
Hypercomplex Adaptive Filtering

PhD Course in Information and Communications Technologies
Curriculum in Information and Communication Engineering
XXX Cycle

Candidate

Francesca Ortolani
ID number 796175

Supervisor

Prof. Aurelio Uncini

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in ICT

October 2017
Dpt. of Information Engineering, Electronics and Telecommunications

Thesis not yet defended

Hypercomplex Adaptive Filtering
Ph.D. thesis. Sapienza – University of Rome

© 2017 Francesca Ortolani. All rights reserved

.

Version: October 31, 2017

Author’s email: francesca.ortolani@uniroma1.it

mailto:francesca.ortolani@uniroma1.it

Usque ad finem

iii

Abstract

The degree of diffusion of hypercomplex algebras in adaptive and non-adaptive filter-
ing research topics is growing faster and faster. The performance of hypercomplex
adaptive filters has been widely experimented during the last decade. Quaternion
filters, in particular, have been utilized in systems where the signals to be processed
have some form of correlation. Besides correlation, the debate today concerns the
usefulness and the benefits of representing multidimensional systems by means of
these complicated mathematical structures and the criterions of choice between one
algebra or another. One of the goals of this work is to discuss whether the choice of
a certain algebra in the description of a problem/environment can play a significant
role and determine an adaptive filter performance.

That said, adaptive filtering can be expanded to new numerical systems and
unseen sides of physical problems can be highlighted thanks to the mathematical
properties of such hypercomplex algebras. Each algebra has its own rules and
calculation outcomes may not be compatible from one algebra to another. How-
ever, such peculiarities diversify algebras in a way that each of them fits specific
geometrical/physical problems.

The bulk of study and experiments presented in this work was carried out in a 3-
Dimensional (3D) audio context. 3D audio is the new frontier in audio technology and
it is quickly taking place in many applications, from cinema to virtual reality, audio
surveillance and video games. The large amount of data requires fast and compact
solutions for signal processing. With this aim in view, research is moving towards
the exploration of hypercomplex algebras in order to find a non-redundant and
compact form for the representation of 3D sound fields without loss of information.
Quaternion sound fields are currently under investigation and this thesis presents
some recent results concerning the integration of hypercomplex (quaternion) adaptive
signal processing into a 3D audio environment.

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Aurelio
Uncini for his support and guidance, invincible advises, infinite patience and for
letting me try, fail, re-try and succeed.

My sincere thanks also goes to Prof. Michele Scarpiniti and Prof. Danilo Com-
miniello for their contribution and for constantly reviewing my work.

Thanks to Dr. Simone Scardapane, for making these 1096 days funnier.

Thanks to my PhD Advisory Board: Prof. Elio Di Claudio, Prof. Francesca Cuomo
and Prof. Sergio Barbarossa. Thank you all for suggesting me some great ideas.

Heartfelt thanks to my external assessors Prof. Felix Yanovsky and Prof. Alexander
Nosich. Thank you for believing in me.

Большое спасибо Мастер Анатолий Пивоваренко за физическую и психическую
тренировку.

Of course, infinite thanks to mum and dad. After three years listening to my theories
and reasonings, they have probably become the greatest experts on quaternion adaptive
filtering on the planet.

v

List of Figures

0.1 Adaptive filter. xv

1.1 Complex plane. 4

2.1 Quaternion convolution block diagram. 25
2.2 Frequency Swap. 26
2.3 Time-domain and frequency-domain comparison scheme. 26
2.4 The classic convolution theorem adopted in a quaternion context

produces an erroneous result, since it is not coicident with the result
of quaternion time-domain convolution. 27

2.5 The split quaternion convolution theorem provides an output which
is coicident with the result of quaternion time-domain convolution. . 27

2.6 Relations between left and right transforms [22]. 28
2.7 Quaternion Fourier transform and time reversal relations [22]. 28

3.1 OS-QFDAF block diagram. 34
3.2 Block diagram of the quaternion convolution (QCV). In quaternion

domain the standard convolution theorem is not valid and the fre-
quency domain multiplication is performed separately for the simplex
and perplex parts. 35

3.3 Block diagram of the quaternion correlation (QCR). 36
3.4 Algorithm test circuit. 44
3.5 Power normalization effect on the filter performance. 45
3.6 Step size effect on the filter performance. 46
3.7 OS-QFDAF vs Unconstrained OS-QFDAF. 46
3.8 Excess MSE in OS-QFDAF. 47
3.9 Tracking capability - Weights: OS-QFDAF, CC-QFDAF. 47

4.1 Spherical harmonics up to 3rd order. 51
4.2 B-Format: microphone orientation. 54

4A.1 Polar pattern of a pressure gradient microphone [10]. 66
4A.2 Microphone behaviour with plane waves [10]. 67
4A.3 Frequency response of a pressure gradient microphone: characteristic

frequency effect [10]. 67
4A.4 Pressure gradient microphone behaviour with spherical front. 68

5.1 System modeling block diagram. 76

List of Figures vi

5.2 WL-BQLMS vs. BQLMS. Direct system modeling with quaternion-
valued ambisonic input signal (improper). Mean Square Error (MSE) 77

5.3 WL-BQLMS vs. BQLMS. Direct system modeling with quaternion-
valued proper input signal. Mean Square Error (MSE). 78

5.4 WL-QLMS vs. WL-OS-QFDAF with and without power normaliza-
tion. Direct system modeling with quaternion-valued input signal.
Mean Square Error (MSE) . 81

6.1 Typical Ambisonic B-Format layout. 89
6.2 4-Microphone Uniform Linear Array. 89
6.3 Simulation layout. 91
6.4 MSE: QLMS vs TLMS with proper input signal. 92
6.5 MSE: (WL-)QLMS vs (WL-)TLMS with Ambisonic improper input

signal. NON-WL model in the legend box refers to a system to be
identified which only has w0 weights. 93

6.6 Simulation room scenario. 93
6.7 B-Format impulse responses. 94
6.8 Uniform Linear Array impulse responses (omnidirectional mics). . . 94
6.9 System identification with B-Format input signal. QLMS and TLMS

filter performance. 95
6.10 System identification with ULA (omnidirectional mics) input signal.

QLMS and TLMS filter performance. 95
6.11 Uniform Linear Array impulse responses (closer omni mics). 96
6.12 System identification with ULA (closer omni mics) input signal.

QLMS and TLMS filter performance. 96
6.13 Tessarine convolution theorem: time domain output (red circles) and

anti-transformed frequency domain output (black circles) coincide. . 97
6.14 Overlap-Save Tessarine Frequency Domain Adaptive Filter. Block

diagram. 98
6.15 MSE: TLMS vs OS-TFDAF (M = 12, L = 16, µ = 8× 10−3). 99

7.1 Discrete-time elements: with and without memory. 103
7.2 Simple IIR circuit diagram. 105
7.3 Stable quaternion IIR filter response (7.15) with b0 = 1 + 1i + 1j + 1k

and a1 = −0.1 − 0.1i + 0.5j − 0.5k. X(f) is the filter input (white
Gaussian noise). Y (f) is the filter output. 105

7.4 Unstable quaternion IIR filter response (7.15) with b0 = 1+1i+1j+1k
and a1 = −0.1−0.1i+1j+0.5k. x[n] is the filter input (white Gaussian
noise). y[n] is the filter output. 106

8.1 FE-QLMS algorithm block diagram. 109
8.2 Secondary path delayed inverse model estimation. 110
8.3 Adaptive 3D equalization with FE-QLMS 112
8.4 Primary and secondary impulse responses (p[n], s[n]). 112
8.5 Controller weights w[n] and overall controller/secondary path response.113
8.6 FE-QLMS vs MIMO FE-LMS (µQ = µMIMO = 10−4). 113
8.7 FE-QLMS vs MIMO FE-LMS (µMIMO = 4µQ = 4× 10−4). 114

List of Figures vii

8.8 Generic Ambisonic unknown impulse response s[n]. 115
8.9 Quality check of Quaternion inverse modeling (sT ŝ). 115
8.10 Quality check of MIMO inverse modeling (sT ŝ). 116
8.11 sT ŝ: "imaginary" components total power related to real component

in quaternion and equivalent MIMO inverse modeling. 116

viii

List of Tables

1.1 Octonion multiplication rules. 7

2.1 Kernel definitions for monodimensional QDFT 21

3.1 Computational Cost of Quaternion Adaptive Algorithms. 37

3A.1 Algorithm vector definitions (in the time domain) 48

4.1 Analogy among structures: euclidean vectors, Fourier transforms,
spherical harmonics [36] . 55

4.2 Spherical Harmonics: Euler to Quaternion 56

4A.1 Polar diagrams and equations for the microphone from the family of
cardioids . 65

6.1 Quaternion Multiplication . 85
6.2 Tessarine Multiplication . 85

7.1 Examples of equivalent electrical quantities for physical problems
different from electricity. 101

7.2 Maxwell’s mechanical analogy for acoustics. 102
7.3 Kernel Definitions for Monodimensional

Quaternion Transforms . 104

List of Acronyms

LMS Least Mean Square

BLMS Block Least Mean Square

CLMS Complex Least Mean Square

QLMS Quaternion Least Mean Square

BQLMS Block Quaternion Least Mean Square

LMSE Linear Mean Square Estimation

List of Tables ix

TLMS Tessarine Least Mean Square

OSQFDAF Overlap-Save Quaternion Frequency Domain Adaptive Filter

OSTFDAF Overlap-Save Tessarine Frequency Domain Adaptive Filter

WL Widely Linear

WLBQLMS Widely Linear Block Quaternion Least Mean Square

WLMSE Widely Linear Mean Square Estimation

WLQLMS Widely Linear Quaternion Least Mean Square

MSE Mean Square Error

EMSE Excess Mean Square Error

x

Contents

Introduction to Hypercomplex Adaptive Filtering xiv

1 Hypercomplex Algebras 1
1.1 Introduction to Hypercomplex Algebras 2
1.2 Normed division algebras: complex numbers, quaternions, octonions 3

1.2.1 Complex numbers . 3
1.2.2 Quaternions . 4
1.2.3 Octonions . 6

1.3 Quaternion Algebra . 7
1.3.1 Quaternion matrices . 7
1.3.2 More about quaternion vector-matrix product 8
1.3.3 Quaternion representations 8
1.3.4 Quaternion Eigenvalues . 11
1.3.5 Eigenvalues of n× n matrices – Distribution of left and right

eigenvalues . 14
1.3.6 Determinant of a quaternion matrix 15
1.3.7 Inverse of a quaternion matrix 16
1.3.8 Norm of a quaternion matrix 17
1.3.9 Quaternion unitary matrices 17

2 Hypercomplex Signal Processing 20
2.1 Quaternion-valued transforms . 21

2.1.1 Quaternion-valued Discrete Fourier Transform 21
2.1.2 QDFT is a unitary transformation 23

2.2 Quaternion convolution . 24
2.3 Quaternion convolution theorem . 25
2.4 Relations between LEFT and RIGHT transforms 27
2.5 Time reversal in H . 28

3 Quaternion Adaptive Filters 29
3.1 Time Domain Quaternion Adaptive Filters 30

3.1.1 Differences with CLMS . 31
3.1.2 Convergence properties of QLMS 32

3.2 Frequency Domain Quaternion Adaptive Filters 32
3.2.1 Introduction to the OS-QFDAF algorithm 33
3.2.2 OS-QFDAF algorithm overview 33

Contents xi

3.2.3 Power Normalization . 36
3.2.4 Computational cost of OS-QFDAF 37
3.2.5 Convergence Properties . 37

3.3 Simulations . 43
3.3.1 OS-QFDAF simulations . 43
3.3.2 Evaluation of the Excess Mean-Square Error 44
3.3.3 Performance evaluation in changing scenario 45

Appendices 48

3AAlgorithms 48
3A.1 Block QLMS . 48
3A.2 Sliding Window Algorithms - Sliding QFFT-QLMS 49

4 Quaternion Sound Space 50
4.1 Introduction to Ambisonics . 51
4.2 Ambisonic format overview . 53

4.2.1 B-Format . 53
4.2.2 Extension of B-Format to quaternions 54

Appendices 58

4AVirtual Miking and Rotations 58
4A.1 Virtual Miking and Rotations . 58

4A.1.1 Interpolation with Quaternions - Linear Quaternion Interpola-
tion (LERP) . 61

4A.1.2 Computational Cost . 62
4A.2 Gimbal Lock System Degeneration 62

4AMicrophone characteristics 64
4A.1 Polar pattern . 64
4A.2 Pressure microphones and pressure gradient microphones 64

4A.2.1 Pressure Microphones . 64
4A.2.2 Pressure Gradient Microphones 65

4A.3 Microphone behaviour in the presence of plane waves 66
4A.4 Microphone behaviour in the presence of spherical waves 68

5 Quaternion augmented statistics 69
5.1 Introduction to quaternion augmented statistics and quaternion proper-

ness . 71
5.1.1 Quaternion augmented statistics 71
5.1.2 On the properness of quaternion-valued signals 71

5.2 Motivation and theoretical foundation for Quaternion Widely Linear
Processing . 72

5.3 Widely Linear QLMS . 73
5.4 Widely Linear Block QLMS . 74

5.4.1 Overview of the WL-BQLMS algorithm 74
5.4.2 Computational cost . 75

Contents xii

5.5 3D improper sound fields . 75
5.6 Direct system modeling with Ambisonic signals 76

5.6.1 Direct system modeling performance 76
5.7 Widely linear algorithms in the frequency domain 78

5.7.1 Widely Linear Overlap-Save Quaternion Frequency Domain
Filter - Algorithm Overview 79

5.7.2 Computational cost analysis 80
5.7.3 Simulations . 81

6 A comparison study with other hypercomplex algebras 83
6.1 Differences between quaternion and tessarine algebras 84
6.2 A comparison of 4D adaptive filters 86

6.2.1 Widely linear modification . 87
6.3 Microphone array geometries and mathematical representation of space 89

6.3.1 Ambisonic coincident array 89
6.3.2 Uniform Linear Array . 90

6.4 Simulations . 91
6.4.1 Generic circular input signals 91
6.4.2 Ambisonic improper audio input signals 92
6.4.3 Microphone array geometry 93

6.5 Tessarine algorithms in the frequency domain 96
6.5.1 Tessarine Fourier Transform 97
6.5.2 Overlap-Save Tessarine Frequency Domain Adaptive Filter . 97
6.5.3 Simulations . 99

7 Hypercircuits 100
7.1 The problem of discrete-time hypercircuits 100
7.2 Fundamentals of Circuit Theory . 101

7.2.1 Digital circuits . 102
7.3 Quaternion Z-Transform . 103

7.3.1 Examples: Design of a quaternion digital filter 105

8 Hypercomplex Adaptive Filtering Applications 107
8.1 Quaternion-valued Adaptive Filtering for 3D Audio Equalization . . 107

8.1.1 3D equalization . 108
8.1.2 Simulations . 112

8.2 Quaternion-valued inverse system modeling 114

9 Conclusion 118
9.1 3D Audio and quaternion signal processing 118
9.2 Quaternion Adaptive Filters in the

Frequency Domain . 119
9.3 Widely Linear algorithms . 119
9.4 Other algebras . 119

9.4.1 MIMO systems . 120
9.5 3D rotations:

Quaternion algebra vs 3D vector algebra 120

Contents xiii

9.6 What’s next? . 121
9.6.1 Energetic issues . 121
9.6.2 Hypercircuit theory . 121
9.6.3 Neural networks and nonlinear processing 122

xiv

Introduction to Hypercomplex
Adaptive Filtering

Introduction
The enthralling side of hypercomplex algebras attracted scientists and encouraged
the world of research to uncover the environments and the circumstances in which
the application of hypercomplex numbers finds fertile ground. After the initial
definition of these new numerical systems [6, 13, 34, 55], a wave of study touched
physics and the description of classical problems [1]. Hypercomplex numbers extend
the definition of real and complex algebras, and quaternions represent the simplest
mathematical object right after complex numbers [34]. The compact formalism
provided by quaternion maths achieved resounding success and many 3D problems
in physics and their laws were reformulated in a quaternion fashion, e.g. Maxwell’s
equations of electromagnetism [15], Newton’s laws of motion [39], gravity [93],
quantum mechanics and the electron wave theory [107], etc. The new formalism
surely simplified the expression and the divulgation of many scientific theories
among insiders. Nevertheless, considered that these hypercomplex algebras might
not be easily understandable for those people having an unspecialized knowledge of
mathematics, soon a question arose: do we really need quaternions and octonions?
Probably, the answer arrived from the world of engineering. The challenge has been
the provision of convincing reasons why hypercomplex signal processing is favorable
(or not). It is known that the orientation information is intrinsic to quaternion-valued
objects [9]. Therefore, quaternions found a new revival in 3D rotation applications.
These include avionics, 3D graphics and virtual reality, modeling in chemistry, etc.
The experimentation of quaternion algebra and the implementation of quaternion
systems determined a first motivation why quaternions are irreplaceable in these
fields: before quaternions, all rotations were traditionally expressed in Euler angles.
Unfortunately, such a representation is affected by system deadlocks occurring at
critical angles. Practically, the rotation system may degenerate and lose a degree of
freedom [35,80].

One of the trends in the last two decades in digital signal processing has been
the exploration of hypercomplex algebras for multidimensional signal processing
with particular regard to adaptive filtering and intelligent systems [23,40,63, 74, 98].
Since complex numbers were widely experimented and studied in both linear and
nonlinear environments [56], the immediate step forward in hypercomplex signal
processing has considered quaternions [98] and octonions [48]. Adaptive filters are

xv

self-adjusting systems (Fig. 0.1), so human intervention is restricted to the filter
development and parameter setup phases.

+
wnx[n]

e[n]

d[n]

y[n]

-
Adaptive Filter

Adaptive

Algorithm

+

Figure 0.1. Adaptive filter.

Scientists studied how such automatic systems behave with changing the mathemati-
cal format of input and output signals and the filter architecture, accordingly [96,101].
It was experimented that signal component correlation plays a significant role in the
adaptation process, thus speeding up the convergence rate and improving the filter
performance [99, 100]. On this trend, researchers developed several algorithms in
quaternion algebra [31,46,59,98,115].

Our research group at the ISPAMM laboratory (Sapienza) also committed to
this topic. Our main contributions include the development of a class of quaternion-
valued adaptive filters in the frequency domain [67], the investigation of the usage
of quaternion-valued filters in 3-Dimensional (3D) audio applications [66, 68, 71],
and a comparison of isodimensional hypercomplex algebras [69]. Besides this, the
group proposed and encouraged the formalization of hypercircuits and a hypercircuit
theory [67, 72], examining in depth the properties and the differences of quaternion
mathematical transforms in comparison with real and complex systems with the aim
of supplying essential mathematical tools to signal processing.

Scientific and technologic motivations
Adaptive filtering finds use in many different fields. It is customary to see adaptive
filters embedded in RADAR and SONAR applications, weather forecast, seismology,
control applications (navigation, tracking and guidance), audio processing appli-
cations (e.g. audio restoration, immersive audio, etc.) and so on. Specifically,
adaptive filters can be employed in noise, interference and echo cancelling, channel
equalization, system identification, inverse system modeling [104]. As introduced in
the previous paragraph, it is known that hypercomplex algebras allow the description
of a wide variety of geometrical objects (from points to hyperspaces), thus simpli-
fying the study of many physical problems. Besides that, these multidimensional
structures can be used to assemble different information into one single entity. An
example of that can be found in complex numbers, also. In fact, we can transport
the information of amplitude and phase by means of one single numerical object.
Complex numbers gave us the possibility to represent the spectrum of a signal and
today they are absolutely necessary to circuit and signal theories.

That said, within the hypercomplex algebras, multidimensional filtering gives
the possibility to process data accordingly to their typical space dimensions, thus
obtaining robustness and coeherence from the results.

xvi

Hypercomplex filters for 3D Sound Space

Anytime we purchase a modern electronic audio device, we are likely to find some
intelligent, at least adaptive, sub-system running in the background to accomplish
some special task. Adaptive filters play a conspicuous role in noise and echo
control, feedback suppression, room equalization and many other applications.
Devices embedding these functionalities are smartphones, personal computers, sound
correction and enhancement systems, loudspeaker systems and others. Since the
methods adopted in adaptive signal processing are quite mature in the case of
single and stereo channels [24, 26, 89, 108], research is focusing on finding better
solutions for those systems having a larger number of channels. These systems
include surround sound and 3D audio. Besides reliability, we are interested in
developing a compact and efficient form for multidimensional data processing and
extrapolating and exploiting from data information as much as possible, in order
to minimize the error in the adaptation processes. 3D Audio has been extensively
explored by our research work and further investigation is planned.

It is possible to define a set of fundamental problems concerning 3D audio
processing and adaptive filtering. Firstly, a proper mathematical format, capable
of revealing all the aspects and the sides of the problem, should be chosen. In
this regard, we considered a quaternion representation for the Ambisonic 1st order
B-Format signals [29,30]. The B-Format is composed of 4 audio signals and each
signal has been assigned to a quaternion component. This assignment is consistent
with a sound space transformation: the technique decomposes the sound field into
spherical harmonics and we transformed the sound space into a proper quaternion
format [66, 68]. We obtained some interesting results by processing B-Format
signals with different 4-dimensional algebras: quaternions vs. tessarines [69, 70].
It can be seen that the Ambisonic 3D space and the B-Format microphone array
have a well-determined geometry. Results from simulations with quaternion and
tessarine adaptive filters revealed that, the Ambisonic B-Format is rather inclined
to be represented by quaternions than tessarines. In fact, the quaternion filters
exhibit a faster convergence rate and improved stability in comparison with their
tessarine counterparts. A second point in question with 3D audio processing is the
computational burden. Quaternions provide a convenient representation from this
point of view. Alternative representations with matrices, for instance, introduce
redundant information which are not suited to real-time 3D audio. Moreover, in
acoustic applications, because of the long-lasting tail of reflections to handle, the
adaptive filter is designed to have a long impulse response, that is, a long memory
is needed, thus resulting in a significant increase in the computational complexity
of the algorithm [104]. In such a case, especially in multichannel/3D applications,
time domain processing is not recommended. A wiser approach in designing the
filter combines a block implementation of an FIR filter and transform domain
processing. That is the reason why we started investigating the development of
quaternion-valued filters operating in the frequency-domain [67]. Last but not least,
we searched for ways to exploit the statistical properties of signals in order to improve
the filter performance. For this purpose, we experimented the use of widely linear
filters [66, 100] in the quaterion domain, since these algorithms include full signal
second order statistics into adaptive processing. We observed from simulations that

xvii

correlated quaternion signal components require widely linear algorithms in order to
obtain faster convergence to optimum.

The promising results suggest to keep on investigating in hypercomplex algebras
and multidimensional problems. Changing the algebra can have an influence over
convergence rate and filter stability.

Rotating systems and augmented reality

Augmented reality (AR) is a branch of signal processing aimed at enhancing the
surrounding environment with extra information by elaboration of the available
data. The very first AR devices supported video and geolocalization, and found
place especially in civil and military avionics, where the information for pilots can
be displayed on screens and on-body viewers [58, 79]. The always growing diffusion
of miniaturized and wearable sensor devices determined the success and development
of new AR equipment in the most various application fields, including everyday
life [90, 92]. Moreover, because of the increasing demand for intelligent systems,
new smart AR devices are widespread amongst digital processors. At present, the
integration of full 3D audio into AR systems is one of the recent challenges in digital
signal processing. The Ambisonic technique is a suitable candidate to be embedded
into smart AR systems. In fact, for instance, the 1st order B-Format only employs 4
microphones and the processing effort is not extremely burdensome.

In 3D digital rotations, the so-called Gimbal Lock phenomenon is generated in
a way similar to the case of inertial guidance in avionics, even though gyroscopes
or torques are not present [9]. One of the strong points in quaternion algebra (and
Clifford algebras, in general) is that object representation is coordinate-free. In
other words, an object embeds a coordinate structure and motion can be described
with respect to it. In view of the above, a quaternionic audio representation could
espouse a quaternionic image rendering in a virtual reality context.

1

Chapter 1

Hypercomplex Algebras

Contents
1.1 Introduction to Hypercomplex Algebras 2
1.2 Normed division algebras: complex numbers, quater-

nions, octonions 3
1.2.1 Complex numbers 3
1.2.2 Quaternions 4
1.2.3 Octonions 6

1.3 Quaternion Algebra 7
1.3.1 Quaternion matrices 7
1.3.2 More about quaternion vector-matrix product 8

Hadamard product 8
Diagonal product 8

1.3.3 Quaternion representations 8
Matrix representation 8
Polar representation 10

1.3.4 Quaternion Eigenvalues 11
Right eigenvalues 12
Left eigenvalues 12
Huang & So Theorem (2001) 13
Solutions of quaternionic second order equations 13

1.3.5 Eigenvalues of n × n matrices – Distribution of left and
right eigenvalues 14
Zhang Theorem (2007) 14
Geršgorin Theorem 15
Geršgorin-Zhang Theorem for right eigenvalues 15

1.3.6 Determinant of a quaternion matrix 15
1.3.7 Inverse of a quaternion matrix 16
1.3.8 Norm of a quaternion matrix 17
1.3.9 Quaternion unitary matrices 17

1.1 Introduction to Hypercomplex Algebras 2

1.1 Introduction to Hypercomplex Algebras
As implied by the name, hypercomplex numbers are a set of elements generalizing
real and complex numbers. Some of the sub-groups belonging to this field include
Quaternions (Hamilton 1843), Octonions (Graves 1843), Tessarines (Bicomplex
numbers), Coquaternions, Biquaternions, Pauli algebra (Euclidean 3D algebra),
Dirac algebra, Twistors (Penrose 1967) and others. In 1872, Benjamin Peirce started
cataloguing these new numerical fields in [75]. Peirce’s method for hypercomplex
algebra identification classifies numerical sets into idempotent numerical systems [94],
each containing one or more idempotent numbers, and non-idempotent systems, each
containing no idempotent numbers. In other words, any given hypercomplex number
system must contain an idempotent number I (i.e. I 6= 0, I2 = I) or, alternatively,
every element of the system must be nilpotent (i.e. In = 0 for some positive integer
n). Moreover, the units of the idempotent number systems are regularized with
respect to one element from the set (e.g. I), namely the basis. That is, the units
{e1, e2, e3, ...} are chosen with reference to I and they must belong to one of four
groups defined in [94].

A second classification method uses the Cayley-Dickson construction. This
method is based upon involutions to generate complex numbers, quaternions and
octonions, given a real-valued basis. Although intuitive and practical, such a
strategy is efficient only for a few hypercomplex sub-groups. Hurwitz theorem
(normed division algebras) and Frobenius theorem (real division algebras) define the
applicability limits for the Cayley-Dickson decomposition (see Par. 1.2). Nevertheless,
this method has been largely exploited in this work to develop most of the algebraic
quaternion-valued functions in use. Quaternions, for instance, belong to Clifford
algebra (also known as Hypercomplex Algebra). Clifford algebra was introduced by
William Kingdom Clifford as a sub-field of the geometric algebra previously invented
by Hermann Günther Grassmann. Grassmann’s geometric algebra was expanded
into Clifford algebra in 1878 and named in honour of Clifford’s efforts. It consists of
a generalisation of the complex numbers, which have formerly existed since the 15th
century [37]. In wider terms, a generic n-dimensional hypercomplex algebra has at
least one non-real axis (such as the imaginary axis j in complex numbers) and is
closed under addition and multiplication:

a = a1e1 + a2e2 + a3e3 + · · ·+ anen =
n∑
ν=1

aνeν ∈ A (1.1)

with a1, ..., an ∈ K and the orthonormal basis e1, · · · , en. Clifford algebra has more
than one non-real axis. Clifford unified and generalized the works of Hamilton and
Grassman by finalizing the fundamental concept of directed numbers.

Universal property of Clifford algebra "Any isometry from the vector space
V into an inner-product algebra A over the field K can be uniquely extended to
an isometry from the Clifford algebra C` (V) into A. Clifford algebra is the unique
associative and multilinear algebra with this property" [37].

In Par. 1.2 we will show how the eight- or higher-dimensional Cayley-Dickson
construction is not associative with respect to multiplication (the same occurs with

1.2 Normed division algebras: complex numbers, quaternions, octonions 3

split-complex constructs). On the contrary, Clifford algebras are associative at any
dimensionality [37].

In Clifford algebras, it is possible to define a set of bases {e1, e2, ..., ek}, orthogonal
vectors, which are generated out of the orthogonalization of a quadratic form, with
the use of a symmetric scalar product u · v = 1

2 (uv + vu) defined over the field of
real numbers. The set of bases is such that

1
2 (eiej + ejei) =

{
−1, 0,+1, i = j

0, i 6= j
(1.2)

Clifford algebras are closed under multiplication. This constraint gives rise to a
multivector space spanned by 2k bases {1, e1, e2, e3, ..., e1e2, ..., e1e2e3, ...}, which
are indeed the bases of a hypercomplex system. Unlike the bases {e1, e2, ..., ek},
which do not commute (i.e. e1e2 6= e2e1 → e1e2 = −e2e1), the remaining bases
may or may not anti-commute, depending on how many times the elements swap in
the product (e.g. e1 (e2e3) = (e2e3) e1).

Clifford algebras (e.g. over the reals R, that is the coefficients of the algebra
are real numbers) are usually denoted by C`p,q (R). Such a notation indicates that
the algebra is generated by p bases with e2

i = +1 and q bases with e2
i = −1. Such

Clifford algebras ignore those bases degenerating the quadratic form over which
the vector space is defined, i.e. the directions along which e2

i = 0. These algebras
(also called geometric algebras) include some of the numerical fields used in this
work, such as the complex numbers C`0,1 (R) and quaternions C`0,2 (R) and other
remarkable sets which can be found in different fields of physics and engineering,
where rotations and spins are involved. Fields belonging to this category are classical
and quantum mechanics, relativity, electromagnetic theory, acoustics, navigation,
imaging and beamforming applications.

1.2 Normed division algebras: complex numbers, quater-
nions, octonions

In division algebras, each non-zero element a ∈ A has one and only one inverse
element a−1 ∈ A. Only R, C, H,O are division algebras over the field of the reals.
These algebras are introduced just below.

1.2.1 Complex numbers

Complex numbers were discovered in Italy in the 15th century although their
geometrical meaning was canonised in the 18th century. Their discovery was due to
finding a general solution to cubic equations, such as

x3 + ax2 + bx+ c = 0. (1.3)

Complex numbers are defined as (in algebraic form)

a+ bi (1.4)

1.2 Normed division algebras: complex numbers, quaternions, octonions 4

where a and b are real numbers and they are called respectively the real and the
imaginary parts of the complex number and i =

√
−1 is the imaginary unit. The

field of complex numbers R can be also interpreted as a 2-dimensional real space R2

a+ bi→ (a, b) . (1.5)

The pair of numbers in brackets represents indeed a point on a complex plane defined
as shown in Fig. 1.1.

(a,b)

Im

Rea

b

Figure 1.1. Complex plane.

In Fig. 1.1 the horizontal axis is for the real part and the vertical axis for the
imaginary part. In C, addition, multiplication by reals and multiplication and
division between complex numbers are allowed:

• Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d) i

• Multiplication by reals: r (a+ bi) = ra+ rbi

• Complex multiplication: (a+ bi) · (c+ di) = (ac− bd) + (bc+ ad) i

• Conjugate: a+ bi = a− bi

• Norm (length): ‖a+ bi‖ = a2 + b2 = (a+ bi) (a+ bi)

• Division between complex numbers: (a+bi)
(c+di) = (a+ bi) (c+di)

‖c+di‖ .

In view of this short recall about complex numbers, it is plain to see that the
complex field belongs to the family of normed division algebras. Such numerical
fields are multidimensional real sets, Rn, with division, that is, multiplication has
to be defined so that division is allowed. On the other hand, addition and norm
are defined in a familiar way. That said, real numbers are a 1-dimensional normed
division algebra, complex numbers are a 2-dimensional normed division algebra. Is
there a 3-dimensional normed division algebra? The answer is no and the reason for
that will be clear in a while and it concerns the fact that multiplication and division
cannot be defined. On the contrary, a 4-dimensional normed division algebra does
exist. It is the quaternion field H.

1.2.2 Quaternions

Quaternions were discovered by Sir. William Hamilton in 1843 in Ireland. Admittedly,
Hamilton never knew his quaternions would have been used in 3D graphics, acoustics,

1.2 Normed division algebras: complex numbers, quaternions, octonions 5

in avionics, navigation, mechanics, quantum physics and so on. Quaternions (H) are
a geometric algebra in the sense of Clifford algebras. Such an algebra is a unital
associative algebra, i.e. it contains an identity element I, such that Iq = q,∀q in
the algebra and it is endowed with the operations of associative multiplication of
elements in the algebra and scalar multiplication. Quaternion algebra (and any
Clifford algebra, in general) contains and is generated by an inner product vector
space1 V over a field K (V, a · b : a, b ∈ V → R).

A quaternion is made up of 4 components: one real and 3 imaginary components:

q = q0 + q1i + q2j + q3k = q0 + q. (1.6)

A quaternion having real part q0 = 0 is also known as pure quaternion.
The imaginary units, i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1), represent an orthonormal
basis in R3 and comply with the fundamental properties shown below (obtained by
cyclic permutation):

ij = i× j = k, jk = j× k = i, ki = k× i = j (1.7)

and
i2 = j2 = k2 = −1. (1.8)

The sum of quaternions is defined in a way similar to the sum of complex numbers:

q ± p = (q0 + q1i + q2j + q3k)± (p0 + p1i + p2j + p3k)
= (q0 ± p0) + (q1 ± p1) i + (q2 ± p2) j + (q3 ± p3) k.

(1.9)

A quaternion vector space is a skew field or division ring. In skew fields, division is
possible and such division rings are characterized by the fact that multiplication is
not necessarily commutative. In fact, with quaternions we have ij 6= ji and

ij = −ji jk = −kj ki = −ik. (1.10)

The product between quaternions q1 and q2 is computed as

q1q2 = (a0 + a1i + a2j + a3k) (b0 + b1i + b2j + b3k)
= (a0b0 − a1b1 − a2b2 − a3b3)
+ (a0b1 + a1b0 + a2b3 − a3b2) i
+ (a0b2 − a1b3 + a2b0 + a3b1) j
+ (a0b3 + a1b2 − a2b1 + a3b0) k.

(1.11)

The quaternion product can be defined in a compact form. Given two quaternions
p = p0 + p and q = q0 + q, their product is

pq = (p0 + p)(q0 + q) = p0q0 − p · q + p0q + q0p + p ∧ q (1.12)

where p∧q is the cross product between pure quaternions p and q and p ·q is their
dot product.

1An inner product vector space is a vector space V over R with an inner product map 〈. , . 〉 :
V × V → R.

