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Abstract
Distributed learning is the problem of inferring a function when data to be
analyzed is distributed across a network of agents. Separate domains of
application may largely impose different constraints on the solution, including
low computational power at every location, limited underlying connectivity
(e.g. no broadcasting capability) or transferability constraints related to the
enormous bandwidth requirement. Thus, it is no longer possible to send data
in a central node where traditionally learning algorithms are used, while new
techniques able to model and exploit locally the information on big data are
necessary.
Motivated by these observations, this thesis proposes new techniques able to
efficiently overcome a fully centralized implementation, without requiring the
presence of a coordinating node, while using only in-network communication.
The focus is given on both supervised and unsupervised distributed learning
procedures that, so far, have been addressed only in very specific settings only.
For instance, some of them are not actually distributed because they just split
the calculation between different subsystems, others call for the presence of a
fusion center collecting at each iteration data from all the agents; some others
are implementable only on specific network topologies such as fully connected
graphs. In the first part of this thesis, these limits have been overcome by
using spectral clustering, ensemble clustering or density-based approaches
for realizing a pure distributed architecture where there is no hierarchy and
all agents are peer. Each agent learns only from its own dataset, while the
information about the others is unknown and obtained in a decentralized
way through a process of communication and collaboration among the agents.
Experimental results, and theoretical properties of convergence, prove the
effectiveness of these proposals.
In the successive part of the thesis, the proposed contributions have been
tested in several real-word distributed applications. Telemedicine and e-health
applications are found to be one of the most prolific area to this end. Moreover,
also the mapping of learning algorithms onto low-power hardware resources is
found as an interesting area of applications in the distributed wireless networks
context. Finally, a study on the generation and control of renewable energy
sources is also analyzed.
Overall, the algorithms presented throughout the thesis cover a wide range of
possible practical applications, and trace the path to many future extensions,
either as scientific research or technological transfer results.
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Chapter 1

Introduction

In recent years, new technologies have reshaped the ICT world with a massive
volume of both structured and unstructured data that is so large to make difficult
to processing it by using traditional technologies and software. Data generally
comes from multiple sources, such as the collected results of health care researches,
scientific experiments on real-time sensors, business sales records, financial values or
information on a supply chain system.

All of the previous applications are concerned with an increasing amount of data
that needs to be stored and processed with innovative techniques on a daily basis.
It is referred to ’Big Data’. When treating with big data, we must be able to handle
three kinds of characteristics, generally identified as the Three “V”, whose expansion
is illustrated in Fig.1.1, and whose description is the following:

• Volume: the acquired data is so large and complex that it can no longer be
possible to save or analyze it using conventional data processing methods. In
fact, in recent years, we have been able to deal with terabytes, petabytes, and
exabytes of data acquired in a real-time or near-real time context;

• Variety: data could be heterogeneous, so we should be able to deal with both
structured and unstructured data as well as text documents, email, video,
audio, speech recordings, financial transaction and so on. Additionally, many
sources of big data are relatively new, so it is necessary an ad-hoc treatment to
handle them. Without considering that data can be highly inconsistent with
periodic peaks, like something trending, daily, seasonal, and event-triggered
peak data loads.

• Velocity: it should remain the same even if the volume of data increases. This
characteristic is often even more important than the volume because the ability
to achieve information in a faster way could bring a company in a superior
condition compared to competitors. Data is acquired at unprecedented speed
and must be dealt, when possible, in a timely manner; just think of RFID
tags, sensors, smart metering, or all of the near real-time applications.

Recently, two new items have been added to describe Big Data’s features:

• Volatility: in addition to the increasing velocity and volume of data, its
volatility needs to be carefully considered. It refers to how long is data valid
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and how long should it be stored, by determining what point is data no longer
relevant for the current analysis. In this way, the rapid retrieval of information
when the cost and the complexity of storage are infeasible, is allowed.

• Value: the last feature of big data is maybe the most important one since is
related to the information that can be extracted. Substantial value can be
found from it, including understand customers better, optimizing processes or
improving business performance. To this end, suited techniques must be able
to gathering and turn out data into huge value for who is treated with it.

Figure 1.1. Big Data: Expanding on 3 fronts at an increasing rate

Traditional techniques are not well suited to capture the full big data’s value,
allowing only a small percentage of data to be actually analyzed. Machine learning
approaches are promising methods for exploiting the opportunities hidden in big
data, thriving with growing dataset. In particular, a lot of useful features should be
extracted to learn the underlying relationship among results. In biomedical context,
for example, it could be interesting extract a subcategory of pathologies from records
acquired on patients. While, in biological context, it could be useful find out the
grouping of data among several biological species. Again, in the weather forecast
could be helpful to know what are the elements of both the atmospheric and oceanic
pressure on the weather.

Thus, extracting knowledge from big data poses significant research and chal-
lenges. However, the problem could be complicated when data is spread across
distinct logical or physical locations, and could not be sent to a central node for
reason of security, processing or privacy. In these contexts, the range of potential
correlations and relationships could makes complex the test of all hypothesis and
the successive extraction of information buried in data.

A first attempt to deal with this scenario consists in scaling the data to be
processed horizontally, allowing the processing of data in parallel. However, the
synchronization of data across nodes may not be in real time.
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For all of the previous reasons, a purely distributed scenario, when the agents
work on a local dataset that could be shared only with the neighbors, concerns the
main topic of this thesis. In a pure distributed architecture there is no hierarchy and
all agents are peers. In this case, the data is partitioned among the agents (equally
or proportionally to the calculation power) and each agent learns only from its own
dataset. The idea is to reach a solution similar to the centralized one (where all
the learning takes place in a central node that collects all the data) only through a
process of communication and collaboration among the local agents.

1.1 Structure of the Thesis

The thesis is organized in 3 big sections. A schematic categorization of each one is
provided as follows:

Part I Introduces the required background material:

Chapter 2 Offers a schematic overview of the fully centralized machine learning
techniques. Specifically, regression, classification and more in general supervised
and unsupervised learning approaches are presented.

Chapter 3 Provides a formal definition and formulation of the distributed
learning scenario. Additionally, a comprehensive overview of state-of-the-art
algorithms regarding the distributed learning is presented. It combines works
from multiple research fields and gives a unified discussion on the main drawbacks
and advantages of the existing approaches.

Part II Introduces the several proposed approaches to distributed supervised and
unsupervised learning problems.

Chapter 4 Introduces the Validated Distributed Ensemble Clustering. It ex-
tends the traditional cluster ensemble techniques overcoming the requirement
that each agent has to work with the same dataset.

Chapter 5 In this chapter, it is introduced a fully distributed procedure for
performing spectral clustering over networks of computing agents. In particular,
the equivalent problem of completing the matrix containing the pairwise distances
among all datapoints is analyzed and solved by using a distributed gradient
procedure, interleaving gradient descent steps with point-to-point diffusion of
information.

Chapter 6 Introduces a distributed on-line learning for random weight fuzzy
neural networks. Data is allowed to arrive continuously, one-by-one or chunk-
by-chunk, at every node. In this approach, the concept of epoch disappears,
allowing the algorithm to avoid retraining whenever new data is received.
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Chapter 7 Introduces an unsupervised algorithm for solving density based
approaches. A non-convex distributed optimization in multi-agent networks
with time-varying (not symmetric) connectivity is applied to the well-known
Expectation Maximization approach. The local solutions are found through
which a sequence of strongly convex, decoupled, optimization subproblems, while
the agreement is reached by a consensus step.

Part III In this section, different possible applications of the distributed scenarios
have been presented. A centralized analysis is firstly realized in order to extend it,
and investigates what happens when these approaches will be placed in a distributed
setting.

Chapter 8 In this chapter, it has been considered the application of data mining
methods in medical contexts, wherein the data to be analyzed is distributed
among multiple clinical parties. It extends the idea of distributed learning, in
the perspective of a tele-rehabilitation context. Machine learning approaches are
firstly used to extract important features, helping clinicians in evaluating the
impairment’s degree of a patient. Successively, an extension of the algorithm
presented in Chapter 6, where two techniques of privacy constraints are added
to deal with this sensible data, is described.

Chapter 9 In order to realize a complete tool able to work in a distributed
context, like the one of tele-rehabilitation, two low-cost devices are tested and
assessed in capturing all of the parameters used in the previous chapter.

Chapter 10 Introduces another application of distributed learning that is the
one of sensors networks and low-power devices. A finite precision implementation
of a Random Vector Functional Link is applied to distributed signal processing
scenario, where a low computational power of a simple and cheap hardware is
often required.

Chapter 11 Is related to the ability to forecast the power produced by renewable
energy plants in the context of a highly connected network of agents. In this
chapter, a new embedding approach based on neural and fuzzy neural networks
is presented. The idea is to test the capability of model identification and the
accuracy of time series prediction, by which the results could be improved sharing
the data from different cabins of the same plants, thus achieving a multivariate
space-time prediction by using multiple sources of data.

Chapter 12 Finally, this chapter summarizes the main contributions of this thesis,
along with the further developments.

Appendix A gives a general overview of the unsupervised validity indexes, focusing
the attention on the internal validity measures and the external ones used in the
overall work in order to judge the validity of the approaches.
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Appendix B introduces some statistical tests that have been used in the thesis to
perform inference on random variables.

Appendix C introduces several classification algorithms used to solve specific fea-
ture selection problem.

Part of this thesis is adapted from material published (or currently under review)
in several journals and conferences.

1.2 Notation
Throughout the thesis, vectors are denoted by boldface lowercase letters, e.g. a,
while matrices are denoted by boldface uppercase letters, e.g. A. The notation ai
denotes the (i)th entry of the vector a, which is assumed to be column one, with
aT denoting the transpose of a. Similarly for the matrix, the notation Aij denotes
the (i, j)th entry of matrix A. The operator vect(a) is used for the column-wise
vectorization of a matrix, while the operator diag(a) deals with diagonal matrices
A, such that Aii = ai. 0 indicates the zero vector or matrix, while 1 the all-ones
vector or matrix.

The Lp-norm of a generic vector a is indicated with ‖a‖p:

‖v‖ = (
n∑
i=1
|vi|p)

1
p (1.1)

The standard Euclidean one, for p = 2, is indicated ‖a‖, while for p = 1 we have
‖a‖1 =

∑
i ai.

In some cases, vectors will depend to a time-instant. It is indicated as a[n] both
for time-varying signals (in which case n refers to a time-instant) and for elements
in an iterative procedure (in which case n is the iteration’s index).

A ≥ 0 denotes a positive semi-definite (PSD) matrix, i.e. a matrix for which
xTAx ≥ 0 for any vector x of suitable dimensionality.

A function is generally indicated with an italic letter f and is defined using the
notation f : Rm → R. Let x ∈ Rm a free variable, then the partial derivative of f
with respect to xi is denoted by ∂f

∂xi
. The gradient of f , evaluated at q, is denoted

as ∇qf(q) and is identified as a column vector as follows:

∇qf(q) =



∂f

∂x1
(q)

...
∂f

∂xn
(q)

 (1.2)

Sometimes the dependency on q is omitted when it is obvious from the context,
consequently, ∇qf(q) could be indicated as ∇f(q) or ∇f .

The set is usually written using upper-case letters (e.g D). The usual sets of
numbers are denoted using the blackboard font, like R for real numbers or Z for
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the integers. The explicit definition of a set is denoted by using curly brackets (like
D =

{
2−7, 2−6, · · · , 26, 27}. Real intervals are denoted using brackets, let x as a real

variable, then the set of values such that aleqx ≤ b is indicated as [a, b].

1.3 Publications Related to the Thesis
The main publications written within the research work associated with this PhD
thesis are listed in the following:

• R. Altilio, L. Liparulo, M. Panella, M. Paoloni and A. Proietti, ”Multimedia
and Gaming Technologies for Telerehabilitation of Motor Disabilities”, IEEE
Technology and Society Magazine, Vol. 34, No.4, pp. 23-30, ISSN: 0278-0097,
DOI: 10.1109/MTS.2015.2494279, IEEE, USA, December 2015.

