0.0425 0.0174 0.4975 0.0328

Figure 4.24. Predicting Chlorophyll_a Levels in hydroelectric power plant reservoir by
wavelet transformation of spectral bands for sample station: C1 - Caraipé 1, C2 - Caraipé
2, MBB - Breu Branco; E = Estimated; O = Observed

Figure 4.25. Predicting Transparency in hydroelectric power plant reservoir by wavelet
transformation of spectral bands for sample station: M1 - Upstrem 1, M3 - Upstrem 3 ,
MJV - Jacunda Velho; E = Estimated; O = Observed
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Figure 4.26. Predicting Total Suspended Solids in hydroelectric power plant reservoir
by wavelet transformation of spectral bands for sample station: MIP - Ipixuna , M3 -
Upstrem 3 , MJV - Jacunda Velho; E = Estimated; O = Observed
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Chapter 5

Conclusions and Future Works

This study demonstrated the application of virtual sensors in the estimation of the
physico-chemical parameters in water bodies using satellite images of spectral band
1, band 2, band 3 and band 4 that has sensitivity to the presence of particulate
matter in water bodies.

The factorial analysis confirmed the correlation between the physico-chemical
parameters in the first depth of the Secchi disc, PTotal, FeTotal, Turbidity, Trans-
parency, Fe2, Total Suspended Solids, PO4, Fe2 and Fe3 were related to Factor 1,
since these present great reflectance and good absorption of energy by the sensors of
the satellites.

The wavelet Neural Network was trained receiving as input a pixel vector of the
satellite images. One sampling station was initially chosen for analysis and an image
of the water sampling point 32x32 pixels was cropped, corresponding to an array
containing 1024 pixels.

Subsequently, the wavelet transform was applied, with only one level of decom-
position, resulting in a matrix array of 16x16 pixels for each of the following three
components: Horizontal (H), vertical (V) and diagonal (D).

The conversion of the arrays to the H, V and D components to their respective
column-matrices was performed, and subsequently a concatenation of the three
arrays (each containing 256 pixels) was executed, generating a vector with 768
column size (256 x 3). This data, the image of the water sampling collection point,
decomposed via wavelet into its three wavelet components, was used as the ANN
input.

Tests were conducted considering the image representations isolated for each
wavelet component, with satisfactory results. However, when the input data of the
three wavelet components was considered, the approximations were even better,
which motivated the choice of this arrangement in the proposed solution.

Some collection stations could not be analyzed due to the low number of data
available in the database. However, the results obtained showed that method
for predicting chlorophyll-a levels, transparency and total suspended solids in the
Tucuruí reservoir have sensitivity to the presence of suspended particulate matter
with satisfactory approximations of laboratory results regarding the same water
samples.

For the collection points that were analyzed the ANN showed to be useful for
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estimating physico-chemical parameters, producing satisfactory results with good
approximation between the observed and estimated values.

In general, the errors are considered low and neural network showed good results
and can aid in the evaluation of physico-chemical parameters, which in turn allows
the identification of possible anthropogenic impacts, being relevant in environmental
management and in political decision-making processes.

The bests results were obtained during the dry season cycle 3, (September-
October-November), for Total Suspended Solids, Chlorophylla and Transparency
parameters. The dry period has few clouds in the region, allowing a good analysis
of satellite images.

It is clear that the proposed method in this study is specific to the Tucuruí
hydroelectric power plant reservoir waters, although nothing prevents this method
to be used in monitoring waters from other reservoirs, as we intend to do in the
Cefni reservoir, which in turn should result in less expenditures on environmental
monitoring processes.

The techniques proposed and applied in the present study can aid in evaluating
important physico-chemical parameters, which, in turn, allows for identification of
possible anthropogenic impacts, being relevant in environmental management and
policy decision-making processes, in order to mitigate these impacts and attempt
the recovery of degraded water bodies.

In this research a model was proposed using virtual sensors in the estimation of
Physico-Chemical Parameters: Secchi Disk Depths (SD), PTotal, FeTotal, Turbidity,
Transparency, Fe2, Total Suspended Solids, PO4, Fe3, Temperature and Choro-
phylla_a using wavelet Artificil Neural Network and Remote Sensing in the first
depth range of the secchi disk.

As a future work, it is proposed to apply other computational techniques to
evaluate water quality parameters, as well as to evaluate other physicochemical
parameters, verifying and estimating the concentrations of these elements in surface
reflectance.

Another possibility of future work in the Tucurui reservoir is the development of
a software that can allocate the collection stations according to the representativity
of the concentrations of the physico-chemical parameters by means of satellite images
and clustering techniques, addressing techniques of the statistical and computational
intelligence.

The method proposed can be applied to other ecosystems that also suffer well-
defined hydrological cycle, with worldwide relevance, after conducting investigations
on atmospheric interferences and corrections and different ecosystem characteristics.
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