1.2 Normed division algebras: complex numbers, quaternions, octonions 6

The dot product of two quaternions p and q is defined as

p · q = p0q0 + p1q1 + p2q2 + p3q3. (1.13)

Finally, the conjugate of a quaternion q = w + xi + yj + zk is defined as

q∗ = w − xi− yj− zk (1.14)

and we have the following properties:

(p∗)∗ = p, (pq)∗ = q∗p∗ (1.15)

The module (norm) of q is

|q| =
√
w2 + x2 + y2 + z2 = |q∗|. (1.16)

and satisfies the following properties:

|q∗| = |q| , |pq| = |p| |q| . (1.17)

The inverse of a quaternion q = w + xi + yj + zk is

q−1 = q∗

|q|2
(1.18)

The division by |q| in (1.18) is meant to be a component-wise division. The following
properties are applicable:(

q−1
)−1

= q, (pq)−1 = q−1p−1 (1.19)

This introduction about quaternions will continue in the next sections (from
Par. 1.3 on) with more detailed information and comments about quaternion
matrix algebras, quaternion transforms and mathematical operations. Recommended
readings about quaternions are [20, 37], where further properties and definitions can
be found.

1.2.3 Octonions

What about higher dimensions? Octonions O are an 8-dimensional normed division
algebra. They were invented by John Graves in 1843, after Hamilton’s inspiration.
Octonions are defined as

o = a0e0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7 (1.20)

The versors {e0, . . . , e7} are square roots of −1. Multiplication can be carried out
according to the rules in Table 1.1.

1.3 Quaternion Algebra 7

× e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

Table 1.1. Octonion multiplication rules.

Addition, norm and conjugation are defined as in quaternion algebra. It is important
to highlight that octonion multiplication is not associative.

Recalling Hurwitz Theorem (1898):
The only normed division algebras are real numbers, complex numbers, quaternions
and octonions.

Normed division algebras can be built from the existing ones by doubling, i.e.
b = a1 + a2in+1 ∈ B, with a1, a2 ∈ A and i2n+1 = −1 is a new imaginary unit:

• C = R + Ri

• H = C + Cj

• O = H + H (i.e. combination of two H: o = q1 + q2,
where q1 = ae0 + be1 + ce2 + de3 and q2 = αe4 + βe5 + γe6 + δe7).

So, is there a 16-dimensional normed division algebra? No, because octonion
algebra is not associative and a non-associative normed division algebra cannot be
doubled.

1.3 Quaternion Algebra
We extensively introduced quaternion math in Par. 1.2.2 since in this work, we
will focus on the properties of this particular algebra and discuss adaptive filters
implemented in this algebra.

1.3.1 Quaternion matrices

Let A1,A2 ∈ Cn×m, it is possible to obtain a quaternion matrix by combining two
complex-valued matrices as

A = A1 + A2j. (1.21)

This is exacly the Cayley-Dickson decomposition and it can applied to numbers,
matrices and functions, as well. Cayley-Dickson decomposition is a powerful trick
that we will often employ later on this work.

1.3 Quaternion Algebra 8

Given A,B ∈ Hn×m, λ ∈ H,
λA 6= Aλ (1.22)

(AB)T 6= BTAT (1.23)

ABH 6= AHBH (1.24)

(AB)H = BHAH (1.25)

where H denotes the conjugate transpose (self-adjoint) of a matrix (AH = A).

1.3.2 More about quaternion vector-matrix product

The implementation of the algorithms presented in this work requires the calculation
of vector-matrix products. This paragraph is intended to enlighten the difference
between the Hadamard product and the diagonal product, as shown below: Let x =[
x1 x2 . . . xN

]T
, w =

[
w1 w2 . . . wN

]T
, where x1, . . . , xN and w1, . . . , wN

may be whatsoever type of number: reals, complex numbers, quaternions, etc.

Hadamard product

x⊗w = xTw =
[
x1 x2 x3 x4

]
w1
w2
w3
w4

 = x1w1 + x2w2 + x3w3 + x4w4 (1.26)

Diagonal product

diag(x)w =

x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

w1
w2
w3
w4

 =

x1w1
x2w2
x3w3
x4w4

 (1.27)

1.3.3 Quaternion representations

Matrix representation

Alike complex numbers, so quaternions can be represented as matrices. A brief
brush-up on complex algebra will expedite the understanding of the quaternionic
case. Given a complex number z = a + ib it can also be represented by a 2 × 2
matrix, as [

a −b
b a

]
(1.28)

Multiplying or summing two of such matrices returns matrices of this same form.
Similarly, the sum and product of complex numbers can be converted into the sum
and product of such matrices. The computation of the modulus of z elucidates the
idea:

|z|2 =
∣∣∣∣∣a −b
b a

∣∣∣∣∣ = a2 + b2 (1.29)

1.3 Quaternion Algebra 9

In the quaternion field H, the situation is akin to complex matrices. The objective
is to find a form of matrices in a way that quaternion sum and multiplication corre-
spond to the sum and multiplication of matrices, all of them having the same form,
as it was in the case of complex numbers. This is achievable in at least two ways.
One is to use 2× 2 complex matrices and the other is to use 4× 4 real matrices. In
the abstract algebra jargon, these are injective homomorphisms from H to the matrix
rings M (2,C) and M (4,R), respectively. Given a quaternion q = a+ bi + cj + dk,
we have the two possibilities:

A) 2× 2 matrix [
a+ bi c+ di
−c+ di a− bi

]
(1.30)

If we compute the determinant of matrix (1.30), we get∣∣∣∣∣ a+ bi c+ di
−c+ di a− bi

∣∣∣∣∣ = a2 + b2 + c2 + d2 (1.31)

which is equal to the squared quaternion norm |q|2. This is possible if the matrix
is treated as such. A better definition for representation (1.30) is a map. In fact,
matrix (1.30) maps quaternions into a 2 × 2 complex field. This representation
embeds some important properties:

• Complex numbers (c = d = 0) correspond to diagonal quaternion matrices.
• Real numbers (b = c = d = 0) correspond to diagonal quaternion matrices.
• The norm of a quaternion is the square root of the determinant of the corre-

sponding matrix.
• The conjugate of a quaternion corresponds to the conjugate transpose of the

matrix.

B) 4× 4 matrix
a b c d
−b a −d c
−c d a −b
−d −c b a

 = a

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ b

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

+ c

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

+ d

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

(1.32)

and we find the following properties:

• The conjugate of a quaternion corresponds to the transpose of the matrix.
• The fourth power of the norm of a quaternion is equal to the determinant of the

corresponding matrix (not the squared norm as in 2-by-2 complex matrices).
• Complex numbers (c = d = 0) are block diagonal matrices with two 2×2

blocks.
• Real numbers (b = c = d = 0) correspond to diagonal quaternion matrices.

1.3 Quaternion Algebra 10

Polar representation

Similarly to complex numbers, quaternions can be represented in polar form. Given
q = a+ bi + cj + dk = a+ v,

q = |q| eµθ = |q| (cos θ + µ sin θ) (1.33)

Correspondingly, a = |q| cos θ, v = µ |v| = µ |q| sin θ, where µ is a pure unitary
quaternion.
Ensuing from (1.33), the α-th power of quaternion q is

qα = |q|αeµαθ = |q|α [cos (αθ) + µ sin (αθ)] (1.34)

Polar coordinates Polar coordinates in the quaternion space H are defined as
a = ‖q‖ cos θ
b = ‖q‖ sin θ cosϕ
c = ‖q‖ sin θ sinϕ cosψ
d = ‖q‖ sin θ sinϕ sinψ

(1.35)

In rotation terminology the angles (θ, ϕ, ψ) have names:

• θ altitude
• ϕ: latitude (or co-latitude)
• ψ: longitude

Polar representation provides the definition of the quaternionic phases. Equation
(1.33) can be rewritten as

q = ‖q‖ eiθejϕekψ (1.36)

where (θ, ϕ, ψ) are the phase angles to extract. As reported in [110]:
θ = atan2 (nθ, dθ)
ϕ = atan2 (nϕ, dϕ)
ψ = asin (nψ)

(1.37)

where {
nθ = 2 (c · d+ a · b)
dθ = a2 − b2 + c2 − d2{
nϕ = 2 (b · d+ a · c)
dϕ = a2 + b2 − c2 − d2{
nψ = 2 (b · c+ a · d)
dψ = 1

(1.38)

Let us consider the 1D and 2D scenarios ("easy" to compute):

1.3 Quaternion Algebra 11

1D ϕ = ψ = 0:
a = ‖q‖ cos θ
b = ‖q‖ sin θ
c = 0
d = 0

(1.39)

Phase θ can be found by inverting the first Equation of system (1.39):

θ = acos
(
a

‖q‖

)
= acos

(
q + q∗

2 ‖q‖

)
(1.40)

1D ψ = 0:
a = ‖q‖ cos θ
b = ‖q‖ sin θ cosϕ
c = ‖q‖ sin θ sinϕ
d = 0

(1.41)

Phases ϕ and ψ can be found by solving of system (1.41):
ϕ = atan

(
c

b

)
θ = acos

(
a

‖q‖

)
= acos

(
q + q∗

2 ‖q‖

) (1.42)

1.3.4 Quaternion Eigenvalues

Due to the non-commutativity of quaternion product, a quaternionic matrix may
have two types of eigenvalues: left and right [112].

Right Eigenvalues: given matrix A ∈ Hn×n, λ ∈ H is called right eigenvalue of A
if Ax = xλ for some nonzero x ∈ Hn. The set of distinct right eigenvalues is called
right spectrum of A, denoted σR (A).

Left Eigenvalues: given matrix A ∈ Hn×n, λ ∈ H is called left eigenvalue of A if
Ax = λx for some nonzero x ∈ Hn. The set of distinct left eigenvalues is called left
spectrum of A, denoted σL (A).

Left eigenvalues are also called singular eigenvalues. Accordingly, the characteristic
polynomial A− λI is singular if and only if Ax = λx for some nonzero x ∈ Hn. On
the other hand, right eigenvalues are also named standard eigenvalues, since any
n × n quaternion matrix A has exactly n right eigenvalues [11]. In [114], Zhang
asserts that these eigenvalues are complex numbers with nonnegative imaginary
parts. Lee states in [53], that, given two n × n complex matrices A and B, then
every real eigenvalue (if any) of the complex adjoint matrix appears an even number
of times, and the complex eigenvalues of that matrix appear in conjugate pairs.

Right eigenvalues are well-studied in literature, seemingly the right spectrum is
always non-empty, so there is no problem concerning this. Unfortunately, the

1.3 Quaternion Algebra 12

algorithm for their computation is still in dispute. Concerning the left spectrum, we
are interested in the existence of a nonzero x ∈ Hn for which ϕ (x) = λx, but the
writs convey that there seems to be no obvious interpretation of this in terms of the
endomorphism ϕ(.) [7, 32,42,112,114].

Right eigenvalues

The right spectrum is unitarily invariant:

σR
(
UHAU

)
= σR (A) (1.43)

where U is a unitary matrix, that is UHU = UUH = I.

Let A ∈ Hn×n and x ∈ Hn, we can decompose A and x into a sum of complex
matrices and vectors, respectively:

A = A1 + A2j
x = x1 + x2j

(1.44)

where A1,A2 ∈ Cn×n and x1,x2 ∈ Cn. The characteristic equation for right
eigenvalues Ax = xλ becomes:

Aaxa =
[

A1 A2
−Ā2 Ā1

] [
x1
−x̄2

]
= λ

[
x1
−x̄2

]
. (1.45)

Since matrix Aa is a 2n× 2n complex matrix, it has exactly 2n complex eigenvalues
which appear in complex conjugate pairs. The final step is to choose those eigenvalues
having non-negative imaginary part [114].

Left eigenvalues

The following two lemmas are given:

Lemma 1. For p, q ∈ H

σL (pI + qA) = {p+ qt : t ∈ σL (A)} (1.46)

where I is the identity matrix.

Lemma 2. If A is a (lower or upper) triangular matrix, then the left spectrum
σL (A) is the set of the distinct diagonal elements of A.

For example, given the matrix A =
[
a b
c d

]
, then:

1. if bc = 0, then A is a triangular matrix and σL (A) = {a, d}, according to
Lemma 2;

2. if bc 6= 0, using Lemma 1:

σL (A) = a+ bσL

([
0 1

b−1c b−1(d− a)

])
. (1.47)

1.3 Quaternion Algebra 13

The quantity λ is a left eigenvalue if and only if there exist a nonzero
[
x1 x2

]T
such that: [

0 1
b−1c b−1 (d− a)

] [
x1
x2

]
= λ

[
x1
x2

]
. (1.48)

In other terms:{
λx1 = x2

λx2 = b−1cx1 + b−1 (d− a)x2
⇒ λ2 − b−1 (d− a)λ− b−1c = 0 (1.49)

The eigenvalues in (1.47) are generally quaternion-valued. The difficulty here is that
(1.49) is a quaternionic equation. Solving a 2nd order quaternionic equation is not
a problem, as explained in [42]. On the contrary, higher order equations require
advanced resolution methods.

Huang & So Theorem (2001)

Huang & So Theorem follows from Lemma 1 and equations (1.47)-(1.49):

Given the matrix A =
[
a b
c d

]
, if bc 6= 0, then ` is a left eigenvalue of A if and only if

` = a+ bλ (1.50)

where λ satisfies
bλ2 − (d− a)λ− c = 0 (1.51)

Solutions of quaternionic second order equations

Given a quadratic equation x2 + bx + c = 0, its solutions are obtainable in four
different cases:

1. If b, c ∈ R and b2 < 4c, then

x = 1
2 (−b+ βi + γj + δk) , ∀β, γ, δ ∈ R

with β2 + γ2 + δ2 = 4c− b2.

2. If b, c ∈ R and b2 > 4c, then

x = −b±
√
b2 − 4c

2
.

3. If b ∈ R and c /∈ R, then

x = −b2 ±
ρ

2 ∓
c1
ρ

i∓ c2
ρ

j∓ c3
ρ

k

where c = c0 + c1i+ c2j+ c3k, ci ∈ R and ρ =
√

b2−4c0+
√

(b2−4c0)2+16(c2
1+c2

2+c2
3)

2 .

1.3 Quaternion Algebra 14

4. If b /∈ R, then
x = −Re [b]

2 −
(
b′ + T

)−1 (
c′ −N

)
where b′ = b− Re [b] = Im [b] , c′ = c− Re[b]

2

(
b− Re[b]

2

)
and (T,N) are chosen

as

(a) T = 0, N =
(
B ±

√
B2 − 4E

)/
2, provided that D = 0, B2 > 4E.

(b) T = ±
√

2
√
E −B, N =

√
E, provided that D = 0, B2 < 4E.

(c) T = ±
√
z, N =

(
T 3 +BT +D

)/
2T , provided that D 6= 0 and z is the

only positive root of the real polynomial z3 + 2Bz2 +
(
B2 − 4E

)
z −D2,

where B = |b′|2 + 2 Re [c′],E = |c′|2 and D = 2 Re [b′c′].

It was important to dedicate a sub-paragraph to quaternionic second order
equations in order to give an idea of the entity of the problem.

1.3.5 Eigenvalues of n× n matrices – Distribution of left and right
eigenvalues

Whether one does the utmost to get the left spectrum, taking into account that left
and right spectra may be different, the handy proposal for convergence analysis is
to try how the algorithms behave considering the right spectrum only. In fact, in H,
it may happen that:

• No left eigenvalue of A is a right eigenvalue.

• There exist finite left eigenspectrum and infinite right eigenspectrum.

• Similar matrices have different left eigenvalues.

• Matrix A and its transpose AT have different left eigenvalues.

A significant theorem in [42] states that, given A ∈ Hn×n, if both σR (A) and σL (A)
are finite, then σR (A) = σL (A).

Zhang Theorem (2007)

Let A = (aij) ∈ Hn×n and λ ∈ H be a left or right eigenvalue of A , then

|λ| 6 max
i

n∑
j=1
|aij | , R (1.52)

where R denotes the maximum radius and

ρL (A) , ρR (A) 6 max
‖x‖=1

‖Ax‖ (1.53)

are respectively the radius of the left and right eigenspectrum.

1.3 Quaternion Algebra 15

Geršgorin Theorem

In the complex field C Geršgorin theorem ensures that all eigenvalues of a matrix A
are enclosed in the so-called Geršgorin discs.

Let A = (aij) ∈ Cn×n, the radius of the i-th Geršgorin disc is defined by

Ri (A) =
n∑

i=1,j 6=i
|aij | , 1 6 i 6 n (1.54)

A Geršgorin disc of matrix A is a set in the complex plane defined as

{z ∈ C : |z − aii| 6 Ri (A)} (1.55)

with radius Ri (A) and center aii.
In H, the disc becomes a ball:

{q ∈ H : |q − aii| 6 Ri (A)} (1.56)

Unfortunately, Geršgorin theorem is suitable for left eigenvalues only.

Geršgorin-Zhang Theorem for right eigenvalues

Let A = (aij) ∈ Hn×n, for each right eigenvalue λ of A there exist a quaternion α
such that α−1λα (which is also a right eigenvalue) is enclosed in the union of the
Geršgorin balls:

{q ∈ H : |q − aii| 6 Ri (A)} . (1.57)
For example, {

z−1λz : 0 6= z ∈ H
}
∩

n⋃
i=1
{q ∈ H : |q − aii| 6 Ri (A)} (1.58)

(when λ is real, it is contained in a Geršgorin ball).
In other words, notice that the existence of an eigenvector x related to eigen-

value λ is equivalent to the existence of a fixed point of matrix A acting on a
quaternion projection space denoted HPn−1, defined as HPn−1 = Hn

0 /H×, where
H× = {x ∈ Hn : x 6= 0}.
If Ax = xλ, then Ax = xλ ⇒ Axα = xα

(
α−1λα

)
. More details are described

in [7].

1.3.6 Determinant of a quaternion matrix

Let A ∈ Hn×n, the determinant of the adjoint matrix of A is equivalent to

|χA| = |A|q (1.59)

where |A|q is named q-determinant of A. When A is a complex matrix, Zhang
asserts in [114] that it is immediate that

|A|q = |A| |A∗| = |det A|2 (1.60)

where A∗ denotes the conjugate matrix of A.

Let A ∈ Hn×n, then these useful properties hold and are proved in [114]:

1.3 Quaternion Algebra 16

• If matrices A and B are similar, then |A|q = |B|q.

• |AB|q = |A|q|B|q ⇒
∣∣A−1∣∣

q = |A|−1
q if A−1 exists.

• |A|q =
n∏
i=1
|λi|2 > 0, where λi is the i-th standard eigenvalue of A.

• |PAQ|q = |A|q for any elementary matrices P and Q.

1.3.7 Inverse of a quaternion matrix

Let A ∈ Hn×n, then the following statements are equivalent [114]:

• A is invertible.

• Ax = 0 has a unique solution x = 0.

• detχA , |χA| 6= 0, i.e. χA is invertible.

The procedure presented here is a practical solution to find the inverse of a quaternion
matrix A . We call B the inverse matrix of A, that is AB = I . The first step

is to decompose both B and A into Cayley-Dickson form:
{

A = A1 + A2j
B = B1 + B2j

. The

expression AB = I is expanded through the following steps [114]:

⇒
(
A1B1 −A2B̄2

)
+
(
A1B2 −A2B̄1

)
j = I

⇒
(

A1 A2
)(B1 B2
−B̄2 B̄1

)
=
(

I 0
0 I

)

⇒
(

B1 B2
−B̄2 B̄1

)(
A1 A2
−Ā2 Ā1

)
=
(

I 0
0 I

) (1.61)

The results in (1.61) are equivalent to the system of matrix equations below:{
B1A1 −B2Ā2 = I
B1A2 + B2Ā1 = 0

(1.62)

which, in turn, is equivalent to(
B1A1 −B2Ā2

)
+
(
B1A2 + B2Ā1

)
j = I⇒ BA = I (1.63)

Post-multiplying the second equation of (1.63) by A−1
2 , we obtain

B1A2A−1
2 + B2Ā1A−1

2 = 0 ⇒ B1 = −B2Ā1A−1
2 (1.64)

Substituting (1.64) into the first equation of (1.63):

−B2Ā1A−1
2 A1 −B2Ā2 = I⇒ B2

(
−Ā1A−1

2 A1 − Ā2
)

= I

⇒ B2 =
(
−Ā1A−1

2 A1 − Ā2
)−1 (1.65)

1.3 Quaternion Algebra 17

Definitively, we have to find
B1 = −

(
−Ā1A−1

2 A1 − Ā2
)−1

Ā1A−1
2

B2 =
(
−Ā1A−1

2 A1 − Ā2
)−1 (1.66)

and recompose the inverse quaternion matrix:

B = B1 + B2j = Ba + Bbi + Bcj + Bdk. (1.67)

1.3.8 Norm of a quaternion matrix

A practical way to define the norm of a quaternion matrix A is

‖A‖F =
√
Tr (AAH) =

√√√√ m∑
i=1

n∑
j=1
|aij |2 (1.68)

where subscript F denotes Frobenius norm.
The trace of a square quaternion matrix K ∈ Hn×n is defined the same way as

for matrices in Rn×n or Cn×n [41]:

Tr (K) =
n∑
i=1

aii (1.69)

that is, the sum of the elements of the principal diagonal of K.
The Frobenius norm is a particular case of p-norms (where p = 2). In general,

the p-norm is defined as

‖A‖p =

 m∑
i=1

n∑
j=1
|aij |p

 1
p

(1.70)

An alternative way to compute the Frobenius norm in R and C uses the spectral
radius ρ of AAH :

‖A‖2 =
√
ρ (AAH) (1.71)

The spectral radius is the largest eigenvalue of AAH in absolute value. However,
the extension of norm (1.71) to quaternions is still under debate.

1.3.9 Quaternion unitary matrices

Unitary matrices are useful to compute the eigenvalues of a given matrix easily.
In fact, it is possible to convert a matrix A ∈ (R,C,H)n×n into a diagonal matrix
AD ∈ (R,C)n×n having the eigenvalues λ1, λ2, . . . , λn (recall that the eigenvalues of
a quaternion matrix are complex numbers). This is achievable by means of a unitary
transformation. We can take advantage of Cayley-Dickson algebra once again and
express a quaternion unitary matrix P in the form

P = UDW (1.72)

where U and W are two complex unitary matrices and can be found in a conven-
tional way. As expected, matrix D is a quaternion-valued diagonal matrix. A full

1.3 Quaternion Algebra 18

explanation of this and further information about unitary and orthogonal quaternion
matrices were presented in [109].

Example

We aim at finding a matrix U =
[
a b
c d

]
∈ C2×2 such that UHU = UUH = I and

|det (U)| = 1, that is

UHU = UUH = I⇒
[
a b
c d

] [
a∗ c∗

b∗ d∗

]
=
[

1 0
0 1

]
(1.73)

In order to find the elements of U, we solve the following system in the unknowns
a, b, c, d:

aa∗ + bb∗ = 1
ac∗ + bd∗ = 0
ca∗ + db∗ = 0
cc∗ + dd∗ = 1

(1.74)

thus obtaining the matrix

U = 1
b∗c∗ − d∗a∗

[
−d∗ c∗

b∗ −a∗

]
= 1

det (U)

[
−d∗ c∗

b∗ −a∗

]
. (1.75)

So, we decide for |det (U)| = |ad− cb| = 1.

This is true in two cases:
{
ad− cb = 1
ad− cb = −1

. For example, ad− cb = 1 and we have:

a = −d∗

b = c∗

c = b∗

d = −a∗

(1.76)

(the third and fourth equations in (1.76) can be erased since they are equivalent to
the first and the second respectively). Finally, the system to solve becomes

a = −d∗

b = c∗

ad− cb = 1
(1.77)

We have obtained 3 equations and 4 unknowns: this means that one parameter is
free. Substituting the first and the second equation into the third in (1.77):

− aa∗ + bb∗ = 1⇒ bb∗ = 1 + aa∗ (1.78)

We need explicating b and its conjugate b∗ in its real and imaginary parts:{
b = Re (b) + j Im (b)
b∗ = Re (b)− j Im (b)

(1.79)

1.3 Quaternion Algebra 19

So, finally {
bb∗ = Re2 (b) + Im2 (b)
aa∗ = Re2 (a) + Im2 (a)

(1.80)

Substituting (1.80) into (1.78):

Re2 (b) + Im2 (b) = 1 + Re2 (a) + Im2 (a) (1.81)

Equation (1.81) can be split into two equations:{
Re2 (b) = 1 + Re2 (a)
Im2 (b) = Im2 (a)

. (1.82)

We finally choose the value of b or a and solve for all the elements of U.

20

Chapter 2

Hypercomplex Signal
Processing

Contents
2.1 Quaternion-valued transforms 21

2.1.1 Quaternion-valued Discrete Fourier Transform 21
2.1.2 QDFT is a unitary transformation 23

2.2 Quaternion convolution 24
2.3 Quaternion convolution theorem 25
2.4 Relations between LEFT and RIGHT transforms 27
2.5 Time reversal in H 28

Most operations in digital signal processing are based on filtering. The reasons
for transforming a signal may be merely aesthetic (e.g. image and sound coloring,
equalization, correction) or functional (e.g. spectral analysis, noise reduction).
Convolution is the basic operation in linear filtering and it is known that convolution
in the frequency domain allows a faster execution due to a reduced computational
cost. In hypercomplex algebras, because of the high-dimensional nature of the
signals, time-domain convolution would be excessively burdensome. With this aim,
we focused on the development of hypercomplex (quaternion) adaptive filters in
the frequency domain. This short chapter is dedicated to the principal operation
blocks in quaternion digital signal processing. Firstly, the quaternion discrete Fourier
transform (QDFT) is presented in all its forms. Thanks to QDFT, it is possible to
take advantage of the convolution and crosscorrelation theorems in the quaternion
domain. It will be shown that generally, the classic theorems known in real and
complex algebras are no longer valid in quaternion signal processing. The operations
defined in this chapter will be employed in the algorithms presented later in the
next chapters.

2.1 Quaternion-valued transforms 21

2.1 Quaternion-valued transforms

2.1.1 Quaternion-valued Discrete Fourier Transform

Transform domain algorithms require mathematical transformations in order to
(pre-)process input and output signals. Such transformations, e.g. DFT and FFT,
are quite uncommon in a quaternionic format. General information about quaternion-
valued transformations can be found in [21,22,38]. Using hypercomplex algebra to
build a quaternion DFT/FFT function from scratch is quite an arduous endeav-
our. Fortunately, there is a quick and easy method that exploits the conventional
DFT/FFT functions available in several programming environments by decomposing
the quaternion-valued FFT (QFFT) into complex FFTs. This method was formerly
developed in image processing and presented in [21, 23, 74, 82, 83]. Originally, the
need for the development of a QFFT arose from the idea of collecting colour (RGB)
or luminance/chrominance signals in one quaternion, rather than treating them as
independent vectors [49, 82, 83, 106], thus permitting the generalization of several
techniques in image processing depending on the Fourier transform of the color.

The non-commutativity property of the quaternionic product gives rise to a
two-sided mono-dimensional quaternion transform, i.e. quaternion transforms can
be found either in a left- or a right-handed form (transpose with one another) as
summed-up in Table 2.1.

Table 2.1. Kernel definitions for monodimensional QDFT

Left Right
Axis ν e−νωnf (·) f (·) e−νωn

Equations (2.1a) and (2.1b) represent the quaternionic Fourier monodimensional
left-handed transform (the exponential function is on the left) and its inverse [22]:

F (u) =
N−1∑
n=0

exp
(
−2πνnu

N

)
f (n) (2.1a)

f (n) = 1
N

N−1∑
u=0

exp
(

2πνnu
N

)
F (u) (2.1b)

where F (u) is the spectrum of f (n). Both functions F (u) and f (n) are quaternionic
functions (of N samples) of the kind f (n) = w (n) + x(n)i + y(n)j + z(n)k. Versor
ν is an arbitrarily chosen pure unitary quaternion versor and can be expressed as

ν = xi√
x2 + y2 + z2 + yj√

x2 + y2 + z2 + zk√
x2 + y2 + z2 . (2.2)

Fourier transform analyzes a signal according to sinusoidal components and de
Moivre’s formula (eiθ = cos θ + i sin θ) generalizes all kinds of algebra where roots
of -1 are definable. For instance, in the case of the complex quaternion Fourier
transform, a complex quaternion root of −1 (ν2 = −1) is required:

q = w + xi + yj + zk = |q| eνθ = |q| (cos θ + ν sin θ) . (2.3)

2.1 Quaternion-valued transforms 22

Versor ν defined in (2.2) describes the spatial direction of the imaginary part of
quaternion q. The angle named with letter θ denotes the rotation angle about the
axis ν. As one can see, if ν = i and the input function is complex, equations (2.1a)
and (2.1b) reduce to the conventional complex Fourier transform.

Quaternions can be thought of as complex numbers whose real and imaginary
parts are complex numbers in turn (Cayley-Dickson form):

q = a+ bν2 (2.4)

where a = w1 + x1ν1 and b = y1 + z1ν1. In this manner a quaternion q can be
decomposed into

q = (w1 + x1ν1)︸ ︷︷ ︸
simplex

+ (y1 + z1ν1)︸ ︷︷ ︸
perplex

ν2

= w1 + x1ν1 + y1ν2 + z1ν3.

(2.5)

The highlighted parts in equation (2.5) are named respectively simplex and perplex
parts of quaternion q, both isomorphic to the conventional field (i, j,k), since they
are both defined in the same space of the complex operator ν1. In addition, we
denote with S {·} and P {·} the operators that extract the simplex and perplex
parts of a quaternion, respectively. Using these operators, it is possible to write
q = S {q}+ P {q}ν2.

Hence, each quaternion function f (n) can be formulated in terms of an or-
thonormal basis. The versors (ν2,ν3) must be chosen in a way that ν1⊥ν2⊥ν3,
ν1ν2 = ν3 and ν1ν2ν3 = −1. The advantage of using the basis (ν1,ν2,ν3) is that
such a system of operators, isomorphic to system (i, j,k), is not bound to the axes
(i, j,k).

The orthonormal basis can be represented in a compact matrix form (matrix of
change of basis):

B =

ν1x ν1y ν1z
ν2x ν2y ν2z
ν3x ν3y ν3z

 (2.6)

where
ν1 = ν1xi + ν1yj + ν1zk
ν2 = ν2xi + ν2yj + ν2zk
ν3 = ν3xi + ν3yj + ν3zk

(2.7)

Then it is possible to extract the component functions of f (n) in the new basis:

f (n) = w1 (n) + x1(n)ν1 + y1(n)ν2 + z1(n)ν3

= [w1 (n) + x1(n)ν1] + [y1(n) + z1(n)ν1]ν2.
(2.8)

Each component function is obtained by the dot products below:
w1 (n) = w (n)
x1 (n) = 〈ν1, x (n) i + y (n) j + z (n) k〉
y1 (n) = 〈ν2, x (n) i + y (n) j + z (n) k〉
z1 (n) = 〈ν3, x (n) i + y (n) j + z (n) k〉

(2.9)

2.1 Quaternion-valued transforms 23

After changing the basis, it is possible to separate the quaternion Fourier transform
into the sum of two transforms, thanks to the linearity property of the Fourier
transform:

F (u) =
N−1∑
n=0

e(−2πνnu
N) (w1 (n) + x1 (n)ν1)

+
N−1∑
n=0

e(−2πνnu
N) (y1 (n) + z1 (n)ν1)ν2.

(2.10)

Once the quaternion transform is executed, the next step is to reassemble the
transformed quaternion and change back to the original basis by means of inverse
change of basis (it is sufficient to transpose each element of matrix B).

We wonder what implications the existence of a two-sided transform has on
filtering applications. Tests conducted during the development of the algorithms
presented in this thesis revealed that, in order to avoid flawed algorithms, once a
direction of rotation is chosen, this has to be kept unchanged.

2.1.2 QDFT is a unitary transformation

We will prove here that the QDFT si a unitary transformation. A transformation
F ∈ HN×N is unitary if the following relations are satisfied:

F−1 = FH ⇔ FFH = I. (2.11)

Considering ν1 = i in a Cayley-Dickson decomposition, the QDFT transformation
can be rewritten in a matrix form as

FQDFT , K

1 1 1 · · · 1
1 e−i2π/N e−i4π/N · · · e−i2π(N−1)/N

1 e−i4π/N e−i8π/N · · · e−i4π(N−1)/N

...
...

...
1 e−i2π(N−1)/N e−i4π(N−1)/N · · · e−i2π(N−1)2/N

 (2.12)

where N is the QDFT length and K = 1√
N

is a term that makes the transformation
unitary.
The Hermitian of FQDFT (2.12) is defined as

FH
QDFT , K

1 1 1 · · · 1
1 ei2π/N ei4π/N · · · ei2π(N−1)/N

1 e−i4π/N ei8π/N · · · ei4π(N−1)/N

...
...

...
1 ei2π(N−1)/N ei4π(N−1)/N · · · ei2π(N−1)2/N

 (2.13)

and it is equal to the inverse discrete Fourier transform F−1
QDFT . We can verify by

quaternion multiplication that FQDFTFH
QDFT = I.

2.2 Quaternion convolution 24

2.2 Quaternion convolution
In order to understand how quaternion-valued filtering works, it is helpful to define
the quaternion-valued convolution. In a way similar to the complex case, the
quaternion-valued impulse response is defined as

h[n] = hA[n] + hB[n]i + hC [n]j + hD[n]k (2.14)

and the convolution operation produces the output signal y[n] as

y[n] = x[n] ∗ h[n]
= [xA[n] + xB [n]i + xC [n]j + xD[n]k] ∗ [hA[n] + hB [n]i + hC [n]j + hD[n]k]
= [xA[n] ∗ hA[n]− xB [n] ∗ hB [n]− xC [n] ∗ hC [n]− xD[n] ∗ hD[n]]
+ [xA[n] ∗ hB [n] + xB [n] ∗ hA[n] + xC [n] ∗ hD[n]− xD[n] ∗ hC [n]] i
+ [xA[n] ∗ hC [n]− xB [n] ∗ hD(t) + xC [n] ∗ hA[n] + xD(t) ∗ hB(t)] j
+ [xA[n] ∗ hD(t) + xB [n] ∗ hC(t)− xC [n] ∗ hB [n] + xD(t) ∗ hA[n]] k
= yA[n] + yB [n]i + yC [n]j + yD[n]k.

(2.15)

Equivalently, quaternion convolution can be expressed in terms of scalar product (dot
product), i.e. we compute the convolution between two quaternion-valued sequences
as

y[n] = hTx (2.16)

The operation can be summarized in a block diagram as in Fig. 2.1. Such a scheme
suggests that quaternion convolution follows the same rules of quaternion multipli-
cation and can be decomposed into the combination of 16 real-valued convolutions.

2.3 Quaternion convolution theorem 25

hA[n]

hB[n]

hC[n]

hD[n]

yA[n]

yB[n]

yC[n]

yD[n]

xA[n]

xB[n]

xC[n]

xD[n]

+

+

+

+

- -

-

hA[n]

hB[n]

hC[n]

hD[n]

-

hA[n]

hB[n]

hC[n]

hD[n]

hA[n]

hB[n]

hC[n]

hD[n]

-

-

Figure 2.1. Quaternion convolution block diagram.