• R. Altilio, M. Paoloni and M. Panella, “‘Selection of clinical features for
pattern recognition applied to gait analysis”, Medical & Biological Engineer-
ing & Computing, Vol. 55, No. 4, pp. 685-695, ISSN: 0140-0118, DOI:
10.1007/s11517-016-1546-1, Springer Berlin Heidelberg, Germany, April 2017
(online publication: 19 July 2016).

• A. Rosato, R. Altilio, R. Araneo and M. Panella, “Prediction in Photovoltaic
Power by Neural Networks”, Energies, ISSN: 1996-1073, MDPI, Switzerland,
in printing.

• R. Altilio and M. Panella, “A smartphone-based Application Using Machine
Learning for Gesture Recognition”, IEEE Consumer Electronics Magazine
Editorial Office, accepted in minor revision.

• R. Altilio, A. Rossetti, Q. Fang, X.fu and M. Panella, “A smartphone gait
analysis for post-stroke lower limb rehabilitation”. Journal of Biomedical and
Health Informatics, submitted in 2017.

• A.Rosato, R. Altilio and M. Panella, “An unsupervised learning algorithm for
distributed environment”, Soft Computing, submitted in 2017.

• A. Rosato, R. Altilio and M. Panella, “Recent Advances on Distributed Unsu-
pervised Learning”, in Advances in Neural Networks: Computational Intelli-
gence for ICT, Smart Innovation, Systems and Technologies (WIRN 2015), Vol.
54, pp. 77-86, ISBN: 978-3-319-33746-3, ISSN: 2190-3018, DOI: 10.1007/978-3-
319-33747-0_ 8, Springer International Publishing, Switzerland, June 2016.

• S. Scardapane, R. Altilio, V. Ciccarelli, A. Uncini and M. Panella, “Privacy-
preserving data mining for distributed medical scenarios”, in Multidisciplinary
Approaches to Neural Computing (WIRN 2016), Smart Innovation, Systems
and Technologies, Springer International Publishing, Switzerland, in printing.

• A. Rosato, R. Altilio, R. Araneo and M. Panella, “Embedding of Time Se-
ries for the Prediction in Photovoltaic Power Plants”, Proc. of IEEE In-
ternational Conference on Environment and Electrical Engineering (IEEE
EEEIC 2016), pp. 1-4, ISBN: 978-1-5090-2320-2, 978-1-5090-2319-6, DOI:
10.1109/EEEIC.2016.7555872, IEEE, Florence, Italy, 7-10 June 2016.
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• S. Scardapane, R. Altilio, M. Panella and A. Uncini, “Distributed Spectral
Clustering based on Euclidean Distance Matrix Completion”, Proc. of Inter-
national Joint Conference on Neural Networks (IJCNN 2016 ), pp. 3093-3100,
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IEEE, Vancouver, Canada, 24-29 July 2016.

• R. Altilio, L. Liparulo, A. Proietti, M. Paoloni and M. Panella, “A Genetic
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24-29 July 2016.

• A. Rosato, R. Altilio, R. Araneo and M. Panella, “Takagi-Sugeno Fuzzy
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International Conference on Environment and Electrical Engineering (IEEE
EEEIC 2017), pp. 1-6, ISBN: 9781538639177, IEEE, Milan, Italy, 6-9 June
2017.
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Conference on Fuzzy Systems (FUZZ-IEEE 2017), pp. 1-6, IEEE, Naples,
Italy, 9-12 July 2017.

• R. Altilio, A. Rosato and M. Panella, “A New Learning Approach for Takagi-
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national Conference on Fuzzy Systems (FUZZ-IEEE 2017), pp. 1- 6, IEEE,
Naples, Italy, 9-12 July 2017.
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Random Vector Functional-Link Networks”, Proc. of International Conference
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august 2017, in printing.
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Implementation of Neural Networks”, Proc. of European Conference on Cir-
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September 2017, in printing.
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Chapter 2

Centralized Machine Learning

The problem of extracting information and the automatic discovery of regularities
in data with computer algorithms is increasingly widespread in a lot of scientific
endeavors:

• Computational finance for credit scoring and algorithmic trading;

• Image processing and computer vision for face recognition, motion detection,
object detection;

• Computational biology for tumor detection, drug discovery and DNA sequenc-
ing;

• Energy production for price and load forecasting;

• Medical Context for classifying patient among diseased and not diseased.

In all of these cases, the underlying question is how can learn from such data. Machine
learning approaches are promising methods able to learn and make predictions on
data, by exploiting the functioning by which animals and humans learn from the
experience. Given L number of patterns, a set of input data [x1, . . . ,xL] ∈ Rn, and a
set of output data [y1, . . . ,yL] ∈ R, the aim is to model the underlying relationship
among them in order to make better decisions and predictions. The algorithms
adaptively improve the performances and, particularly, as the number of available
samples increases also the learning capability increases. Machine learning approaches
are essentially based on four different kinds of techniques that are represented in
Fig. 2.1, and summarized below:

• Supervised Learning: the corresponding output and label to each input data
are known beforehand. The task is to model the relationship from the input
and the output.

• Unsupervised Learning: the input data consists of a set of vectors x without
any corresponding target value. The aim is to find the structure of the input.

• Semisupervised Learning: there is an incomplete input vector, with some (often
many) of the target output missing. These problems sit in between supervised
and unsupervised learning, so a mixed of techniques suitable to solve both
approaches can be used.
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Machine Learning

Supervised Learning

Predictive models based on
both input and output data

CLASSIFICATION
- Support Vector Machine
- Discriminant Analysis
- Naive Bayes
- Nearest Neighbors

REGRESSION
- Linear Regression
- Neural Networks
- Decision Trees
- Ensemble Methods

Unsupervised Learning

Group data based only on

input data

CLUSTERING
- Hierarchical
- K means/C means
- Gaussian Mixture
- Neural Networks

Semi-supervised Learning

Incomplete input-vector
with many target missing

- Generative Models

- Low density separation
- Graph based methods
- Heuristic approaches

Reinforcement Learning

Take action in a dynamic
environment to maximize a reward

Figure 2.1. Machine Learning techniques

• Reinforcement Learning: tries to find out the suitable actions that have to
been taken in a given situation in order to maximize a reward. Typically, there
is a sequence of states and actions where the learning algorithm has to interact
with the environment. It tries to find a trade-off between exploration, where
the system tries out new kinds of actions to see how effective they are, and
exploitation, in which the system makes use of actions that are known to bring
a high reward.

Another categorization that can be performed on machine learning algorithms
involves the desired output of a system:

• Classification: where the inputs are divided among two or more classes and
the algorithm must be able to assign each input to the correct one. If there are
two classes, we talk of binary classification whereas if they are greater, we talk
about a multiclass classification. The output data takes only a discrete amount
of values, and represents a category, such as “read” or “blue”, or “disease” and
“no disease”. This is typically tackled in a supervised way.

• Regression: where the output is a real value, and the aim is to predict a
quantitative information instead of a qualitative one. The elements of the
output are infinite. This is a supervised problem.

• Clustering: this is an unsupervised problem where the groups are not known
beforehand, and the aim is to divide a set of inputs in several clusters.

• Density estimation: is based on finding the distribution of the input in some
spaces.

In the following sections, some techniques related to the supervised and unsupervised
approaches are presented.
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2.1 Supervised Learning
The aim of the supervised learning is to find out a model able to make a prediction
even when uncertainty and fortuity characterize data. Let us suppose to have a
d-dimensional vector of real numbers x ∈ Rnxd, where each component represents
a feature, while each row represents a pattern, and a single scalar output Y ⊆ R
(that can be easily considered and extended to the multidimensional case). The goal
of the supervised learning problem, in the regression case, is to approximate the
mapping function between an input vector x and the corresponding output Y .

Y = f(x) (2.1)

The derivation of the model in the case of binary classification proceeds identi-
cally, with the difference that the output is not a real value, but a discrete one:
y ∈ {−1,+1}. In this case, the actual class of the pattern can be evaluated as:

Class of x = sgnf(x) (2.2)

Similarly, in the case of of multiclass classification, the output can take values in a
set of M different labels {1, 2, . . . , M} where M is the number of classes. In this
case, a common encoding association consists in assign to each pattern xi, a single
output vector yi of M bits: if yij = 1 and yij = 0,∀k 6= j, then the corresponding
pattern is of the class j. Also in this case, a common way to proceed consists to
assume y ⊆ RM , f(x) ∈ RM and retrieval the actual class as:

Class of x = arg max
j=1, ... ,M

fj(x) (2.3)

In all cases, the process of inferring a function f(·) from a dataset is called
training. Supposing that the unknown function belongs to a functional space H,
a loss function l(y, f(x)) : YxY → R+ could be introduced to quantify the error
incurred in estimating f(x) instead of the true y. Thus, the supervised learning
problem can be defined as:

Definition 2.1. Given an hypothesis space H and a loss function l(·, ·), the solution
of a supervised learning problem consists in finding the function f(·) able to minimize
the expected risk functional:

Iexp[f ] =
∫
l(y, f(x)dp(x, y), f ∈ H (2.4)

The probability distribution is unknown, so the solution to the problem (2.4)
can be given by an approximation realized by a generic dataset D, which is called
empirical risk function:

Iemp[f ] =
N∑
i=1

l(yi, f(xi)) (2.5)

However, minimizing (2.5) instead of (2.4) could lead the risk of overfitting, making
the function unable of generalizing efficiently on new data presented to the network.
A common solution consists in the inclusion of a regularizing term able to take into
account some features of the unknown function like smoothness, sparsity and so on:
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Definition 2.2. Given a dataset D, an hypothesis space H, a loss function l(·; ·), a
regularization functional φ[f ] : H → R, and a scalar coefficient λ > 0, the regularized
SL problem is defined as the minimization of the following functional:

Ireg[f ] =
N∑
i=1

l(yi, f(xi)) + λφ[f ] (2.6)

The problem in (2.6) can be analyzed from a wide variety of viewpoints, including
statistical learning theory or Bayes’s theory.

Before this, however, few words on the choice of the outspace y need to be said.
As stated before, the model can be used to solve the problem of both classification
and regression. As far as the classification approach is involved, the most important
techniques used to solve it will be described as follows:

Support Vector Machines (SVM) [1]: is a model used for classification purpose able
to assign new examples to one category or others, making use of a non-probabilistic
binary linear classifier. It is based on a representation of the examples as points in
the space, and it tries to find out the hyperplane able to maximize margin among
the patterns, as well as minimize the mistakes on the training set. More precisely,
it is based on the distance from an example xi to the separator, the ones closest
to them are called support vectors. Therefore, the aim of the SVM is to maximize
the margin between support vectors. This can be formulated as an optimization
problem, which is particularly hard to solve in its original formulation, but that can
be rewritten in a convenient form by using its dual form. The main advantage of this
kind of system is that it has the possibility to obtain non-linear boundaries between
samples. In particular, the idea is to use particular structures, called Kernel, which
allow to transform the data from the input space to a higher dimensional one that
is called feature space. The resulting advantage is that the non linear operation of
the input space becomes linear in the feature one.

Neural Networks [2, 3] is a model inspired by the biological neural system. It is an
adaptive method, where the learning is obtained through examples. Generally, it is
based on a collection of single units, called neurons, organized in several layers (an
input, an output, and several hidden ones) and connected between synapses. In each
layer, the nodes perform a transformation of the data received from the previous
one and send an aggregate result in the successive one. They are usually used to
model complex relationships between inputs and outputs, to find patterns in data,
or to capture the statistical structure in an unknown joint probability distribution
between observed variables. The main idea is to perform a learning similar to the
one obtained by the human brain. Often, the backpropagation procedure is used to
adjust the parameters of the network by propagating the error from the output to
the hidden and input layers.

Naive Bayes classifier [4, 5, 6], based on the Bayes’ theorem, provides a way of
calculating posterior probabilities by assigning a new observation to the most prob-
able class. It is easy and fast in predicting the class of a data set. Furthermore,
it performs well in the multi class prediction. However, it requires the assump-
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tion of independent predictors, which is often difficult to find in real context problems.

Decision tree [7] is based on a diagram to predict responses on data. It starts from
the root node and comes down to the leaf one, which contains the response. In
particular, it gives responses that are nominal, such as ‘true’ or ‘false’. Each step,
during the prediction, involves checking the value of one predictor (variable).

Discriminant analysis [8] is a classification method assuming that data is generated
according to different Gaussian mixtures. At first, the classifier is trained by esti-
mating the parameters of each Gaussian distribution. Successively, the new data is
assigned to the class able to produce the smallest misclassification cost.

k Nearest neighbors [9] is a non parametric method where the output is a membership
class. An object is classified by using the majority vote of its neighbors. Specifically,
a data is assigned to the most common class among its k nearest neighbors.

As far as the regression algorithms are concerned, the most common approaches are
the following ones:

Linear Regression [10] is a statistical model used to describe the relationship between
output values and one or more predictor variables. In particular, it supposes a linear
model among the response and the input. It can be one of a different kind of linear
regression models: simple (when the model has only one predictor), multiple (when
the model has multiple predictors) and multivariate (when the model has multiple
response variables).

Non linear regression [11] is a statistical technique that assumes a non linear relation-
ship between the input data and the output response. It is generally not parametric,
and the output is modeled as a combination of non linear parameters and one or
more independent variables.

Decision trees [7] are based on a independent variable where the target values are
not associate to classes. Data is divided into several split points, where at each one
of them the sum of squared error between the predicted value and the actual one is
updated.

Neural network [2, 3] is similar to its corresponding classification version, the only
difference being on the output evaluation. In this case, the target becomes continuous
and not discrete.

2.2 Unsupervised learning

In this section, the focus is changed in all the situations where the targets of the
output values are unknown. The aim is to discover groups of similar examples, in
order to maximize the intraclass similarity and minimize the interclass similarity.
In this way, observations within the same cluster are similar according to some
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predesignated criterion or criteria, while observations drawn from different clusters
are dissimilar. The aim is to learn and establish baseline behavioral profiles for
various patterns, as well as determine the distribution of data within the input space
or know the density estimation of data. Since the difficulties that the unsupervised
context carries with it, different assumptions about the structure of the data are
mandatory. In particular, a similarity metric must be defined and the internal
compactness and separation among cluster have to be evaluated to judge the results:

Definition 2.3. Supposing to have an input dataset S = (x1, . . . , xn) with samples
i.i.d with respect to p(x), then an aim of the unsupervised learning could be minimize
the empirical (reconstruction) error:

IS [C] = 1
n

n∑
i=1

d2(xi, C); (2.7)

where C is a subset of X and d2(xi, C) = minv∈C ‖x− v‖2 is the square distance of
a point x to the set C.

The error measure above depends on the distribution, we can alternatively
consider regularized optimization functions:

min
C∈H

IS [C] + λR(C) (2.8)

where HC|C ⊂ X is essentially an unconstrained hypotheses space and R(C) a
regularization term that penalizes complex/large sets.

Many techniques have been used to approach this kind of problem:

Hierarchical clustering [12]: groups data by creating a cluster tree or a dendrogram.
The agglomerative methods start with n clusters containing one object, and aggre-
gating the most similar pair (Ci, Cj) in the next level to form a new cluster. The
procedure is stopped when the result is the more appropriate for the scope of the
application. A lot of similarity measurements can be used to evaluate the clustering
results and decide when the procedure has to be stopped. Conversely, the divisive
approach follows a bottom-up approach, where all of the datapoints originally belong
to the same cluster that is recursively split in the successive steps. The procedure
continues until each cluster is formed by exactly one pattern or until a stopping
condition, on the particular structure of the model, is reached.

Partitioning Methods [13] considering n objects in the network, the partitioning
method realizes k partition of the data. Each partition represents a cluster, which
must contain at least one object and each object must belong to exactly one group.
All of these approaches start with an initial randomly partition, which is used to
iteratively improve the partitioning by moving points from one cluster to another. A
usual example of this approach is the K-Means algorithm, which tries to groups data
into k distinct clusters. The main idea is to define a priori the number of centroids,
one for each cluster, and then try to assign data to each cluster in an iterative
procedure by minimizing the distance among the patterns. Another partitioning
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method is the spectral clustering approach. For a given dataset, it finds a set of
data on the basis of a spectral analysis on the similarity graph. It uses the spectrum
(eigenvalues) of the similarity matrix of data to perform dimensionality reduction
before clustering in fewer dimensions. The clustering problem is defined in terms of
a complete graph G, where the vertices represent the data point, whereas the edges
represent the similarity between them. The main difficulty consists in evaluating
the similarity matrix at the beginning of the procedure.

Gaussian Mixture Models [14] is a probabilistic model based on the Expectation
maximization algorithm where is assumed that data arrives from an environment
that can be described by a probability density function (PDF) of one or more multi-
variate Gaussian distribution components. Each multivariate component is defined
by its mean and covariance, while the number of components, for a given object, is
fixed. The mixture parameters are evaluated in an iterative way by performing an
estimate of the maximum likelihood through an expectation and a maximization step.

Self-organizing maps [15] is a type of artificial network used both for clustering data
and reducing its dimensionality. The input are discretized by using a similarity map
able to assign the same number of instances to each class.

Hidden Markov model [16] performs inference on data by assuming it to be extracted
from a Markov process with unobserved states, and by using a sequence of states
from the observed data.

For a particular dataset, it may happens that several partitions are obtained when
different clustering algorithms or different initialization parameters for the same
algorithm, or simply different samples of the data are used. In these situations,
finding out a common structure among all the results, the so-called Ensemble Methods
[17], is the best way of proceeding. They can be based on median partition to find
the most similar result among all of the others in the ensemble. Or they can be
based on a weighted graph, which represents the multiple clustering results from the
ensemble where the minimum cut is used to find an agreement.

2.3 Structure of the learning process

Machine learning techniques aim at finding out the underlying relationship among
data in order to give information on the output parameters. A schematic depiction
of this process is given in Fig.2.2. The core of the approach is what happens in
the central box. In particular, each learning algorithm, to model the relationship
among the input-output data, follows a succession of steps showed in Fig. 2.3 and
summarized as follows:

Data acquisition: the data acquisition is the first step involved in the model. The
real data is often incomplete, noisy, or inconsistent for that a preprocessing step
performed on raw data, is necessary to make it suitable and easily to threat. Sam-
pling, to select a representative subset from a large population of data, denoising,
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Figure 2.2. Machine Learning model

to remove noise from data, normalization, to scale attribute values to fall within
a specified range are only a small subset of functions that can be applied at the
beginning of the learning procedure.

Feature selection: especially in those dataset composed by many attributes, it may
happens that groups of features are correlated. During the learning phase, their
presence can affect the accuracy of the model. That is why a dimensionality reduction
becomes necessary to remove all of the redundant information, and represents the
dataset only in terms of the relevant elements:

• Feature selection: has the aim of finding the most significant predictors by
selecting a subset of the original ones. PCA, ICA, Matrix Features Factorization
is a list of techniques able to reduce the most discriminative components and,
thus, allow a representation of the dataset with a small subset of values.

• Features extraction: involves the transformation of the features into a lower
dimensional space. Unlike feature selection, which selects and retains the most
significant attributes, feature extraction actually transforms the attributes by
performing, for example, a linear combinations of the original ones. In this way,
the output becomes smaller and richer but the process becomes not reversible
because some information is lost during the dimensionality reduction.

Model Selection is the task of selecting a statistical model from a set of candidate
ones. The aim is to perform the minimum error when the relationship among the
data has to be modeled. For the supervised context, the aim is to maximize the
generalization capability when new data is presented to the model, while for the
unsupervised one, the aim is to create a compact and well-separated cluster of points.

Training: for the supervised context, the original dataset is normally divided into
two subsets: the training data and the test data. In general, the data is presented
as a “gold standard”, and the model is trained by presenting the input with the
expected output. Successively, the learned model is tested on new data, which is
the one of the test set. In the unsupervised context, the algorithms proceed by
recursively adapt some statistical parameters related to the properties of the cluster
that has to be determined. Generally, it depends on the distribution from which
data has been extracted.
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Figure 2.3. Learning process

Validation: in the supervised context, the algorithm calculates the output on the
basis of the learned parameters. The validation is used after training to generalize
parameters and avoid problems of overfitting or underfitting. Whereas, in the
unsupervised context, the validation is used to test the performances of the trained
model by using some cluster validation indexes able to minimize the interclass
similarity and maximize the intraclass one.

2.3.1 Supervised validation techniques

The last step is the more important one concerning the learning capability of the
model. Hence, it is explained in more details how it works for both the supervised
and unsupervised approach.

In the supervised learning context, the aim is to maximize the generalization
capability of the model by analyzing what happen when new data is presented
to the structure. If the new values are well predicted then the algorithm was
trained successfully, otherwise problems of overfitting or underfitting may have been
occurred. The first one occurs when details and noise of the data are learned with
the relevant information, producing accurate prediction on training data, but losing
generalization performance on new ones. Conversely, the underfitting occurs when
the model can neither describe the training data nor the new ones. If an algorithm
is well trained, during the learning phase there is a decreasing value of both the
training and the testing error. However, if the learning phase continues for too long
time, the model starts to overfitting the training data, producing a low error on
the training data but making bigger the one on the test set. Ideally, the correct
point for stopping the learning phase is the instant just before the one in which
the error on the test dataset starts to increase. In that point, the model has good
performance on both the training test and the test one. In Fig. 2.4 is presented
a simple example where it can be visualized the phenomena described above. In
the top three diagrams, we have data and models. From the left-hand side to the
right-hand side, the models have been trained longer and longer increasing theirs
complexity. As it can be seen from the graph on the bottom of the figure, the
training error gets better as the complexity increases, however the error on the test
set has an opposite behavior. In fact, the generalization capabilities on new data
start decreasing beyond a particular point.

So the question is: how does the algorithm has to be trained to avoid problems
on the above-mentioned problems? The answer is not so obvious and can be given
by adapting it to each particular problem that has to be solved. As it has been
introduced before, a regularization term will help us in avoiding overfitting, while
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Figure 2.4. Overfitting and underfitting of a trained model

other techniques can be used to tune the regularization term. One of the most simple
techniques, able to assess how the results of a statistical analysis will generalize to
independent data, is the holdout method. Data is randomly assigned to two sets d0
and d1, usually called training and test set. In particular, a reasonable percentage
of data to be assigned to one of the two set is 70% for training and the remaining
30% for the test. Then the algorithm is trained on d0, and the realized function
approximator is asked to predict the output values for the data in d1. The results
are evaluated in terms of mean absolute test set error. However, the evaluation may
heavily depends on which data points ends up in the training set, and which ends up
in the test set. Hence, the holdout method could be generalized to a more complex
validation technique that is called k-fold cross validation.

It is based on an additional dataset that is generally called validation set.
Generally, the k-fold cross validation allows to train and test the model k-times on
different subsets of training data, and it realizes an estimate of the performance on
unseen data. In particular, the original data is randomly partitioned into k equal
sized subsamples, one of which is used as validation test to test model, whereas
the others k − 1 are used to train data. The process is repeated, ktimes, for all
the validation set by using it exactly once for test the model. At the end of the
procedure, results are averaged to produce a single estimation. In this way, the
global dataset is used for both training and validation, while each observation is
used for validation exactly once. The advantage of this approach is that you can
independently choose how large each test set is and how many trails you average
over. Leave-one-out cross validation is a particular case of k-fold cross validation
where k is equal to n (the overall number of patterns). In this way, the model is
trained n separate times. In other words, it is trained on all data except for one
point on which the prediction is made. This approach confirms a good evaluation,
but it can seem very expensive to compute. Fortunately, it takes no more time than
computing the residual error, and it is a much better way to evaluate models.
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2.3.2 Unsupervised validity techniques

For the unsupervised context, the validation procedure is a little different because
there are no labels able to give information about the generalization performance
of the algorithm. The way of validating the model depends on which class of
unsupervised algorithm we are referring to.