2.3 Quaternion convolution theorem
In the complex domain, given two functions x[n], h[n] ∈ R,C, we can compute
their convolution efficiently by multiplying their frequency spectra X(ω), H(ω) ∈ C:
y[n] = h[n] ∗ x[n]←→ Y (ω) = H(ω)X(ω) (convolution theorem).
In the quaternion domain, the convolution theorem has to be reformulated and the
decomposition of a quaternion-valued function into its simplex and perplex parts
has to be considered. Moreover, the existence of the left and the right Fourier
transforms determines two possible formulations for both convolution Y (ω) and
cross-correlation C(ω) [22, 74]. For the monodimensional case, we have:

Left transform

Y (ω) = Ha(ω)X(ω) +Hb(ω)jX(−ω) (2.17)

C(ω) = Ha(ω)
[
XH
a (ω)− jXb(−ω)

]
+Hb(ω)j

[
XH
a (−ω)− jXb(ω)

]
(2.18)

Right transform

Y (ω) = H(ω)Xa(ω) +H(−ω)jXd(ω) (2.19)
C(ω) = H(ω)XaH(ω)−H(−ω)jXb(−ω) (2.20)

2.3 Quaternion convolution theorem 26

where, given H(ω) = H1(ω) + H2(ω)i + H3(ω)j + H4(ω)k, we define Ha(ω) =
H1(ω) + H2(ω)i and Hb(ω) = H3(ω) + H4(ω)i the simplex and perplex parts of
H(ω), respectively, and Hd(ω) = H3(ω) − iH4(ω). A similar notation holds for
X(ω). The symbol H(−ω) denotes the frequency reversal for the transform H(ω):
the swapping can be practically achieved by simply reversing the order of the whole
frequency array, excluding the zero-frequency coefficient. The swap is shown in Fig.
2.2. In the picture, DC and Nyquist frequency Ny do not move during the swapping.

DC Ny 2Ny

Figure 2.2. Frequency Swap.

Some simplifications can be applied in case the signal x[n] has some special
simmetric properties. If either x[n] or h[n] has even simmetry, i.e. x[n] = x[−n],
h[n] = h[−n], then X(ω) = X(−ω) or H(ω) = H(−ω) and Y (ω) = H(ω)X(ω) with
the left transform or the right transform, respectively. If x[n] has odd simmetry, i.e.
x[n] = −x[−n], then X(ω) = −X(−ω) and Y (ω) = [Ha(ω)− jHb(ω)]X(ω) with the
left transform and Y (ω) = H(ω) [Xa(ω)− jXb(ω)] with the right transform.

A rule of thumb for checking whether the QDFT is well-implemented is to follow
the scheme in Fig. 2.3. After computing the convolution in the frequency domain,
the inverse transform of the output should be equal to the output of the time-domain
convolution. Figure 2.4 shows how the classic convolution theorem adopted in
a quaternion context produces an erroneous result, since it is not coicident with
the result of quaternion time-domain convolution. On the other hand, the split
convolution method proposed in (2.18) and in (2.20) does provide the expected
result as shown in Fig. 2.5.

x[n]
h[n]

QDFT IQDFTH(ω)

y
T
[n] = y

F
[n] ?

y
T
[n]

y
F
[n]

Figure 2.3. Time-domain and frequency-domain comparison scheme.

2.4 Relations between LEFT and RIGHT transforms 27

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

Time Domain Conv - Frequency Domain DFT "Classic" Conv W component

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

Time Domain Conv - Frequency Domain DFT "Classic" Conv X component

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

Time Domain Conv - Frequency Domain DFT "Classic" Conv Y component

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

Time Domain Conv - Frequency Domain DFT "Classic" Conv Z component

Figure 2.4. The classic convolution theorem adopted in a quaternion context produces
an erroneous result, since it is not coicident with the result of quaternion time-domain
convolution.

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

10
Time Domain Conv - Frequency Domain DFT (SPLIT) Conv W component

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

10
Time Domain Conv - Frequency Domain DFT (SPLIT) Conv X component

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

10
Time Domain Conv - Frequency Domain DFT (SPLIT) Conv Y component

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

10
Time Domain Conv - Frequency Domain DFT (SPLIT) Conv Z component

Figure 2.5. The split quaternion convolution theorem provides an output which is coicident
with the result of quaternion time-domain convolution.

2.4 Relations between LEFT and RIGHT transforms
There exist relations between Left and Right quaternion transforms. We have defined
the symplectic decomposition as

FL(ω) = Fs(ω) + Fp(ω)ν2

FR(ω) = Fs(ω) + Fp(−ω)ν2
(2.21)

2.5 Time reversal in H 28

and we can find the relations

FR±ν(ω) = FL∓ν(ω) = −FL∓ν(ω)

FL±ν(ω) = FR∓ν(ω) = −FR∓ν(ω)
. (2.22)

FL(ω)

FR(ω)

f(t) f(t)

R

RL

L

FR(ω)

FL(ω)

Figure 2.6. Relations between left and right transforms [22].

2.5 Time reversal in H

Of course, frequency swap can be related to time reversal [22].

FL(ω)

FR(ω)

f(t) f(-t)

R R

L L

Figure 2.7. Quaternion Fourier transform and time reversal relations [22].

In the discrete time, the operation of time reversal is not simply a time reversal:
it is a time reversal and a shift (Heaviside theorem/Time shifting theorem). The
application of the same transform to a signal f(t) twice results in a time-reversed
signal f(−t). Scale factors are ignored. In Fig. 2.7 the dashed connection between
FL(ω) and FR(ω) represents a partial frequency reversal.

29

Chapter 3

Quaternion Adaptive Filters

Contents
3.1 Time Domain Quaternion Adaptive Filters 30

3.1.1 Differences with CLMS 31
3.1.2 Convergence properties of QLMS 32

3.2 Frequency Domain Quaternion Adaptive Filters 32
3.2.1 Introduction to the OS-QFDAF algorithm 33
3.2.2 OS-QFDAF algorithm overview 33
3.2.3 Power Normalization 36
3.2.4 Computational cost of OS-QFDAF 37
3.2.5 Convergence Properties 37

Step size stability range 37
Excess Mean Square Error 40
QDFT with Power Normalization 42

3.3 Simulations 43
3.3.1 OS-QFDAF simulations 43
3.3.2 Evaluation of the Excess Mean-Square Error 44
3.3.3 Performance evaluation in changing scenario 45

The algorithms developed in this work have Widrow and Hoff’s Least Mean
Square (LMS) algorithm (1960) as a common root [108]. The LMS algorithm
is definitely a milestone in adaptive filtering and founded the bases for the new
generations of algorithms and advanced techniques in this field. The derivation of
the Quaternion LMS (QLMS) traces the starting line for the development of a new
family of algorithms. As introduced, ordinarily working with 3D audio, we have
searched for algorithms compliant with the specifications of fast computation and
proper algebraic structure, in order to deal with very long impulse responses and
exploit the physical and statistical properties of the acoustic field. Nevertheless, the
algorithms suggested in this Chapter and tested in audio signal processing can be
transferred to other research areas, e.g. mechanics, electromagnetism, etc.

This chapter is divided into two main sections: Paragraph 3.1 recalls the classic
QLMS algorithm by Mandic and Took [98] as a delegate of algorithms in the time

3.1 Time Domain Quaternion Adaptive Filters 30

domain. A full derivation of the QLMS is also provided, since it supplies a method
for the development of algorithms in quaternion algebra. Paragraph 3.2 presents
our new class of quaternion frequency-domain algorithms, with particular regard
to the Overlap-Save Quaternion Frequency Domain Adaptive Filter (OS-QFDAF).
Special attention will be given to the convergence properties of this family of filters.
Finally, reports from simulations are shown in Par. 3.3.

3.1 Time Domain Quaternion Adaptive Filters
QLMS was originally introduced by Mandic and Took in [98] and later refined by
Barthélemy et al. in [8], where other derivations were also proposed. We will shortly
explain why the QLMS is not a four-dimensional extension of the complex LMS
algorithm. In fact, we will demonstrate that, if two of four components vanish,
QLMS does not degenerate into CLMS.

The algorithm learning equation in its general formulation updates the filter
weights as follows:

wn = wn−1 + µ
1
2
[
−∇Ĵ (wn−1)

]
. (3.1)

where ∇Ĵ (wn−1) is the gradient of a cost function Ĵ (wn−1) to be defined and
minimized and represents the innovation term in the update law (3.1). The QLMS
filter is an error-correction based algorithm and the cost function can be chosen, for
example, as the Mean Square Error (MSE):

Ĵ (wn−1) = e[n]e∗[n] = e2
a[n] + e2

b [n] + e2
c [n] + e2

d[n] (3.2)

where the error is computed as the difference between a desired signal d[n] and the
adaptive filter output y[n]: e[n] = d[n]− y[n]. The minima and maxima of Ĵ (wn−1)
are found by computing the quaternionic gradient:

∇w (e[n]e∗[n]) = ∇wa (e[n]e∗[n]) +∇wb
(e[n]e∗[n]) i

+∇wc (e[n]e∗[n]) j +∇wd
(e[n]e∗[n]) k

= ∂Ĵ (w)
∂wa

+ ∂Ĵ (w)
∂wb

i + ∂Ĵ (w)
∂wc

j + ∂Ĵ (w)
∂wd

k
(3.3)

where w = wa + wbi + wcj + wdk. The four components in (3.3) are calculated
separately (according to the product rule of derivatives):

∇wa (e[n]e∗[n]) = e[n]∇wa (e∗[n]) +∇wa (e[n]) e∗[n]
∇wb

(e[n]e∗[n]) i = e[n]∇wb
(e∗[n]) i +∇wb

(e[n]) e∗[n]i
∇wc (e[n]e∗[n]) j = e[n]∇wc (e∗[n]) j +∇wc (e[n]) e∗[n]j
∇wd

(e[n]e∗[n]) k = e[n]∇wd
(e∗[n]) k +∇wd

(e[n]) e∗[n]k

(3.4)

The adaptive filter output can be defined in several forms (the update equation will
change accordingly), e.g. it can be expressed as

y[n] = wT
n−1xn =

wT
a xa −wT

b xb −wT
c xc −wT

d xd
wT
a xb + wT

b xa + wT
c xd −wT

d xc
wT
a xc + wT

c xa + wT
d xb −wT

b xd
wT
a xd + wT

d xa + wT
b xc −wT

c xb

 (3.5)

3.1 Time Domain Quaternion Adaptive Filters 31

or equivalently:

y [n] = xHn w∗n−1 =

wT
a xa −wT

b xb −wT
c xc −wT

d xd
−wT

a xb −wT
b xa −wT

c xd + wT
d xc

−wT
a xc −wT

c xa −wT
d xb + wT

b xd
−wT

a xd −wT
d xa −wT

b xc + wT
c xb

 (3.6)

Notation was simplified by omitting the subscript n. Going through all the calcula-
tions, with y[n] defined as in (3.5), and substituting the partial gradients into (3.3),
we have:

∇w (e[n]e∗[n]) = −4e[n]x∗n − xne∗[n]
+ 2 (ea + ebi + ecj + edk) (xa − xbi− xcj− xdk)
+ (xa + xbi + xcj + xdk) (ea − ebi− ecj− edk)
= −4e[n]x∗n − xne∗[n] + 2e[n]x∗n + xne∗[n]
= −2e[n]x∗n.

(3.7)

In conclusion, the QLMS update equation is

wn = wn−1 + µe [n] x∗n. (3.8)

Note: due to the non-commutativity of the quaternionic product, the order of the
factors does affect the result. When the cost function is chosen as

Ĵ (wn−1) = e∗[n]e[n] (3.9)

the QLMS update equation becomes

wn = wn−1 + µe∗[n]x∗n. (3.10)

3.1.1 Differences with CLMS

Forcing two quaternion components to be zero, it is possible to prove that the QLMS
does not generalize CLMS and LMS. Let e3, e4 = 0,x3,x4 = 0, then

e[n]e∗[n] = (e1x1 + e2x2) + (−e1x2 + e2x1) i (3.11)

In CLMS we have

e[n]e∗[n] = (e1x1 + e2x2) + (e1x2 − e2x1) i (3.12)

The two expressions (3.11) and (3.12) do not coincide. In the special case the
input data are isomorphic, that is q = qa + Qιr, where Q =

√
q2
b + q2

c + q2
d and

ιr = (qbi+qcj+qdk)
Q , the derivations of the QLMS and CLMS algorithms are just

alike [98].

3.2 Frequency Domain Quaternion Adaptive Filters 32

3.1.2 Convergence properties of QLMS

In this paragraph, a note about the relation between the QLMS algorithm convergence
and the choice of the step size µ is given. This is not the full study of convergence,
but a simplified approach aimed at giving some initial information to the reader.
The result to be obtained is the range of values of µ that guarantees the filter
stability. This demonstration was proposed in [95] in the case of the earlier version
of QLMS [98]. Here, we retrace the demonstration in the case of the correct QLMS
algorithm [8].

Let us define the a-priori error ẽ[n] and the a-posteriori error e[n] as

ẽ[n] = d[n]−wT
nxn

e[n] = d[n]−wT
n−1xn

. (3.13)

The goal is to estimate the range of values of the step size µ such that the a-posteriori
error never exceeds the a-priori error: ‖e[n]‖ < ‖ẽ[n]‖. The squared error ‖e[n]‖2
can be expanded into a Taylor series as

‖e[n]‖2 = ‖ẽ[n]‖2 + ∆wH
n

∂ ‖ẽ[n]‖2

∂wn
. (3.14)

Substituting ∆wn = µẽ[n]x∗n and ∂‖ẽ[n]‖2

∂wn
= −2(ẽ[n]x∗n) into (3.14), we have

‖e[n]‖2 = ‖ẽ[n]‖2 − 2µxTn ẽ∗[n]ẽ[n]x∗n
= ‖ẽ[n]‖2 − 2µ ‖ẽ[n]‖2 ‖xn‖2

= ‖ẽ[n]‖2 (1− 2µ ‖xn‖2)
. (3.15)

In order to guarantee convergence, it must be∣∣∣1− 2µ ‖xn‖2
∣∣∣ < 1 (3.16)

So the values of µ will fall in the estimated range

0 < µ <
1

‖xn‖2
. (3.17)

3.2 Frequency Domain Quaternion Adaptive Filters
With regard to frequency-domain filtering, we present here the Overlap-Save Quater-
nion Frequency Domain Adaptive Filter (OS-QFDAF). The OS-QFDAF algorithm
is a block algorithm. Block algorithms are defined by a periodic update equation, i.e.
the filter coefficients are updated at each block iteration. In general, such algorithms
differ in the length of the input block, the number of the overlapping samples, the
type of transform used (for those algorithms working in a transform domain). In
the OS-QFDAF algorithm, the number of the overlapping samples is denoted by M .
Usually, the overlap length M is chosen equal to the filter length in the time domain,
so we can conventionally refer to M as the filter length. In order to simplify the
implementation, the transform length is chosen as N = M +L, where L is the block
length.

3.2 Frequency Domain Quaternion Adaptive Filters 33

3.2.1 Introduction to the OS-QFDAF algorithm

In complex algebra, the inverse transform of the product of two DFT sequences
provides a circular convolution in the time domain, while filtering operations are
implemented with linear convolution. In order to obtain the linear convolution
from the circular convolution, proper window constraints on data are needed. If
these constraints are not taken into account, with the idea of designing an algo-
rithm with reduced computational cost, the algorithm may not exactly converge to
Wiener optimum solution. Fast convolution may be performed using two different
methods: overlap-add (OA) and overlap-save (OS). The former requires much more
computation than needed [104], so the OS method with 50% overlap turns out to be
the best performing choice. Therefore, the OS-QFDAF algorithm presented here
embeds the OS method. The algorithm comes with power normalization, a strategy
intended to improve convergence to optimum and fully described later on in this
chapter. Differently from the complex-valued OS-FDAF, in the quaternion domain
some modifications are need, due to the fact that the convolution theorem is not
valid in the standard formulation (the product of the DFT sequences), but it is
slightly more complicated [22, 74]. We refer to 2.3 for a brief introduction to this
topic. Considering the mathematical formulation of the convolution and correlation
operations as deeply described in [74], the proposed OS-QFDAF from the Block
QLMS algorithm as formulated in 3A. It is possible to store the input samples into
a block matrix Xk and obtain a similar formulation for all block algorithms in both
time and transform domain. The final form of the OS-QFDAF algorithm results
from the transformation into the frequency domain of the equations of Block QLMS,
being aware of the properties of convolution and correlation in the quaternion do-
main [74]. The Quaternion Discrete Fourier Transform was introduced in Par. 2.1.1
and a practical method for computing the Quaternion Fast Fourier Transform was
suggested. This method is based on the Cayley-Dickson symplectic decomposition
for quaternions. A brief overview of the OS-QFDAF algorithm and comments about
it are given just below. A block diagram of the algorithm is illustrated in Fig. 3.1.

3.2.2 OS-QFDAF algorithm overview

Initialize the algorithm with

Winit = 0 (2M-by-1 null vector)
µ = µ0, P0 (m) = δ, m = 0, 1, ..., N − 1

(3.18)

where Pk (m) is the power of the m-th frequency bin at block k and µ0, δ are
initialization constants to be chosen empirically.

The following steps are to be executed for each new input block k.
Compute the QFFT of the filter input samples as

Xk = diag
[
QFFT

[
xMold xLk

]T]
(3.19)

where the input block consists of xMold and xLk , defined as

3.2 Frequency Domain Quaternion Adaptive Filters 34

QFT IQFT

−

Xk Yk

Wk

Wk+1

xk
xoldM xkL

QFT

QCV
yk

[yk]⎣L⎦
yk^

dk
^ek^ek^0M

ek
QCR

EkXk
Ck

μk

GRADIENT

CONSTRAINT

Wk

() ⎡ ⎤
1IQFT

QFT +
⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

M
k

L

W
0

1−z

Figure 3.1. OS-QFDAF block diagram.

xMold = [x (kL−M + 1) , · · · , x (kL− 1)]
xLk = [x (kL) , · · · , x (kL+ L− 1)].

Compute the filter output in the frequency domain, by using the convolution
theorem [74] in (2.17) as

Yk = Wa
kXk + Wb

kν2X−k, (3.20)

where X−k ≡ Xk (−ω) is the frequency reversed signal of Xk (ω), while Wa
k and Wb

k

are the simplex and perplex parts such that Wk = Wa
k + Wb

kν2. The quaternion
convolution in (6.27) is implemented by the block labeled as QCV in Fig. 3.1 and
detailed in Fig. 3.2. Then we return to time domain

ŷk = [IQFFT (Yk)]bLc (3.21)

where Yk is the filter output in the frequency domain1, the symbol bLc, means the
last L samples of vector yk and ŷk is the windowed filter output in the time domain2.

Let d̂k be the desired output vector in the time domain at block k:

d̂k =
[
d (kL) d (kL+ 1) · · · d (kL+ L− 1)

]T
(3.22)

the error vector in the time domain is defined as

êk = d̂k − ŷk (3.23)
1Diagonalization in (3.19) allows to express the filter output signal in a formalism similar to that

of time-domain Block LMS [104].
2In OS only the last L samples of the anti-transformed output block are useful in the time

domain. In fact, it is not assured that the first M samples are zero, so windowing is necessary.

3.2 Frequency Domain Quaternion Adaptive Filters 35

Wk(ω)

P

S

ν2
Wk(ω)b

Wk(ω)a

f-Swap

Xk(ω)

Yk(ω)

Xk(−ω)

Figure 3.2. Block diagram of the quaternion convolution (QCV). In quaternion domain
the standard convolution theorem is not valid and the frequency domain multiplication
is performed separately for the simplex and perplex parts.

and transformed3 into the frequency domain as

Ek = QFFT
([

0M êk
]T)

. (3.24)

This algorithm updates the learning rates by means of power normalization, fully
explained in Par. 3.2.3:

µk = µ0 · diag
[
P−1
k (0) , . . . , P−1

k (N − 1)
]
. (3.25)

Finally, we can update the filter weights as

Wk+1 = Wk + µkCk (3.26)

where Ck is the quaternion correlation [74] in (2.18) between the input Xk and the
error Ek

Ck = Eak(ω)
[
XaH
k (ω)− ν2X

b
k(−ω)

]
+ Ebk(ω)ν2

[
XaH
k (−ω)− ν2X

b
k(ω)

]
(3.27)

where X−k ≡ Xk (−ω), while Ea
k and Eb

k are the simplex and perplex parts of
Ek = Ea

k + Eb
kν2, respectively. This operation is represented by the box labeled as

QCR in Fig. 3.1 and detailed in Fig. 3.3.
The classic version of the OS-QFDAF algorithm considers constraining the

gradient as follows:

Wk+1 = QFFT
(

[IQFFT(Wk+1)]dMe
0L

)
. (3.28)

The stochastic gradient in the time domain is defined as
∇Ĵk = [IQFFT(Ck)]dMe, i.e. only the first M samples are useful, since the last L
samples are those relative to circular correlation and it is not guaranteed they are

3In order to transform the error vector, zero-padding is needed.

3.2 Frequency Domain Quaternion Adaptive Filters 36

Ek(ω)

P

S

ν2

Xk(ω)

b

Xk(−ω)

a

f-Swap

Xk(ω)

Ck(ω)

aH

Ek(ω) Ek(ω)

aH

[.]H

PS

b

a
Xk(ω)

Xk(ω)
f-Swap

b
ν2Xk(ω)

b
ν2Xk(−ω) ν2

b
ν2Ek(ω)

Figure 3.3. Block diagram of the quaternion correlation (QCR).

zero. Equation (3.28) applies the gradient constraint after updating the filter weights
in the frequency domain. If the gradient constraint is neutralized, the term Ck

corresponds to a circular correlation in the time domain and this modified version of
the QFDAF algorithm is denoted as Unconstrained QFDAF. Usually, unconstrained
algorithms exhibit a polarized convergence. In order to get convergence to optimum,
the filter length M should be increased, but this is not recommended.

A second version of the OS-QFDAF algorithms is the Sliding Window transform
domain algorithms concisely presented in 3A.

3.2.3 Power Normalization

Power normalization makes it possible to have all modes converging at the same
rate. This is achieved, as in (3.25), by assigning to each weight an individual step
size of its own, µ (m) = µ/P (m), where P (m) is an estimation of the average power
relative to the m-th frequency bin. The elements of vector µk have the property
of equalizing the convergence modes by whitening the input signal. When power
estimation P (m) is not available, as it usually happens, especially when the input
data are non-stationary, it has to be computed differently. The update for the m-th
power in the m-th frequency bin at step k (block k) is carried out by recursion as
follows:

Pk (m) = λPk−1 (m) + (1− λ) |Xk (m)|2 (3.29)

with m = 0, ..., N − 1. The parameter denoted by λ ∈ [0, 1] represents a forgetting
factor and (3.29) is the expression of a low-pass filter. If λ = 1, the term |Xk (m)|2
(punctual energy of the m-th frequency bin) is ignored.

At step k, the m-th step-size can be defined as

µk (m) = µ

Pk (m) (3.30)

where m = 0, ..., N − 1 and µ is a scalar chosen empirically.

3.2 Frequency Domain Quaternion Adaptive Filters 37

Table 3.1. Computational Cost of Quaternion Adaptive Algorithms.

Algorithm Computational Cost

QLMS 32 ·M · nsamples
BQLMS 16 ·M + 16 · L · nblocks

OS-QFDAF 5 · 2N log2N + 4 · 16N

3.2.4 Computational cost of OS-QFDAF

An approximation of the computational cost is given by taking into consideration the
critical paths of the algorithm, i.e. multiplications and computation of FFTs. Each
QFFT requires the execution of 2 complex FFTs. The computation of one complex
FFT involvesN log2N multiplications. The OS-QFDAF algorithm includes 5 QFFTs,
2 · 16N multiplications to compute the filter output and 2 · 16N multiplications
to update the filter weights. Considered that a block has L = M samples, the
computational cost for OS-QFDAF is approximately:

COS−QFDAF = 5 · 2N log2N + 4 · 16N = 20M log2 2M + 128M, (3.31)

where N = L+M = 2M .
In the QLMS algorithm the computation of the filter output requires 4·4M = 16M

multiplications for each sample and so does the computation of the cross-correlation
in the update equation. Overall, for M samples, the computational cost for QLMS
is approximately CQLMS = 32M · M = 32M2. The complexity ratio between
OS-QFDAF and QLMS reveals that the former is several times faster than its
time-domain ancestor:

COS−QFDAF
CQLMS

= 5log2 2M + 32
8M . (3.32)

For example, for M = 64, the OS-QFDAF is about 7 times faster than the QLMS
algorithm. A comparison among algorithms is given in Table 3.1.

3.2.5 Convergence Properties

The study of the convergence properties of an algorithm gives clues about how the
algorithm behavior is conditioned by the value of the Rxx eigenvalues, the filter
length, the block length and other parameters.

In order to simplify the theoretical derivation of the convergence and stead-
state behavior, without loss of generality the following analyses will be performed
assuming a real-valued input signal xk. In this case, the spectrum Xk is symmetric,
i.e. X−k = Xk, and the convolution in (6.27) simply returns in the traditional
product of the sequence transforms. A similar result can be obtained for the
correlation (3.27). In case of quaternion input, the analyses are simply replicated
for the simplex and perplex parts, respectively, obtaining similar results.

Step size stability range

As a matter of simplicity, we analyze the convergence behavior of the Unconstrained
version of the OS-QFDAF algorithm for a real-valued input. The analysis in the

3.2 Frequency Domain Quaternion Adaptive Filters 38

case of constrained algorithm can be conducted the same way by adding the gradient
constraint [27]. Considering the test circuit in Fig. 3.4 (Par. ??), the desired output
in the frequency domain can be expressed as

Dk = GM,0 (XkW0 + Vk) (3.33)

where W0 is the optimum solution, GM,0 = FgM,0F−1 is a window constraint
(necessary to get linear convolution from circular convolution). The transform
denoted by F is the QFFT and matrix gM,0 is defined as

gM,0 =
[

IM,M 0M,L

0L,M 0L,L

]
(3.34)

Vk denotes the additive noise in the frequency domain, as shown in Fig. 3.4. In
other words, E0k is the error in case Wk = W0 ⇒ E0k = Vk. The error in the
frequency domain is defined as

Ek = Dk −Yk = GM,0 (XkW0 + Vk −XkWk) . (3.35)

Substituting (3.35) into the unconstrained adaptation law (3.26), where
GM,0 = I, we obtain:

Wk+1 = Wk + µkXH
k GM,0 (XkW0 + Vk −XkWk) . (3.36)

We define the weight error vector in the frequency domain:

Uk = Wk −W0 (3.37)

thus resulting:

Uk+1 = Uk + µkXH
k GM,0 (XkW0 + Vk −XkWk)

=
(
I− µkXH

k GM,0Xk

)
Uk + µkXH

k GM,0Vk.
(3.38)

Taking the expectation of each term in (3.38), we assume that Xk and Vk are
independent. Under this assumption we can apply the orthogonality principle
according to which E

{
XH
k GM,0Vk

}
= 0:

E {Uk+1} =
(
I− µkE

{
XH
k GM,0Xk

})
E {Uk}+ µkE

{
XH
k GM,0Vk

}
= (I− µkRu

xx)E {Uk}
(3.39)

where the autocorrelation matrix Ru
xx was defined as

Ru
xx = E

{
XH
k GM,0Xk

}
. (3.40)

We see that the convergence behavior of the step-normalized Unconstrained QFDAF
is controlled by the eigenvalues of the power-normalized autocorrelation matrix
µkRu

xx.
Matrix diagonalization within the right eigenvalue spectrum4, σR (A), is possible

with the use of a unitary matrix Q as stated in [114]:

σR
(
QHAQ

)
= σR (A) . (3.41)

4λ is a right eigenvalue if there exist a non-zero x ∈ H such that Ax = xλ and λ is a left
eigenvalue if there exist a non-zero x ∈ H such that Ax = λx.

3.2 Frequency Domain Quaternion Adaptive Filters 39

The diagonal matrix having the right eigenvalues of Ru
xx on the principal diagonal is

denoted by Λ:
Λ = QHRu

xxQ. (3.42)
Being Ûk = QHUk the transformed error vector, (3.39) can be rewritten using the
new vectors (we do not consider power normalization here). We take the expectation
of each element of (3.39):

E
{
Ûk+1

}
= (I− µΛ)E

{
Ûk

}
. (3.43)

Equation (3.43) can be decomposed into a finite-difference-equation system as

E
{
Ûk+1 (m)

}
= (1− µλm)E

{
Ûk (m)

}
. (3.44)

Back-substitution leads to

E
{
Ûk+1 (m)

}
= (1− µλm)kE

{
Û−1 (m)

}
. (3.45)

Convergence occurs if |1− µλm| < 1.
The autocorrelation matrix is a Hermitian matrix, i.e. Rxx = RH

xx and the eigen-
values of a Hermitian matrix are all real. This property was formerly demonstrated
by Charles Hermite for complex Hermitian matrices and it can be expanded to
quaternions at least for right eigenvalues. In effect, right eigenvalues can be computed
by Cayley-Dickson decomposition and each complex sub-matrix is Hermitian, as
well.

If we consider the left eigenspectrum, the convergence properties are not elemen-
tary: whereas the right eigenspectrum is a quaternionic analogue of the complex
eigenvalues [87], the left eigenspectrum is not and it is not even unitarily invariant,
so the autocorrelation matrix Rxx cannot be diagonalized as in (3.42). However,
if both the eigenspectra σR (A) and σL (A) are finite, then σR (A) = σL (A). A
proof of that is given in [42, 87]. In our case σR (A) is indeed finite: we can read
in [42, 114] that σR (A) is infinite if and only if σR (A) 6⊂ R. Nothing can be said
about σL (A) a priori. In fact, examples showed that a Hermitian matrix does not
necessarily produce a finite left eigenspectrum. So, further investigation is essential.
Detailed information about the computation of the quaternion eigenspectra is given
in [42,114] and a summary is reported in 1.3.4.

The step size convergence range, working with the right eigenspectrum, can be
found by solving the inequality

|1− µλm| < 1. (3.46)

Definitively, the step size µ must be chosen such that

0 < µ <
1

λmax
. (3.47)

Alternatively, given (3.39) and considering that

E
{
XH
k GM,0Xk

}
= E

{
tr(XH

k GM,0Xk)
}

= tr(E
{
XH
k GM,0Xk

}
)

= tr(Rxx)

(3.48)

3.2 Frequency Domain Quaternion Adaptive Filters 40

a conservative relation for choosing the step size stability range is suggested below:

0 < µ <
1

tr(Rxx) . (3.49)

Weight adaptation in OS-QFDAF is independent for each filter weight, since each
weight is associated with one mode of the adaptive filtering system. On the contrary,
in the standard original time domain LMS/QLMS algorithm each weight is account-
able for multiple modes summed up and therefore the convergence rate cannot be
optimized for any specific mode of the process.

From (3.39) we see that the time constant τm for the m-th mode of the algorithm
can be found by considering the time it takes for the error vector to decay as 1/e of
its initial value: ∣∣∣Ûτm (m)

∣∣∣ =
∣∣∣Û−1 (m)

∣∣∣ e−1

= |(1− µλm)τm |
∣∣∣Û−1 (m)

∣∣∣
→ τm |ln (1− µλm)| = −1.

(3.50)

Definitively, the time constant for the m-th mode is

τm = − 1
|ln (1− µλm)| (3.51)

where λm is the m-th eigenvalue of the autocorrelation matrix Ru
xx of the input data

Xk. Anyway, taking advantage of power normalization, in a wide-sense stationary
environment, the weights tend to converge at the same rate.

Excess Mean Square Error

When the OS-QFDAF algorithm operates without power normalization, the Excess
Mean Square Error (EMSE) can be computed in a straightforward way. With the
definition in (3.37), the error at block k is

Ek = Dk −Yk = Dk −XkWk −XkW0 + XkW0

= Vk −XkUk.
(3.52)

Substituting (3.52) into the MSE curve, with the assumption that Vk and Xk are
independent, the MSE at block k is

Jk = E
{
|Ek|2

}
= E

{
(Vk −XkUk)

(
VH
k −UH

k XH
k

)}
= Jmin + E

{
XkUkUH

k XH
k

}
.

(3.53)

We define the weight error vector correlation as

Kk = E
{
UkUH

k

}
∈ HM×M (3.54)

which can be conveniently diagonalized as

K̂k = QHKkQ = diag
[
k̂k (i)

]
∈ RM×M . (3.55)

3.2 Frequency Domain Quaternion Adaptive Filters 41

Since K̂k is a diagonal matrix, the elements forming its principal diagonal are its
eigenvalues. With the unitary similarity transformation in (3.55), we are assuming
that we are using the right eigenspectrum and since Kk is Hermitian, K̂k is real-
valued. In view of the above, (3.53) can be rewritten as

Jk = Jmin + E
{
XkUkUH

k XH
k

}
= Jmin + E

{
XkK̂kXH

k

}
= Jmin + E

{
K̂kXkXH

k

}
= Jmin + E

{
tr
(
K̂kXkXH

k

)}
= Jmin + tr

(
K̂kRxx

)
= Jmin + tr

(
K̂kΛ

) (3.56)

where Λ = QHRxxQ.
The EMSE is defined as

JEMSE = Jk − Jmin = tr
(
K̂kΛ

)
=
M−1∑
i=0

k̂k (i)λi. (3.57)

The computation of k̂k (i) can be conducted as follows. Multiplying the error vector
Uk = Uk−1 + µXH

k Ek by its Hermitian vector and taking the expectation of each
term, we have:

E
{
UH
k Uk

}
= E

{(
I− µXH

k Xk

)
Uk−1UH

k−1
(
I− µXH

k Xk

)H}+ µ2JminRxx (3.58)

where Jmin = E
{
VkVH

k

}
∈ R.

The weight error vector correlation can be expressed as

Kk =
(
I− µXH

k Xk

)
Kk−1

(
I− µXH

k Xk

)H + µ2JminRxx (3.59)

and diagonalizing as in (3.52) and (3.53)

K̂k = (I− µΛ) K̂k−1 (I− µΛ)H + µ2JminΛ (3.60)

we obtain a system of M finite difference equations:

k̂k (i) = (1− µλi)2
k̂k−1 (i) + µ2Jminλi (3.61)

for i = 0, 1, . . .M − 1. Back-substitution leads to

k̂k (i) = (1− µλi)2k
k̂−1 (i) + µ2

k/2∑
i=0

(1− µλi) Jminλi. (3.62)

As k →∞

lim
k→∞

k̂k (i) = µ2
k/2∑
i=0

(1− µλi) Jminλi

= µ2λJmin
1

1− (1− µλi)2 = µJmin

2− µλi
.