For example, dimensionality reduction techniques are generally validated by
computing the reconstruction error. In these cases, the validation can be performed
by using similar approaches based on k-fold cross validation or holdout test set.

The density estimation approaches are difficult to evaluate, but there is a wide
range of techniques used for tuning the parameters [18]. The main problem in these
contexts is that there is not a general formula for the optimal smoothing parameters.
It can be difficult to determine which components of X are relevant and which not.
Often, cross validation overcomes these difficulties, and it automatically determines
which components we have to include in the analysis.

As for clustering algorithms, one of the most important issues is the evaluation of
results in order to find the partition that best fits the underlying data. The aim is to
discover significant groups in a data set by searching for clusters whose elements are
similar to each other, and well separated from the elements of others clusters. The
process of evaluating the results of a clustering algorithm is the validity assessment,
and generally two measurement are used to this end:

• Compactness: the members of each cluster should be as close to each other as
possible.

• Separation: the clusters should be widely spaced. There are three common
approaches usually used to measure the distance between two different clusters:

– Single linkage: it measures the distance between the closest members of
the clusters. It is based on statistical tests, and the major drawback is
the high computational cost. Generally it is used to measure how much a
dataset confirms an a priori specified scheme.

– Complete linkage: it measures the distance between the most distant
members.

– Comparison of centroids: it measures the distance between the centers of
the clusters. It tries to find the best clustering algorithm under certain
assumptions and parameters.

These parameters are used to investigate the cluster validity, measured in terms of:

• External criteria: the results of a clustering algorithm are based on a pre-
specified structure, which is imposed on a data set, and that reflects the
intuition about the clustering itself. Precisely, the idea is to verify whether
data satisfies a null hypothesis about their random structure. Statistical
approaches, such as Monte Carlo techniques, are generally used to check this
assumption.

• Internal criteria: the results are evaluated in terms of quantities that involve
data set’s vectors. These techniques are generally used with hierarchical
clustering or single clustering schemes.
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• Relative criteria: the basic idea lies in the evaluation of a clustering structure
compared to other clustering schemes. Based on statistical testing, theirs
major drawback is the high computational demand. There can be different
cases for their application, described as follows:

– The number of clusters (k) is not an algorithm’s parameter. In this case,
the algorithm is run for a wide range of parameters, choosing the largest
one when k remains constant.

– The number of clusters (k) is a parameter. In this case, the procedure
consists in two different steps. Firstly, the algorithm runs for k’s values
that belong to a range [kmin, kmax]. These extreme values are set before-
hand by the user. Then, for each value of k, the best-obtained result is
selected.

Finally, unsupervised strategies are sometimes used in a more complex work-flow.
For instance, if clustering is used to create meaningful classes, it is possible to create
an external dataset by hand-labeling, and to test the accuracy, by the so-called
gold standard approach. In the same way, if pre-processing step is used to perform
dimensionality reduction in a supervised learning procedure, its accuracy can be
used as a proxy performance measure for the dimensionality reduction technique.

Appendix A.1 shows some validity indexes used to test the results gained from
some of the clustering approaches proposed in this thesis. They are essentially based
on relative criteria.

The next chapters introduce some few techniques on the distributed unsupervised
learning approaches, which are the main topic of this thesis.
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Chapter 3

Distributed Machine Learning

This chapter is devoted to the analysis of the Distributed Learning problem. Firstly,
the problem will be introduced, and the requirements of a distributed context will be
discussed. Successively, a state of the art review of the recently distributed machine
learning approaches will be presented followed by an introduction on the structure
of a typical distributed problem.

In particular, preliminary concepts on graph theory will be provided, focusing on
the aspects that will be used in the rest of this thesis such as notions on neighbors,
and diffusion of information among them.

3.1 Introduction on the problem

All of the supervised and unsupervised learning approaches described in the previous
chapter have been applied in several contexts. However, in recent years they have
become inadequate since data comes from several locations spread logically or
physically in a network of agents. In particular, with the advent of big data, cloud
storage, social networks and so on we must face a huge amount of information and
data. Separate domains of application may largely impose different constraints on
the solution, including low computational power at every location, limited underlying
connectivity (e.g. no broadcasting capability), or transferability constraints related
to the enormous bandwidth requirement. The computational power may not be
sufficient to analyze a too high quantity of information and it could be required to
much time to reach a solution.

Thus, for the sake of security, processing, and privacy, it is no longer possible to
send all of the data in a central node where traditionally algorithms will find out
the optimal partition, while new techniques able to model and manage these kind of
information are mandatory. In this scenario, it would be challenging to avoid that
a central node detains all of the information and achieve a solution that is similar
to that obtained by a centralized approach through a process of communication
and collaboration among the agents. Specifically, the lefthand side panel of Fig. 3.1
shows the centralized solution: all of the data are sent to a central authority where
the three overall existing clusters are correctly identified; the distributed solution
is shown on the right panel. It is important to underline that each node is able to
reach the same solution of the centralized approach, even if some missing clusters
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are presented in the local dataset, by only exploiting the communication with the
neighbors. Therefore, the question is, would it be possible to perform inference in a

Node 1 Node 2 Node 1 Node 2

Central authority

Node 3 Node 3

Figure 3.1. Centralized Vs Distributed approach

decentralized fashion (i.e. without a central coordinator), leaving out the exchange
of training data? This is known as the distributed learning problem:

Distributed Learning: is the problem of inferring a function whenever the
training data is distributed throughout a network of agents.

Generally, the distributed learning must verify the following constraints and
characteristics:

• Coordination: in a fully distributed scenario, the agents must be able to
communicate with the others without allowing any agent to coordinate the
training process. In this way, fewer data needs to be arranged and analyzed.

• Connectivity: the assumption to perform in a distributed scenario requires a
connection of the overall network, which means that each node can be reached
from any other node in a finite number of steps.

• Communication: the communication infrastructure is a tool used to discrim-
inate between distributed scenarios. The information can be exchanged via
one-hop or multi-hop connectivity. In the latter, messages can be routed from
any node to any other one of the network, while in the former, the node can
exchange messages through the neighbors only. Obviously, the extreme case,
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where each node is allowed to communicate with a single other one, is also
admitted.

• Privacy: often, data could not be transferred from one site to another because
it is confidential. In this case, a privacy violation refers to the need of
exchanging local training patterns to other nodes in the network. For these
reasons, security protocols must be added to avoid possible interceptions, and
to preserve the sensitivity of the data.

• Primitives: an algorithm can be categorized according to specific mathe-
matical primitives that are requested on the network. In some cases, when
the message is exchanged from one site to another, vector sums, Hamiltonian
cycles or more complex operations may be required. Moreover, they can be
differently implemented based on the specific network’s technology, for example
with a DAC protocol.

• Synchronization: the algorithms differentiate on whether synchronization
approach is used. Particularly, we could have a synchronous strategy during
the communication procedure, or an asynchronous one where an external clock
is not required to diffuse the information.

The distributed learning problem has gained significant importance in the last few
years, drawing more and more attention of several authors. The new scenario has
led to the realization of more suitable machine learning approaches by extending
the traditional centralized algorithms [19].

The following section will provide a summary review of such approaches. In order
to make things clearer, the exposition will have the same structure of the previous
chapter, focusing on different learning approaches, which are the main topic of the
thesis. The review aggregates works coming from multiple interdisciplinary fields.

3.2 State of-the-art

3.2.1 Distributed Hierarchical approaches

The Hierarchical approach will be our start of the analysis of the state-of-the art dis-
tributed learning. This kind of approach is particularly suited for multi-dimensional
spaces, for that it naturally fits a parallel implementation of its centralized version
[20]. Consequently, the basic idea has been discussed multiple times in the literature.

The work presented in [21] is among the first ones exploiting this concept. In
particular, a parallel version of the Kruskals minimum spanning tree algorithm
is presented. There are several processors that store the distance between one
cluster and every other ones, and when new clusters are agglomerated there is no
an updating step with the new ones. Unfortunately, this appears to cause incorrect
clustering operation.

In successive works, there is the introduction of clusterheads. In particular, in
[22] a distributed, randomized clustering algorithm able to organize the data of a
wireless sensor network into clusters is presented. It is based on the creation of
a hierarchy of clusterheads able to increase the saving energy, but invaliding the
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access protocol. Specifically, this strategy could affect the optimal probabilities of
becoming a clusterhead.

A similar idea is derived in [23] where a different approach for creating the
clusterhead is proposed. In particular, is reported a distributed weight-based energy
efficient hierarchical clustering protocol (DWEHC). Each node first locates its
neighbors (in its enclosure region) then, calculates its weights which are based on
the residual energy and on the distance from the neighbors. The node with largest
weight in a neighborhood may become a clusterhead.

Generally, the algorithms based on the hierarchical clustering are just a parallel
version of the centralized ones or are extremely depending on the initial creation of
the hierarchic communication structure. In particular, the node can be classified
as forwarder or aggregators depending on the adopted strategy. In a distributed
scenario, we want that each node has the same importance in the network and that
the optimization strategy will be independent of any node adding or removal in the
graph. For that, the presence of clusterhead may invaliding this purpose.

3.2.2 Distributed k-Means and Fuzzy C-Means

K-Means and Fuzzy C-Means are two of the simplest approaches used for clustering.
The number of classes is fixed a priori and a pattern is assigned to one cluster in
respect to a metric measuring the distance from that pattern to each cluster centroid.
Many applications refer to extensions of these approaches able to face the distributed
context.

In [24], for example, a distributed clustering algorithm called K-D Means is
developed. It is based on a master-slave architecture applied in an Ethernet network.
Data is divided into different subsets, one for each agent, whereas locally evaluated
and the central points are sent between each others to diffuse the information.
Successively, each agent determines the clusters by evaluating the distance between
its own subset and the central points of the others agents. It is shown that if some
data do not belong to the centroid of the local agent, then they will be transferred to
the right cluster of another agent. The process will be repeated until a cost function
becomes less than a certain threshold. This process requires high computation and
communication costs, in addition to the still presence of a master slave architecture.
In a successive work [25], the algorithm is improved by requiring only the exchange
of central points and a limited number of patterns.

An important extension of the distributed k means is showed in [26] and is based
on the implementation of the Optimistic Concurrency Control (OCC) approach, able
to reduce the number of exchanged messages between local agents. In particular, it
is able to better solve the conflicts of partial clustering results when is compared to
a standard parallelised K-Means.

Similar concepts are also explored in [27] where a distributed clustering for the
k-means approach is described. It is based on a distributed method for constructing
a global corset to be used as a proxy for the entire dataset. The advantage lies
on the construction of a small set of points, especially in those contexts where
the communication is restricted to the edges of an arbitrary graph. Subsequently,
the Principal Component Analysis (PCA) is used to improve the performance of
the algorithm over large networks [28]. In this way, authors are able to obtain



3.2 State of-the-art 27

an algorithm whose communication costs are independent from the size and the
dimension of the original dataset.

An alternative approach is applied in [29] where the authors extend theK−windows
algorithm in a distributed scenario. The K−windows algorithm has the ability to
endogenously determine the number of clusters. In this algorithm, no data exchange
is allowed among the local nodes. The algorithm is executed locally in each dataset,
and then the results are sent to a central node responsible of both the final merging
of the windows and the construction of the final results.

The K-Means and Fuzzy C-means approaches are particularly suited for the
distributed context but often, in literature, we can just find a parallel version of the
corresponding centralized ones or versions depending on a coordination node. Thus,
they have to be extended to make them suited for a fully distributed scenario.

3.2.3 Distributed Density based algorithm

In distributed clustering algorithms based on density models, the clustering process
iterates until a neighbors density exceeds a given threshold. In this case, the density
refers to the number of objects or data point to be clustered. One of the most
important density-based clustering algorithms is the so called Density Based Spatial
Clustering of Applications with Noise (DBSCAN).