(3.63)

Substituting (3.63) into (3.57):

J∞ = Jmin + JEMSE

= Jmin +
M−1∑
i=0

k̂k (i)λi = Jmin + Jmin

M−1∑
i=0

µλi
2− µλi

.
(3.64)

3.2 Frequency Domain Quaternion Adaptive Filters 42

Equation (3.64) can be expanded into a Taylor series:

J∞ = Jmin + Jmin
µ

2

M−1∑
i=0

λi

(
1 + µ

2λi + µ2

2 λ2
i + . . .

)
. (3.65)

Recalling that the autocorrelation matrix Rxx is Hermitian, it has right eigenvalues
belonging to the reals and, for µ << 2/λmax, we have

J∞ ≈ Jmin + Jmin
µ

2

M−1∑
i=0

λi =Jmin

(
1 + µ

2 tr (Rxx)
)
. (3.66)

Definitively, the EMSE is equal to

JEMSE '
µ

2 tr (Rxx) = µ

2M · rxx [0]

= µ

2M · {input power} .
(3.67)

QDFT with Power Normalization

The combination of DFT and Power Normalization is a powerful gimmick to obtain
fast convergence in an adaptive algorithm. One of the effects of the DFT, the
orthogonalizing property, is to asymptotically make the autocorrelation matrix a
diagonal matrix with increasing the DFT length N. This can be seen by finding a
convenient expression of the autocorrelation matrix Rxx. The expectation of the
squared magnitude of X(ω) is equal to

E
[
|X (ω)|2

]
=
N−1∑
n=0

N−1∑
k=0

E [x (n)x∗ (k)] e−µω(n−k)/N (3.68)

where φxx (n− k) = E [x (n)x∗ (k)] is the autocorrelation function of x (n).
Equation (3.68) is conveniently divided by N and rewritten as

E
[
|X (ω)|2

]
N

=
N−1∑

l=−N+1

(
1− |l|

N

)
φxx (l) e−µωl/N (3.69)

where the variable running over the summation has been changed in l = n− k and
the function is computed in a double (see |l|) triangular domain by multiplying the
autocorrelation coefficient φxx (n− k) by Bartlett’s window.

The autocorrelation coefficients φxx of x can be considered as an ARMA (Au-
toRegressive Moving Average) process. Its expression in the time domain is

φxx (l) = E {x (n)x∗ (n− l)} =
P−1∑
p=0

aP c
|l|
P (3.70)

where l = . . . ,−1, 0, 1, . . ., cP , aP and P denote the process poles, the process
coefficients and the order of the process, respectively.

In the frequency domain the autocorrelation coefficients are transformed into

Φxx

(
e−µ2πn/N

)
=

∞∑
l=−∞

φxx (l) e−µ2πn/N (3.71)

3.3 Simulations 43

that is the expression of the Power Spectral Density (PSD) of the input process.
As l → ∞, we can see that φxx(l) → 0 and the diagonal elements of the

autocorrelation matrix (divided by N for convience) tend to the PSD samples
asymptotically.

Recalling the Fourier transform of the exponential series, the autocorrelation
matrix can be rewritten by decomposing the coefficients as

Rxx

N
=

N+1∑

l=−N+1

(
1− |l|N

)
φxx (l) e−µ2πn/N m = n

1
N

P−1∑
p=0

aP

[
1

cP−e+µ2πm/N
1

c−1
P
−e−µ2πn/N + c.c.

]
m 6= n

(3.72)

where n,m denote the matrix indexes.
As the transform length N tends to infinity, the non-diagonal elements of the

autocorrelation matrix tend to 0.
As can be read from (3.72), when power normalization is applied, the elements

of the principal diagonal of Rxx, multiplied by the normalization factors, all tend to
have the same value, thus leading to a single convergence mode. As N increases,
the diagonal matrix just obtained tends to the identity matrix I, i.e. Rxx → Λ,
Λ−1Rxx = I.

3.3 Simulations

3.3.1 OS-QFDAF simulations

The results from the simulations presented in this paragraph were obtained by
applying the transform domain algorithms to a system identification problem (Fig.
3.4). The system to be identified is characterized by a set of random weights w0
(in the time domain), uniformly distributed in the range [−1, 1]. The quaternion
filter input signal x[n] is a unit variance colored noise with length of 20,000 samples,
obtained by filtering the white Gaussian noise η[n] as

x [n] = bx [n− 1] +
√

1− b2√
4

η [n] (3.73)

where b determines the bandwidth of the signal. The additive signal v[n] is defined
the same way as x[n], but it has a different bandwidth. In the following experiments
an SNR of 40 dB is used. The choice of the overlap length and the block length
(M = L) determines the FFT length (N = M + L).

The OS-QFDAF algorithm and its modifications exploit the power normalization
technique in order to have all filter weights converging at the same rate. Figure
3.5 shows how power normalization affects the filter performance by whitening the
input signal. The test is repeated with b = 0 (first 10,000 samples) and b = 0.95
(last 10,000 samples). The other parameters are set as M = L = 32, µ0 = 0.002,
δ = 0.001 and λ = 0.5. Whereas both the OS-QFDAF and the Sliding QFFT-QLMS
algorithm converge nearly at the same rate when b is changed from 0 to 0.95, the
QLMS algorithm converges very slowly if b = 0.95.

The step size µ0 in a power-normalized algorithm is an overall parameter govern-
ing the diagonal inverse power matrix. In both cases power normalization is present

3.3 Simulations 44

+

+

w0

Adaptive
Filterx[n]

e[n]

d[n]

v[n]

y[n]

-

Figure 3.4. Algorithm test circuit.

or not, the step size modifies the algorithm behavior in the same way as in QLMS: if
the step size is too large, the filter tends to instability. On the contrary, if the step
size is too small, further iterations are needed for the filter to reach the steady state.
Somewhere in the middle, when the step size decreases, the learning function drops
slower, but at the steady state the mean square error is smaller. An example of how
the step size modifies the filter behaviour is given in Fig. 3.6, by using b = 0.7 and
the other parameters as before.

The second experiment compares the OS-QFDAF and its unconstrained counter-
part. The scenario is the same depicted in Fig. 3.4. As can be seen from Fig. 3.7, all
parameters being equal (b = 0.7,M = L = 32, N = 64, µ0 = 0.0005, δ = 0.001, λ =
0.7), the OS-QFDAF convergences to optimum with a lesser excess MSE in the
learning curve, in comparison with the Unconstrained OS-QFDAF that, instead,
shows some bias. However, the execution in the Unconstrained OS-QFDAF is faster.
The Excess MSE is a gap between the steady state MSE curve and the theoretical
MSE bound.

3.3.2 Evaluation of the Excess Mean-Square Error

As suggested by (3.67), the Excess MSE (EMSE), defined by (3.57), increases with
the filter length M and/or the step size µ. An experimental proof of that was
reported in Fig. 3.6 with varying µ0. In the following test, we check the validity of
(3.67). The OS-QFDAF algorithm was applied to the adaptive block in Fig. 3.4 and
a comparison between the real J∞ (learning curve value at the steady state) and
J∞(formula) computed by means of (3.66) is given in Fig. 3.8. The EMSE has been
defined as JEMSE∞ = J∞ − JMSE Bound. The experiment reveals that the value of
J∞(formula), computed with (3.66), approximates quite well the learning curve at
the steady state. The algorithm parameters were chosen as M = L = 32, N = 64,
with µ = {0.001, 0.008} (left side of Fig. 3.8) and M = L = 64, N = 128, µ = 0.005
(right side of Fig. 3.8). In both cases we set b = 0.

3.3 Simulations 45

Figure 3.5. Power normalization effect on the filter performance.

3.3.3 Performance evaluation in changing scenario

Given the experiment in Fig. 3.4, the weights of the system to be identified are
changed in value twice during the simulation. The filter response (in terms of
adaptation) varies in speed accordingly with the amount of change. A greater
change produces a slower adaptation, i.e. the algorithms need a higher number of
iterations in order to reach the steady state after the alteration. The plots in Fig.
3.9 show results in terms of weights update. The tracking capability was tested
by the OS-QFDAF algorithm with and without power normalization, by using the
following parameters setting: M = 4, L = 32, N = 64, b = 0.9, µ0 = 0.008, λ = 0.5
and δ = 0.0005.

3.3 Simulations 46

Figure 3.6. Step size effect on the filter performance.

Figure 3.7. OS-QFDAF vs Unconstrained OS-QFDAF.

3.3 Simulations 47

Figure 3.8. Excess MSE in OS-QFDAF.

0.5 1 1.5 2

x 10
4

−1

−0.5

0

0.5

1

Samples

w
[k

] 1a

Transient analysis, M=4, b=0.9, μ=0.008, NFFT=64

OSQFDAF NoPowNorm
OSQFDAF
w

opt

0.5 1 1.5 2

x 10
4

−1

−0.5

0

0.5

1

Samples

w
[k

] 1b

Transient analysis, M=4, b=0.9, μ=0.008, NFFT=64

OSQFDAF NoPowNorm
OSQFDAF
w

opt

0.5 1 1.5 2

x 10
4

−1

−0.5

0

0.5

1

Samples

w
[k

] 1c

Transient analysis, M=4, b=0.9, μ=0.008, NFFT=64

OSQFDAF NoPowNorm
OSQFDAF
w

opt

0.5 1 1.5 2

x 10
4

−1

−0.5

0

0.5

1

Samples

w
[k

] 1d

Transient analysis, M=4, b=0.9, μ=0.008, NFFT=64

OSQFDAF NoPowNorm
OSQFDAF
w

opt

Figure 3.9. Tracking capability - Weights: OS-QFDAF, CC-QFDAF.

48

Appendix 3A

Algorithms

In this Appendix, modifications of the OS-QFDAF algorithm are presented. In the
beginning, some vector definitions can be found in Table 3A.1.

Table 3A.1. Algorithm vector definitions (in the time domain)

xn =
[
x [n] x [n− 1] . . . x [n−M + 1]

]T filter input vector at step n
xk =

[
x [kL] x [kL− 1] . . . x [kL− L+ 1]

]T filter input vector at step k
yk =

[
y [kL] y [kL− 1] . . . y [kL− L+ 1]

]T filter output
ek =

[
e [kL] e [kL− 1] . . . e [kL− L+ 1]

]T error signal
wk =

[
w0 [k] w1 [k] . . . wM [k]

]T filter weights

n = kL+ i: sample index
k = 0, 1, 2, . . .: block index
i = 0, 1, . . . ,M − 1: internal block index

3A.1 Block QLMS
Algorithm initialization: winit = random values.
At each new input block k do:

y [n] = xTnwk =
M−1∑
l=0

wk [l]x [kL+ i− l] (3A.1)

e [n] = d [n]− y [n] (3A.2)

wk+1 = wk + 2µB
L

L−1∑
i=0

e [kL+ i] x∗kL+i (3A.3)

where µB is the block step size.
Alternatively, the Block QLMS algorithm can be expressed by defining the block

matrix Xk by rows (R) and columns (C) as follows:

XR
k =

[
xkL xkL−1 . . . xkL−L+1

]T
XC
k =

[
x [kL] x [kL− 1] . . . x [kL−M + 1]

]T (3A.4)

3A.2 Sliding Window Algorithms - Sliding QFFT-QLMS 49

where xkL =
[
x [kL] x [kL− 1] . . . x [kL−M + 1]

]T
and

x [kL] =
[
x [kL] x [kL− 1] . . . x [kL− L+ 1]

]T
.

With the definition given in (3A.4), at each input block k do:

yk = Xkwk (3A.5)

wk+1 = wk + 2µB
L

XH
k ek. (3A.6)

3A.2 SlidingWindow Algorithms - Sliding QFFT-QLMS
The input block is pre-processed and decomposed into orthogonal components, each
feeding its own adaptive filter in a parallel filter bank. Adaptation takes place in
the transform domain.

Algorithm initialization:

Winit = 0, P0 (m) = δm, for m = 0, 1, . . . ,M − 1. (3A.7)

Let L = 1, at each new input sample for n = 0, 1, . . . do:

Xn = diag {QFFT (xn)} (3A.8)
Wn = QFFT (wn) (3A.9)
Yn = Wa

nXn + Wb
nν2X−n (3A.10)

e(n) = d(n)− 1TYn (3A.11)
En = 1e(n) (3A.12)

Ck = Ea(ω)
[
XH
a (ω)− ν2Xb(−ω)

]
+ Eb(ω)ν2

[
XH
a (−ω)− ν2Xb(ω)

]
(3A.13)

µn = µ · diag
{
P−1
n (0) , . . . , P−1

n (M − 1)
}

(3A.14)

Wk+1 = Wk + µkCn, (3A.15)

where e(n) is the error in the time domain, En the error in the frequency domain,
and 1 is a column vector of ones.

The QFFT in the algorithm can be replaced by any other orthogonal unitary
transform F, i.e. F−1F = I. The Sliding Window algorithms can be considered as a
boundary case of OS-QFDAF where L = 1.

50

Chapter 4

Quaternion Sound Space

Contents
4.1 Introduction to Ambisonics 51
4.2 Ambisonic format overview 53

4.2.1 B-Format 53
4.2.2 Extension of B-Format to quaternions 54

The representation of 3-dimensional (3D) audio signals in a quaternion formalism
is not merely a matter of compactness, but a bond between the physics and a proper
mathematical expression. Quaternion spaces offer a powerful choice to represent
the physics and its laws. In a simple way, the physical 3D space can be described
as a quaternion structure, where (i, j,k) represent the space coordinate axes and
the real quaternion component represents time. This formalism allows to simplify
many physical problems. For instance, one of the most remarkable results is the
simplification of the relativistic invariance and the reduction of Maxwell’s equations
to a single equation thanks to biquaternions (quaternions with all complex-valued
components) [15,33,107].

There are other ways to obtain physics from quaternions. The method we
propose here can be applied to 3D acoustics. A way to describe a sound field
uses the combination of an orthonormal basis of functions. For instance, the 3D
audio technique called Ambisonics decomposes the sound pressure field p(~r) into
a set of spherical harmonics as described below. This 3D audio technique was
introduced in the 70s by a team led by M. Gerzon, P. Fellgett and G. Barton [28–30]
and it is renowned because of its versatility and ease to record and reproduce the
reconstructed sound field. Besides that, Ambisonics describes the 3D sound space
in a way that the transformation into a quaternion format is straightforward and
physically consistent.

The description of the 3D sound space in a quaterion formalism is aimed at
testing and integrating hypercomplex adaptive filtering into a 3D audio context.
Immersive audio is indeed a useful test bench for the quaternion-valued filters that
introduced in Chapter 3. The current chapter explains the Ambisonics technique
and the way a transformation of the sound field into a quaternion format is feasible.
In addition, we focus on the virtual miking potentialities of Ambisonics and the
advantages in using quaternion signals in virtual rotations.

4.1 Introduction to Ambisonics 51

4.1 Introduction to Ambisonics
Source characterization is one of the most important tasks in sound field description.
Some classic 3D audio techniques such as Wave Field Synthesis (WFS) or Holophony,
represent the sound field by considering a wavefront as a secondary distribution
of sources, namely Huygens’ principle. According to source distribution, a specific
spatial radiation pattern is created depending on the position and the distance of
the sources. In mathematical terms, this is equivalent to saying that we can obtain
the sound pressure on the area A, knowing the sound pressure p0 and its gradient
~∇p0 on the boundary of A, by calculating the Kirchhoff-Helmholtz integral:

p (−→r) =
∫∫

∂A

[
~∇p0
−→·n −

~R

R
· −→n (1 + jkR) p0

R

]
e−jkR

4πR dS0, ∀~r ∈ A (4.1)

where k is the wave number and ~R is the vector connecting the source with the
listening point [61]. A detailed analysis of integral (4.1) shows how each secondary
source is composed of a monopole (relative to the pressure gradient signal) and
a dipole (relative to the pressure signal). However, there are slight conceptual
differences in the formulations by Kirchhoff-Helmholtz and Huygens. The former
is more general. The shape of the boundary does not depend on the wavefront,
in addition the Kirchhoff-Helmholtz integral itself carries information relating to
both amplitude and phase of the acoustic signal, whereas in Huygens’ principle
it is assumed that the secondary sources are located on equiphase surfaces. In
practice, we can conclude that the Kirchhoff-Helmholtz integral generalizes Huygens’
principle.

Another way to describe a sound field is based on the decomposition of the sound
field into spherical harmonics. Ambisonics is founded on this second descriptive
approach. Spherical harmonics are also used in issues concerning quantum mechanics,
gravitational fields and can be found in 3D graphics applications and lighting
engineering.

We start from writing the acoustic wave equation, i.e. the acoustic pressure, in
spherical coordinates (r, θ, ϕ), where r is the radius, θ is the azimuth and ϕ is the

Figure 4.1. Spherical harmonics up to 3rd order.

4.1 Introduction to Ambisonics 52

elevation. In the time domain, the wave equation is

∇2p (r, θ, ϕ, t)− 1
c2
∂2p (r, θ, ϕ, t)

∂t2
= 0 (4.2)

where c is the speed of sound.
The acoustic pressure field, due to external sources, can be developed into a

Fourier-Bessel series, whose terms are weighted products of the directional functions
Y σ
mn (θ, ϕ), called spherical harmonics, with the radial functions Jm (kr), called

spherical Bessel functions of the first kind:

p (~r) =
∞∑
m=0

(2m+ 1) jmJm (kr)
∑

0≤n≤m,σ=±1

BσmnY
σ
mn (θ, ϕ) (4.3)

with definitions m for the degree and n for the order. The meaning of σ is the spin
and k is the wave number (k = 2πf/c). Equation (4.3) represents the solution of the
wave equation (4.2) in the special case of plane wave. The coefficients denoted by
Bσ
mn represent, as shown later, the ambisonic signals in the transform domain [19]

and behave like Fourier coefficients in a Fourier series. Note that, unlike WFS or
Holophony, the sampling and the reconstruction of the sound field in Ambisonics
are executed pointwise, rather than on an area. It follows that the number of
channels needed to reconstruct the field will be much reduced compared to the
other techniques mentioned above. The information relative to sound direction is
coded precisely into the coefficients Bσ

mn just introduced. Ambisonics produces – in
theory – a coherent and homogeneous reconstruction of the field for all frequencies
and directions in the sweet spot, the optimal listening point. We will see that the
area affected by a problem of incoherence gets smaller with increasing the order of
Ambisonics. Similarly, there exists a frequency limit, beyond which the error exceeds
a certain level that grows with the order. In other words, Ambisonics performs
well in terms of coherence and homogeneity only in the sweet spot and only for low
frequencies.

Let us see the spherical harmonic functions in detail, analysing how ambisonic
signals are obtained from these functions. Spherical harmonics (see Fig. 4.1) are
defined as

Y σ
mn (θ, ϕ) =

√
2m+ 1

√
(2− δ0,n) (m− n)!

(m+ n)!Pmn sinϕ

×
{

cosnθ if σ = +1
sinnθ if σ = −1 (ignore n = 0) (4.4)

where Pmn (ξ) is the associated Legendre function of degree m and order n, δpq
represents Kronecker delta and it is equal to 1 if p = q, else it is equal to 0. The
associated Legendre function is defined as

Pmn (ξ) =
(
1− ξ2

)n
2 dn

dξn
Pm (ξ)

= (−1)m

2mm!
(
1− ξ2

)n
2 dm+n

dξm+n

(
1− ξ2

)m (4.5)

4.2 Ambisonic format overview 53

where ξ = cosϕ . In Ambisonics, some kind of normalization of the Legendre
functions often takes place [18]. For example, Schmidt semi-normalization is defined
by

Nmn =
√

2m+ 1
√

(2− δ0,n) (m−n)!
(m+n)! = √en

√
(m−n)!
(m+n)!

e0 = 1 if n = 0
en = 2 if n ≥ 1

(4.6)

The harmonic functions can be rewritten in Schmidt semi-normalized form (SN3D)
by substituting (4.6) into (4.4):

Y σ
mn (θ, ϕ) = P̃mn sinϕ×

{
cosnθ if σ = +1
sinnθ if σ = −1 (ignore n = 0) (4.7)

The set of spherical harmonics forms an orthonormal basis in the sense of the
spherical scalar product. So, spherical harmonics can be linearly combined in order
to define functions on the surface of a sphere. Actually, Ambisonics is not limited to
a particular number of channels. That said, as can be immediately seen from the
3D illustration of the spherical harmonics (Fig. 4.1), in order to achieve a higher
directional resolution, the order of Ambisonics must increase. In other words, a
greater number of channels provides a higher directional resolution. Because of
manageability, (4.3) has to be arrested to a certain order M, also known as order
of Ambisonics. So as to avoid confusion, it should be noted that the order M of
Ambisonics is different from the order n defined in Legendre functions. We can
rather say that it refers to the ambisonic order in terms of degree m in Legendre
functions.

4.2 Ambisonic format overview
The Ambisonic technique comes with several formats for microphone recording,
broadcasting and reproduction of recorded signals [65,81]. In addition, Ambisonics
is compatible with a wide variety of speaker array configurations and can coexist
with stereo and surround sound systems such as 5.1 or 7.1, etc.

• A-Format: suitable for miking with specific microphone (e.g. Soundfield mic);

• B-Format: suitable for miking and processing with studio equipment;

• C-Format/UHJ: suitable for mono, stereo, 3-channel systems and broadcasting;

• D-Format: suitable for decoding and playback through array of speakers;

• G-Format: alike D-Format, but the decoder is not required;

4.2.1 B-Format

If the expansion in (4.3) is arrested to degree m = 1, the sound space build-up
includes only spherical harmonics of order zero (W) and one (X,Y,Z) and four
microphones are required to pick up the 3D sound field. Accordingly, the 1st-order
B-Format technique is defined by four signals relative to the pressure component of

4.2 Ambisonic format overview 54

Figure 4.2. B-Format: microphone orientation.

the sound field in all directions (omnidirectional microphone, W) and the horizontal
and vertical components (figure-of-eight microphones, X,Y,Z) of velocity. The four
microphones are coincident and orthogonal to one another. Their capsules are
pointed as shown in Fig. 4.2. The Y microphone is rotated by 90° (leftwards) with
respect to X. Microphone Z is oriented along the orthogonal plane with respect to
the plane described by the axes X and Y (the 0° axis points upwards). However,
once the B-Format signals are recorded, it is possible to rotate the microphone
array virtually, by means of a rotation matrix or a quaternion rotation operator, as
explained in Par. 4A.1.

The four B-Format polar patterns are obtained from (4.3) and they are expressed
as (in a normalized form)

W = S

X = S
√

2 cos θ cosϕ
Y = S

√
2 sin θ cosϕ

Z = S
√

2 sinϕ

(4.8)

where S is the recorded source [81]. The reader is referred to [65] for further
explanations about the normalization factor

√
2.

See Appendix 4A for information about microphone polar patterns and function-
ing principles.

4.2.2 Extension of B-Format to quaternions

The use of microphones of the family of cardioids simplifies (4.3) in a way that,
separating spatial dependence from frequency dependence, we can write the pressure

4.2 Ambisonic format overview 55

Table 4.1. Analogy among structures: euclidean vectors, Fourier transforms, spherical
harmonics [36]

Euclidean
Vectors

Fourier
Transforms

Spherical
Harmonics

Group Orthogonal Translations 3D Rotations
Objects x f (x) f (θ, ϕ)
Basis êi eikx Ymn (θ, ϕ)

Projection Dot product
+∞∫
−∞

dx
2π∫
0
dϕ

+1∫
−1
d cos θ

Coefficients xi F (k) amn

field in a more readable form [18]:

p (θ) =
∞∑
m=0

Wm (ω)
∑

0≤n≤m,σ=±1
Bσ
mnY

σ
mn (θ) (4.9)

where Wm (ω) is a weighting factor defined as

Wm (ω) = jm (αJm (krmic))− j (1− α) J ′m (krmic) . (4.10)

Equation (4.10) highlights how the recording field is dependent on the frequency (in
fact, k is the wave number k = 2π/λ, where λ is the wavelength λ = c/f , c is the
speed of sound and f is the frequency). Basically, when miking a source, besides
considering source directivity, we must consider the microphone polar characteristic
with respect to the frequency. Equation (4.10) was obtained by weighting (4.3) with
a cardioid characteristic function of the kind G (θ) = α + (1− α) cos θ. In effect,
a cardioid microphone is generated by the superimposition of an omnidirectional
microphone (responsive to the pressure) and a figure-of-8 microphone (responsive
to the pressure gradient and so, to the derivative of the pressure). In light of the
above, the ambisonic signals, recorded by means of microphones from the family of
cardioids, correspond to the coefficients Bσ

mn weighted by Wm (ω), which depends
on the frequency.

At this point, we merely need to change from Euler to quaternionic representation.
The transformation of the spherical harmonics is solely sufficient in order to redefine
the sound field in the new form. Table 4.1 reports a brilliant parallel comparison
among structures founded respectively on Euclidean vectors, Fourier transforms and
spherical harmonics. This table artfully explains the matter behind formulas. The
analogy suggested in the table is

x · êi = xi

f (x) =
+∞∫
−∞

F (k)︸ ︷︷ ︸
coeff

e2πikx︸ ︷︷ ︸
basis

dk

f (θ, ϕ) =
∞∑
m=0

+m∑
n=−m

amnYmn (θ, ϕ)

(4.11)

4.2 Ambisonic format overview 56

Table 4.2. Spherical Harmonics: Euler to Quaternion

Order m,n,σ Ch. Euler Spherical Harmonics
(SN3D)

Quaternion Spherical Har-
monics

0 0,0,1 W 1 1e

1 1,1,1 X cos θ cosϕ xi
1 1,0,1 Z sinϕ zk
1 1,1,-1 Y sin θ cosϕ yj

2 2,2,1 U
(√

3/2
)

cos (2θ) cos2 ϕ
(√

3/2
) (
x2 − y2) e

2 2,1,1 S
(√

3/2
)

cos θ sin (2ϕ)
√

3xzj
2 2,0,1 R

(
3 cos2 ϕ− 1

)
/2

(
3z2 − 1

)
e

2 2,1,-1 T
(√

3/2
)

sin θ sin (2ϕ)
√

3yzi
2 2,2,-1 V

(√
3/2

)
sin (2θ) cos2 ϕ

(√
3/2

)
xyk

Ambisonics uses the set of real spherical harmonics. In order to get a quaternionic
form for real spherical harmonics, the Euler harmonics have to be converted into
Cartesian coordinates and each Cartesian axis will be assigned to a quaternionic
versor (e,i,j,k), where the real axis versor has been called e as a matter of notation
homogeneity. The transformation up to 2nd order is tabulated in Table 4.2. Note
that, in the original Ambisonics, angles go clockwise and the Cartesian coordinates
are defined as

x = cos θ cosϕ
y = sin θ cosϕ
z = sinϕ

(4.12)

For instance, the B-Format (up to 1st order) can be rewritten in quaternionic form:

Y 1Q
0,0 = Y 1

0,0 (θ, ϕ) e

Y 1Q
1,1 = Y 1

1,1 (θ, ϕ) i

Y −1Q
1,1 = Y −1

1,1 (θ, ϕ) j

Y 1Q
1,0 = Y 1

1,0 (θ, ϕ) k

(4.13)

Now the sound pressure field can be expressed with the new quaternionic spherical
harmonics in (4.13):

p (θ) =
1∑

m=0
Wm (ω)

∑
0≤n≤1,σ=±1

Bσ
mnY

σ
mn (θ)

=
1∑

m=0
Wm (ω)

(
BWY

1Q
0,0 e−BXY 1Q

1,1 i−BY Y −1Q
1,1 j−BZY 1Q

1,0 k
). (4.14)

Since the four spherical harmonics (Y 1Q
0,0 , Y

1Q
1,1 , Y

−1Q
1,1 , Y 1Q

1,0) are othogonal, we can
process the four B-Format coefficients packed into a single quaternion function:

B[n] = BW [n] +BX [n]i +BY [n]j +BZ [n]k. (4.15)

4.2 Ambisonic format overview 57

The usage of a quaternion Ambisonic representation was widely experimented
by the author of this thesis. Precisely, the author commented the possibility of
conditioning the performance of adaptive filters by choosing a certain algebraic
format for signals and systems. Ambisonics and 3D sound have been extensively
employed as a testbed with this aim [66,69,71].

58

Appendix 4A

Virtual Miking and Rotations

4A.1 Virtual Miking and Rotations
One of the advantages in exploiting a quaternionic formulation is the possibility
to achieve very efficient rotations. The Ambisonic technique permits to rotate
the microphone array electrically (virtually) without the need to rotate the array
mechanically. The possibile rotations are about the axes x, y, z. Virtual rotations
and zooming can be attained by operating matrix transformations of the ambisonic
signals.

The microphone rotation by an angle θ about its vertical axis z is called yaw/rotate
and corresponds to the control of the azimuth angle. The following transformations
are applied to the ambisonic signals up to 1st order:

B′ = Rz (θ) B→

[
X′

Y ′

Z′

]
=

[
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

]
·

[
X
Y
Z

]
. (4A.1)

The microphone rotation by an angle γ about its horizontal axis x is called roll/tilt:

B′ = Rx (γ) B→

[
X′

Y ′

Z′

]
=

[
1 0 0
0 cos γ − sin γ
0 sin γ cos γ

]
·

[
X
Y
Z

]
. (4A.2)

The microphone rotation by an angle ϕ about its horizontal axis y is called
pitch/tumble and corresponds to the control of the elevation angle:

B′ = Ry (ϕ) B→

[
X′

Y ′

Z′

]
=

[
cosϕ 0 sinϕ

0 1 0
− sinϕ 0 cosϕ

]
·

[
X
Y
Z

]
. (4A.3)

Euler’s theorem asserts that every elementary rotation (principal rotation) can
be represented as a rotation by an angle α about an axis n. In general, rigid body
motion has 6 degrees of freedom (3 degrees describe a translation and 3 degrees
describe a rotation). So, only 3 scalar numbers are sufficient to specify rotations.
The rotation axis can be represented by 3 scalar components n = [n1, n2, n3]T
with the constraint ‖n‖ = 1. Unfortunately, this representation has no unique
solution. In fact, the axis-angle pairs (n, α) and (−n,−α) identify the same rotation.
Furthermore, when α = 0, n may be any axis, represented by any versor (unitary

4A.1 Virtual Miking and Rotations 59

vector). For example, in a 3D Euclidean space, an orthonormal basis describing the
3 axes can be expressed by the 3-tuples: x = [1, 0, 0,]T ,y = [0, 1, 0,]T , z = [0, 0, 1]T .
Euler angles specify a rotation by operating 3 consecutive principal rotations. In
(4A.1), (4A.2) and (4A.3) this operation was described by the rotation matrices
Rz (θ) ,Rx (γ) ,Ry (ϕ). There exist 24 distinct ways to combine a sequence of 3
principal axes rotations: 12 of them follow the right-hand rule and 12 follow the
left-hand rule. In conclusion, we have 24 different Euler angle conventions. The one
we generally use in ambisonic virtual miking is the zyx Tait-Bryan convention (or
Cardano nautical angles), most commonly used in aero-navigation. See also [9]. In
Ambisonics, the Tait-Bryan angles are denoted by:

θ = yaw, azimuth
ϕ = pitch, elevation
γ = bank, roll

(4A.4)

So, why should we represent rotations with quaternions? Given the coordinates
and a gyroscope mounted in 3 nested gimbals, we define two coordinate systems:

• (x,y, z): space-fixed coordinate system,

• (x′,y′, z′): body-fixed coordinate system.

Rotations in a zyx rotation convention can be operated if the xy-plane and the
y’z’-plane intersect in a line of nodes. This can be achieved if ϕ 6= ±π

2 + 2kπ , with
k = 0, 1, 2... On the contrary, when ϕ = ±π

2 + 2kπ, the x′ axis of the body-fixed
reference system and the z axis of the space-fixed reference system become parallel
(the xy-plane and the y’z’-plane become identical). In such a situation, a degree of
freedom is lost and the 3D system degenerates into a 2D system [9]. Consequently,
the sequence of rotations collapse down to one single principal rotation defined by:

ϕ = +π

2 : Rz (θ) Ry

(
+π

2

)
Rx (γ) = Rz (θ + γ)

ϕ = −π2 : Rz (θ) Ry

(
−π2

)
Rx (γ) = Rz (θ − γ)

(4A.5)

At such critical angles ϕ 6= ±π
2 , roll rotations cannot be distinguished from

yaw rotations. In other words, the individual Euler angles (θ, ϕ, γ) are no longer
uniquely determined and only the sum/difference (θ ± γ) can be uniquely defined
(see Appendix 4A.2). So, when the moving device (e.g. an aircraft or the ambisonic
microphone array) either climbs or dives vertically, its rotation system gets stuck.
This phenomenon is called Gimbal Lock. The same occurs on the other planes. When
the gimbals are parallel and lie in a single plane, the rotation within that plane is
locked. This trouble can be avoided if quaternions are used in place of Euler angles.

A quaternion can be expressed in three equivalent forms:

q = qa + qbi + qcj + qdk HAMILTON FORM
q = (qa,q) SCALAR/VECTOR FORM

q = (qa, qb, qc, qd) 4− TUPLE FORM

4A.1 Virtual Miking and Rotations 60

In general, we can represent a rotation by the angle α, about the axis n, in the
compact quaternionic scalar/vector form:

q =
(

cos
(
α

2

)
, sin

(
α

2

)
n
)
. (4A.6)

With such a notation, the principal rotations in Tait-Bryan convention are trans-
formed into the following quaternion operators:

Rz (θ)→ qz(θ) =
(

cos
(
θ

2

)
, sin

(
θ

2

)
z
)

Ry (ϕ)→ qy(ϕ) =
(

cos
(
ϕ

2

)
, sin

(
ϕ

2

)
y
)

Rx (γ)→ qx(γ) =
(

cos
(
γ

2

)
, sin

(
γ

2

)
x
) (4A.7)

The consecutive rotation operators are multiplied and the definitive rotation quater-
nion results in

qzyx = qz(θ)qy(ϕ)qx(γ). (4A.8)

Substituting (4A.7) into (4A.8), we have:

qzyx = (cos (θ/2) , sin (θ/2) z) · (cos (ϕ/2) , sin (ϕ/2) y) · (cos (γ/2) , sin (γ/2) x) (4A.9)

which can be decomposed into the 4-tuple:
qa = cos

(
θ
2

)
cos
(
ϕ
2

)
cos
(
γ
2

)
+ sin

(
θ
2

)
sin
(
ϕ
2

)
sin
(
γ
2

)
qb = cos

(
θ
2

)
cos
(
ϕ
2

)
sin
(
γ
2

)
− sin

(
θ
2

)
sin
(
ϕ
2

)
cos
(
γ
2

)
qc = sin

(
θ
2

)
cos
(
ϕ
2

)
sin
(
γ
2

)
+ cos

(
θ
2

)
sin
(
ϕ
2

)
cos
(
γ
2

)
qd = sin

(
θ
2

)
cos
(
ϕ
2

)
cos
(
γ
2

)
− cos

(
θ
2

)
sin
(
ϕ
2

)
sin
(
γ
2

) (4A.10)

The relations to change back from quaternions to Euler angles are given in [9].
The set of equations in the Tait-Bryan form are reported below:

γ = arctan 2
[
(qcqd + qaqb) , 1

2 −
(
q2
b + q2

c

)]
ϕ = arcsin [−2 (qbqd − qaqc)] , p.v.