The distributed density based algorithms are essentially different versions and
extensions of the traditional DBSCAN approach. The first one here analyzed is
a parallel version of DBSCAN [30]. The algorithm firstly uses R*tree to organize
data in the central site, then stores the preprocessed data in each local agent, which
communicates with the others by exchanging messages.

An alternative version is presented in [31], where a distributed version of DB-
SCAN, called DBDC is detailed. It relies on a central node that organizes the results
and resolves conflicts. These works is extended in [32], where the LDBDC is able to
fit noisy and high dimensional datasets.

Similar approaches, with the addition of privacy preserving protocol, have been
extended in [33]. Each local node finds a clustering of its local data based on the
kernel density function that is computed over all the data. The latter is approximated
by exploiting statistical density estimation and sampling theory. The drawback is
that the algorithm requires a central site to compute the necessary metrics to find
an agreement on the parameters. The privacy is preserved not transmitting data
values, but kernel based density estimation samples.

An alternative method is the Distributed Density Based Clustering (DDC) [34].
It is particularly suited for analyzing large, heterogeneous and distributed datasets.
In each site, the local models are created by using the DBSCAN. Then they are
aggregated by using tree based on topologies to construct global models.

All of these approaches are essentially a distributed version of the original
DBSCAN, which guarantees the correct diffusion of the information by using a
central node able to coordinate the communication protocol. However, as stated in
the previous chapter, the distributed scenario has to be able to work without any
reference node.
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3.2.4 Distributed Gaussian Mixture Models

In this context, data is supposed to be sampled from an environment that can
be described by a probability density function (PDF) as a mixture of elementary
conditions. Generally, the Expectation-Maximization approach (EM) is used to
estimate the mixture parameters in an iterative way.

An important work, which approaches this kind of scenario is presented in [35],
where a parallel implementation of the EM, called DEM is presented. In particular,
each node performs an incremental E-step and M-step by cycling through the network
and using data provided by the previous node in the cycle. So, in other words, each
node performs local computation on the sensor data and passes statistics to the next
one in the network, through a node-to-node iteration process. The algorithm is able
to converge to a stationary point of the log likelihood.

In [36], an iterative EM-like method is used to test different methods for clus-
tering in the so-called clustering ensembles approaches. Specifically, it uses three
different approaches: Iterative Voting Consensus (IVC), Iterative Probabilistic Vot-
ing Consensus (IPVC) and Iterative Pairwise Consensus (IPC). The first approach
evaluates the clusters’ center and assigns each point to the closest one. The second
one differs only on the adopted metric, whereas the last one evaluates a similarity
matrix by using information of the previous iterations.

The work in [37] shows a decentralized expectation-maximization algorithm
applied in a distributed learning context, where data is acquired by a series of
wireless sensors. The E-step relies on local information of the individual sensors,
while in the M-steps, information is exchanged with the one hop neighbors to reach
consensus. Unlike the others approaches, this scheme does not allows class conditional
pdfs to be Gaussian. However, it requires bridge sensors to reach a consensus on
the estimated parameters among the neighboring. Compared to the DEM approach,
the last one is certainly more desirable without requiring an incremental looping
through all nodes of the network. However, it is not allowed to be applied in a
fully distributed scenario where no authority nodes have to been imposed to diffuse
information among the agents.

The Expectation-Maximization approaches have been carefully studied to be
applied in a distributed scenario. Being particularly suited for this context, in this
thesis a version able to work in a purely distributed environment is proposed.

3.2.5 Distributed Self-organizing maps

The self organizing map algorithm is extremely simple in its description and practical
implementation. However, it has been poorly investigated in the distributed scenario.

A preliminary work can be seen in [38], where a new self-organizing map is
presented. The code vectors are distributed on a regular low-dimensional grid. It
consists of a modified version of the widely used fuzzy c-means.

An alternative approach is discussed in [39], where a self-organized agent based
architecture for power aware intrusion detection is provided. It describes an efficient
way for selecting the network and monitoring, when the power consumption is the
main limit in the architecture. The approach is able to preserve bandwidth.
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3.3 Formulation of the problem

The previous section has presented a summary review of the recent approaches in the
distributed scenario. In this paragraph, the problem is better formalized by making
use of the graph theory. The distributed problems that will be introduced in the
successive chapters, will always refer to a scenario similar to the one introduced as
follows. Let us consider a set of L nodes in the network that could represent agents
as well as sensors, hospitals, photovoltaic panels or more than this. The model can be
formulated as a directed graph G(V, E), where V = {1, . . . , L} is the set of the agents
(nodes) and E is the set of edges (links) where eij ∈ E ∀ {i, j} with eij = eji. The
existence of a connection implies a communication between the two agents. A visual
representation of this system can be given in Fig. 3.2. The common idea is that

Node 1

Node 3

Node 2

Dataset

Node

Model

S3

Node 4

S1

S2 S4

Model

Input/
Output

Link

Figure 3.2. Distributed network of agents

each agent has access to a local training dataset Dk ∈ D, such that
⋃L
k=1Dk = D.

Generally, the standard input database is a matrix of data D ∈ RnxM , having n
number of distinct data points, also called vectors, transactions, or records, and M
columns, also called dimensions, features, or attributes. When data is distributed
among the several agents, the layout can be different depending on the row-wise or
column-wise approach. Certain mining operations are more efficient considering a
horizontal format, while others are more efficient using a vertical one. Generally,
they can be described in the following way:

• horizontal distribution: the dataset D is partitioned in a local number of
dataset Di where Di ∈ RnixM is such that the

⋃L
i=1Di = D . In other words,

different records are collected at different sites, but each record contains all of
the attributes for the object it describes. In effect, each agent stores, as a unit,
each transaction, along with the attribute values for that transaction. This
is the most common and natural way in which data may be distributed. For
example, a multinational company deals with customers of several countries,
collecting data about different customers in each country. Understanding
its customers around the world is important to set up a global advertising
campaign.
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• vertical distribution: the dataset D is partitioned in a local number of dataset
Di where Di ∈ RnxMi such that the

⋃L
i=1Di = D . In other words, different

attributes of the same set of records are collected at different sites and each
dataset has the same number of rows, but different number of attributes. In
these contexts, each agent combines each attribute with a list of all tids contain-
ing the item, and with the corresponding attribute value in that transaction.
Consequently, each site will have a different view of the data. For example, a
credit-card company may collect data about transactions by the same customer
in different countries, and may want to deal with the transactions in different
countries as different aspects of the customer total card usage.

In Fig. 3.3 and in Fig. 3.4 a visual representation of an horizontal and a verti-
cal partitioning is illustrated. In the distributed context, we can also perform a
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Figure 3.3. Horizontal distributed data

discrimination on the kind of algorithm:

• Parallel algorithms: are applied in coupled systems, in architectures with
multiple processors and in contexts where data is available on a centralized
memory. The aim is to reduce the computational performances, making a
particular computation as fast as possible by exploiting multiple processors.

• Distributed algorithms: are applied in a contexts where data is localized in a
distributed memory and, unlike parallel processing, they do not assume shared
memory since they are based on message passing.

In the rest of the thesis, a distributed algorithm in a horizontal scenario is always
considered: each node represents a separate processor, and acquires the same number
of attributes for each pattern, but a different number of instances.

Let us now focus on the distributed optimization problem.

Definition 3.1. Suppose that the kth agent has to minimize a generic objective
function Jk(w), parameterized by the vector w. Now, in the distributed scenario,
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Figure 3.4. Vertical distributed data

the problem becomes that of minimizing the global joint cost function given by:

J(w) =
L∑
k=1

Jk(w) (3.1)

subject to the constraints that w ∈ Rd:

min
w

L∑
k=1

Jk(w) subject to w ∈ W (3.2)

For a single-agent, there exist several ways to find a solution to this kind of problem.
The Gradient Descent Procedure is the best representative way for minimizing

a cost function in the form of (3.2). It is an optimization algorithm, used to find
the parameters’ value of a function, especially in those situations where they cannot
be calculated analytically (e.g. using linear algebra). It computes the minimum of
Jk(w) by iteratively moving along the best direction to minimize the cost function,
which is the gradient:

wk[n+ 1] = wk[n]− ηk∇wJ(wk[n]) (3.3)

where ηk is the local step-size at time k, whose sequence should be sufficiently small in
order to guarantee convergence to the global optimum, allowing J(w[n+ 1]) ≤ J(w[n]).
Many works exploit the additive property of the gradient update, finding a solution
for the problem (3.2) by summing the gradient contributions from each local node.
Specifically, an application of convex unconstrained problems can be found in [40, 41],
while in [42, 43, 44] an extension on convex constrained problems or non-convex
problem [45].

Besides the gradient descent approaches, other representative methods used to
solve (3.2) can be found in subgradient descents methods [41]. Unlike the gradient
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ones, they are convergent even when applied to a non-differentiable objective function.
The general iterative step can be expressed as follows:

wk[n+ 1] = wk[n]− ηkgk[n]) (3.4)

where gk denotes the subgradient of Jk(w).
Additionally, the dual averaging [43] algorithm is generally designed for min-

imizing a potentially nonsmooth convex function by using a proximal function φ
that is assumed to be 1-strongly convex compared to some norm. In particular, the
proximal function satisfies:

Ψ(y) ≥ Ψ(x) + 〈∇Ψ(x), y − x〉+ 1
2 ‖x− y‖

2 for all x, y ∈ X (3.5)

The generic iterations at time [n], when the algorithm receives a subgradient
gk[n] ∈ ∂Jk(w), can be formalized as follows:

zk[n+ 1] = zk[n] + gk[n];
wk[n+ 1] = ΠΨk

W (zk[n+ 1], αk[n])
(3.6)

where {αk[n]}∞t=0 is a non-increasing sequence of positive stepsizes and:

ΠΨ
Wk

(zk, αk) := arg min
wk∈W

{〈zk,wk〉+ 1
αk

Ψk(w)} (3.7)

is a type of projection. Specifically, the underlying intuition of this approach is
the following: given the current iteration (wk[n], zk[n]) the next one (wk[n+ 1]) is
evaluated by minimizing an averaged first-order approximation of the function J .
Finally, another important approach used to solve convex optimization problem, like
the one in (3.2), can be the alternation direction method of multipliers (ADMM)
[44] that breaks the first original formulation, into subproblems that are simpler to
be handled. Considering the problem:

min
wk,zk

Jk(w) + gk(z)

s.t Awk +Bzk = c
(3.8)

the augmented Lagrangian of the problem can be defined as:

Lk(w, z,y) = Jk(w) + gk(z) + yTk (Awk +Bzk − c) + 1
2 ‖Awk +Bzk − c‖22 (3.9)

In this way, the generic iterations of the ADMM procedure can be defined as:

wk[n+ 1] = argmin
wk

Lk(w,z[n],y[n])

zk[n+ 1] = argmin
zk

Lk(wk[n+ 1], zk,yk[n])

yk[n+ 1] = yk[n] + ρ(Awk[n+ 1] +Bzk[n+ 1]− c)

(3.10)

The ADMM approach can be related to the single Gauss-Seidel pass over wk and zk.
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3.4 Notion of Algebraic Graph Theory

In this section, some preliminary concepts of graph theory that will be used in the
rest of the thesis will be introduced. In particular, there will be introduced the
necessary structures to perform communication in a network of agents, as well the
related adjacency matrix, weight matrix, number of neighbors and so on. The first
concept is about the connection among agents. Specifically, we will say that if two
vertices are connected by an edge, then they will be adjacent. Extending the concept
to all of the agents, the adjacency matrix can be defined as:

Definition 3.2. The adjacency matrix A ∈ RV xV in a undirected graph is a matrix
such that:

Aij =
{

1 if there is an edge between node i and j
0 otherwise

(3.11)

If there are no self edges the diagonal values are all zero. In this case, it is a
symmetric matrix: if there is an edge between node i and node j, there will be an
edge between node j and node i. Otherwise, in a directed network the adjacency
matrix could not be symmetric.