θ = arctan 2
[
(qbqc + qaqd) , 1

2 −
(
q2
c + q2

d

)] (4A.11)

where the principal value p.v. is in the range −π/2 < ϕ < π/2.
Recalling what we said above, if n is a unit pure quaternion (that is, n meets the
constraint ‖n‖ = 1), any 3-dimensional rotation about the axis n can be obtained.
For instance, given

v = [a, r] ∈ H (4A.12)

with r = (x, y, z) ∈ R3, and chosen a quaternion q (rotation operator) [17], e.g.

q =
(

cos
(
α

2

)
, sin

(
α

2

)
n
)

(4A.13)

we can rotate v by the operator q and get

w = qvq∗ (4A.14)

4A.1 Virtual Miking and Rotations 61

where w is v rotated by the operator q.
Intuitively, we can see that, if q = [s,v] ∈ H, then q∗ = [s,−v] ∈ H and

q∗ = [s,−v] = [s,v]−1 = q−1. (4A.15)

So, a rotation can be reversed by inverting the axis of rotation.
Rotations with quaternions are handy indeed. In Euler notation, subsequent

rotations would require matrix products. Computations with quaternions are much
quicker and notation is easier. Let q1, q2 ∈ H be two quaternion rotation operators
and a rotation by q1 is followed by a rotation by q2. The resulting rotation is
equivalent to a rotation by q2q1. So, successive rotations can be expressed as one.
Remember that quaternion product is not commutative, so the order of the factors
matters. Another advantage in using quaternions is that rotations do not depend on
the coordinate system. Rotations are not influenced by the conventional order of
rotation about the axes. In addition it is possible to implement simple interpolation
methods using quaternions. This makes the use of quaternions the best choice in
animations, virtual reality applications, augmented reality and so on.
Do quaternions beat out the traditional Euler matrix notation on all points? Quater-
nions undoubtedly excel with rotations, but Euler matrices allow representing all the
other transformations easily: translation, scaling, shearing (i.e. sliding deformation
of parallel surfaces past one another), projections, etc.
For what concerns translation, it can be implemented using quaternions as well.
This kind of transformation takes a point P to the new position P ′ by a simple
addition: P ′ = (x+ ∆x, y + ∆y, z + ∆z).

4A.1.1 Interpolation with Quaternions - Linear Quaternion Inter-
polation (LERP)

Applications like virtual reality and 3D audio require some kind of automation to
rotate the sound sources around the listener. Although, as a matter of fact, it is not
possible to obtain a continuous interpolation line because of the digital nature of
processing, it is possible to get high resolution lines and different shapes by means of
different interpolation methods. We only give an example to see how interpolations
of rotations work. Two comprehensive readings about quaternions, rotations and
interpolations can be found in [17] and [86].

Let q0, q1 ∈ H. We operate a linear interpolation between q0 and q1. The
interpolation curve is parameterized by h ∈ [0, 1] and meets the constraints:

Γ : H×H× [0, 1]→ H
Γ (q0, q1, 0) = q0
Γ (q0, q1, 1) = q1

(4A.16)

We define the linear interpolation curve (LERP) as follows:

l = Lerp (q0, q1, h) = q0 (1− h) + q1h (4A.17)

As suggested by the name, the linear interpolation curve is a straight line in the
quaternion space H. As usual, the final rotation of a quaternion q by the quaternion
operator l will be

w = lvl∗. (4A.18)

4A.2 Gimbal Lock System Degeneration 62

4A.1.2 Computational Cost

Working with quaternions has a remarkable impact on the computational effort
reduction. If Euler matrices are used in order to achieve a full 3D rotation, as in

Rzyx = Rz (θ) Ry (ϕ) Rx (γ) (4A.19)

where matrices Rz,Ry,Rx ∈ R3×3 are defined as (4A.1),(4A.2),(4A.3), 54 multipli-
cations are required:

Rzyx =
3×3×3 mult.︷ ︸︸ ︷

Rz (θ) Ry (ϕ)︸ ︷︷ ︸
3×3×3 mult.

Rx (γ)→ 54 multiplications. (4A.20)

By contrast, if quaternion operators are used in place of Euler matrices, as in

qzyx = qz(θ)qy(ϕ)qx(γ) (4A.21)

only 32 multiplications are needed:

qzyx =
4×4mult.︷ ︸︸ ︷

qz(θ)qy(ϕ)︸ ︷︷ ︸
4×4mult.

qx(γ)→ 32 multiplications. (4A.22)

Effectively, the elementary rotations qz(θ), qy(ϕ), qx(γ) have two of three vanishing
imaginary components, so the the number of multiplications required is reduced to
16, as can be seen from (4A.10).
When the final rotation is operated, matrix algebra requires only 9×N multiplications,
whereas quaternions involve 32×N real-valued multiplications:

vzyx =
4×4mult.︷ ︸︸ ︷
qzyxv︸ ︷︷ ︸

4×4mult.

q∗zyx → 32 multiplications (4A.23)

where N is the signal length. However, because of (4A.20), quaternion rotations
proved to be more efficient from the computational point of view.

4A.2 Gimbal Lock System Degeneration
Given the rotation matrices in (4A.1), (4A.2), (4A.3), the overall rotation matrix is
obtained as

Rzyx =

[cos θ cosϕ − sin θ cos γ + cos θ sin γ sinϕ sin θ sin γ + cos θ cos γ sinϕ
sin θ cosϕ cos θ cos γ + sin θ sin γ sinϕ − cos θ sin γ + sin θ cos γ sinϕ
− sinϕ sin γ cosϕ cos γ cosϕ

]
= Rz(θ)Ry(ϕ)Rx(γ).

(4A.24)

If ϕ = ±π/2, the rotation matrix (4A.24) becomes

Rzyx =

[0 −(sin θ cos γ ∓ cos θ sin γ) (cos θ cos γ ± sin θ sin γ)
0 (cos θ cos γ ± sin θ sin γ) −(sin θ cos γ ∓ cos θ sin γ)
∓1 0 0

]

=

[0 − sin(θ ∓ γ) cos(θ ∓ γ)
0 cos(θ ∓ γ) − sin(θ ∓ γ)
∓1 0 0

]
.

(4A.25)

4A.2 Gimbal Lock System Degeneration 63

Matrix (4A.25) is equivalent to Rz(θ ∓ γ):

Rz(θ ∓ γ) =

[cos(θ ∓ γ) − sin(θ ∓ γ) 0
− sin(θ ∓ γ) cos(θ ∓ γ) 0

0 0 ∓1

]
(4A.26)

since it is obtained from (4A.25) by operations such as swapping columns and
changing the sign of a column. From (4A.10) we can see that if ϕ = ±π/2 a
quaternion operator is always uniquely defined:

qa =
√

2
2

[
cos(θ2) cos(γ2)± sin(θ2) sin(γ2)

]
qb =

√
2

2

[
cos(θ2) sin(γ2)∓ sin(θ2) cos(γ2)

]
qc =

√
2

2

[
sin(θ2) sin(γ2)± cos(θ2) cos(γ2)

]
qd =

√
2

2

[
sin(θ2) cos(γ2)∓ cos(θ2) sin(γ2)

]
(4A.27)

64

Appendix 4A

Microphone characteristics

4A.1 Polar pattern
The polar pattern of a microphone is a directionality curve describing the sensitivity
of the microphone with respect to the sound angle of incidence θ. The polar pattern
is drawn by reproducing a sound of the same signal level at a certain distance from
the microphone at different angles θ. The microphone responds differently according
to the angle of incidence.

We are primarily interested in the characteristics of the microphones of the family
of cardioids, especially of 1st order cardioids. The family of cardioids includes the
range of microphones from omnidirectional to figure-of-8. Table 4A.1 below shows
the polar patterns of these microphones and the equations describing them.
Cardioid polar characteristics can be achieved in different ways:

• Superimposition of a figure-of-8 and an omnidirectional mic.

• Microphone composed of a part of the diaphragm having only the front side
exposed to the sound field and another part having both sides exposed to the
field.

• It is possible to build a microphone in which the sound gets to its rear side
passing through a delay element.

4A.2 Pressure microphones and pressure gradient mi-
crophones

We conclude this chapter with some useful smattering about the microphones that
are commonly used in ambisonic arrays [10].

4A.2.1 Pressure Microphones

These microphones show only the front face to the sound field and respond in the
same way to changes in the acoustic pressure for all the directions of the incident
sound. In effect, pressure microphones have no directional characteristic and they
are also known as omnidirectional microphones. Actually, the microphone body

4A.2 Pressure microphones and pressure gradient microphones 65

Table 4A.1. Polar diagrams and equations for the microphone from the family of cardioids

POLAR
PATTERN

MICROPHONE
TYPE

EQUATION

Family of cardioids
(general equation)

ρ (θ) = α+ (1− α) cos θ

OMNIDIRECTIONAL ρ (θ) = 1

SUB-CARDIOID ρ (θ) = 0.7 + 0.3 cos θ

CARDIOID ρ (θ) = 0.5 + 0.5 cos θ

SUPERCARDIOID ρ (θ) = 0.37 + 0.63 cos θ

HYPERCARDIOID ρ (θ) = 0.25 + 0.75 cos θ

FIGURE-OF-8 ρ (θ) = cos θ

will cause its response to tend to become directional with increasing frequency,
because its size becomes comparable with the wavelength of the incident sound on
the diaphragm (this is true, in general, for all microphones, which effectively tend to
become hypercardioid with increasing frequency).

4A.2.2 Pressure Gradient Microphones

These microphones have a figure-of-8 polar diagram along the longitudinal axis.
They respond to the pressure difference between two points A and B, shown in
Fig. 4A.1, close together and immersed in the sound field. The greatest pressure
difference occurs at 0◦ and 180◦, whereas for a sound coming from 90◦ with respect
to the axis of the microphone, the sound is received with the same sensitivity from
both points A and B. In fact, naming TF the transmission factor of the sound field

4A.3 Microphone behaviour in the presence of plane waves 66

Figure 4A.1. Polar pattern of a pressure gradient microphone [10].

(or sensitivity), the following relation exists

TF = TF0 cosϑ (4A.1)

where TF0 is the transmission factor when the sound is impinging from direction 0◦
(microphone axis) and ϑ is the angle of incidence of the acoustic wave.
If ϑ = 90◦ → TF = 0. The incident pressure is compared at points A and B. This can
be achieved electrically by using two identical adjacent capsules having opposite faces
and measuring the output voltages connected with reverse polarity. Alternatively,
the comparison is done mechanically in case of microphones having both the front
and the rear sides of the diaphragm exposed to the sound field. In this second case,
only the instant differences of the forces acting on the front and the rear result in a
movement of the diaphragm. The pressure difference is due to the velocity of the
particles of the medium in which sound propagates. Since the microphone output
voltage is proportional to the pressure difference, it is also proportional to particle
velocity, hence the name velocity microphones.

At the very beginning of this paragraph, we said that pressure gradient micro-
phones have a figure-of-8 polar diagram. This is worth pointing out because when
it comes to microphones belonging to the family of cardioids, we refer to pressure
gradient microphones, as well.

4A.3 Microphone behaviour in the presence of plane
waves

Figure 4A.2 shows how, in the presence of a plane wave front, sound affects points
A and B with the same strength, but with a difference in phase. With a constant
sound pressure, the angle swept by the sound and the pressure gradient increase with
frequency. In Fig. 4A.2b the acoustic wave has a frequency approximately twice that
of Fig. 4A.2a and the same pressure. As you can see, approximately, a doubling of
the pressure gradient occurs. Reading the technical specifications of the microphones
that can be normally found on the market, specifically the frequency response graph,
we note that all microphones have - sooner or later - a "hole" next to the so-called
characteristic frequency of the microphone as shown in Fig. 4A.3. Of course, all

4A.3 Microphone behaviour in the presence of plane waves 67

Figure 4A.2. Microphone behaviour with plane waves [10].

the technical specifications should always be taken into consideration, especially
when building a microphone array for such a delicate system like Ambisonics, which
exhibits most of its problems at high frequencies. Usually, the distance between

Figure 4A.3. Frequency response of a pressure gradient microphone: characteristic
frequency effect [10].

points A and B is very tiny in microphones. There exists a limit beyond which the
microphone does not respond efficiently to very high frequencies. If the distance A-B
is shorter than half the wavelength we want to reproduce, this limit distance refers
to the characteristic frequency ft. For such a limit distance we have phase ϕ = 180◦.
Beyond the characteristic frequency, the pressure gradient diminishes abruptly.

4A.4 Microphone behaviour in the presence of spherical waves 68

4A.4 Microphone behaviour in the presence of spheri-
cal waves

Figure 4A.4. Pressure gradient microphone behaviour with spherical front.

In the case of spherical waves (Fig. 4A.4), the pressure gradient at points A
and B depends not only on the phase difference, but also on the distance between
source and microphone. In that case, for a point source radiating a spherical front,
pressure decreases with increasing distance from the source (that is, the pressure is
proportional to 1/r). Students at singing schools are taught that, approaching a
microphone to the mouth, it is possible to enhance low frequencies. This is called
proximity effect and is explained by the fact that the effect is noticeable especially
at low frequencies for which the forces acting on the diaphragm are weaker, because
the phase shift is smaller than in the case of high frequencies.
The boost at frequency f is calculated as follows:{

v8
v0

= 1
cosα

tanα = λ
2πr = 54.14

f ·r
(4A.2)

where r is the distance between the microphone and the source, v8
v0

represents the
boost at frequency f (wavelength λ), v8 is the output voltage of a pressure gradient
microphone having a directivity pattern such as figure-of-8 and v0 is the output
voltage of an omnidirectional microphone with same sensitivity at 0◦ [10].

69

Chapter 5

Quaternion augmented statistics

Contents
5.1 Introduction to quaternion augmented statistics and

quaternion properness 71
5.1.1 Quaternion augmented statistics 71
5.1.2 On the properness of quaternion-valued signals 71

5.2 Motivation and theoretical foundation for Quaternion
Widely Linear Processing 72

5.3 Widely Linear QLMS 73
5.4 Widely Linear Block QLMS 74

5.4.1 Overview of the WL-BQLMS algorithm 74
5.4.2 Computational cost 75

5.5 3D improper sound fields 75
5.6 Direct system modeling with Ambisonic signals 76

5.6.1 Direct system modeling performance 76
5.7 Widely linear algorithms in the frequency domain 78

5.7.1 Widely Linear Overlap-Save Quaternion Frequency Domain
Filter - Algorithm Overview 79

5.7.2 Computational cost analysis 80
5.7.3 Simulations 81

In Chapter 3, we discussed how in multidimensional adaptive filtering applications,
like weather prediction [101, 103], 3D audio [71] or orientation tracking [50], very
interesting results have been observed when quaternion-valued filters are used.
Because of the peculiar properties of quaternion algebra, it is possible to exploit the
correlation among all channels (quaternion dimensions), thus obtaining improved
filter performance.

The latest efforts in quaternion-valued adaptive filtering have been oriented
towards the study of the full second order statistics of the signals [3,60,100,105]. This
trend was steered by the need of mathematical rigor in representing physical problems
and phenomena with the aim of implementing accurate and efficient digital systems.
In fact, simulations may fail if the models of the actors participating in the system are
inadequate and, in adaptive filtering, performance may vary notably with the nature

70

of the input signal. Moreover, it was found that the early quaternion-valued filters,
such as those derived directly from the Quaternion Least Mean Square algorithm
(QLMS) [98], have no general validity [100]. It was demonstrated [60,100,105] that
a complete insight of quaternion second order statistics is necessary in order to fully
exploit the information coupling within all quaternion channels. Given a complex
or hypercomplex signal x[n], its second order statistics are typically described
by the covariance function Cx(n1, n2) = E {x[n1]x∗[n2]} and the relation function
Rx(n1, n2) = E {x[n1]x[n2]}. In [99], a Widely Linear Quaternion Least Mean
Square (WL-QLMS) filter was presented. This algorithm considers and incorporates
complementary covariance matrices into quaternion augmented statistics by means
of quaternion involutions. Such an algorithm showed improved performance with
the processing of signals having a rotation dependent distribution. Such signals
are called non-circular or improper and they can be encountered wherever signal
components have disparities in the dynamics and they are correlated. Unfortunately,
most real-world signals are not circular (non-circular, improper) [60, 100, 105]:
examples were found in communications, where imbalance between in-phase and
quadrature components gives rise to improper baseband signals [4]. Improper signals,
in general, result from multichannel systems having channel gain disparities and
correlated components, such as multi-sensor applications [12,14,57,84]. In typical
array processing applications, if signals (either signal of interest or interference) are
improper, it is possible to achieve a high DOA resolution [57]. In [12, 14, 57] the
widely linear model of the signals was exploited. The model takes into account
the signal full second order statistics by incorporating complementary covariance
matrices into quaternion math by means of quaternion involutions.

The shortcoming of WL-QLMS is the computational cost. In fact, the algorithm
architecture includes the computation of quaternion-valued convolutions and cross-
correlations for all signal involutions. In this work, besides recalling the main features
of WL-QLMS, we propose a solution to this problem. We developed a block version
of the WL-QLMS, i.e. it updates the filter weights periodically (Widely Linear
Block Quaternion Least Mean Square, WL-BQLMS). We applied the algorithm to
a 3D audio system, where improper signals are usually encountered. In acoustic
applications, we often have to handle long impulse responses, e.g. long reverberation
tails, and block algorithms represent a solution in most cases. Moreover, block
time-domain algorithms pave the way for the implementation of frequency-domain
algorithms, which compute transformations over blocks of samples. As known from
the properties of the Fourier transform, this mathematical tool allows a fast execution
of convolutions and cross-correlations, thus speeding up the processing.

This chapter shortly introduces quaternion augmented statistics and recalls the
main facts about quaternion properness. Later, after reporting the basic Widely Lin-
ear QLMS algorithm, our Widely Linear Block QLMS is presented with simulations.
A modification of the block algorithm in the frequency domain is also proposed.

5.1 Introduction to quaternion augmented statistics and quaternion properness71

5.1 Introduction to quaternion augmented statistics and
quaternion properness

5.1.1 Quaternion augmented statistics

In complex numbers, we need both z = za + izb and its conjugate z∗ = za − izb
in order to write both its real and complex components as za = 1

2(z + z∗) and
zb = 1

2i(z − z
∗). In the quaternion domain, the same task is a little bit harder to

achieve. We actually need to define and exploit the quaternion involutions:

qi = −iqi = qa + iqb − jqc − kqd
qj = −jqj = qa − iqb + jqc − kqd
qk = −kqk = qa − iqb − jqc + kqd.

(5.1)

Given the definitions above in (5.1), we can now express each quaternionic component
as qa = 1

2(q + q∗), qb = 1
2i(q− q

i∗), qc = 1
2j(q− q

j∗), qd = 1
2k (q− qk∗) and establish a

mapping between quaternion components and involutions.
In order to learn about the properness of a signal (Par. 5.1.2), it is helpful to

define the complementary covariance matrices:

Ci
q = E

{
qqiH} , Cj

q = E
{
qqjH} , Ck

q = E
{
qqkH} . (5.2)

Further details and definitions about second order statistics can be found in
[60,100,105].

5.1.2 On the properness of quaternion-valued signals

Frequently, improper signals are found in real-world applications. One of the goals of
research in adaptive filtering is to find a solution of general validity for both proper
and improper signals. The widely linear model for quaternion-valued signals was
introduced to achieve this target [100, 102]. Consequently to simulations, it was
demonstrated [100,102] that the WL-QLMS algorithm outperforms the QLMS when
the filter input signal is improper.

Properness, or second order circularity, features in those variables having rotation-
invariant probability distribution with respect to all six pairs of rotation axes (1, i),
(1, j), (1,k), (i, j), (k, j), (k, i). A straightforward way to check the properness
of a quaternion random variable q = qa + qbi + qcj + qdk is to test the following
characterizing properties [100]:

1. E
{
q2
m

}
= σ2, ∀m = a, b, c, d (i.e. all four components of q have equal power).

2. E {qmqn} = 0, ∀m,n = a, b, c, d and m 6= n (i.e. all four components of q
are uncorrelated).

3. E {qq} = −2E
{
q2
m

}
= −2σ2, ∀m = a, b, c, d (i.e. the pseudocovariance

matrix does not vanish)

4. E
{
|q|2

}
= 4E

{
q2
m

}
= 4σ2, ∀m = a, b, c, d (i.e. the covariance of a quater-

nion variable is the sum of the covariances of all components).

5.2 Motivation and theoretical foundation for Quaternion Widely Linear
Processing 72

A corollary of the above properties is that a Q-proper vector is not correlated with
its involutions (qi,qj,qk) [3], thus resulting

E
{
qqiH

}
= E

{
qqjH

}
= E

{
qqkH

}
= 0. (5.3)

As a consequence, we have that Q-proper signals exhibit vanishing cross-correlation
matrices for all components (qa,qb,qc,qd) and the augmented covariance matrix
E
{
qaqaH

}
= 4σ2I is real-valued, positive definite and symmetric (qa = [qTqiTqjTqkT]T).

In addition, all the complementary matrices are real-valued and diagonal. More
properties and detailed information about this topic can be found in [3, 100].

5.2 Motivation and theoretical foundation for Quater-
nion Widely Linear Processing

The first intuition about the advantages of widely linear signal processing is ascribable
to Picinbono et al. who proved in [77] that Widely Linear Mean Square Estimation
(WLMSE) supplies a reduced estimation error in comparison with Linear Mean
Square Estimation (LMSE). In C, we define the linear estimator ŷL of y as

ŷL = hHx (5.4)

where h,x ∈ CN . The goal here is to find h that minimizes the estimation error
ε2
L = E

[
|y − ŷL|2

]
. The widely linear estimator ŷWL of y, instead, is defined as

ŷWL = hHx + gHx∗. (5.5)

From (5.5), it is clear that ŷWL is not a linear function of x, but a widely linear
function of x and x∗. Here we have to find g,h that minimize the estimation error
ε2
WL = E

[
|y − ŷWL|2

]
. Picinbono et al. demonstrated that widely linear processing

is generally superior than linear processing in terms of the mean square error:

ε2
WL ≤ ε2

L

E
[
|y − ŷWL|2

]
≤ E

[
|y − ŷL|2

]
.

(5.6)

In fact, given the definitions r = E[y∗x], s = E[yx], we have

ε2
WL = E[|y|2]− (gHr + hHs∗) ≤ E[|y|2]− gHr = ε2

L. (5.7)

Full details about this proof can be found in [77].
Tohru Nitta in [62] gave a similar explanation about the reasons why and when

quaternion widely linear processing is convenient in place of linear processing. Nitta’s
proof concerns augmented quaternion LMSE, i.e. the estimator ŷA includes the only
involution term relative to signal conjugate (x∗ actually is an involution of x) and is
defined in a way similar to (5.5) for complex data:

ŷA = hHx + gHx∗. (5.8)

5.3 Widely Linear QLMS 73

where g,h ∈ HN . We give the definitions C = E[xxT], r = E[xy∗], s = E[yx],
Γ1 = E[xxH], Γ2 = E[x∗xT] and write the following equations:

Γ1h + Cg = r
CHh + Γ2g = s∗

(5.9)

We can finally get g,h from (5.9):

g =
(
Γ2 −CHΓ−1

1 C
)−1 (

s∗ −CHΓ−1
1 r

)
h =

(
Γ1 −CΓ−1

2 CH
)−1 (

r−CΓ−1
2 s∗

) . (5.10)

If we substitute (5.10) into (5.8), we find that

ε2
A ≤ ε2

L (5.11)

where

ε2
A = E[|y − ŷA|2] = E[|y|2]−

(
rHh + sTg

)
ε2
L = E[|y − ŷL|2] = E[|y|2]−

(
rHΓ−1

1 r
) . (5.12)

Further details are given in [62]. If we consider the full second order statistics and
include the terms relative to involutions into the widely linear estimator

ŷWL = wTx + hTxi + uTxj + vTxk (5.13)

it is clear from (5.12), that the estimation error will be even smaller:

ε2
WL ≤ ε2

A ≤ ε2
L. (5.14)

We omit the demonstration here, since it is not different from the augmented case
with ŷA = hHx + gHx∗.

5.3 Widely Linear QLMS
Both the Augmented QLMS and the Widely Linear QLMS algorithms have been
studied by Mandic et al. extensively in [99, 100]. The difference between the two
algorithms is that the latter includes the full second order statistics of the quaternion
signals as introduced in Par. 5.2. As can be foreseen by (5.13), the WL-QLMS
algorithm updates four vectors of filter weights: w, h, u, v ∈ HM×1, where M is
the filter length. Accordingly, each filter output component is the convolution of
each weight vector with its corresponding input involution:

yw [n] = wT
n−1xn, yh [n] = hTn−1xi

n, yu [n] = uTn−1xj
n, yv [n] = vTn−1xk

n. (5.15)

The overall filter output is the sum of all contributions:

y [n] = yw [n] + yh [n] + yu [n] + yv [n] . (5.16)

5.4 Widely Linear Block QLMS 74

The output in (5.16) is compared with a desired signal d[n] and the filter error
is calculated as e[n] = d[n] − y[n], as usual. In conclusion, the four adaptation
equations are

wn = wn−1 + µe [n] x∗n, hn = hn−1 + µe [n] xi∗
n

un = un−1 + µe [n] xj∗
n , vn = vn−1 + µe [n] xk∗

n .
(5.17)

Since the execution of four quaternion adaptation processes may require a huge
computational effort, we propose in Par. 5.4 a version of WL-QLMS operating peri-
odically in blocks. This algorithm is particularly suitable for 3D (audio) applications,
for example.

5.4 Widely Linear Block QLMS
The Widely Linear Block Quaternion Least Mean Square algorithm is a block
algorithm, i.e. it has a periodic weight update equation. It differs from Block
QLMS since it embeds a widely linear model of the system and it exploits the signal
augmented statistics. The algorithm was founded on the revised version of QLMS
proposed in [8] and a step-by-step description of it is given just below.

5.4.1 Overview of the WL-BQLMS algorithm

Before running the algorithm, the initial values of all variables and vectors involved
need to be chosen. The WL-BQLMS algorithm exploits quaternion involutions, so
four sets of filter weights have to be initialized and updated in the process: winit,
hinit, uinit, vinit ∈ HM×1, where M is the filter length. All filter weight vectors
(wk,hk,uk,vk) are defined in a way similar to wk = [w0[k] w1[k] . . . wM−1[k]]T ∈
HM×1. After completing the initialization, the following operations are executed at
each new input block k.

Given the input block defined as xk = [x[kL] x[kL− 1] . . . x[kL− L+ 1]]T, its
involutions (xi, xj, xk) have to be derived. We denote the filter length and the
block length with M and L, respectively. We can now compute the filter output by
convolving each weight vector with its corresponding input involution:

yw [k] = wT
k xk =

M−1∑
l=0

wk [l]x [kL+ i− l]

yh [k] = hTk xi
k =

M−1∑
l=0

hk [l]xi [kL+ i− l]

yu [k] = uTk xj
k =

M−1∑
l=0

uk [l]xj [kL+ i− l]

yv [k] = vTk xk
k =

M−1∑
l=0

vk [l]xk [kL+ i− l]

(5.18)

and summing all four contributions:

y [k] = yw [k] + yh [k] + yu [k] + yv [k] . (5.19)

5.5 3D improper sound fields 75

The filter error at block k is defined as the difference between the desired signal
d[k] and the filter output y[k]:

e [k] = d [k]− y [k] . (5.20)

We can finally update the filter weights:

wk+1 = wk + µ
L−1∑
i=0

e [kL+ i] x∗kL+i

hk+1 = hk + µ
L−1∑
i=0

e [kL+ i] xi∗
kL+i

uk+1 = uk + µ
L−1∑
i=0

e [kL+ i] xj∗
kL+i

vk+1 = vk + µ
L−1∑
i=0

e [kL+ i] xk∗
kL+i

(5.21)

where the step size µ includes the average term of the block algorithm (µ = µB/L).

5.4.2 Computational cost

Our goal in implementing the WL-BQLMS was to achieve efficiency from the
computational point of view in comparison with WL-QLMS. In WL-QLMS, given a
filter lengthM and a number of samples N , the computation of both the filter output
and the cross-correlation in the update equations requires 2× 4× (4× 4)M ×N =
128M ×N multiplications. Remember that each quaternion multiplication requires
4× 4 real-valued multiplications. This operation has to be repeated 4 times (one for
each widely linear channel) and such a computational effort is required twice for each
sample (filter output and weight update equation). The critical processing paths are
the computation of the filter output and the cross-correlation in the update equation.
In WL-BQLMS the number of algorithm iterations is simply divided by the block
length L with respect to WL-QLMS. Definitively, we have the computational cost
ratio between WL-BQLMS and WL-QLMS equal to 1/L:

CWL−BQLMS

CWL−QLMS
= 128M × (N/L)

128M ×N = 1
L
. (5.22)

5.5 3D improper sound fields
As introduced in Par. 5.1.1, the widely linear model suits those systems having
some disparities in the dynamics of its channels and correlated signal components.
The 3D audio recording/processing technique called Ambisonics and described in
Chapter 4 belongs to such a category of systems. We still consider the 1st order
B-Format here (Fig. 4.2). This technique employs an array of microphones, with
coincident capsules, orthogonal to one another. Because of such a layout (geometric
placement with respect to the sound source and different types of polar pattern
for each capsule), disparities of the signal levels in the channels are likely to occur.

5.6 Direct system modeling with Ambisonic signals 76

We have seen in Chapter 4 how to transform and represent B-Format signals in a
quaternion format:

BQ[n] = BW [n] +BX [n]i +BY [n]j +BZ [n]k. (5.23)

5.6 Direct system modeling with Ambisonic signals
The simulations below are aimed at comparing the performances of WL-BQLMS and
BQLMS when improper processes are involved. We propose a very simple example:
a direct system modeling problem with an Ambisonic B-Format input signal.

5.6.1 Direct system modeling performance

+

+

w0

Adaptive
Filterx[n]

e[n]

d[n]

v[n]

y[n]

-

Figure 5.1. System modeling block diagram.

Given a system w0 to be identified, we compare the behavior of the WL-BQLMS and
the BQLMS algorithms when the adaptive filter has an improper input signal. The
improper quaternion input signal was recorded by means of a 1st order B-Format
array as defined in Par. 4.2.1. The signal samples have the form as in (5.23) and
its source is a monodimensional unit-variance white Gaussian noise. Signal BW [n]
is the omnidirectional component and signals BX [n], BY [n], BZ [n] are the three
figure-of-eight components. The source was placed at a distance of 20 cm from
the array, 45◦ off-axis with the X microphone. The recording environment is an
anechoic simulated room. Additive unit-variance white Gaussian noise ν[n] ∈ H,
with n = 0, 2..., P − 1, is summed to the output signal of the system to be identified
(d[n] = wT

0 BQ + ν[n]). Signal improperness can be easily proved by checking the
properties 1 and 2 listed in Par. 5.1.2 for Q-proper signals:

1. E
{
q2
m

}
= σ2,∀m = a, b, c, d

2. E {qmqn} = 0, ∀m,n = a, b, c, d and m 6= n

As a matter of simplicity, the filter length M in WL-BQLMS is chosen equal to
the block length L (M = L). Choosing the filter parameters as M = 4, µ = 0.6
(µB = µL), we obtain the results reported in Fig. 5.2.

5.6 Direct system modeling with Ambisonic signals 77

0 500 1000 1500 2000 2500 3000 3500 4000

Samples

-45

-40

-35

-30

-25

-20

M
S

E
 [

d
B

]

1
0

lo
g

(J
(w

))

Smoothed Learning Curve [n average = 20]

WL-BQLMS

BQLMS

MSE Bound

Figure 5.2. WL-BQLMS vs. BQLMS. Direct system modeling with quaternion-valued
ambisonic input signal (improper). Mean Square Error (MSE)

It is worth noting that, when the input signal is improper, non-widely linear
algorithms, such as (B)QLMS, typically converge slower than widely linear algorithms
[99,100]. When the input signal is proper the situation is turned around. In fact,
when the input signal is proper, widely linear and non-widely linear algorithms
should not perform differently (aside from minor numerical artefacts). As a proof,
we propose another simple experiment of the same kind. This time the quaternion
input signal is a proper colored signal defined as x[n] = bx[n− 1] +

√
1−b2√

4 η[n], where
η[n] ∈ H, with n = 0, 1, ..., P − 1, is a unit-variance white Gaussian noise sequence
and b is a filtering coefficient (chosen as b = 0.7 in this simulation). The filter
parameters are chosen as M = 4, µ = 0.01. The MSE curve is given in Fig. 5.3.

5.7 Widely linear algorithms in the frequency domain 78

0 500 1000 1500 2000 2500 3000 3500 4000

Samples

-50

-40

-30

-20

-10

0

10

M
S

E
 [

d
B

]

1
0

lo
g

(J
(w

))

Smoothed Learning Curve [n average = 20]

WL-BQLMS

BQLMS

MSE Bound

Figure 5.3. WL-BQLMS vs. BQLMS. Direct system modeling with quaternion-valued
proper input signal. Mean Square Error (MSE).

5.7 Widely linear algorithms in the frequency domain
In Par. 3.2, we introduced the Overlap-Save Quaternion Frequency Domain Filter
(OS-QFDAF). It is possible to extend this algorithm to a widely linear architecture.
In [73], the authors introduced a preliminary version of the Widely Linear Overlap-
Save Quaternion Frequency Domain Filter (WL-OS-QFDAF). This algorithm applies
the convolution theorem in the conventional form Y (ω) = H(ω)X(ω) (spectrum
product). However, we said in Chapter 2 that, in quaternion algebra, spectrum
product corresponds to convolution in the time-domain only in the case one of the
two functions has even simmetry. Generally, spectrum product corresponds to

y(t) =
∫ ∞
−∞

ha(t− τ)x(τ)dτ +
∫ ∞
−∞

hb(t+ τ)ν2x(τ)dτ (5.24)

if the quantities in the frequency domain derive from the left transform, or

y(t) =
∫ ∞
−∞

h(t− τ)xa(τ)dτ +
∫ ∞
−∞

h(τ − t)ν2xb(τ)dτ (5.25)

if the right transform is employed. Here, we present the full algorithm, with the
convolution and crosscorrelation theorems introduced in Par. 2.3 and Par. 3.2.