Definition 3.3. The adjacency matrix A ∈ RV xV in a directed graph is a matrix
such that:

Aij =
{

1 if there is an edge from node j and i
0 otherwise

(3.12)

Another importation concept related to the graph is the neighborhood of each node.
In particular, once set the neighbors of each node i as Ni = {j ∈ V : eij ∈ E} for all
i = 1, . . . , N , the Degree matrix can help us in finding out how many neighbors
each node has:

Definition 3.4. The Degree Matrix of the node vi ∈ V provides information on the
number of edges attached to it:

Di =
V∑
j=1

Aij (3.13)

It is a diagonal matrix, where the elements on the main diagonal represent the
degree of the single node, while the others ones are set to zero. The concept of a
number of neighborhood can be extended by analyzing the number of two or more
hops neighbors.

Definition 3.5. The two hops neighbors from node i and node j can be defined as:

V∑
k=1

AikAjk (3.14)

This can be repeated to find out the neighbors of three or more hops:
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Definition 3.6. The three hops neighbors from node i and node j can be defined
as:

V∑
k=1

AilAlkAkj (3.15)

Until now, an unweighted graph has been considered, but often each edge is important
when is related to the others. Therefore, let us consider how the previous notations
change when we consider a weighted graph.

In the rest of the thesis an undirected and weighted graph G is always considered,
so each edge between two vertices vi and vj carries a non-negative weight wij ≥ 0.
In this way, the weight adjacency matrix becomes:

Definition 3.7. The weight adjacency matrix W ∈ RV xV can be defined as:

Wij =
{
wij if there is an edge between node i and j
0 otherwise

(3.16)

If wij = 0 then the vertices vi and vj are not connected by an edge. While, the
degree matrix of a vertex can be redefined as follows:

Definition 3.8. The Degree Matrix of the node vi ∈ V can be defined as:

Di =
V∑
j=1

wij (3.17)

The adjacency matrix and the degree matrix capture the entire structure of the
network and theirs properties tell us a variety of useful things about the graph, but
to have a complete vision of the system, the Laplacian matrix must be added.

Definition 3.9. Given a graph G, its (weighted) weighted matrix W (G) = (wij)
and its degree matrix D(G), then the unnormalized graph Laplacian is defined as:

L(G) = D(G)−W (G) (3.18)

The elements of L can be given by:

Lij =


deg(vi) if i == j

−1 if i 6= j and vi is adjacent to vj
0 otherwise.

(3.19)

Additionally the Laplacian matrix can be formulated in an alternative way:

Definition 3.10. Given a graph G, its (weighted) weighted matrix W (G) = (wij)
and its degree matrix D(G), then there are two matrices which are called normalized
graph Laplacian in the literature:

Lsym := D−
1
2LD−

1
2 = I −D−

1
2W−

1
2

Lrw := D−1L = I −D−1W
(3.20)

.
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3.5 Distributed Average Consensus
Distributed Average Consensus (DAC) is an iterative distributed protocol for com-
puting the global average of a series of local measurements over a network of agents
without the need of a master node, but relying on local communications between
neighbor nodes [46, 47]. This simplicity of implementation, coupled with the robust-
ness to failures of single nodes, makes the DAC protocol suitable to be implemented
on a variety of networks, including those with restrictive constraints in terms of
computational capability.

Let us suppose that each agent i of the network has a vector of measurements θi
which represents its estimate of the quantity θ.

The goal of the protocol is to converge for all the agents to the global average:

θ̂ = 1
V

V∑
i=1

θi (3.21)

For discrete-time distributed systems the (n+1)th iteration of the protocol is defined
by a set of linear updating equations:

θl[n+ 1] =
V∑
i=1

θi[n] (3.22)

which can be represented in form of a linear system:

θ[n+ 1] = Wθ[n] (3.23)

The convergence behavior of DAC is asymptotic [46], but in practical applications,
the procedure is completed or stops when a maximum number of iterations is reached,
or when for each agent, the variation from the current estimate is lower (in norm)
than a tolerance threshold ε:

‖θi[n+ 1]− θi[n]‖22 < ε∀i = 1, . . . L. (3.24)

The convergence properties of the algorithm are strictly linked to the matrix W . If
the weights W are chosen appropriately, the iterations defined in (3.24) converge
locally to the average (3.21). In particular, the previous inequality is true if and
only if:

lim
t→∞W t

= 11t

n
(3.25)

In particular (3.25) holds, if and only if:

1TW = 1T ,
W1 = 1,

ρ(W − 11T /η) < 1
(3.26)

where ρ(·) denotes the spectral radius of a matrix [48].
In case of undirected, connected networks, there are several ways to make the

weight matrix able to satisfy the (3.26) equation. Different strategies for the DAC
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protocol correspond to the different choices of the weight matrix. Clearly, the choice
depends on the available information at every node about the network topology and
on their specific computational requirements. The list below will describe the most
used weight matrices able to satisfy the previous requirements.

Definition 3.11. The Maximum degree weighting [48] method is defined as:

wij =


1

(d+1) i 6= j, {i, j} ∈ E
1− di

(d+1) i = j

0 i 6= j, {i, j} , 6∈ E
(3.27)

where di is the degree of the i-th node, and d is the maximum degree of the network.

Definition 3.12. The Metropolis-Hasting weights [49] for the connectivity ma-
trix W is defined as:

wij =


1

max{di,dj}+1 i 6= j, {i, j} ∈ E
1−

∑
j∈Ni

1
(max{di,dj}+1) i = j

0 i 6= j, {i, j} /∈ E
(3.28)

where Ni is the set of nodes indexed directly connected to node i.

Definition 3.13. The Minimum Asymptotic method [48]is realized in order to
minimize the asymptotic convergence factor ρ(W− 11T /N) where ρ(·) denotes the
spectral radius operator. This is achieved by minimizing the following constrained
optimization problem:

minimize ρ(W− 11T /N)
subject to W ∈ W,1TW = 1T ,W1 = 1

As it has been ascertained in [48], the problem is not convex, but it can be associated
with a semidefinite programming (SDP), and being solved using efficient ad-hoc
algorithms.

Definition 3.14. The Laplacian Heuristic is based on a heuristic approach [48]
that uses a constant edge weights matrix:

W = I− αL (3.29)

where α ∈ R is a parameter defined by the user, while L is the Laplacian Matrix
associated to the network. The weights obtained by (3.29) satisfy the following
relationship when they converge:

ρ(W− 11T /N) = max {λ2(W), λn(W)}
= max {1− αλn−1(L), αλ1(L)− 1}

(3.30)

where λi(W) is the i-th eigenvalue associated to W. The value of α that minimizes
(3.30) is given by:

α∗ = 2
λ1(L) + λN−1(L) (3.31)

If the weight matrix is chosen in this way, it will be sure be double stochastic
symmetric.
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3.6 Conclusive Remarks
In this chapter, it is presented a list of the main important approaches in the
distributed scenario. In particular, by analyzing the previously cited works, it is
possible to say that most of the works are just a parallel version of the original
centralized techniques. Accordingly, they are not actually distributed since they just
split the computation and successively send the results to a central node that makes
a decision. In others applications, bridge sensors, or a loop through all the network’s
node is necessary to reach a common agreement on the final result.

In the rest of the thesis, a work on the fully distributed scenario is carried
out. Focusing on both the supervised and unsupervised learning scenarios, different
techniques where nodes are allowed to exchange information only through the
neighbors are presented. There is no need of central authority to find agreement
among local results.
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Part II

Proposed Distributed
Approaches
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Chapter 4

A decentralized approach for
distributed ensemble clustering

This chapter introduces a heuristic approach for distributed learning. It is based on
the ensemble clustering technique, which is widespread in the centralized case, due to
its ability to improve the quality of individual data clustering. At the same time, its
use on distributed learning has been relatively limited, which is the main motivation
for this chapter. In Section 4.2.1, the ensemble cluster procedure is extended in order
to make it suitable to a fully distributed scenario. Next, the approach is evaluated
on multiple real-world contexts.

4.1 Ensemble Clustering

Cluster ensemble has proved to be a good alternative when facing cluster analysis
problems. As is illustrated in Fig. 4.1, the idea behind this approach is very simple:
to obtain the final result, a set of partitions is extracted from the same dataset
for successively be combined into the final clustering. In this way, the quality of
individual results is improved. These techniques are particularly suited for very large
dataset since they are able to obtain a common structure on partitions [17, 50, 51].

So, formalizing these concepts, if a set of n patterns {x1, x2, . . . , xn} is considered,
different partitions m of the same dataset can be performed P = {P1, P2, . . . Pm},
where each Pi =

{
Ci1, C

i
2, . . . , C

i
ki

}
is a partition of the set X with ki clusters.

Definition 4.1. The ensemble clustering technique aims at finding out the consensus
partition P ∗ ∈ P which better represents the properties of each solution.

It generally works by applying two different steps [17]:

• Generation phase: is the process by which the different partitions are obtained.
Generally, it influences the final result, so an appropriate clustering algorithm
must be chosen to obtain good performances.

• Consensus phase: is the process by which the different partitions are combined
and weighted each others to find out the global one that better fit, with respect
to a defined metric, the existing clustering.
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Dataset

First Partition P 1

Second Partition P 2

Last Partition Pm

Final ClusteringGeneration Consensus

Figure 4.1. Diagram of the general process of cluster ensemble

Leveraging the consensus across multiple clustering results, provides more accurate
and stable solutions when compared to the traditional single clustering techniques.
For this reason, the consensus step is considered the core of these approaches and a lot
of techniques have been developed to find agreement among the results. However, the
commonly used approaches are generally focused on two main consensus functions:
the object co-occurrences and the median partition. In the first one, the idea is to
determine the label associated with each object in the partition. This is performed
by analyzing how many times an object belongs to one cluster or how many times
two objects belong together to the same cluster. In effect, the label association is a
typical problem of the unsupervised learning approach. Since the label associated
with each object in a partition is symbolic, there is no relation between the set of
labels given by a clustering algorithm and the one given by another one. Hence, at
the end of the generation phase, a relabeling procedure is mandatory for find out an
agreement. Among the relabeling based methods, Plurality Voting (PV), Voting for
fuzzy clusterings, Voting Active Clusters (VAC), Cumulative Voting (CV) and many
others can be found.

The second consensus approach, which is the median partition, can be formulated
as an optimization problem where the aim is to find out the partition that maximizes
the similarity among all the partitions of the ensemble:

P∗ = argmax
P∈P

m∑
j=1

Γ(P, Pj) (4.1)

where Γ is the similarity measure between partitions. Generally, the approaches
differ on the local measurement criteria. Below, there are summarized the most
important ones:

• Counting pairs measures: are able to count the pairs of objects on which two
partitions agree or disagree. (Jaccard coefficient, Rand Index, Fowlkes-Mallows
Index and so on).

• Set matching measures: are based on set cardinality comparisons (F measure).

• Information base theory: gives an indicator of the information shared between
two partitions (class entropy, normalized mutual information).
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• Kernel measures: are specifically designed for the median partition and are
proven to be positive semidefinite kernels (graph Kernel based measure).

Recently, an additional criterion has been presented in [52], where to judge the
correctness of a partition, a local similarity criterion δ is created. In particular, the
index can be used to evaluate the similarity between two results and their quality.
It can be expressed as follows:

γi,j = 1
2

(
ps

( 1
ni

ni∑
k=1

ωi,jk + 1
nj

nj∑
k=1

ωj,ik

)
+ pq(δi + δj)

)
(4.2)

where
ωi,j = S(Cki , CC(Cki , Rj)) (4.3)

and ps, pq are two arbitrary parameters given by the user (ps + pq = 1). In 4.3,
S is the similarity between the k-th cluster of the i-th result (Cki ) and CC is the
corresponding cluster of Cki found in the j-th result. After the resolution of the local
conflicts, a global agreement coefficient Γ must be evaluated for the management of
the global results.

Γ = 1
m

m∑
i=1

Γi (4.4)

where
Γi = 1

m− 1

m∑
j=1,j 6=i

γi,j (4.5)

However, the steps required to evaluate this measure are complex and onerous in
terms of time and resources. Additionally, the ensemble clustering criteria focus
only on the consensus’ agreement without allowing a change or a creation of a new
partition. Consequently, they consider the initially provided partitions as the only
necessary ones. In the next section, these limits have been overcomed by extending
the cluster ensemble technique in a distributed context. Hence, differently from the
centralized approach where the different partitions are obtained by considering the
same initial dataset in a central location and varying only the clustering algorithms,
in the proposed approach is added the possibility of treating data spread logically in
a network of agents. Specifically, in this scenario, partitions could be obtained by
using different starting dataset, (accordingly to what each agent is able to initially
acquire) and/or varying the particular clustering approach. Furthermore, the global
common structure is reached through cluster validation indexes able to reduce the
total amount of exchanged information by sending only the local representatives
among nodes. Finally, to be completely independent from the original partitions,
the construction of new solutions will also be allowed.

4.2 Distributed ensemble clustering
In this section, the clustering ensemble techniques presented in [52] has been extended
in a distributed setting. The novelty of the approach presented in this chapter, is
the capability of working with a fully distributed scenario where there is a network
of agents linked together and that acquires data autonomously. To reach the final
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consensus, the agents are not forced to have the same local dataset, while they are
allowed to start with a different partition constructed by considering theirs own data
only. In this way, it is ensured the proper functioning in the worst distributed case,
testing what happens when the number of the initial clusters at each node is different
too. Even when two nodes have both access to the same cluster they still work
with separate data points. For instance, if we think to a sensor network that has
to measure the temperature or the level of air pollution in a physical environment
using sensors spread all over the land, it is not realistic to assume that each node
starts with the same temperature or even the same level of pollution. Additionally,
regardless what is done by the usual centralized ensemble clustering approaches
where all of the data are necessary to reach an agreement, in the proposed approach
only the local representatives are communicated among the neighbors. In this way,
the computational cost and the information exchanged are substantially reduced.

Before introduce the proposed algorithm, the following condition has to been
assumed:

Assumption 4.2. Supposing that the connectivity is known a priori and fixed, then
the network will be:

• fully connected (every node can be reached from any other node);

• undirected (the adjacency matrix is symmetric).

The algorithm is based on a simple idea: the collaboration is carried on by
exchanging information between agents and by using a consensus voting algorithm.
Computing a consensual result from clustering having a different number of clusters
is generally a difficult task, due to the lack of trivial correspondence between the
resulting partitions. In this work, the collaborative process consists of an automatic
and mutual refinement of the results, until the different partitions become statistically
similar with a good internal validity index. In particular, the indexes will check the
disagreement among the partitions, allowing the agents to detect the main conflicts
and solve them by merging or splitting clusters. Additionally, since these operations
are not always necessary the control with a cluster validation index will help us to
check the improvement or the worsening of the adjustments. One of the novelties
introduced is precisely related to the management of the local changes of a clustering
result. Avoiding the use of onerous metrics as (4.2), three validity indexes, further
detailed in Appendix A.1 have been considered to evaluate the local changes based
on the global information:

• Davies-Bouldin Index ([53]);

• Dunn Index ([54]);

• DW-DB ([55]).

Whenever a modification takes place in a local result, the agent computes the index
taking into account the other results. If the modified result obtains better indexes
the changes are accepted and the centroids re-computed, otherwise the conflict is
eliminated and the algorithm iterates. This check is necessary to avoid to fall into
a local minimum or maximum, in fact, the multiple iterations of merge and split
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without any check could produce the situation in which there is one overall cluster
for all the objects or many clusters as the objects are. There are differences in
performance depending on which index is used. The DB index performs well in
highly differentiated datasets but is too inaccurate when the clusters are not well
separated. The Dunn index is useful when there are a lot of attributes but it is
harder to compute and tends to fall in a situation where only one global cluster
is found. The DW-DB index performs better than the others in both separable or
non-separable classes and different datasets.

This first strategy introduced in this thesis for learning in a fully decentralized
way is simple, yet it results in a highly efficient training algorithm. The Validated
Distributed Ensemble Clustering (V-DEC) is composed by four different steps:

4.2.1 Initial Clustering

In the first step, each node has a partial vision of the entire environment. Au-
tonomously the agents try to find out the local partition of their own data by
applying a clustering algorithm. In particular, the different local results should be
obtained employing several algorithms (K-means, Fuzzy C-means, Spectral clus-
tering, EM) or varying theirs parameters (using different dissimilarity measures,
number of the cluster or random initial centers) or just re-sampling or reweighing the
set of objects (different bootstrap sample for given data). There are no constraints
about how the partitions could be obtained. The use of heterogeneous clustering
algorithms balances the performance.

The novelty is the capacity to work with different datasets without require each
node to start with the same local dataset. Even different object representations,
different subsets of objects or projections of the objects on different subspaces could
be used. Hence, completely different local datasets are used to ensure the proper
functioning in the worst distributed case, testing what happens when also the number
of the initial cluster at each node is different. For the sake of simplicity, it has
been decided to work mainly with the K-means algorithm (and the EM for the
comparison), assuming to initialize each agent with the same global number of
clusters; in this way, each node is forced to search more clusters compared to those
it really sees. It is important to underline that the algorithm works the same also if
agents do not have access to all clusters.

Fig. 4.2 introduces a toy problem used to better explain the steps of the algorithm.
In the initial clustering, there are several errors: some clusters are split and others
one are classified as one.

4.2.2 Collaboration Phase

The collaboration phase is composed of two steps: the conflict detection and the
conflict resolution.

Conflict detection

The collaboration phase stems from the fact that each node has to reach a solution
that is similar to the centralized one, where all of the patterns are sent and analyzed
in a single central location. Thus, the first step consists in discovering the main
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Figure 4.2. Toy problem initial clustering

conflicts among the local partitions. Each node exchange the centroids’ information,
or the local representative of the particular algorithm, to construct a global similarity
matrix Omega (Ω). The similarity S(Cki ,Cki ) between two clusters is evaluated by
observing the relationship between the size of their intersection and the size of the
cluster itself. In this way, a measure on the distance between the clusters of a node
and those founded by the other agents is obtained.

Additionally, a corresponding function between objects from each pair of the
dataset is defined in order to observe which cluster from a result is the most similar
to a cluster of an another one.

Definition 4.3. The Corresponding Cluster (CC) of Cki from the result Ri is
founded as the most similar Cki of the result Rj , with i 6= j as the following equation
formalizes:

CC(Cki , Rj) = C lj (4.6)

with
S(Cki , C lj) = max{S(Cki , Cmj ), ∀m ⊆ [1, nj ]} (4.7)

where nj is the number of clusters found in the result Rj by agent j.

Finally, the conflict importance has to be evaluated.

Definition 4.4. The conflicts’ importance K is evaluated performing the inverse of
the similarity value between a cluster and its CC (making it ranged in the interval
0-1):

Ki,jk = 1− S(Cki , CC(Cki , Rj)) (4.8)

It could happen that no conflict occurs between Cki and its CC in the j-th result: in
that case, a NaN is inserted in the matrix.
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Figure 4.3. Toy problem after merging

It has to be noted that, in the cluster ensemble technique [52], a conflict occurs
only when the similarity between a cluster and its CC is less than one. Whereas, in
an actual distributed environment, a conflict may occur also when different clusters
of the same result have the same CC. This occurrence is thus considered as a conflict
in this version of the algorithm.

Conflict Resolution

Once the conflicts are detected, the most important ones, according on their value
of K, are selected to be solved. Generally, the local resolution consists in applying
merging and splitting operators on each involved conflicts in order to improve the
similarity among partitions. The choice is based on the conflict’s importance (value
of K): if it is under a certain threshold the clusters are merged together, otherwise,
the clusters will be split. This situation corresponds to the case in which one cluster
has two or more corresponding cluster in another node, or otherwise when in a
cluster there are more classes than those that really exist. In the traditional cluster
ensemble approaches [52], the normally operations involved in the resolution of a
conflict are three: merging, splitting or reclustering. In particular, the merging
and the splitting are applied together (when a cluster is merged the other involved
in the conflict is split) while the recluster is used if the initial clustering result
is under a certain goodness threshold. In the V-DEC procedure, this version is
revised by making it more suited for a purely distributed environment, changing the
operations involved. In the proposed algorithm, the merging operation is simply
done by reassigning the labels coherently after selecting and storing the elements
which generate conflicts. It can be seen in Fig. 4.3 when two clusters are merged
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Figure 4.4. Toy problem after splitting

together (in the toy problem example).
Instead, the split operation requires a bit more attention. TheK-Means algorithm

is applied again to the conflict’s data point, initializing the number of clusters at
two; hence each cluster involved in the conflict is split into two different clusters
coherently. It has to be noted that, in some cases, the algorithm could apply the
split operator also when it is not required, that’s why a validation index is inserted
to check if the new clustering result is effectively better than the previous one. In
this way, splitting results are carried on only if the validity index of the new cluster
is better than the old one, otherwise, the changes on labels are discarded. After the
resolution, the detection of the conflicts must be reiterated and the cluster labels
must be normalized to ensure that each result has a complete set of labels (if there
are N clusters in a result they should be labeled from 1 to N). The centroids are also
recomputed after each modification of the results. As it can be seen from Fig. 4.4
the split operators is able to divide all of the clusters erroneously created by the
initial clustering.

4.2.3 Additional refinement steps

All of the previous steps are sufficient to converge to the centralized solution when
the complete dataset is given to the agents. Otherwise, an additional step could
become necessary. In effect, in very few cases, it could happen that at the end of
the procedure the similarity matrix Omega is still not diagonal. This means that
there are some additional conflicts to be solved. Hence, the clusters in the columns
of Omega are firstly merged by producing a big cluster that necessitate an accurate
splitting (this type of conflict is not taken into account in the traditional clustering
ensemble techniques):
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Figure 4.5. Toy problem after consensus

Assumption 4.5. A cluster (k) in the i-th result must be split when its CC in the
j-th result (i 6= j) is the same of another cluster (m) of the i-th result found in the
j-th result, and this can be formalized as follows:

CC(Cki , Rj) = CC(Cmi , Rj) (4.9)

with i 6= m and m 6= k.

In these additional steps, the performances of the DB and DW-DB indexes are
very similar, while the Dunn index is inappropriate and thus ignored because does
not allow any splitting of the clusters.

4.2.4 Consensus computation

In the unsupervised learning environment the number of classes and the corresponding
labels are unknown. Hence, at the end of the procedure all of the conflicts have been
solved and different partitions, which only represent a permutation of the original
ones, have been produced. Since all the partitions differ only in cluster labeling, they
can be considered identical in terms of clustering accuracy, thus just a relabeling
operation is necessary to find a common agreement. In the state of the art clustering
ensemble techniques, a consensus operation is in place and works exchanging all the
datapoints between every learner to find an agreement on the label. In the V-DEC
approach, each agent has already evaluated all the centroids, thus there is no need
to exchange other information. The agreement is achieved by applying the initial
clustering algorithm (e.g. K-means) to the centroids. After this step, the labels are
reassigned accordingly.
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Node 1

Node 2

Node 3

Node 4

Figure 4.6. Syntethic description of the V-DEC steps

To better converge to a unified result, for results evaluation purpose only, the
relabeling is done incorporating the real labels of the clusters inside the analysis.
This is further explained in the results section. A visual representation should be
seen in Fig. 4.5 where all the clusters are correctly labeled. The figure shows how
the procedure is suitable for a purely distributed environment where each agent has
to evaluate the labels locally.

A summary representation of the results of each step is given in fig. 4.6 where,
starting from the initial clustering results, the V-DEC operators are able to gradually
improve the solution by achieving, at the end of the procedure, the same global
solution that is obtained by a centralized approach.

Despite its simplicity, the V-DEC results in an interesting algorithm. It is easy
to implement, and it achieves a very low error. The overall scheme of the algorithm
is summarized in the flow chart 1.