5.7 Widely linear algorithms in the frequency domain 79

5.7.1 Widely Linear Overlap-Save Quaternion Frequency Domain
Filter - Algorithm Overview

Algorithm initialization:
Winit = Hinit = Uinit = Vinit = 0 (M-by-1 null weight vectors)

µ = µi = µj = µk = µ0,

P0 (m) = P i
0 (m) = P j

0 (m) = Pk
0 (m) = δ,m = 0, 1, ..., N − 1

(5.26)

Pk (m): power of the m-th frequency bin at block k.
µ0, δ: initialization constants to be chosen empirically.

Do the following steps for each new input block k:
Compute the QFFT of the filter input samples:

Xk = diag
[
QFFT

[
xMold xLk

]T]
(5.27)

where the input block consists of xMold and xLk , defined as

xMold = [x (kL−M + 1) , · · · , x (kL− 1)]
xLk = [x (kL) , · · · , x (kL+ L− 1)].

Compute the input matrices Xi
k.X

j
k,Xk

k for the involutions of xk.
Note: diagonalization in (5.27) allows a formalism similar to Block LMS when the
filter output is computed in (5.28) [104].

Compute the filter output in the frequency domain and anti-transform:

Yw
k = Wa

kXk + Wb
kν2X−k

Yh
k = Ha

kXk + Hb
kν2X−k

Yu
k = Ua

kXk + Ub
kν2X−k

Yv
k = Va

kXk + Vb
kν2X−k

(5.28)

Yk = Yw
k + Yh

k + Yu
k + Yv

k (5.29)
ŷk = [IQFFT (Yk)]bLc (5.30)

Yk: filter output in the frequency domain.
ŷk: filter output in the time domain (take only the last L samples).

X−k ≡ Xk (−ω): frequency reversed signal of Xk (ω)
Wa

k, Wb
k: simplex and perplex parts (Wk = Wa

k + Wb
kν2).

Error calculation:

êk = d̂k − ŷk (5.31)

Ek = QFFT
([

0M êk
]T)

(5.32)

dk: desired output vector in the time domain at block k,
d̂k =

[
d (kL) d (kL+ 1) · · · d (kL+ L− 1)

]T
.

5.7 Widely linear algorithms in the frequency domain 80

Ek: error vector in the frequency domain at block k.

Update the learning rates (Power Normalization):

µk = µ · diag
[
P−1
k (0) , . . . , P−1

k (N − 1)
]

(5.33)

Pk (m) = λPk−1 (m) + (1− λ) |Xk (m)|2 (5.34)

λ ∈ [0, 1]: forgetting factor.
Compute (µi

k, P
i
k), (µj

k, P
j
k), (µk

k , P
k
k) for all involutions.

Note: Power Normalization reduces the disparity (Eigenspread) between the eigen-
values of the input autocorrelation matrix by assigning each filter weight a step size
of its own. Decreasing the eigenspread makes the algorithm modes converge at the
same rate.

Update the filter weights:

Wk+1 = Wk + µkCk

Hk+1 = Hk + µkCi
k

Uk+1 = Uk + µkC
j
k

Vk+1 = Vk + µkCk
k

(5.35)

where

Ck = Eak(ω)
[
XaH
k (ω)− ν2X

b
k(−ω)

]
+ Ebk(ω)ν2

[
XaH
k (−ω)− ν2X

b
k(ω)

]
Ci
k = Eak(ω)

[
X iaH
k (ω)− ν2X

ib
k (−ω)

]
+ Ebk(ω)ν2

[
X iaH
k (−ω)− ν2X

ib
k (ω)

]
Cj
k = Eak(ω)

[
XjaH
k (ω)− ν2X

jb
k (−ω)

]
+ Ebk(ω)ν2

[
XjaH
k (−ω)− ν2X

jb
k (ω)

]
Ci
k = Eak(ω)

[
XkaH
k (ω)− ν2X

kb
k (−ω)

]
+ Ebk(ω)ν2

[
XkaH
k (−ω)− ν2X

kb
k (ω)

]
(5.36)

where X−k ≡ Xk (−ω), Ek = Ea
k + Eb

kν2, Xk = Xa
k + Xb

kν2.
As in the OS-QFDAF algorithm we can constrain the gradient as follows:

Wk+1 = QFFT
(

[IQFFT(Wk+1)]dMe
0L

)
. (5.37)

The same procedure will be repeated for all other weights H, U, V.

5.7.2 Computational cost analysis

Our goal in implementing the WL-OS-QFDAF was to achieve efficiency from the
computational point of view in comparison with WL-QLMS.

The computation of one complex FFT involves N log2N multiplications and each
QFFT requires the execution of 2 complex FFTs. The WL-OS-QFDAF algorithm
includes 14 (I)QFFTs, 8 × 16N multiplications to compute the filter output and
8 × 16N multiplications to update the filter weights. Given the QFFT length
N = 2L = 2M samples, the computational cost for WL-OS-QFDAF is approximately

CWL−OS−QFDAF'2 · 14N log2N + 2 · 8 · 16N
= 2 · 28M log2M + 2 · 256M.

(5.38)

5.7 Widely linear algorithms in the frequency domain 81

In WL-QLMS, the computation of both the filter output and the cross-correlation
in the update equations requires 4 · 4 · 4M = 64M multiplications for each sample.
Overall, for M samples, the computational cost for WL-QLMS is approximately
CWL−QLMS'128M ·M = 128M2. The complexity ratio between WL-OS-QFDAF
and WL-QLMS is

CWL−OS−QFDAF
CWL−QLMS

= 7log22M + 64
16M . (5.39)

For example, for M = 16, the WL-OS-QFDAF algorithm is about 2.5 times more
efficient than WL-QLMS.

5.7.3 Simulations

We will repropose here the simulation in the scheme of Fig. 5.1 for testing the
performance of WL-OS-QFDAF in comparison with WL-QLMS which operates in
the time domain. The system to be identified is characterized by a set of random
weights w0 (in the time domain), uniformly distributed in the range [−1, 1]. The
quaternion filter input signal x[n] is a unit variance colored noise with length of
20,000 samples, obtained by filtering the white Gaussian noise η[n] as

x [n] = bx [n− 1] +
√

1− b2√
4

η [n] (5.40)

where b determines the bandwidth of the signal. The parameter b is equal to 0
(white noise) during the first 10,000 samples, and 0.9 (narrow band) during the last
10,000 samples. The additive signal v[n] is unit-variance white Gaussian noise with
an SNR of 50 dB. The choice of the overlap length and the block length (M = L)
determines the FFT length (N = M + L). In this test, M = 8 and L = 10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Samples 10
4

-60

-50

-40

-30

-20

-10

0

10

M
S

E
 [
d
B

]

1
0
lo

g
(J

(w
))

Smoothed Learning Curve [n average = 5]

WL-QLMS

WL-OSQFDAF NoPowN

WL-OSQFDAF PowN

MSE bound

Figure 5.4. WL-QLMS vs. WL-OS-QFDAF with and without power normalization. Direct
system modeling with quaternion-valued input signal. Mean Square Error (MSE)

In Fig. 5.4 we can see that the WL-QLMS and the WL-OS-QFDAF without
power normalization behave the same way. In particular, the algorithm convergence

5.7 Widely linear algorithms in the frequency domain 82

is slower in the case the input signal has a narrow band (b = 0.9). The power-
normalized WL-OS-QFDAF outperforms the other two algorithms in both cases
b = 0 and b = 0.9.

83

Chapter 6

A comparison study with other
hypercomplex algebras

Contents
6.1 Differences between quaternion and tessarine algebras 84
6.2 A comparison of 4D adaptive filters 86

6.2.1 Widely linear modification 87
6.3 Microphone array geometries and mathematical repre-

sentation of space 89
6.3.1 Ambisonic coincident array 89
6.3.2 Uniform Linear Array 90

6.4 Simulations 91
6.4.1 Generic circular input signals 91
6.4.2 Ambisonic improper audio input signals 92
6.4.3 Microphone array geometry 93

6.5 Tessarine algorithms in the frequency domain 96
6.5.1 Tessarine Fourier Transform 97
6.5.2 Overlap-Save Tessarine Frequency Domain Adaptive Filter 97
6.5.3 Simulations 99

As previously introduced, multidimensionality is somehow intrinsic to the nature
of the data: it arises from the need for processing correlated data (not necessarily
homogeneous, as in [98]). The investigation topic in this chapter considers two
hypercomplex algebras having the same dimensions: quaternions and tessarines (the
latter also known as bicomplex numbers). Both of them are a 4-dimensional algebra.
So, which are the reasons why we should choose one algebra or another? Here we
present a couple of examples where different results are obtained from different
mathematical representations of the systems. A line of reasoning is also suggested.
With regard to adaptive signal processing, the first adaptive algorithm implemented
in a hypercomplex algebra has been the Quaternion Least Mean Square (QLMS)
algorithm [98]. Because of its straight comprehensibility and ease of implementation,
this algorithm offered an instrument on hand for studying quaternion algebra
combined with adaptive filtering. We adopted this algorithm to make a comparison

6.1 Differences between quaternion and tessarine algebras 84

of the two 4-dimensional algebras above mentioned. On this occasion, we derived
and implemented a tessarine version of the LMS algorithm, namely TLMS. In a
second step, we searched for a modification of both the QLMS and TLMS algorithms
into a widely linear form (including full second order statistics) [54,99,100] and their
behaviour was tested with proper and improper input signals [69, 70]. The highlight
in this chapter is the evidence that the choice of a specific algebra may condition a
filter behaviour. We analysed this fact by introducing Ambisonic 3D audio signals
(see Chapter 4) into a 4-dimensional system. The main goal of the current work is
to examine whether the good results obtained with quaternion algebra persist in
other 4-dimensional algebras.

In this chapter, after itemizing the main differences between quaternions and
tessarines and describing 4D algorithms (Par. 6.1 and Par. 6.2), we present two
simulations contexts (Par. 6.4). The first test is aimed at studying the LMS
filter performance in tessarine and quaternion algebra in case of correlated and
uncorrelated input signals. The second test works with only correlated signals, but
the array geometry is changed. The microphone layouts are described in Par. 6.3.

6.1 Differences between quaternion and tessarine alge-
bras

The geometric algebras belonging to Clifford algebras permit generating units as
either i2n+1 = −1 or i2n+1 = +1. The number of generators p and q in both types
determine completely the particular Clifford algebra over the field K with C`(p, q)(K).
Typically, all Clifford algebras as associative, but not necessarily division algebras.
Tessarine algebra is an example of this kind. Here we briefly recall the main proper-
ties of quaternions (H) and we make a comparison with the 4-dimensional algebra
of tessarines (T). Other 4-D algebras exist, e.g. the Sklyanin algebras described
in [88]; however, we chose these two algebras because they are characterized by
the fact that their outfit is exactly the same: q = q0 + q1i + q2j + q3k with q ∈ H
and t = t0 + t1i + t2j + t3k with t ∈ T. Despite that, the algebraic rules governing
quaternion and tessarine algebras are radically different. Both quaternions and
tessarines can be split into a real (scalar) part (i.e. q0 and t0), and a full-imaginary
(vector) part built on the imaginary axes i, j, k. The properties below are those
responsible of the essential differences between quaternion and tessarine numerical
systems:

Quaternion algebra:

ij = k, jk = i, ki = j, (6.1)
i2 = j2 = k2 = −1. (6.2)

Tessarine algebra:

ij = k, jk = i, ki = −j, (6.3)
i2 = k2 = −1, j2 = +1. (6.4)

6.1 Differences between quaternion and tessarine algebras 85

Axioms (6.1)–(6.4) generate the discrepancies between the two algebras, e.g. they
dictate the rules for product and other mathematical operations (convolution, corre-
lation, etc.).
Given quaternions qa, qb ∈ H, we compute their product as

qaqb = (a0 + a1i + a2j + a3k) (b0 + b1i + b2j + b3k)
= (a0b0 − a1b1 − a2b2 − a3b3)
+ (a0b1 + a1b0 + a2b3 − a3b2) i
+ (a0b2 − a1b3 + a2b0 + a3b1) j
+ (a0b3 + a1b2 − a2b1 + a3b0) k.

(6.5)

Given tessarines ta, tb ∈ T, we compute their product as

tatb = (a0 + a1i + a2j + a3k) (b0 + b1i + b2j + b3k)
= (a0b0 − a1b1 + a2b2 − a3b3)
+ (a0b1 + a1b0 + a2b3 + a3b2) i
+ (a0b2 − a1b3 + a2b0 − a3b1) j
+ (a0b3 + a1b2 + a2b1 + a3b0) k.

(6.6)

Product rules can be also expressed with tables (see Table 6.1 and Table 6.2):

1 i j k
1 1 i j k
i i -1 k -j
j j -k -1 i
k k j -i -1

Table 6.1. Quaternion Multiplication

1 i j k
1 1 i j k
i i -1 k -j
j j k 1 i
k k -j i -1

Table 6.2. Tessarine Multiplication

It can be seen that commutativity features only in tessarine algebra. As a consequence
of this, for example, we can detect an effect on the convolution theorem. In fact, the
classic convolution theorem (valid in R,C) does not hold in quaternion algebra [67,82].
On the contrary, the author of this thesis experimented that the theorem is still
valid in tessarine algebra. This result is reported in Par. 6.5. On the other
hand, the sum is computed the same way with either quaternions or tessarines
(component-by-component):

q ± p = (q0 + q1i + q2j + q3k)± (p0 + p1i + p2j + p3k)
= (q0 ± p0) + (q1 ± p1) i + (q2 ± p2) j + (q3 ± p3) k.

(6.7)

6.2 A comparison of 4D adaptive filters 86

Another consequence of the divergent algebraic background is the distinct definition
of the conjugate of a quaternion and a tessarine:

q∗ = q0 − q1i− q2j− q3k ∈ H
t∗ = t0 − t1i + t2j− t3k ∈ T.

(6.8)

However, the poly-conjugation can generalize both:

p∗ = p0 +
3∑

ν=1
pνe3

ν (6.9)

where eν with ν = 1, 2, 3 form an orthonormal basis.

If we consider commutative, associative, non-division algebras with n > 2, these
always exhibit zero divisors 1. For example, for n = 2:

(1− j)(1 + j) = 1− j2 = 1− 1 = 0 (6.10)

with (1− j) 6= 0 and (1 + j) 6= 0.
One of the potentialities of zero divisors is the orthogonal decomposition, which allows
representing signals in orthogonal components, thus reducing the computational cost
in those operations involving multiplication:

• Regular 4D hypercomplex multiplication: 42 = 16 real multiplications.
• Orthogonal decomposition: 4 real multiplications (component-wise).

Orthogonal decomposition is based on the fact that each commutative and associative
algebra over R is isomorphic to a direct sum in R.
Drawbacks with zero divisors: Euclidean norm is not multiplicative (i.e. |a| |b| 6= |ab|),
so, for instance, the definition of energy is under discussion for non-Euclidean
algebras.

Unlike non-commutative algebras, the properties of commutative algebras still
hold with increasing n.

6.2 A comparison of 4D adaptive filters
In quaternion algebra, the development of adaptive filters has been progressing
for about a decade. Since the first Quaternion Least Mean Square algorithm was
presented in [98], improvements and other quaternion algorithm architectures were
proposed. On the contrary, tessarine algebra did not arise the same interest as
quaternions, so the literature lacks of filters in this algebra. On account of this,
the author of this thesis et al. implemented the basic Tessarine LMS algorithm
in order to make a comparison with its quaternion counterpart [69,70]. The main
information about the basic LMS algorithm is provided in the following.

We recall here the main facts about the LMS algorithm, extensively debated in
Par. 3.1. In the LMS adaptation process, we define a cost function to be minimized,

1If A is a commutative ring, then a non-zero element a ∈ A is called zero divisor if there exists a
non-zero element b ∈ A, such that ab = 0.

6.2 A comparison of 4D adaptive filters 87

e.g. the Mean Square Error (MSE) J(wn−1) = E {e[n]e∗[n]}. The error e[n] is
measured as the difference between a desired signal and the adaptive filter output
(e[n] = d[n]− y[n]). Considering the properties of quaternion and tessarine algebras,
the adaptive filter output is slightly different in the two algebras:

y [n] = wT
n−1xn =

wT
a xa −wT

b xb −wT
c xc −wT

d xd
wT
a xb + wT

b xa + wT
c xd −wT

d xc
wT
a xc + wT

c xa + wT
d xb −wT

b xd
wT
a xd + wT

d xa + wT
b xc −wT

c xb

 ∈ H (6.11)

for quaternions, and

y [n] = wT
n−1xn =

wT
a xa −wT

b xb + wT
c xc −wT

d xd
wT
a xb + wT

b xa + wT
c xd + wT

d xc
wT
a xc + wT

c xa −wT
d xb −wT

b xd
wT
a xd + wT

d xa + wT
b xc + wT

c xb

 ∈ T (6.12)

for tessarines, where xn is the filter input vector at iteration n and wn−1 are the
filter weights at iteration n − 1: xn =

[
x [n] x [n− 1] · · · x [n−M]

]T
, wn =[

w0 [n] w1 [n] · · · wM [n]
]T

, with M the filter length. The minimum of the cost
function J(wn−1) can be found by computing and setting to zero its gradient. The
final adaptation equation for both QLMS and TLMS algorithms results in

wn = wn−1 + µe [n] x∗n. (6.13)

where µ is the step size along the direction of the gradient and the conjugate x∗n is
derived as in (6.9). The QLMS and the TLMS algorithms will be employed in the
simulations described in Par. 6.4.

6.2.1 Widely linear modification

Recent works about both complex and hypercomplex filtering showed a particular
interest in widely linear algorithms [54, 60, 100, 105]. It has been observed that most
real world signals are improper (or noncircular) in nature [76] and, in this case, a
filter performance can be improved significantly if the full second order statistics
of the signals is taken into account and included into the algorithm. We said in
Par. 5.1.2 that, if a random variable has a rotation-invariant probability distribution
(with respect to all six pairs of rotation axes (1, i),(1, j),(1,k), (i, j), (k, j), (k, i)), it
must be considered proper, or second-order circular. We recall from Par. 5.1.2 that
signal properness in H can be verified by checking if the following properties hold
for a quaternion random variable q = qa + qbi + qcj + qdk [100]:

1. E
{
q2
m

}
= σ2, ∀m = a, b, c, d

2. E {qmqn} = 0, ∀m,n = a, b, c, d and m 6= n

3. E {qq} = −2E
{
q2
m

}
= −2σ2, ∀m = a, b, c, d

4. E
{
|q|2

}
= 4E

{
q2
m

}
= 4σ2, ∀m = a, b, c, d

6.2 A comparison of 4D adaptive filters 88

We said in Par. 5.1.2 that since for a quaternion proper signal the complementary
covariance matrices, defined as Ci

q = E
{
qqiH

}
, Cj

q = E
{
qqjH

}
, Ck

q = E
{
qqkH

}
,

vanish, widely linear algorithms incorporate and exploit this second order information
on purpose. It is useful to report about the quaternion involutions here and make a
comparison with tessarine involution later in this chapter:

qi = −iqi = qa + iqb − jqc − kqd
qj = −jqj = qa − iqb + jqc − kqd
qk = −kqk = qa − iqb − jqc + kqd.

(6.14)

Involutions are functions f(.) chosen in a way that, given q, p ∈ H, we have the
conditions:

1. f(f(q)) = q

2. f(q + p) = f(q) + f(p) and f(λq) = λf(q)

3. f(qp) = f(q)f(p)

In Par. 5.3, we saw that the WL-QLMS algorithm updates four sets of filter
weights: w, h, u, v ∈ HM×1, where M is the filter length. Accordingly, the filter
output is computed by convoluting each weight vector with its corresponding input
involution:

yw [n] = wT
n−1xn, yh [n] = hTn−1xi

n, yu [n] = uTn−1xj
n, yv [n] = vTn−1xk

n (6.15)

and summing all four contributions:

y [n] = yw [n] + yh [n] + yu [n] + yv [n] . (6.16)

In conclusion, we have four adaptation equations:

wn = wn−1 + µe [n] x∗n, hn = hn−1 + µe [n] xi∗
n

un = un−1 + µe [n] xj∗
n , vn = vn−1 + µe [n] xk∗

n .
(6.17)

Is it possible to obtain a similar algorithm with tessarines? Well, if we apply the
three conditions above in order to find tessarine involutions we obtain the following
results (t ∈ T):

ti = −iti = ta + itb + jtc + ktd = t

tj = +jtj = ta + itb + jtc + ktd = t

tk = −ktk = ta + itb + jtc + ktd = t.

(6.18)

From (6.18), we see that tessarines are auto-involutive, so a widely linear model is
possible to the extent that it is defined the same way as for complex numbers [78].

6.3 Microphone array geometries and mathematical representation of space 89

6.3 Microphone array geometries and mathematical rep-
resentation of space

The experiments we are going to present in this chapter make use of two different
microphone configurations to pick up a sound source. Both layouts mount four
microphones and each microphone signal is assigned to a quaternion/tessarine
component. The first microphone configuration is the coincident Ambisonics B-
Format array (Fig. 6.1), presented in Chapter 4. The second is a simple 4-element
uniform linear array (Fig. 6.2).

Figure 6.1. Typical Ambisonic B-Format layout.

Figure 6.2. 4-Microphone Uniform Linear Array.

Besides the evident different shape of the arrays, a transformation of the sound
space is applied before placing each signal into a mathematical dimension. Details
about this transformation are given just below.

6.3.1 Ambisonic coincident array

We saw in Chapter 4 that Ambisonics is a renowned 3D audio technique [28–30]
that can be used for either recording or reconstructing a 3-dimensional sound
field. Ambisonics typically uses coincident microphone arrays with a configuration
depending on the specific format. Ambisonic formats were tailored to a special audio
equipment or purpose (studio recording, audio broadcasting, public address, etc.)
and it is possible to transcode from one format to another by means of uncomplicated
matrix transformations [81].

6.3 Microphone array geometries and mathematical representation of space 90

We still focus here on the Ambisonic B-Format. The choice and the arrangement
of the microphones in this format are in line with the physical decomposition of the
sound field according to the Ambisonic theory. Ambisonics describes the sound field,
p (~r), as a linear combination of spherical harmonics (Y σ

mn), multiplied by coefficients
representing the recorded audio signals (Bσ

mn):

p (~r) =
∞∑
m=0

(2m+ 1) jmJm (kr)
∑

0≤n≤m,
σ=±1

BσmnY
σ
mn (θ, ϕ) (6.19)

where m,n, σ, k are the degree, the order, the spin and the wave number (2πf/c),
respectively. The polar coordinates (θ, ϕ) denote the azimuth and the elevation.
The decomposition in (6.19) refers to a plane wave and a sound field with external
sources only. The other functions in the formula, Jm (kr), are radial functions called
spherical Bessel functions of the first kind [19]. The 1st-order B-Format considers
harmonics up to first order. Graphically, the zeroth and first order harmonics
are represented by the colored bubbles in Fig. 6.1. The microphones used in this
technique (coincident and orthogonal to one another) must have polar patterns fitting
the shape of these harmonics. For this reason, one omnidirectional microphone (W)
and three figure-of-eight microphones (X,Y,Z) are adopted here.

A transformation of the sound field from the traditional Euler representation into
a quaternion-valued form has been already discussed and experimented by the author
in Chapter 4 and in [66,69,71]. It is worth recalling and pointing out that the group
of 3D Euclidean rotations SO(3) has a representation on the (2m+ 1)-dimensional
Hilbert space with spherical harmonics, span {Y σ

mn(θ, φ), 0 ≤ n ≤ m,σ = ±1}. In
addition, the SO(3) group is isomorphic to the subspace of full-imaginary quaternions.
That said, the transformation is possible and straightforward. In conclusion, 1st-order
B-format can be encapsulated into a quaternion form as

BQ[n] = BW [n] +BX [n]i +BY [n]j +BZ [n]k. (6.20)

Later in this chapter, we will see if a similar transformation is effective in tessarine
mathematics, too.

6.3.2 Uniform Linear Array

The second microphone configuration we present here consists of four uniformly
spaced microphones, aligned on a single space dimension (Fig. 6.2). The microphone
polar pattern may be of any kind. It is preferable that all microphones have the
same directional characteristic. Such arrays are usually employed in highly directive
beamforming applications, such as sound source localization. System directivity
depends on the number of sensors, their spacing and the wavelength of the impinging
wave. The spatial position of each microphone in our 4-element array is defined as

rp = [(p− 1)d 0 0]T , for p = 1, ..., P (6.21)

where d is the distance between two microphones and P = 4. In a uniform linear
array (ULA) the delay time between sensors is τ = d cos θ

c , where θ is the angle of
incidence of the acoustic wave. The ULA array steering vector can be expressed as

a =
[
1 ejkd cos θ . . . ej(1−P)kd cos θ

]T
(6.22)

6.4 Simulations 91

with P = 4 and k = ω/c (c is the speed of sound). Given the source signal s(t), the
sound signal at the p-th microphone can be represented as

xp(t) = s(t− (p− 1)τ). (6.23)

Since we have four microphone signals and they are correlated to one another,
we may want to assign each signal to a quaternion or a tessarine component. No
particular space transformation is applied here. We are just encapsulating signals
into one single multidimensional object, because they belong to the same context:

xQ,T [n] = x1[n] + x2[n]i + x3[n]j + x4[n]k. (6.24)

6.4 Simulations
In this paragraph, we propose two examples in order to make a performance compar-
ison between quaternion and tessarine filtering according to the input signals. The
simulation layout is represented in Fig. 6.3. In both simulations we have a system
w0 to be identified, which is defined in the time domain by a set of random weights,
uniformly distributed in the range [−1, 1].

+

+

w0

Adaptive

Filterx[n]

e[n]

d[n]

v[n]

y[n]

-

Figure 6.3. Simulation layout.

6.4.1 Generic circular input signals

In this first example, we apply QLMS and TLMS in a context where the input signal
x[n] is considered as either a quaternion-valued or tessarine-valued colored noise
with unit variance and it was obtained by filtering the white Gaussian noise η[n] as
x[n] = bx[n− 1] +

√
1−b2√

4 η[n], where b is a filtering parameter (here it was chosen as
b = 0.7). The additive signal v[n] is defined the same way as x[n], but the parameter
b is set to zero.

Signal x[n] is circular, all its components are uncorrelated to each other, so, at
first glance, it seems to be equivalent to consider it as a quaternion or a tessarine. In
effect, our results are concordant with the expectations (Fig. 6.4): given the same
filter parameters (M = 12, µ = 0.008), the QLMS and TLMS exhibit the same MSE.
In this simulation, after 5000 samples, the weights w0 change abruptly. The two
filters run after the variation with the same rate.

6.4 Simulations 92

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Samples

-60

-50

-40

-30

-20

-10

0

10

M
S

E
 [

d
B

]

1
0

lo
g

(
J
(w

))

Smoothed Learning Curve [n average = 3]

TLMS

QLMS

MSE bound

Figure 6.4. MSE: QLMS vs TLMS with proper input signal.

6.4.2 Ambisonic improper audio input signals

The second example we propose here makes use of a well-structured 3D audio input
signal. This signal has 4 components which were recorded by 4 microphones in
accordance with the 3D audio technique called Ambisonics (B-Format). The first
order Ambisonic B-Format technique mounts 4 coincident microphones, orthogonal
to one another: one omnidirectional microphone (W) and three figure-of-eight
microphones (X, Y, Z). Each microphone signal can be assigned to a 4-dimensional
algebra component as

x[n] = xW [n] + xX [n]i + xY [n]j + xZ [n]k. (6.25)

However, we want to prove that this assignment is not merely a matter of convenience.
In fact, Fig. 6.5 shows how the choice of a different algebra, defining the mathematical
space, determines the filter performance. Giving an interpretation of Fig. 6.5, we
understand that a B-Format signal is rather inclined to be represented by quaternion
algebra than by tessarines (the QLMS converges faster than TLMS on equal terms).
In truth, in previous works [68, 71], the authors found a relation between the sound
field as decomposed by Ambisonics and a quaternion-valued representation. It is
known that the subspace of pure quaternions (those quaternions with null real
component) is isomorphic to rotations SO(3) which can be represented by spherical
harmonics. That said, the quaternion representation of Ambisonics does not simply
consist in a compact formalism, but it has a physical and geometrical meaning.

In our simulation, the source is a monodimensional unit-variance white Gaussian
noise in a computer-generated anechoic room. The source was placed at a distance
of 20 cm from the B-Format array, 45◦ off-axis with the X microphone. Additive
unit-variance white Gaussian noise ν[n] ∈ H, with n = 0, 2..., P − 1, was summed
to the output signal of the system to be identified (d[n] = wT

0 x + ν[n]). The filter
parameters were chosen as M = 12, µ = 0.3.

6.4 Simulations 93

0 1000 2000 3000 4000 5000 6000

Samples

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

M
S

E
 [

d
B

]

1
0

lo
g

(
J
(w

))

Smoothed Learning Curve [n average = 3]

WLTLMS: NON-WL model

WLQLMS: NON-WL model

TLMS

QLMS

MSE bound

Figure 6.5. MSE: (WL-)QLMS vs (WL-)TLMS with Ambisonic improper input signal.
NON-WL model in the legend box refers to a system to be identified which only has w0
weights.

In addition, in Par. 6.2.1, we emphasized the possibility to build a widely linear
algorithm (WL-QLMS, WL-TLMS). Since the Ambisonic B-Format is improper, we
expect the WL-QLMS and WL-TLMS to outperform QLMS and TLMS, respectively.
The results from our simulation meet the expectations (Fig. 6.5).

6.4.3 Microphone array geometry

Figure 6.6. Simulation room scenario.

In this experiment, we chose two different microphone configurations having a precise
geometry. The microphones are set up as described in Par. 6.3.1 and Par. 6.3.2. The
ULA array is composed of omnidirectional microphones. The four signal components
are correlated in both cases. The positions of the source and the microphones in the
room are described in Fig. 6.6. The resulting impulse responses, characterizing the
path between the source and each sensor, in the case of Ambisonics and ULA are
reported in Fig. 6.7 and Fig. 6.8, respectively.

6.4 Simulations 94

Figure 6.7. B-Format impulse responses.

Figure 6.8. Uniform Linear Array impulse responses (omnidirectional mics).

The experiment consists in the identification of a 4-dimensional system, previously
defined in the time domain by the random weights w0, uniformly distributed in the
range [−1, 1]. The adaptive core accomplishing this task is one of the algorithms
presented in Par. 6.2. The filter input is recorded in the two techniques. The source
generates unit-variance white Gaussian noise. Given the same filter parameters for
both QLMS and TLMS (M = 12, µ = 0.8), we obtained the results plotted in Fig.
6.9 and Fig. 6.10 with B-Format and ULA, respectively. We considered as a measure
of comparison the MSE at the steady-state and the time (in terms of samples) the
algorithm takes to reach this value.

6.4 Simulations 95

Figure 6.9. System identification with B-Format input signal. QLMS and TLMS filter
performance.

Figure 6.10. System identification with ULA (omnidirectional mics) input signal. QLMS
and TLMS filter performance.

In both cases, the QLMS has an edge over TLMS. However, when the input signal
is consistent with the quaternion transformation we discussed in Par. 6.3.1, this
advantage is distinct. Apparently, a similar transformation is not feasible with
tessarines, since, unlike rotations and quaternions, tessarine algebra is commutative.
In the example above, geometry wins over mere correlation. Nevertheless, we are
interested in observing whether it is possible to turn the situation around. We present
here a minor modification of the scenario. Keeping the position of microphone P1
unchanged, the omnidirectional ULA microphones are moved closer to one another
(d = 0.5 [m]). The impulse responses are shown in Fig. 6.11 and the result from the
simulation is plotted in Fig. 6.12. Here, the TLMS converges faster than the QLMS.
In conclusion, correlation matters, but geometry is preponderant. In fact, geometry
implies a particular configuration of correlation.

6.5 Tessarine algorithms in the frequency domain 96

Figure 6.11. Uniform Linear Array impulse responses (closer omni mics).

Figure 6.12. System identification with ULA (closer omni mics) input signal. QLMS and
TLMS filter performance.

6.5 Tessarine algorithms in the frequency domain
One of the most important differences between quaternion and tessarine algebras
concerns product commutativity. A consequence of this is the possibility to define
a tessarine convolution theorem which formally equals the traditional real- and
complex-valued therem and is commutative:

y[n] = w[n] ∗ x[n]⇔ Y (ω) = W (ω)X(ω) = X(ω)W (ω). (6.26)

6.5 Tessarine algorithms in the frequency domain 97

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

Time Domain Conv - Frequency Domain FFT Conv W component

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

Time Domain Conv - Frequency Domain FFT Conv X component

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

Time Domain Conv - Frequency Domain FFT Conv Y component

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

Time Domain Conv - Frequency Domain FFT Conv Z component

Figure 6.13. Tessarine convolution theorem: time domain output (red circles) and anti-
transformed frequency domain output (black circles) coincide.

In Par. 3.2, we saw that the convolution theorem in quaternion algebra is more
complicated:

Yk = Wa
kXk + Wb

kν2X−k, (6.27)

where X−k ≡ Xk (−ω) is the frequency reversed signal of Xk (ω), while Wa
k and

Wb
k are the simplex and perplex parts such that Wk = Wa

k + Wb
kν2.

6.5.1 Tessarine Fourier Transform

In tessarine algebra, it is still possible to compute the Fourier transform by means
of Cayley-Dickson decomposition in a way similar to quaternions (see Par. 2.1.1):

F (u) =
N−1∑
n=0

e(−2πνnu
N) (w1 (n) + x1 (n)ν1)

+
N−1∑
n=0

e(−2πνnu
N) (y1 (n) + z1 (n)ν1)ν2.

(6.28)

The versors (ν2,ν3) must be chosen in a way that ν1⊥ν2⊥ν3, ν1ν2 = ν3 and
ν1ν2ν3 = −1. Unlike quaternion transforms, left and right transforms coincide.

6.5.2 Overlap-Save Tessarine Frequency Domain Adaptive Filter

Thanks to commutative product, the Overlap-Save Tessarine Frequency Domain
Adaptive Filter (OS-TFDAF) has the same architecture of real- and complex-valued
OS-FDAF [104]. The algorithm block diagram is shown in Fig. 6.14.

6.5 Tessarine algorithms in the frequency domain 98

M L

old kx x
xk

TFFT x ITFFT

N

[]
L

k

 y

ˆ
ky

[]
H
⋅

()()1

M

k

L

ITFFT
TFFT

+

W

0
gradient constraint

 1z−

x

+

μ

x

Ek

TFFT ˆ0M ke +

-
ˆ

kdXk
H

YkXk

Wk

Wk+1

Figure 6.14. Overlap-Save Tessarine Frequency Domain Adaptive Filter. Block diagram.

A brief overview of the algorithm is given just below.
Algorithm initialization:

Winit = 0 (2M-by-1 null vector)
µ = µ0

(6.29)

For each new input block k do:

Xk = diag
{

TFFT
[
xMold xLk

]T}
(6.30)

where the input block consists of xMold and xLk , defined as

xMold = [x (kL−M + 1) , · · · , x (kL− 1)]
xLk = [x (kL) , · · · , x (kL+ L− 1)].

Compute the filter output in the frequency domain and anti-transform:

Yk = WkXk. (6.31)

ŷk = [ITFFT (Yk)]bLc (6.32)

Given the desired output vector d̂k in the time domain, compute and transform the
error vector:

d̂k =
[
d (kL) d (kL+ 1) · · · d (kL+ L− 1)

]T
(6.33)

êk = d̂k − ŷk (6.34)

Ek = TFFT
([

0M êk
]T)

. (6.35)

Finally, update the filter weights and apply the contraint on the gradient

Wk+1 = Wk + µXH
k Ek (6.36)

Wk+1 = TFFT
(

[ITFFT(Wk+1)]dMe
0L

)
. (6.37)

6.5 Tessarine algorithms in the frequency domain 99

6.5.3 Simulations

It is possible to verify that the OS-TQFDAF can reach the same performance
capabilites of TLMS. In the simulation scenario depicted in Fig. 6.3, we choose
the filter parameters as M = 12 (in both TLMS and OS-TFDAF), L = 16, µ =
8 × 10−3. The input signal x[n] is unit-variance colored Gaussian noise defined
as x[n] = 0.5x[n − 1] +

√
1−0.52
√

4 η[n], where η[n] ∈ H, with n = 0, 1, ..., P − 1, is a
unit-variance white Gaussian noise. The resulting learning curves are reported in
Fig.6.15.

0 1000 2000 3000 4000 5000 6000

Samples

-60

-50

-40

-30

-20

-10

0

10

20

M
S

E
 [
d
B

]

1
0
lo

g
(J

(w
))

Smoothed Learning Curve [n average = 4]

TLMS

OS-TFDAF

MSE bound

Figure 6.15. MSE: TLMS vs OS-TFDAF (M = 12, L = 16, µ = 8× 10−3).

100

Chapter 7

Hypercircuits

Contents
7.1 The problem of discrete-time hypercircuits 100
7.2 Fundamentals of Circuit Theory 101

7.2.1 Digital circuits 102
7.3 Quaternion Z-Transform 103

7.3.1 Examples: Design of a quaternion digital filter 105

7.1 The problem of discrete-time hypercircuits
In the previous chapters, we said that a higher-dimensional numerical space allows
the description of hypercomplex objects and problems, highlighting typical aspects
visible only within a hypercomplex field. As known from the experience with complex
numbers, the complex plane made it possible to visualize phenomena like the electric
and magnetic storage and release of charges in capacitors and inductors, respectively,
or to treat signals by considering their phase relations, thus helping the development
of all those applications concerning signal processing, radio technique, electronics and
so on. The question now is: what results are achievable by means of hypercomplex
algebras? These algebras, quaternions in particular, raised the interest of digital
signal processing engineers. In digital signal processing, the most popular approach
considers filters as circuits. Even though digital filters are non-physical structures, it
is still possible to define constitutive relations for component elements and operate
computations within the circuit topology in the digital domain.

During the last few years, the efforts of our research were oriented towards the
study of the properties of quaternion algebra, with the aim of developing digital
adaptive filters in the quaternion domain. However, adaptive filters have self-
adjusting structures and the engineer intervention is restricted to the architecture
design and the initial parameter setup. At every step, the adaptive filter finds a
configuration which gets closer to the optimal solution. This is possible by means
of reference signals. What about designing a static filter according to some initial
specifications? Let us assume, for example, that we are asked to implement a shelving
filter for audio applications in real-valued algebra. We can write the shelving filter

7.2 Fundamentals of Circuit Theory 101

analogue trasfer funtion in the Laplace domain

H(s) = s+Kωa
s+ ωa

(7.1)

where ωa is the analogue cut-off frequency and K can be either K > 1 (bass-boost)
or K < 1 (bass-cut). The filter in (7.1) can be Z-transformed in order to get a
digital filter, making use of the bilinear transform

s = 2
T

z − 1
z + 1 (7.2)

where T is the sampling period, and the frequency pre-warping

ωd = 2
T

arctan
(
ωa
T

2

)
(7.3)

with ωd the digital frequency. This procedure is quite common in digital signal
processing and it allows to decide easily for the filter slope, cut off frequency,
gain/attenuation. Is it possible (and does it make sense) to follow a similar procedure
in hypercomplex algebra?

The concept of discrete-time hypercircuit has always been known to digital
signal processing engineers working with high-dimensional (hypercomplex) systems.
Nevertheless, a definition of discrete-time hypercircuit was never given explicitly.
Which are the conditions for which we can affirm that it makes sense to talk about
hypercircuits? In order to give a proper answer to this question, it is better to look
back upon the circuit theory and recall the basic notions.

7.2 Fundamentals of Circuit Theory
Digital circuits derive from the lumped element model of electrical circuits [16]. The
idea behind the concept of circuit is to build a connection between elements, whose
behaviour is characterized by a constitutive relation among electrical quantities.
That said, the circuital approach becomes an easy way to describe many and different
natural phenomena, since it is possible to use elementary equivalent electrical elements
and electrical connections to represent a physical structure under analysis.

Given the fundamental notions of connection and constitutive relations, circuit
modeling is based on the representation of phenomena by means of two kinds of
quantities: across and through. The topological constraints in the circuit graph
determine the physical properties of the system. Examples of equivalent electrical
quantities for contexts different from electricity are reported in Table 7.1.

Through Across
Electricity Current Voltage

Fluidodynamics Current Flux Pressure
Mechanics Torque Angular Velocity

Table 7.1. Examples of equivalent electrical quantities
for physical problems different from electricity.

7.2 Fundamentals of Circuit Theory 102

Besides through and across quantities, it is possible to define equivalent electrical
elements to describe non-electrical objects. A nice example is the application of the
circuit theory to acoustics (see Table 7.2).

Quantity Expression Analogy
Mechanical force F Voltage

Velocity u Current
Mechanical impedence Zm = F

u Impedence
Mass M Inductance

Mechanical flexibility Cm = 1
K Capacitance

Table 7.2. Maxwell’s mechanical analogy for acoustics.

The circuit models considered here are lumped element models, i.e. ideal circuits,
made up with ideal elements whose geometrical dimensions are not taken into
account, since they are considerably smaller compared to the wavelength of the
physical phenomenon occurring in the circuit. In other words, the propagation time
of the phenomenon is not crucial in the analysis and design of the circuit.

The physical quantities in the circuit must comply with two physical laws: the
Kirchhoff laws. The Kirchhoff Current Law (KCL) states that "the sum of the
currents flowing into any circuit node is equal to the sum of currents flowing out
of that node" (

∑N
n=1 In = 0). The Kirchhoff Voltage Law (KVL) states that "in a

closed mesh, the sum of the voltage drops is zero" (
∑N
n=1 Vn = 0). These laws derive

from Maxwell laws, under the assumption that the circuit is in the steady state
(i.e. ∂ΦB

∂t = 0, the change of the magnetic flux in time outside the conductor is zero,
∂q
∂t = 0, the change of the charge in time inside conducting elements is zero). These
two laws allow to operate computation within the circuit topology.

7.2.1 Digital circuits

From available literature [64], we know that it is possible to extend the circuit
theory to the digital world. Digital circuits are non-physical structures, but the
circuital approach can still be adopted. Unlike generic electrical circuits, the concept
of cause-effect is explicit in digital circuits. For this reason, we often talk about
uni-directional structures. An important theorem for digital circuits states that a
uni-directional time discrete circuit must not include closed loops lacking of delay
elements.

In digital circuits it is still possible to define constitutive relations for elements:

y[n] = Ax[n] element without memory
y[n] = x[n−D] element with memory

(7.4)

where A ∈ H is a constant (multiplier, similar to a linear resistor), D ∈ R is a delay
element and x[n], y[n] ∈ R,C,H, etc. are the cause and the effect, respectively. The
nodes in the circuit are sum elements.

7.3 Quaternion Z-Transform 103

x[n] y = x[n−D]

x[n] y = Ax[n]A

z-D

Figure 7.1. Discrete-time elements: with and without memory.

7.3 Quaternion Z-Transform
Z-Transform is a powerful mathematical tool for the analysis and the design of
digital circuits. It applies to Linear Time Invariant (LTI) systems and it allows a
simple expression of system transfer functions. In general, the Z-Transform is a
useful instrument for studying the behavior of LTI systems.

First and foremost, because of the peculiar characteristics of quaternion algebra,
it is worth recalling some basic notion about quaternion transforms, before defining
the quaternion-valued Z-Transform (QZT). As shown in Par. 1.2.2, quaternion
product is not commutative. This gives rise to the existence of the two-handed (left,
right) and sandwich transforms we saw in Chapter 2.

We learned in Chapter 2 that it is possible to exploit the Cayley-Dickson decom-
position in order to simplify the calculation of the discrete Fourier transform (QDFT)
in the quaternion domain. Cayley-Dickson decomposition splits a quaternion func-
tion f [n] into the combination of two complex functions (simplex and perplex parts)
as

f [n] = (w[n] + x[n]ν1) + (y[n] + z[n]ν1)ν2 . (7.5)
The basis of versors must be chosen in a way that ν1⊥ν2⊥ν3, ν1ν2 = ν3 and
ν1ν2ν3 = −1. So, a quaternion transform can be split, as well:

F (eνω) =
N−1∑
n=0

e−νωnf [n] = Fs (eνω) + Fp (eνω)ν2 (7.6a)

f [n] = 1
N

N−1∑
u=0

eνωnF (eνω) = fs [n] + fp [n]ν2 (7.6b)

Equations (7.6a) and (7.6b) represent the left QDFT and left inverse QDFT of f [n].
Of course, this kind of decomposition is valid thanks to the linearity property of the
Fourier transform. Versor ν is an arbitrarily chosen pure unitary quaternion versor.
Besides the left-handed Fourier transform, there exists a right-handed transform.
The two forms are transpose with one another and definitions are summed up in
Table 7.3. The table reveals in advance that we have left and right Z-Transforms, as
well.

As we can find in [64], Z-Transform can be defined from the discrete Fourier
transform of a sequence f [n]. Actually, the DFT is a special case of the Z-Transform.
From (7.6a), we can define the quaternion left Z-Transform (coincident with the left
DFT) by substitution of the quaternion-valued variable z = eνω:

F (z) =
N−1∑
n=0

z−nf [n] = Fs (z) + Fp (z)ν2. (7.7)

7.3 Quaternion Z-Transform 104

Table 7.3. Kernel Definitions for Monodimensional
Quaternion Transforms

Transform Left Right
QDFT e−νωxf [·] f [·] e−νωx
QZT z−nf [·] f [·] z−n

More generally, we can choose z = reνω, where r ∈ R is the radius of a hypersphere.
Those points belonging to the unit hypersphere (r = 1, |z| = 1) are related to the
Fourier transform. An n-dimensional hypersphere is the locus of points x1, · · · , xn
such that

x2
1 + x2

2 + · · ·+ x2
n ≤ r2 (7.8)

where r is the radius of the hypersphere.
A linear system can be represented on the basis of an autoregressive moving-

average equation [64]:

N∑
p=0

y[n− p]ap =
M∑
q=0

x[n− q]bq . (7.9)

Taking the Z-Transform of all terms, we have:

Y (z)
N∑
p=0

z−pap = X(z)
M∑
q=0

z−qbq . (7.10)

Rearranging (7.10), we get the system transfer function:

H(z) = Y (z)
X(z) =

∑M
q=0 z

−qbq∑N
p=0 z

−pap

= b0 + z−1b1 + z−2b2 + · · ·+ z−MbM
a0 + z−1a1 + z−2a2 + · · ·+ z−NaN

.

(7.11)

The validation of (7.10) is possible by retracing the proof of the Time Shifting
property of Z-Transform. We intend demonstrating in H that

Z {y[n− p]} = z−pY (z) (7.12)

where n, p ∈ R, y[n] ∈ H. The left Z-Transform of y[n− p] is computed as

Z {y[n− p]} =
∞∑

n=−∞
z−ny[n− p]. (7.13)

We operate the substitution of the variable m = n− p, so that n = p+m and

Z {y[n− p]} =
∞∑

m=−∞
z−pz−my[m] = z−pY (z). (7.14)

Equation (7.14) justifies (7.10).

7.3 Quaternion Z-Transform 105

7.3.1 Examples: Design of a quaternion digital filter

In this subsection, we will discuss about the implementation and analysis of a digital
quaternion filter. We propose a very simple numerical exercise aimed at analyzing a
quaternion IIR transfer function:

H(z) = b0
1− a1z−1 . (7.15)

Alternatively, we can express the filter in (7.15) as

y[n] = a1y[n− 1] + b0x[n]. (7.16)

Equations (7.15) and (7.16) refer to the circuit in Fig. 7.2.

+

z-1

a1

b0

y[n-1]

y[n]x[n]

Figure 7.2. Simple IIR circuit diagram.

We assume the filter has coefficients b0 = 1 + 1i + 1j + 1k and a1 = −0.1− 0.1i +
0.5j − 0.5k. In this case, the filter is stable. Please note that the pole in a1 has
module |z1| = 0.7211 < 1 and lies inside the unit hypersphere. The filter response
components (in the frequency domain) are plotted in Fig. 7.3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

×104

0

0.02

0.04

0.06

0.08
Scalar Component

Y(f)

X(f)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

×104

0

0.02

0.04

0.06

0.08
Component i

Y(f)

X(f)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

×104

0

0.02

0.04

0.06

0.08
Component j

Y(f)

X(f)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

×104

0

0.02

0.04

0.06

0.08
Component k

Y(f)

X(f)

Figure 7.3. Stable quaternion IIR filter response (7.15) with b0 = 1 + 1i + 1j + 1k and
a1 = −0.1− 0.1i + 0.5j− 0.5k. X(f) is the filter input (white Gaussian noise). Y (f) is
the filter output.

7.3 Quaternion Z-Transform 106

If now we assume the filter has coefficients b0 = 1 + 1i + 1j + 1k and a1 = −0.1−
0.1i + 1j + 0.5k, the pole in a1 has module |z1| = 1.1269 > 1. Consequently, the pole
lies outside the unit hypersphere and we expect the filter to be unstable. The filter
behaviour can be understood well in the time domain in Fig. 7.4.

5850 5900 5950 6000
-1.7

-0.2

1.3
Scalar Component

×10308

x[n]

y[n]

5850 5900 5950 6000

-5

0

5

Component i
×10307

x[n]

y[n]

5850 5900 5950 6000
-1.7751

-0.2641

1.2469
Component j

×10308

x[n]

y[n]

5850 5900 5950 6000

-5

0

5

Component k
×10307

x[n]

y[n]

Figure 7.4. Unstable quaternion IIR filter response (7.15) with b0 = 1 + 1i + 1j + 1k and
a1 = −0.1− 0.1i + 1j + 0.5k. x[n] is the filter input (white Gaussian noise). y[n] is the
filter output.

The results obtained from this simple exercise still have to formalized and a
proper and complete theory still has to be enunciated.

107

Chapter 8

Hypercomplex Adaptive
Filtering Applications

Contents
8.1 Quaternion-valued Adaptive Filtering for 3D Audio Equal-

ization 107
8.1.1 3D equalization 108

Filtered-Error QLMS 108
Multichannel Filtered-Error LMS 110

8.1.2 Simulations 112
8.2 Quaternion-valued inverse system modeling 114

8.1 Quaternion-valued Adaptive Filtering for 3D Audio
Equalization

In today’s audio systems we can take advantage of adaptive filtering in order to
correct diverse acoustic flaws in a room electronically, i.e. repair holes in the room
frequency response, level off undesired peaks and control vibrations and noise, as
well. The same method can be exploited when the flaws concern loudspeakers and
microphones.

Equalization can be accomplished in many ways. The simplest layout in an
adaptive equalizer exploits a single sensor and this system is typically known as
single-point equalizer [25]. Later, multiple-point equalization was proposed with the
idea of controlling the room response at points away from a single-point equalization
microphone. Within this approach, a certain number of microphones are deployed
over the area to be controlled [25, 51]. The signals picked up by the microphones
are processed by means of an adaptive algorithm. There exist many algorithms
and solutions for accomplishing this task. However, the algorithms traditionally
used in adaptive single- and multiple-point equalization are those derived from
the Least Mean Square (LMS) algorithm, i.e. Filtered Reference-LMS (FX-LMS),
Filtered Error-LMS (FE-LMS) or a modification of these algorithms [51, 85, 91].

8.1 Quaternion-valued Adaptive Filtering for 3D Audio Equalization 108

The equalization system we propose in this work still uses multiple sensors to pick
up the acoustic sources, but all sensors are placed at a single point. In fact, the
proposed method exploits the 3D audio technique called Ambisonics and presented
in Chapter 4, which uses arrays of coincident microphones (starting with arrays
of four elements). Unlike traditional multiple-point techniques, Ambisonics does
not suffer from cross-talk artefacts, produced by the sound coming from different
directions and reaching all microphones with a difference in phase and intensity,
thus causing unwanted filtering effects. Unlike single-point equalization, Ambisonics
allows a full-3D sound pickup. How can Ambisonics succeed in sampling the sound
field properly? Ambisonics decomposes the soundfield into a linear combination
of spherical harmonics. Microphones should be chosen in a way that they fit the
spherical harmonics, so that each recorded signal represents a coefficient multiplying
its specific harmonic.

Underneath the physical description of the sound field with Ambisonics, we
can decide for a proper mathematical representation of it. Typically, Ambisonic
signals are processed separately as real-valued objects. In this work, we propose the
quaternion-valued representation of Ambisonics presented in Chapter 4. The signal
dimensions determine the format of the adaptive algorithm. Quaternion-valued
signals require quaternion-valued filters, so our 3D equalizer embeds a quaternion
version of an LMS-based algorithm. Quaternion-valued adaptive filters were already
experimented in 3D audio and non-audio applications and the peculiar statistical
properties of quaternion algebra make the use of quaternions a promising approach
in multidimensional signal processing [68,71,100].

The debate about the usage of quaternion filtering in signal processing blames
quaternions for being merely a sophisticated way to represent things. There are other
mathematical formalisms equivalent to quaternions and they apparently employ only
real-valued arithmetics. In reality, the quaternion algebraic rules are embedded into
the real-valued format. We will show an example by building up and testing a real-
valued MIMO(4, 4) system to be compared with quaternions. Despite the intrinsic
system equivalence, we will see how quaternion algorithms and quaternion-like
MIMO algorithms do not perform the same way.

8.1.1 3D equalization

In multi-sensor equalization (either single- or multiple-point), each sensor output
is subtracted from a desired signal. The method we propose here exploits quater-
nion algebra to represent multidimensional data as a single element and reduces
multi-dimensional (multi-sensor) equalization to a quaternion-valued single-point
equalization problem.

Filtered-Error QLMS

Adaptive equalization requires some adaptive filter as the core engine of the system.
The algorithms commonly used in this context are the Filtered Reference LMS (FX-
LMS), the Filtered Error LMS (FE-LMS) and modifications of these two algorithms.
Since we are working in the quaternion domain, we apply an algorithm based on the
quaternion-valued LMS (QLMS) [98]. The algorithm we adopted is the FE-QLMS

8.1 Quaternion-valued Adaptive Filtering for 3D Audio Equalization 109

algorithm shown in Fig. 8.1.
In classic FE-QLMS, the filter inputs are a delayed version of the reference signal

x[n] and an error signal filtered by an inverse estimate of the delayed secondary path,
namely Ŝ−1

∆ (z). In adaptive equalization, the secondary path S(z) represents the
room transfer function to be equalized. In case the secondary path transfer function
S(z) is minimum-phase, the delay ∆ is not required (∆ = 0). The ideal inverse of a
function is obtained by exchanging the poles and the zeros of the original function.
That said, if S(z) is not minimum-phase, only the delayed inverse function exists.
A rule of thumb for finding ∆ is to set it empirically and check for the algorithm
convergence (e.g. if the plant is minimum-phase with more poles than zeros, ∆ = 1
is probably a good solution; a typical choice is ∆ = M/2, where M is the filter
length). The secondary path inverse model can be estimated by means of the QLMS
algorithm as shown in Fig. 8.2. Function P (z) is the desired transfer function.
FE-QLMS is an error-correction based algorithm, so our target is to minimize a
cost function defined as Jn = E

{
e2[n]

}
, where E {.} denotes the estimation. We

consider the error e[n] as e[n] = d[n]− y[n], where

y[n] =
P−1∑
p=0

s[p]y′[n− p] (8.1)

while

y′[n] =
M−1∑
m=0

w[m]x[n−m]. (8.2)

We substitute (8.2) into (8.1)

y[n] =
P−1∑
p=0

s[p]
M−1∑
m=0

w[m]x[n−m− p]. (8.3)

Defining r[n] =
∑P−1
p=0 s[p]x[n− p], we finally get

y[n] =
M−1∑
m=0

w[m]r[n−m] = wT
nrn. (8.4)

Recalling the adaptive filter weight update equation in QLMS [8,98], we have

wn = wn−1 + µe′[n]x∗n (8.5)

where e′[n] = s−1T
∆n en, given s−1

∆n the delayed inverse of sn.

y[n]

∆ FEQLMS

+

−

y’[n]x[n]

e’[n]

e[n]

P(z)

S(z)W(z)

S∆
−1(z)

x[n−∆]

d[n]

Figure 8.1. FE-QLMS algorithm block diagram.

8.1 Quaternion-valued Adaptive Filtering for 3D Audio Equalization 110

y[n]

QLMS

+

−

x[n] e[n]
W(z)

d[n]

∆

S(z)

Figure 8.2. Secondary path delayed inverse model estimation.

Multichannel Filtered-Error LMS

A more typical approach in multichannel signal processing adopts MIMO systems
and algorithms [43,44]. A generic MIMO system has P inputs and Q outputs and
can be represented by a matrix. A MIMO(4, 4) system can have the form

H[n] =

h11[n] h12[n] h13[n] h14[n]
h21[n] h22[n] h23[n] h24[n]
h31[n] h32[n] h33[n] h34[n]
h41[n] h42[n] h43[n] h44[n]

 (8.6)

and, given an input vector x[n] = [x1[n] . . . x4[n]]T , we can compute the system
output as

y[n] = HT [n]x[n]. (8.7)

With such a notation and system structure, the real-valued MIMO LMS algorithm
has P ×Q weight adaptation equations [43,104]. These equations are of the kind

hpq[n+ 1] = hpq[n] + µeq[n]xp[n]. (8.8)

We are now interested in making a comparison with quaternion maths. Since
quaternion signal processing was introduced, scientists investigated the benefits
and drawbacks of employing this algebra in algorithms. It was demonstrated in
comparison with real systems that quaternion (hypercomplex) algebra considers
phase information and permits to exploit the full second order statistics of signals in
order to improve a filter performance [66,97,100,111]. However, it is still possible
to define a MIMO system which embodies the algebraic properties of quaternion
algebra and keep on working with real-valued arithmetics. We can read in [2] that
every associative algebra can be transformed into an isomorphic K-valued n × n
matrix algebra. In the case of quaternions we can define a 4×4 matrix of component
impulse responses as

W[n] =

wa[n] −wb[n] −wc[n] −wd[n]
wb[n] wa[n] −wd[n] wc[n]
wc[n] wd[n] wa[n] −wb[n]
wd[n] −wc[n] wb[n] wa[n]

 (8.9)

which is equivalent to a quaternion impulse response wQ[n] = wa[n] + wb[n]i +
wc[n]j + wd[n]k. The formalism shown in (8.9) embeds the rules of quaternion

8.1 Quaternion-valued Adaptive Filtering for 3D Audio Equalization 111

product and can be used to define a real-valued MIMO(4, 4) system equivalent to a
quaternion system.

The question now is: is it convenient to work with the equivalent MIMO system
in (8.9) in comparison with quaternion arithmetics? At first glance, we understand
that we have to keep in memory 16 impulse responses instead of the 4 quaternion
components. However, today’s machines probably have enough computational
resources to work it out. We will see in Par. 8.1.2 that, given the same filter
parameters, the FE-QLMS and MIMO FE-LMS do not perform the same way.
The main difference concerns the dynamics of the weight updates. We repropose
here a demonstration presented in [95], re-calculated over the correct version of the
QLMS algorithm (see [8]) on which our FE-QLMS algorithm is based. The weight
adaptation equation in LMS has an innovation term which is defined as

∆wQ[n] = µe[n]x∗[n]
∆hpq[n] = µeq[n]xp[n], p, q = a, b, c, d

(8.10)

in QLMS and in a generic MIMO real-valued LMS, respectively. We can expand the
calculation in (8.10) and obtain

∆wQ
a [n] = µ(ea[n]xa[n] + eb[n]xb[n] + ec[n]xc[n] + ed[n]xd[n])

∆wQ
b [n] = µ(eb[n]xa[n]− ea[n]xb[n]− ec[n]xd[n] + ed[n]xc[n])

∆wQ
c [n] = µ(ec[n]xa[n]− ea[n]xc[n] + eb[n]xd[n]− ed[n]xb[n])

∆wQ
d [n] = µ(ec[n]xb[n]− eb[n]xc[n]− ea[n]xd[n] + ed[n]xa[n])

. (8.11)

We can associate each quaternion component with a MIMO channel, so that ea,b,c,d ≡
e1,2,3,4 and xa,b,c,d ≡ x1,2,3,4 and find the corrispondence below, considering the
generic MIMO matrix in (8.6):

∆wQ
a [n] = ∆h11[n] + ∆h22[n] + ∆h33[n] + ∆h44[n]

∆wQ
b [n] = ∆h21[n]−∆h12[n]−∆h34[n] + ∆h43[n]

∆wQ
c [n] = ∆h31[n]−∆h13[n] + ∆h24[n]−∆h42[n]

∆wQ
d [n] = ∆h32[n]−∆h23[n]−∆h14[n] + ∆h41[n]

. (8.12)

From (8.9), we finally find

∆wQ
a [n] = 4∆wa[n]

∆wQ
b [n] = 4∆wb[n]

∆wQ
c [n] = 4∆wc[n]

∆wQ
d [n] = 4∆wd[n]

. (8.13)

Given the results in (8.13), we see that the innovation term components in QLMS are
4 times greater than each homonymous component in MIMO. A practical consequence
of this will be evident in the simulations proposed in Par. 8.1.2.

8.1 Quaternion-valued Adaptive Filtering for 3D Audio Equalization 112

8.1.2 Simulations

The simulation scenario proposed here is a little bit more complicated than the
scheme of FE-QLMS of Fig. 8.1, since unit-variance white Gaussian noise η[n] is
added to the desired path (Fig. 8.3).

y[n]

∆ FEQLMS

+

−

y’[n]x[n]

e’[n]

e[n]

P(z)

S(z)W(z)

S∆
−1(z)

x[n−∆]

d[n]

η[n]

+

+

Figure 8.3. Adaptive 3D equalization with FE-QLMS

Both the unknown path S(z) and the desired response P (z) have an Ambisonic
format and their impulse responses s[n] and p[n] are quaternion-valued. The input
signal is unit-variance white Gaussian noise. The delayed inverse of S(z) was
estimated as in Fig. 8.2. The delay ∆ in the estimation process is the same delay
applied to x[n] before entering the adaptive algorithm. In this case, the delay has
been chosen as ∆ = M

2 , where M is the adaptive filter length. The primary and
secondary path impulse responses exhibit different reverberation tails and they are
shown in Fig. 8.4.

0 100 200 300 400 500 600 700 800 900 1000

Samples

-0.4

-0.2

0

0.2

0.4

0.6

s
[n

]

Secondary path impulse response S(z)

s
W

[n]

s
X
[n]

s
Y
[n]

s
Z
[n]

0 100 200 300 400 500 600 700 800 900 1000

Samples

-0.2

0

0.2

0.4

0.6

p
[n

]

Primary path impulse response P(z)

p
W

[n]

p
X
[n]

p
Y
[n]

p
Z
[n]

Figure 8.4. Primary and secondary impulse responses (p[n], s[n]).

After the adaptation, the controller weights result at steady state as shown in
Fig. 8.5. The filter performance can be analysed by inspection of the algorithm
learning curve. Given the same step size for FE-QLMS and MIMO FE-LMS
(µQ = µMIMO = 10−4), the Mean Square Error (MSE) curve confirms the theoretic

8.1 Quaternion-valued Adaptive Filtering for 3D Audio Equalization 113

0 100 200 300 400 500 600 700 800 900 1000

Samples

-0.2

0

0.2

0.4

0.6

0.8
w

[n
]

Controller impulse response W(z)

w
W

[n]

w
X
[n]

w
Y
[n]

w
Z
[n]

0 100 200 300 400 500 600 700 800 900 1000

Samples

-0.2

0

0.2

0.4

0.6

w
s
[n

]

Overall impulse response WS(z) = W(z)S(z)

ws
W

[n]

ws
X
[n]

ws
Y
[n]

ws
Z
[n]

Figure 8.5. Controller weights w[n] and overall controller/secondary path response.

calculations in Par. 8.1.1. In other words, the MIMO algorithm requires a larger
number of iterations to get to optimum (see Fig.8.6).

0 0.5 1 1.5 2 2.5 3 3.5 4

Samples 10
5

-35

-30

-25

-20

-15

-10

-5

0

5

1
0
*l

o
g

1
0
(a

b
s
(e

))
 [
d
B

]

Mean Squares Error

FE-QLMS

MIMO FE-LMS

MSE Bound

Figure 8.6. FE-QLMS vs MIMO FE-LMS (µQ = µMIMO = 10−4).

Tests revealed that the FE-QLMS and MIMO FE-LMS converge at the same
rate if µMIMO = 4µQ. However, if we try to speed up the execution, the step size
may result excessively large thus causing an excess MSE at steady state or filter
instability (e.g. µMIMO = 4µQ = 4× 10−4, Fig. 8.7).

8.2 Quaternion-valued inverse system modeling 114

0 0.5 1 1.5 2 2.5 3

Samples 10
5

-35

-30

-25

-20

-15

-10

-5

0

5

1
0

*l
o

g
1

0
(a

b
s
(e

))
 [
d

B
]

Mean Squares Error

FE-QLMS

MIMO FE-LMS

MSE Bound

J
EMSE

Figure 8.7. FE-QLMS vs MIMO FE-LMS (µMIMO = 4µQ = 4× 10−4).

8.2 Quaternion-valued inverse system modeling
In the 3D audio equalizer presented in Par. 8.1, we made use of inverse modeling
to estimate the secondary path impulse response 8.2. In the experiment proposed,
inverse modeling was accomplished by choosing a long enough test signal x[n] and a
loose step size in order to guarantee convergence to optimum for both QLMS and
MIMO LMS. However, in Par. 8.1.2, we only highlighted the slow convergence rate
in MIMO FE-LMS in comparison with FE-QLMS. Which are the consequences of
slow rate in inverse system modeling? If perfect inversion is reached, the convolution
of the unknown plant s[n] with the estimated response w[n] = ŝ[n] should return a
real-valued unit response at the instant of the chosen delay ∆ and zero response at
all other times. When errors in the estimation occur, the plot is not clean, but it
exhibits small side lobes about the main spike. Let us consider the unknown plant in
Fig. 8.8. We are not interested here about the detailed characterists of the unknown
plant. It was generated by an acoustic simulator and it represents a generic room
impulse response recorded by an Ambisonic B-Format array. The length of the
impulse response is M = 1280 samples. We estimate its inverse model by means of
QLMS and MIMO LMS applying the delay ∆ = M

2 . MIMO is defined as in (8.6).
The test signal x[n] is white Gaussian noise and its length is 100000 samples (it was
chosen in a way that it is not long enough for MIMO to reach the optimum solution).
The step size is chosen as µ = 7× 10−4. The results of convolution of the unknown
plant with the estimated inverse in the two cases is reported in Fig. 8.9 and Fig.
8.10.

8.2 Quaternion-valued inverse system modeling 115

0 20 40 60 80

time [ms]

0

0.2

0.4

0.6

0.8

1

h
(t

)

Source: 1, Mic:1 omni W

0 20 40 60 80

time [ms]

0

0.2

0.4

0.6

0.8

1

h
(t

)

Source: 1, Mic:1 fig-8 X-axes

0 20 40 60 80

time [ms]

0

0.2

0.4

0.6

0.8

1

h
(t

)

Source: 1, Mic:1 fig-8 Y-axes

0 20 40 60 80

time [ms]

0

0.2

0.4

0.6

0.8

1

h
(t

)

Source: 1, Mic:1 fig-8 Z-axes

Figure 8.8. Generic Ambisonic unknown impulse response s[n].

0 200 400 600 800 1000 1200

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Quaternion Inverse Modeling

Figure 8.9. Quality check of Quaternion inverse modeling (sT ŝ).

8.2 Quaternion-valued inverse system modeling 116

0 200 400 600 800 1000 1200

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
MIMO Inverse Modeling

Figure 8.10. Quality check of MIMO inverse modeling (sT ŝ).

In both cases, the main spike is exactly in ∆ = M
2 and its amplitude is greater in

the quaternion inverse modeling. However, in order to give a correct interpretation
to the graphics, it is better to check for the total power of the imaginary quaternion
components (second, third and fourth components in MIMO) related to the real
component (first component in MIMO). Given the quaternion convolution c[n] =
sT ŝ = ca[n] + cb[n]i + cc[n]j + cd[n]k ∈ H, we compute

pb =
∑N
n=1 c

2
b [n]∑N

n=1 c
2
a[n]

, pc =
∑N
n=1 c

2
c [n]∑N

n=1 c
2
a[n]

, pd =
∑N
n=1 c

2
d[n]∑N

m=1 c
2
a[n]

(8.14)

where N is the length of c[n]. The calculation for MIMO is similar:

p2 =
∑N
n=1 c

2
2[n]∑N

n=1 c
2
1[n]

, p3 =
∑N
n=1 c

2
3[n]∑N

n=1 c
2
1[n]

, p4 =
∑N
n=1 c

2
4[n]∑N

m=1 c
2
1[n]

(8.15)

The power components are shown in Fig. 8.11.

p
b

p
2

p
c

p
3

p
d

p
4

0

-5

-10

-15

-20

-25

-30

[d
B

]

Quaternions

MIMO

Figure 8.11. sT ŝ: "imaginary" components total power related to real component in
quaternion and equivalent MIMO inverse modeling.

8.2 Quaternion-valued inverse system modeling 117

In MIMO, components c2[n], c3[n], c4[n] have a greater power related to c1[n] in
comparison with cb[n], cc[n], cd[n] related to ca[n]. In other words, the side lobes
produced by the "imaginary" components are more disturbing in MIMO than in
quaternion processing. Further investigation and study are required in order to
provide a robust interpretation of the results.

118

Chapter 9

Conclusion

The reasons why hypercomplex numbers attract the attention of the scientific
community reside in the mathematical properties of these algebras, capable of
bringing to light aspects of physics and engineering which could not be highlighted
by real and complex numbers. In fact, within the hypercomplex number subfields, it
is possible to consider different entities, possibly related to one another, as a whole
and take advantage of a single filter to process multidimensional data, combining
all hypercomplex dimensions and exploiting the mutual information between all
components. The goals in this research project have been the investigation of
hypercomplex (quaternion) adaptive filters and their integration into 3-dimensional
context, e.g. acoustics and 3D audio. Moreover, one of our main targets has been to
raise the awareness for the foundation of the concepts of discrete-time Hypercircuit
and discrete-time hypercircuit theory.

9.1 3D Audio and quaternion signal processing
Hypercomplex filtering offers advanced geometric capabilities for multidimensional
data processing. That said, 3D audio is not merely multisensor data, but it is
possible to consider a 3D sound space with a mathematical structure over the field
of quaternions. We have explored some recent applications of quaternion algebra to
3D audio problems. In particular, we have seen how the Ambisonic sound field can
be expressed in a quaternionic formalism, thus obtaining a compact form, without
the loss of information. We have pinpointed the fundamental problems of 3D audio
adaptive signal processing: the choice of a proper algebraic representation, the
computational effort, the possibility of exploiting the statistical properties of the
audio signals. We have presented a new class of algorithms working in the frequency
domain with the aim of reducing the computational cost. In addition, thanks to the
definition of widely linear systems, it is possible to fully exploit the second order
stastistics of the quaternion signal and obtain improved performance in terms of filter
convergence with improper input signals. In the context of 3D audio, we have seen
that the Ambisonic B-Format signals are in fact improper and we helped validate the
theory of widely linear filters with simulations. In order to test whether quaternions
are the right algebraic choice with Ambisonics, we compared the performance of
quaternion adaptive filters with tessarine adaptive filters of the same kind.

9.2 Quaternion Adaptive Filters in the
Frequency Domain 119

9.2 Quaternion Adaptive Filters in the
Frequency Domain

In this work, we have introduced the OS-QFDAF algorithm, along with the Uncon-
strained QFDAF and Sliding Window QFFT-QLMS versions, to process quaternion-
valued signals in the frequency domain. After deriving the OS-QFDAF algorithm,
we analyzed its convergence properties and computational cost. We obtained the
stability range of the step size and found a mathematical relation between the Excess
Mean Square Error (EMSE) and the algorithm parameters. The OS-QFDAF was
achieved by transforming the Block QLMS algorithm into the frequency domain and
following the rules of the overlap-save method to obtain a fast convolution. One of
the difficulties in working with quaternion signals in the frequency domain is that the
quaternion convolution theorem is not straightforward as the conventional theorem
in real and complex algebras. In fact, spectrum product does not correspond to
time-domain convolution, generally. In Chapter 2, we have reported the quaternion
convolution theorem in all its forms. Different formulations of the theorem depend
on the adoption of the left or the right Fourier transform. We have seen that, because
of the non-commutative quaternion product, there exist left, right and sandwich
transforms in the quaternion domain. However, we found by tests that the rule of
thumb is to keep the transform rotation direction unchanged during the execution
of an algorithm for all the signals to be transformed.

9.3 Widely Linear algorithms
Quaternion-valued adaptive filters are known for their property of exploiting the
cross-correlation among all components of a multidimensional (quaternion-valued)
signal. However, in order to improve the filter performance, it is necessary to design
filters capable of handling signals of any nature. We saw that a complete insight of
quaternion second order statistics is needed in order to fully exploit the information
coupling within all quaternion channels. Widely linear quaternion algorithms were
introduced and showed improved performance with the processing of improper signals.
Unfortunately, the computational cost is an issue due to the adaptation of four types
of filter weights. We proposed and tested a version of the WL-QLMS algorithm
operating weight adaptation periodically (WL-BQLMS). From WL-BQLMS we
derived the Widely Linear version of the OS-QFDAF. Periodic adaptation allows
the computational cost to be reduced dramatically. Moreover, periodic adaptation
has an intrisic smoothing capability which contributes to the improvement of a filter
performance.

9.4 Other algebras
The question today about hypercomplex filtering is whether we really need such
hypercomplex models to represent our systems. Besides that, what determines the
rejection of one algebra in favor of another? In this work, we proposed a simple
comparison between two 4-dimensional hypercomplex algebras: quaternions and
tessarines. We learned from simulations that some systems can be considered either

9.5 3D rotations:
Quaternion algebra vs 3D vector algebra 120

quaternion-valued or tessarine-valued. In other cases, the choice of the algebraic
representation determines the performance of the whole system. For instance, we
introduced the Ambisonic B-Format signals into a 4-dimensional system and we
saw that a quaternion adaptive algorithm converges much faster than its tessarine
counterpart. Moreover, we were able to exploit widely linear modifications of QLMS
and TLMS (tessarine LMS) and take the most out of them with improper signals
like Ambisonic 3D audio.

We have investigated the choice of a microphone array layout in combination with
the mathematical description of the surrounding environment on the performance of
adaptive filters. We made use of a coincident B-Format array and a uniform linear
array of microphones, both of them made up of four elements. We have transformed
the sound space into a 4-dimensional format and we have applied the resulting
multidimensional signal to 4-dimensional adaptive filters (QLMS and TLMS). We
have seen that, in the special case the space is decomposed into spherical harmonics
and the Ambisonic B-Format technique is used to record the sound field, the choice
of quaternion algebra in signal processing works like the right key in the lock. In
this instance, the QLMS algorithm converges faster than the TLMS algorithm. The
outcome of this test suggests that, in this special context, quaternion algebra is a
better choice. In the case signals are simply correlated, but the sound space does not
undergo any special transformation, there may be still an advantage of quaternion
signal processing over tessarine algebra, although not so evident. In fact, we have
seen how changing the distance between the microphones overturned the result.
Further investigation is absolutely required and the results need to be formalized.

9.4.1 MIMO systems

Typically, multichannel data can be processed by means of MIMO (Multiple-Input,
Multiple-Output) systems. It is possible to define a MIMO(4, 4) system wich is
isomorphic to quaternions and keep on operating in real-valued algebra. We pro-
posed the implementation of a 3D audio equalizer. In contrast to conventional
multichannel/multiple-point signal processing, we proposed a multichannel/single-
point audio layout, exploiting the 3D recording technique called Ambisonics. We
encapsulated Ambisonic signals into the quaternion format as the input of a tradi-
tional algorithm for adaptive equalization (FE-QLMS). Because of the differences in
the filter dynamics in weight adaptation, the quaternion filter converges faster than
the MIMO option, even though the two systems are equivalent to each other.

9.5 3D rotations:
Quaternion algebra vs 3D vector algebra

In Chapter 4 we compared the representation of 3D rotations with matrices and
quaternion operators. We saw that a matrix A ∈ R3×3 maps a point x ∈ R3

onto a point y ∈ R3. On the other hand, a quaternion qA ∈ H transforms a pure
quaternion qx ∈ H into another pure quaternion qy ∈ H. The two transformations

9.6 What’s next? 121

are summarized below:

y = Ax ∈ R3 MATRICES
qy = qAqxq

∗
A ∈ H QUATERNIONS

(9.1)

We recall some remarks from [47]:

1. Matrix mapping requires 9 coefficients to relate two vectors in R3 (3×3 matrix).
However, only 4 parameters are necessary to define a rotation (2 for the axis of
rotation, 1 for the angle of rotation, 1 for the scaling factor). The 4 elements
of a quaternion can express these parameters without the addition of any
redundant information.

2. In matrix rotations, if any two axes are aligned, a degree of freedom is lost.
We called this phenomenon Gimbal Lock. Nothing like this happens with
quaternions.

3. Numerical conditioning is better in quaternion algebra with respect to matrix
rotations. The only requirement for qA is to be a pure quaternion, whereas A
must comply with ATA = I and det(A) = 1.

9.6 What’s next?

9.6.1 Energetic issues

During the development of our algorithms presented in [67], we focused on the study
of the convengence properties for each algorithm. Since convergence is related to
energy, we soon encountered a problem. Quaternion algebra generally produces
left and right eigenvalues because of the non-commutativity of the quaternion
product. The eigenvalue disparity in a filter, also known as eigenspread, determines
the convergence rate of the algorithm, so the physical meaning of the algorithm
eigenvalues, responsible for the algorithm natural modes, should not be ignored since
it is related to energy. This fact of quaternion algebra was not completely explored
and the literature does not provide full information about the quaternion eigenvalue
definition. Further investigation would supply the missing information and possibly
reveal aspects of energetic problems which have been ingnored up to now.

9.6.2 Hypercircuit theory

One of the design and analysis approaches in digital signal processing considers filters
as circuits. It is possible to define constitutive relations for component elements and
operate computations within the circuit topology in the digital domain [64]. Even
though discrete-time hypercircuits have been widely studied in signal processing
(image processing, adaptive filters, neural networks, etc.), a definition of discrete-
time hypercircuit was never given explicitly. It is important to confirm the classic
theorems of the circuit theory or find an extended definition of them. The aim for the
future is to provide a reliable definition of circuit, since circuit theory is a powerful
design tool in digital signal processing. Our research group started this mission
in 2016 [72], proposing a version of quaternion Z-Transform (to be established,

9.6 What’s next? 122

yet) and recalling a resolute definition of quaternion convolution and correlation in
both time and frequency domain. We started testing a filter stability examining
the position of quaternion-valued poles. It is worth continuing this study, since it
would provide an aid for digital filter design. Unlike adaptive systems, fixed filters
require higher mastery over transfer function implementation. It is necessary to
provide the designer with a stable circuit theory, including mathematical tools such
as transforms, convolutions and correlations, system stability analysis and so on.

9.6.3 Neural networks and nonlinear processing

At present time, the proponent has very little experience with neural networks and
nonlinear processing. The idea for this project is to start exploring the branch of
intelligent signal processing and embedding our hypercomplex algorithms in the
conventional learning schemes for neural networks. Some studies concerning the use
of quaternion neural networks can be found in literature. Amongst many examples,
they include the definition and application to engineering problems of a quaternionic
Multilayer Perceptron (QMLP) model [5,52,63] and the development of quaternionic
Hopfield-type networks [45, 113]. Since we need to build the basic instruments to
start working, the idea for this project is to implement some elementary scheme in a
hypercomplex format and continue with more advanced architectures. The main
reason for undertaking this experimentation is that the widespread availability of
intelligent signal processing is growing in size very quickly. It would be a pity not to
be up-to-date.

123

Bibliography

[1] Number, geometry and nature. Hypercomplex Numbers in Geometry and
Physics, 1 (2004), 3 .

[2] Alfsmann, D., Göckler, H., Sangwine, S. J., and Ell, T. A. Hyper-
complex algebras in digital signal processing: benefits and drawbacks. In Proc.
of the 15th European Signal Processing Conference (EUSIPCO), pp. 1322 –
1326 (2007).

[3] Amblard, P. O. and Bihan, N. L. On properness of quaternion valued
random variables. In Proc. of Int. Conf. on Mathematics (IMA) in Signal
Process. (2004).

[4] Anttila, L., Valkama, M., and Renfors, M. Frequency-selective i/q
mismatch calibration of wideband direct-conversion transmitters. IEEE Trans.
Circuits Syst. II, Exp. Briefs, 55 (2008), 359 .

[5] Arena, P., Fortuna, L., Muscato, G., and Xibilia, M. Multilayer
perceptrons to approximate quaternion valued functions. Neural Netw., 10
(1997), 335.

[6] Baez, J. C. The octonions. Bull. Amer. Math. Soc., 39 (2001), 145.

[7] Baker, A. Right eigenvalues for quaternionic matrices: a topological approach.
Linear Algebra and its Applications, (1999), 303.

[8] Barthélemy, Q., Larue, A., and Mars, J. I. About qlms derivations.
IEEE Trans. Signal Process. Letters, 21 (2014), 240.

[9] Berner, P. Technical Concepts - Orientation, Rotation, Velocity and Ac-
celeration, and the SRM (2008). Available from: http://www.sedris.org/
wg8home/Documents/WG80485.pdf.

[10] Boré, G. and Peus, S. Microphones for Studio and Home-Recording Appli-
cations - Operation Principles and Type Examples. Georg Neumann GmbH
(1999).

[11] Brenner, J. L. Matrices of Quaternions. Pacific J. Math., 1 (1951), 329.

[12] Cao, J., Khong, A. W. H., and Gannot, S. On the performance of widely
linear quaternion based MVDR beamformer for an acoustic vector sensor. In
Proc. 14th Int. Wksp on Acoustic Signal Enhancement (IWAENC), p. 303 –
307 (2014).

http://www.sedris.org/wg8home/Documents/WG80485.pdf
http://www.sedris.org/wg8home/Documents/WG80485.pdf

Bibliography 124

[13] Cayley, A. and Forsyth, A. R. The collected mathematical papers of
Arthur Cayley. Cambridge University Press (1889).

[14] Chen, J. and Benesty, J. Binaural noise reduction in the time domain
with a stereo setup. IEEE Trans. Signal Process., 19 (2011), 2260 .

[15] Chrisitianto, V. and Smarandachey, F. A derivation of Maxwell equa-
tions in quaternion space. Progress in Physics, 2 (2010), 23 .

[16] Chua, L., C.A.Desoer, and E.S.Kuh. Linear and Nonlinear Circuits.
Mcgraw-Hill College (1987).

[17] Dam, E. B. and Koch, M. M. Quaternions, interpolation and anima-
tion. "http://web.mit.edu/2.998/www/QuaternionReport1.pdf" (1998).
[Online].

[18] Daniel, J. Représentation de champs acoustiques, application à la trans-
mission et à la reproduction de scènes sonores complexes dans un contexte
multimédia. Ph.D. thesis, Université de Paris 6 (2001).

[19] Daniel, J., Nicol, R., and Moreau, S. Further investigations of high
order ambisonics and wavefield synthesis for holophonic sound imaging. In
AES 114th Conv. (2003).

[20] D.Eberly. Quaternion algebra and calculus. http://www.geometrictools.
com/Documentation/Quaternions.pdf (2010). [Online].

[21] Ell, T. A. Hypercomplex Spectral Transformations. Ph.D. thesis, University
of Minnesota (1992).

[22] Ell, T. A., Bihan, N. L., and Sangwine, S. J. Quaternion Fourier
Transforms for Signal and Image Processing. Wiley (2014).

[23] Ell, T. A. and Sangwine, S. J. Decomposition of 2D Hypercomplex
Fourier Transforms into Pairs of Complex Fourier Transforms. Proc. 10th
Eur. Signal Process. Conf. (EUSIPCO), (2000).

[24] Elliott, S. and Nelson, P. Active noise control. IEEE Signal Processing
Magazine, 10 (1993), 12 .

[25] Elliott, S. J. and Nelson, P. A. Multiple-point equalization in a room
using adaptive digital filters. J. Audio Eng. Soc., 37 (1989), 899 .

[26] Eneroth, P., Benesty, J., and Gay, S. State of the art of stereophonic
acoustic echo cancellation. In in Proc. RVK99 (1999).

[27] Farhang-Boroujeny, B. and Chan, K. S. Analysis of the Frequency-
Domain Block LMS Algorithm. IEEE Trans. Signal Proc., 48 (2000), 2332
.

[28] Fellgett, P. Ambisonics. part one: General system description. Studio
Sound, 17 (1975), 20.

http://web.mit.edu/2.998/www/QuaternionReport1.pdf
http://www.geometrictools.com/Documentation/Quaternions.pdf
http://www.geometrictools.com/Documentation/Quaternions.pdf

Bibliography 125

[29] Gerzon, M. A. Ambisonics. Part two: Studio techniques. Studio Sound, 17
(1975), 24.

[30] Gerzon, M. A. Ambisonics in multichannel broadcasting and video. J. Audio
Eng. Soc., 33 (1985), 859–871.

[31] Gou, X., Liu, Z., and Xu, Y. Biquaternion cumulant-music for doa
estimation of noncircular signals. Signal Process., 93 (2013), 874 .

[32] Gray, B. Homotopy Theory – An introduction to algebraic topology. Academic
Press (1975).

[33] Greiter, M. and Schuricht, D. Imaginary in all directions: an elegant
formulation of special relativity and classical electrodynamics. European
Journal of Physics, 24 (2003), 397 .

[34] Hamilton, W. R. Elements of Quaternions. Longmans, Green & Co. (1866).

[35] Hanson, A. Quaternions applied to physics in non-euclidean space. Elsevier
(2006).

[36] Hanson, A. J. Visualizing Quaternions. Elsevier (2006).

[37] Hitzer, E. Introduction to Clifford’s geometric algebra. SICE J. Control,
Measurement, and System Integration, 4 (2011), 1 .

[38] Hitzer, E. and Sangwine, S. J. Quaternion and Clifford Fourier Transforms
and Wavelets. Birkenhäuser, Springer (2010).

[39] Holm, D. Geometric mechanics, part ii: Rotating, translating and rolling
(2011). Available from: http://wwwf.imperial.ac.uk/~dholm/classnotes/
GeomMech2-2nd.pdf.

[40] Hu, J., Zhang, H., Feng, J., Huang, H., Ma, H., and G.Wang. A
scale adaptive kalman filter method based on quaternion correlation in object
tracking. In 3rd Int. Conf. on Networking and Distributed Computing, pp. 170
– 174 (ICNDC 2012).

[41] Hu, Q. and Zou, L. Several theorems for the trace of self-conjugate quaternion
matrix. Modern Applied Science, 2 (2008), 21.

[42] Huang, L. and So, W. On left eigenvalues of a quaternionic matrix. Linear
Algebra Appl., 323 (2001), 105.

[43] Huang, Y. and Benesty, J. Audio Signal Processing for Next-Generation
Multimedia Communication Systems. Kluwer Academic Publishers (2004).

[44] Huang, Y., Benesty, J., and Jingdong, C. Acoustic MIMO Signal
Processing. Springer (2006).

[45] Isokawa, T., Nishimura, H., and Matsui, N. Quaternionic multilayer
perceptron with local analyticity. Information, 3 (2012), 756.

http://wwwf.imperial.ac.uk/~dholm/classnotes/GeomMech2-2nd.pdf
http://wwwf.imperial.ac.uk/~dholm/classnotes/GeomMech2-2nd.pdf

Bibliography 126

[46] Jahanchahi, C., Took, C. C., and Mandic, D. P. A class of quaternion-
valued affine projection algorithms. Signal Process., (2013), 1712 .

[47] Jahanehahi, C. and Mandic, D. P. A class of quaternion kalman filters.
IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 533.

[48] Katunin, A. Three-dimensional octonion wavelet transform. J. Applied
Mathematics and Computational Mechanics, 13 (2014), 33 .

[49] Khalil, M. I. Applying Quaternion Fourier Transforms for Enhancing Color
Images. Int. J. Image, Graphics and Signal Process., 4 (2012), 9 .

[50] Kraft, E. A quaternion-based unscented Kalman filter for orientation
tracking. vol. 1, pp. 47 – 54 (2003).

[51] Kuo, S. M. and Morgan, D. R. Active noise control: A tutorial review.
Proc. of the IEEE, 87 (1999), 943 .

[52] Kusamichi, H., Isokawa, T., Matsui, N., Y. Ogawa, Y., and Maeda,
K. A new scheme for color night vision by quaternion neural network. In Proc.
2nd Int. Conf. Autonomous Robots and Agents, pp. 101–106 (2004).

[53] Lee, H. Eigenvalues and canonical forms of matrices with quatemion coeffi-
cients. Proc. of the Royal Irish Academy, Section A, 52 (1949), 137.

[54] Li, X. and Adalı, T. Complex-valued linear and widely linear filtering using
mse and gaussian entropy. IEEE Trans. on Sig. Proc., 60 (2012), 5672 .

[55] Lie, S. Über complexe, insbesondere linien- und kugel-complexe, mit anwen-
dung auf die theorie partieller differentialgleichungen. Math. Ann., 5 (1872),
145.

[56] Mandic, D. P. and Goh, V. S. L. Complex Valued Nonlinear Adaptive
Filters: Noncircularity, Widely Linear and Neural Models. Wiley (2009).

[57] McWhorter, T. and Schreier, P. Widely-linear beamforming. In Confer-
ence Record of the Thirty-Seventh Asilomar Conference on Signals, Systems
and Computers, vol. 1 (2004).

[58] Molineros, J., Behringer, R., and Tam, C. Vision-based augmented
reality for pilot guidance in airport runways and taxiways. In Third IEEE
and ACM International Symposium on Mixed and Augmented Reality (ISMAR
2004) (2004).

[59] Navarro-Moreno, J., Fernández-Alcalá, R. M., Took, C., and
Mandic, D. P. Prediction of wide-sense stationary quaternion random
signals. Signal Process., 93 (2013), 2573 .

[60] Neeser, F. D. and Massey, J. L. Proper complex random processes with
applications to information theory. IEEE Trans. Inf. Theory, 39 (1993), 1293
.

Bibliography 127

[61] Nicol, R. and Emerit, M. 3D sound reproduction over an extensive listening
area: a hybrid method derived from holophony and ambisonics. In Proc. AES
16th Int. Conf., pp. 436 – 453 (1999).

[62] Nitta, T. A theoretical foundation for the widely linear processing of
quaternion-valued data. Applied Mathematics, (2013), 1616 .

[63] Nitta, T. An extension of the back-propagation algorithm to quaternion. In
3rd Int. Conf. Neural Information Process., p. 247 – 250 (ICONIP 1996).

[64] Oppenheim, A. V. and Schafer, R. W. Discrete-Time Signal Processing.
Prentice Hall (1989).

[65] Ortolani, F. Introduction to Ambisonics - A tutorial for be-
ginners in 3D audio. "http://www.ironbridge-elt.com/downloads/
FrancescaOrtolani-IntroductionToAmbisonics.pdf" (2014). [Online].

[66] Ortolani, F., Comminiello, D., Scarpiniti, M., and Uncini, A. Ad-
vances in hypercomplex adaptive filtering for 3D audio processing. In 2017
IEEE First Ukraine Conference on Electrical and Computer Engineering (UKR-
CON) (2017).

[67] Ortolani, F., Comminiello, D., Scarpiniti, M., and Uncini, A. Fre-
quency domain quaternion adaptive filters: Algorithms and convergence per-
formance. Signal Processing, 136 (2017), 69 .

[68] Ortolani, F., Comminiello, D., and Uncini, A. The widely linear block
quaternion least mean square algorithm for fast computation in 3d audio
systems. In Proc. 26th International Workshop on Machine Learning for
Signal Processing (MLSP, 2016).

[69] Ortolani, F., Scarpiniti, M., Comminiello, D., and Uncini, A. On
4-dimensional hypercomplex algebras in adaptive signal processing. In 27th
Italian Workshop on Neural Networks (WIRN) (2017).

[70] Ortolani, F., Scarpiniti, M., Comminiello, D., and Uncini, A. On
the influence of microphone array geometry on the behavior of hypercomplex
adaptive filters. In IEEE Microwaves, Radar and Remote Sensing Symposium
MRRS-2017 (2017).

[71] Ortolani, F. and Uncini, A. A new approach to acoustic beamforming
from virtual microphones based on Ambisonics for adaptive noise cancelling. In
IEEE 36th Int. Conf. on Electronics and Nanotechnology (ELNANO) (2016).

[72] Ortolani, F. and Uncini, A. Quaternion digital signal processing: A
hypercomplex approach to information processing. In 2016 Int. Siberian Conf.
on Control and Communications (SIBCON) (2016).

[73] Ortolani, F. and Uncini, A. Widely linear quaternion adaptive filtering in
the frequency domain. In 2016 IEEE International Conference on Mathematical
Methods in Electromagnetic Theory (MMET) (2016).

"http://www.ironbridge-elt.com/downloads/FrancescaOrtolani-IntroductionToAmbisonics.pdf"
"http://www.ironbridge-elt.com/downloads/FrancescaOrtolani-IntroductionToAmbisonics.pdf"

Bibliography 128

[74] Pei, S. C., Ding, J. J., and Chang, J. H. Efficient Implementation of
Quaternion Fourier Transform, Convolution, and Correlation by 2-D Complex
FFT. IEEE Trans. Signal Process., 11 (2001), 2783 .

[75] Peirce, B. Linear associative algebra. American J. of Mathematics, 1 (1881),
221.

[76] Picinbono, B. On circularity. IEEE Trans. on Sig. Proc., 42 (1994), 3473 .

[77] Picinbono, B. and Chevalier, P. Widely linear estimation with complex
data. IEEE Trans. on Signal Processing, 43 (1995), 2030 .

[78] Picinbono, B. and Chevalier, P. Widely linear estimation with complex
data. IEEE Trans. on Sig. Proc., 43 (1995), 2030 .

[79] Rediess, H. A. An augmented reality pilot display for airport operations
under low and zero visibility conditions. (1997).

[80] Roth, B. Advances in Robot Kinematics and Computational Geometry.
Springer (1994).

[81] Rumsey, F. Spatial Audio. Focal Press (2001).

[82] Said, S., Bihan, N. L., and Sangwine, S. J. Fast complexified quaternion
Fourier transform. IEEE Trans. Signal Process., 56 (2008), 1522 .

[83] Sangwine, S. and T-Ell. Colour image filters based on hypercomplex
convolution. IEEE Proc. Vision, Image and Signal Process., 147 (2000), 89 .

[84] Schreier, P. J. and Scharf, L. L. Statistical Signal Processing of Complex-
Valued Data: The Theory of Improper and Noncircular Signals. Cambridge
University Press (2010).

[85] Shaffer, S. and Williams, C. S. The filtered error lms algorithm. In
Proc. of the 8th IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), pp. 41 – 44 (1983).

[86] Shoemake, K. Animating rotation with quaternion calculus. ACM SIG-
GRAPH Course Notes.

[87] Siu, L. S. A Study of Polynomials, Determinants, Eigenvalues and Numerical
Ranges over Real Quaternions. Ph.D. thesis, University of Hong Kong (1997).

[88] Smith, S. The four-dimensional Sklyanin algebras. K-Theory, 8 (1994), 65.

[89] Sondhi, M. M. An adaptive echo canceller. The Bell System Technical
Journal, 66 (1967), 497 .

[90] Starner, T., Mann, S., Rhodes, B., Levine, J., Healey, J., Kirsch,
D., Picard, R., and Pentland, A. Augmented reality through wearable
computing. Presence: Teleoperators and Virtual Environments archive, 6
(1997), 386 .

Bibliography 129

[91] Sujbert, L. A filtered reference – filtered error lms algorithm. In Proc. of the
IEEE Int. Workshop on Intelligent Signal Processing, pp. 204 – 209 (1999).

[92] Sundareswaran, S., Vassiliou, M., McGee, J., Behringer, R., and
Tam, C. Two wearable testbeds for augmented reality: itwarns and wimmis.
In 2012 16th International Symposium on Wearable Computers (2000).

[93] Sweetser, D. B. Doing physics with quaternions (2005). Available from:
http://www.theworld.com/~sweetser/quaternions/ps/book.pdf.

[94] Taber, H. On hypercomplex number systems. Trans. of the American
Mathematical Soc., 5 (1904), 509.

[95] Took, C., Mandic, D., and Benesty, J. Study of the quaternion LMS
and four-channel LMS algorithms. In IEEE Intl. Conf. on Acoustics, Speech
and Signal Processing (ICASSP) (2009).

[96] Took, C. C., Aihara, K., and Mandic, D. P. Quaternion-valued short
term forecasting of wind profile. In Int. Joint Conf. on Neural Networks, pp.
1–6 (IJCNN 2010).

[97] Took, C. C. and Mandic, D. P. Fusion of heterogeneous data sources: A
quaternionic approach. In IEEE Workshop on Machine Learning for Signal
Process. (MLSP), pp. 456–461 (2008).

[98] Took, C. C. and Mandic, D. P. The quaternion LMS algorithm for
adaptive filtering of hypercomplex processes. IEEE Trans. Signal Process., 57
(2009), 1316.

[99] Took, C. C. and Mandic, D. P. A quaternion widely linear adaptive filter.
IEEE Trans. Signal Process., 58 (2010), 4427 .

[100] Took, C. C. and Mandic, D. P. Augmented second-order statistics of
quaternion random signals. Signal Process., (2011), 214 .

[101] Took, C. C., Strbac, G., Aihara, K., and Mandic, D. P. Quaternion-
valued short-term joint forecasting of three-dimensional wind and atmospheric
parameters. Renewable Energy, (2011), 1754.

[102] Ujang, B. C., Jahanchahi, C., Took, C. C., and Mandic, D. P.
Adaptive convex combination approach for the identification of improper
quaternion processes. IEEE Trans. Neural Netw., 25 (2014), 172 .

[103] Ujang, B. C., Took, C. C., and Mandic, D. Quaternion-valued nonlinear
adaptive filtering. IEEE Trans. Neural Netw., 22 (2011), 1193 .

[104] Uncini, A. Fundamentals of Adaptive Signal Processing. Springer (2015).

[105] Vakhania, N. N. Random vectors with values in quaternion Hilbert spaces.
Theory of Probability and its Applications, 43 (1998), 18 .

[106] Wang, G., Liua, Y., and Zhao, T. A quaternion-based switching filter for
colour image denoising. Signal Process., 102 (2014), 216.

http://www.theworld.com/~sweetser/quaternions/ps/book.pdf

Bibliography 130

[107] Waser, A. Quaternions in electrodynamics (2001). Avail-
able from: http://hotstreamer.deanostoybox.com/temp/
QuaternionsInElectrodynamicsEN02.pdf.

[108] Widrow, B., Glover, J., McCool, J., Kaunitz, J., Williams, C.,
Hearn, R., Zeidler, J., Dong, J. E., and Goodlin, R. Adaptive noise
cancelling: Principles and applications. Proceedings of the IEEE, 63 (1975),
1692 .

[109] Wiegmann, N. A. The Structure of Unitary and Orthogonal Quaternion
Matrices. Illinois J. Math., 2 (1958), 402.

[110] Witten, B. and Shragge, J. Quaternion-based signal processing. In
SEG/Annual Meeting (2006).

[111] Witten, B. and Shragge, J. Quaternion-based Signal Processing. In Proc.
Soc. of Exploration Geophysicists Annual Meeting (SEG) (2006).

[112] Wood, R. Quaternionic eigenvalues. Bulletin of the London Mathematical
Society, 15 (1985), 137.

[113] Yoshida, M., Kuroe, Y., and Mori, T. Models of hopfield-type quaternion
neural networks and their energy function. Int. J. Neural Syst., 15 (2005),
129.

[114] Zhang, F. Quaternions and matrices of quaternions. Linear Algebra Appl.,
251 (1997), 21.

[115] Zhang, X., Liu, W., Xu, Y., and Liu, Z. Quaternion-valued robust
adaptive beamformer for electromagnetic vector-sensor arrays with worst-case
constraint. Signal Process., 104 (2014), 274 .

http://hotstreamer.deanostoybox.com/temp/QuaternionsInElectrodynamicsEN02.pdf
http://hotstreamer.deanostoybox.com/temp/QuaternionsInElectrodynamicsEN02.pdf

	Introduction to Hypercomplex Adaptive Filtering
	Hypercomplex Algebras
	Introduction to Hypercomplex Algebras
	Normed division algebras: complex numbers, quaternions, octonions
	Complex numbers
	Quaternions
	Octonions

	Quaternion Algebra
	Quaternion matrices
	More about quaternion vector-matrix product
	Quaternion representations
	Quaternion Eigenvalues
	Eigenvalues of n n matrices – Distribution of left and right eigenvalues
	Determinant of a quaternion matrix
	Inverse of a quaternion matrix
	Norm of a quaternion matrix
	Quaternion unitary matrices

	Hypercomplex Signal Processing
	Quaternion-valued transforms
	Quaternion-valued Discrete Fourier Transform
	QDFT is a unitary transformation

	Quaternion convolution
	Quaternion convolution theorem
	Relations between LEFT and RIGHT transforms
	Time reversal in H

	Quaternion Adaptive Filters
	Time Domain Quaternion Adaptive Filters
	Differences with CLMS
	Convergence properties of QLMS

	Frequency Domain Quaternion Adaptive Filters
	Introduction to the OS-QFDAF algorithm
	OS-QFDAF algorithm overview
	Power Normalization
	Computational cost of OS-QFDAF
	Convergence Properties

	Simulations
	OS-QFDAF simulations
	Evaluation of the Excess Mean-Square Error
	Performance evaluation in changing scenario

	Appendices
	Algorithms
	Block QLMS
	Sliding Window Algorithms - Sliding QFFT-QLMS

	Quaternion Sound Space
	Introduction to Ambisonics
	Ambisonic format overview
	B-Format
	Extension of B-Format to quaternions

	Appendices
	Virtual Miking and Rotations
	Virtual Miking and Rotations
	Interpolation with Quaternions - Linear Quaternion Interpolation (LERP)
	Computational Cost

	Gimbal Lock System Degeneration

	Microphone characteristics
	Polar pattern
	Pressure microphones and pressure gradient microphones
	Pressure Microphones
	Pressure Gradient Microphones

	Microphone behaviour in the presence of plane waves
	Microphone behaviour in the presence of spherical waves

	Quaternion augmented statistics
	Introduction to quaternion augmented statistics and quaternion properness
	Quaternion augmented statistics
	On the properness of quaternion-valued signals

	Motivation and theoretical foundation for Quaternion Widely Linear Processing
	Widely Linear QLMS
	Widely Linear Block QLMS
	Overview of the WL-BQLMS algorithm
	Computational cost

	3D improper sound fields
	Direct system modeling with Ambisonic signals
	Direct system modeling performance

	Widely linear algorithms in the frequency domain
	Widely Linear Overlap-Save Quaternion Frequency Domain Filter - Algorithm Overview
	Computational cost analysis
	Simulations

	A comparison study with other hypercomplex algebras
	Differences between quaternion and tessarine algebras
	A comparison of 4D adaptive filters
	Widely linear modification

	Microphone array geometries and mathematical representation of space
	Ambisonic coincident array
	Uniform Linear Array

	Simulations
	Generic circular input signals
	Ambisonic improper audio input signals
	Microphone array geometry

	Tessarine algorithms in the frequency domain
	Tessarine Fourier Transform
	Overlap-Save Tessarine Frequency Domain Adaptive Filter
	Simulations

	Hypercircuits
	The problem of discrete-time hypercircuits
	Fundamentals of Circuit Theory
	Digital circuits

	Quaternion Z-Transform
	Examples: Design of a quaternion digital filter

	Hypercomplex Adaptive Filtering Applications
	Quaternion-valued Adaptive Filtering for 3D Audio Equalization
	3D equalization
	Simulations

	Quaternion-valued inverse system modeling

	Conclusion
	3D Audio and quaternion signal processing
	Quaternion Adaptive Filters in the Frequency Domain
	Widely Linear algorithms
	Other algebras
	MIMO systems

	3D rotations: Quaternion algebra vs 3D vector algebra
	What's next?
	Energetic issues
	Hypercircuit theory
	Neural networks and nonlinear processing