4.3 Validation procedure
This section presents some experimental results to show the performance of the V-
DEC algorithm and to evaluate its behavior when is compared with a fully centralized
approach. Four different available datasets of the UCI repository are used to test it
in different distributed scenarios.

A schematic description of them can be found in Table 4.1, while some additional
details are provided as follows:

• Iris Data Set [56] is a classification dataset, composed by 150 instances for
each of the three classes. The input is given by 4 features.

• Wine Data Set [57] where the task is to identify the correct type of wine among
3 classes thanks to 178 instances composed by 13 features.
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Algorithm 1 V-DEC Algorithm
1: Initial Clustering
2: Let R = {Rik}1≤i≤m as the initial set of clustering.
3: Collaboration phase
4: Conflict Detection
5: k = conflicts(R) with Ki,j

k = 1− S(Cki , CC(Cki , Rj))
6: where S(Cki , C lj) = max{S(Cki , Cmj ), ∀m ⊆ [1, nj ]
7: Conflict Resolution
8: Ki,j

k = argmaxKr,s
l

Cl(Kr,s
l ) and CC(Cki , Rj) = C lj

9: Local resolution of conflict
10: If k < threshold then R

′ = R
′ \k ∪ merge(k,Rj)

11: else R′ = R
′{Cjk ∪ split(Cjk, |k| )

12: If {Validity index(R′) > Validity index(R)} then: R = R
′

13: End if
14: End if
15: Additional refinement steps
16: Consensus computation.

• Ionosphere Data Set [58] consists of 16 high-frequency antennas and 17 pulse
number for the Goose Bay system. Instances are described by 2 attributes per
pulse number. It is a binary classification dataset, where each learner gets 87
datapoints with 10 attributes each.

In all cases, input variables are normalized between 0 and 1, and missing values are
replaced with the average computed over the rest of the dataset. As explained before,
the datasets have been partitioned to test the algorithm in a purely distributed
scenario, differentiating from [52] where all the dataset is given to each node. The
number of attributes is different from dataset to dataset, but is always greater than
three. The performances are tested on three different techniques where the same set
of runs and parameters are used:

• Centralized Algorithm;

• Samarah Algorithm that is part of the Cluster Ensemble techniques pre-
sented in [52];

• V-DEC: Validated Distributed Ensemble Clustering.

Before starting with the trials, some preliminary assumptions have to been performed.
In the first step of the V-DEC algorithm the K-means, with a random initialization,
is used as initial clustering approach. The EM algorithm is also used to compare
the results and to see how much the final result is affected by the use of different
local clustering algorithms.

The threshold for the merge and split criterion is fixed to 0.5, this means that
two clusters are merged only if more than half of the elements are in conflict. This is
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Dataset Features Instances Classes Task

Iris Data Set 4 150 3 Classification
Wine Data Set 13 178 3 Classification
Ionosphere Data Set 34 351 2 Classification

Table 4.1. Description of the datasets

the safest value because it avoids accidental merging of clusters that become hard to
be split in the sequent phase. For each test, 100 runs are performed and the average
value is inserted in the results.

As stated in the Consensus section, to be able to evaluate the quality of the final
clustering results, it is necessary that the labels of each learner are all coherent. To
achieve that, a data-driven clustering is applied to all the centroids. The results’
centroids are gathered in a matrix, clustered via K-Means and, taking into account
the real clusters’ centroids, relabeled. In this way, it will be possible to compute
quality indexes to evaluate the performance. To this end, four quality indexes could
be used:

• Rand Index ([59])

• Fowlkes–Mallows index ([60])

• F-measure ([60])

• K-Index ([61])

An accurate description of each one is obtained in the Appendix A.2

4.3.1 Results analysis

In Tab.4.2 the V-DEC approach is compared with the cluster ensemble techniques
and the centralized approach in terms of quality indexes. Best results for each
dataset are reported in bold. As it can be seen, the performance of the proposed
approach is slightly less good when is compared with that obtained by the ensemble
clustering techniques. This is coherent with this analysis, because they use the entire
dataset at each node, while the proposed algorithm forces each agent in having a
partial and different vision for each dataset to work in a purely distributed scenario.
It is important to underline that, despite these constraints, the performances of the
V-DEC procedure are comparable with the centralized approach. Additionally, to
have a more simple representation of the results, a graphical visualization of the
indexes can be obtained in Figures. 4.7a, 4.7c, 4.7b.

Once ascertained that the presented approach is comparable to a fully centralized
one, it has been tested how happens when the topology of the network changes, or
the used clustering algorithms changes. To this end, table 4.3 compares the three
external validity indexes when the number of agents in the network is increased, as
well as when the initial classification algorithm is changed. Best results for each
initial configuration are highlighted in bold. As it can be seen, results are quite
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Dataset Algorithm Rand Index F-Measure F-M Index

Iris C 0.73 (± 0.03) 0.64 (± 0.02) 0.60 (± 0.01)
S 0.85 (± 0.00) 0.78 (± 0.00) 0.78 (± 0.01)

V-DEC 0.76 (± 0.05) 0.65 (± 0.07) 0.59 (± 0.02)

Wine C 0.68 (± 0.09) 0.66 (± 0.03) 0.62 (± 0.04)
S 0.88 (± 0.04) 0.83 (± 0.06) 0.83 (± 0.06)

V-DEC 0.75 (± 0.06) 0.71 (± 0.08) 0.70 (± 0.05)

Ionosphere C 0.56 (± 0.01) 0.53 (± 0.03) 0.50 (± 0.04)
S 0.59 (± 0.03) 0.53 (±0.07) 0.50 (± 0.09)

V-DEC 0.71 (± 0.02) 0.58 (± 0.04) 0.49 (± 0.05)

Table 4.2. Cluster quality Indexes for the Centralized, the ensemble clustering approach
and the V-DEC algorithm.

insensitive to the increasing of the complexity of the network, while the initial
algorithm has more impact in the final values.

4.3.2 Discussion

This chapter presents an extension of the traditional centralized cluster ensemble
technique to the case of a fully distributed scenario. The data is partitioned and
collected over a network of agents. As it can be seen from the previous results, the
V-DEC procedure is slightly less good in respect to the traditional cluster ensemble
technique, (this is coherent with this analysis, because they use the entire dataset at
each node, while the V-DEC procedure forces each agent in having a partial and
different vision for each dataset) reaching similar performance with a fully centralized
implementation.

On the other hand, only the local representatives are exchanged on the network,
increasing the efficiency and the speed of the procedure.
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(a) Iris Dataset (b) Ionosphere Dataset (c) Wine Dataset

Figure 4.7. Quality Indexes comparison for each dataset

Dataset Algorithm N learners FM RI KI

Iris K-Means 1 0.786 ± 0.065 0.845 ± 0.066 0.737 ± 0.196

EM 1 0.827 ± 0.110 0.859 ± 0.101 0.711 ± 0.260

K-Means 4 0.761 ± 0.055 0.828 ± 0.062 0.661 ± 0.020

EM 4 0.676 ± 0.069 0.758 ± 0.050 0.585 ± 0.121

Wine K-Means 1 0.429 ± 0.007 0.594 ± 0.001 0.226 ± 0.003

EM 1 0.534 ± 0.062 0.629 ± 0.073 0.352 ± 0.119

K-Means 4 0.453 ± 0.037 0.570 ± 0.050 0.231 ± 0.062

EM 4 0.441 ± 0.036 0.570 ± 0.033 0.236 ± 0.063

Vehicle K-Means 1 0.367 ± 0.018 0.637 ± 0.021 0.262 ± 0.012

EM 1 0.377 ± 0.025 0.660 ± 0.020 0.245 ± 0.040

K-Means 4 0.369 ± 0.025 0.616 ± 0.039 0.234 ± 0.033

EM 4 0.356 ± 0.027 0.615 ± 0.0302 0.199 ± 0.032

K-Means 10 0.366 ± 0.025 0.617 ± 0.031 0.226 ± 0.027

EM 10 0.342 ± 0.024 0.624 ± 0.022 0.193 ± 0.028

Ionosphere EM 1 0.685 ± 0.059 0.613 ± 0.090 0.319 ± 0.305

K-Means 1 0.605 ± 0.000 0.589 ± 0.000 0.411 ± 0.000

EM 4 0.620 ± 0.067 0.533 ± 0.021 0.089 ± 0.114

K-Means 4 0.599 ± 0.211 0.581 ± 0.020 0.389 ± 0.470

EM 10 0.612 ± 0.060 0.532 ± 0.018 0.107 ± 0.093

K-Means 10 0.596 ± 0.296 0.573 ± 0.024 0.342 ± 0.091

Table 4.3. Cluster quality indexes for K-Means and EM initialization over different initial
network configurations.
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Chapter 5

Distributed spectral clustering

This chapter starts from the observation that in data mining application, like the
one introduced in the previous chapter, the information is encoded in the similarity
matrix between points. Thus in this chapter, an algorithm able to reconstruct
(in a decentralized fashion) the matrix of Euclidean distances (EDM) among all
points is introduced. In the following section, the procedure will be applied on the
particularly spectral clustering technique, but obviously it can be extended on all of
the approaches that make use of a similarity matrix. First of all, a basic introduction
to the spectral clustering technique is provided. Next, it is extended in a distributed
context by the use of an approach based on the gradient procedure.

5.1 Introduction

Performing inference on data which is partitioned over geographically distinct
locations is now considered as a fundamental problem in many scientific endeavors.
Over the last years, different authors have proposed distributed variants for any of the
standard supervised and unsupervised algorithms available in the machine learning
community. The algorithm proposed in this chapter starts from the observation
that in most of the data mining methods the information is encoded in the matrix
D of pairwise distances between patterns. For example, the kernel method or the
regularized terms are essentially based on the information related to the similarity
between points. In this chapter, the focus is on the spectral clustering, which is
also based on this matrix, since it works by performing clustering in a suitably
transformed space, whose mapping is constructed starting from a similarity graph
corresponding to the data. Different ways of constructing the graph (and extracting
its eigenstructure) are possible, but essentially the problem still remains the same:
the procedure depends on the pairwise distances among all points, and to the best
of our knowledge no distributed protocol for its solution has been proposed. Most of
the research has focused in parallelizing its computation with a single coordinating
agent [62, 63].

In a distributed setting, each agent is able to obtain the matrix by using its own
training data, while the information about the distance between points belonging
to different agents is unknown. To obtain this information, in this chapter it is
introduced the task of reconstruction (in a decentralized fashion) the matrix of
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Figure 5.1. An example of eigen-transformation on a 2D dataset. (a) 40 points from the
original data. (b) First 2 eigenvectors of Laplacian matrix computed from a similarity
graph with Euclidean distance on edges. All patterns belonging to a cluster are mapped
to the same point.

Euclidean distances (EDM) among all points. Indeed, perfect knowledge of this
matrix would allow each agent to solve independently the original spectral clustering
problem, for a wide range of different choices of the underlying data graph [64].
Recasting the problem in this way, however, allows us to leverage over a large number
of works on matrix completion [65, 66] and EDM completion [67], especially in the
distributed setting [68, 69]. Particularly, a distributed gradient-descent algorithm,
originally proposed for semi-supervised learning over networks [69] is considered.
This is an iterative procedure, where at each step every agent performs a single
gradient descent step on its own estimate, followed by an averaging step with
respect to its neighbors’ estimates. This kind of techniques have a long history in
the optimization field [70], and they have recently gained a wide popularity under
the name of ‘diffusion’ strategies [71, 72]. The proposed algorithm reduces the
computational complexity by exploiting the specific structure of the EDM matrices,
which allows it to operate on a suitable factorization of the original matrix in order
to reduce the number of parameters to be estimated.

As previously said, the proposed algorithm is the first truly decentralized proce-
dure for performing spectral clustering, which respects the constraints put forward
before, particularly:

• it only considers local communication among neighbors;

• update steps can be performed easily even on low-power devices;

• no coordinating entity is required, such that every node has the same impor-
tance in the overall network.

5.2 Spectral clustering
Before analyzing the distributed environment, the basic concepts pertaining to the
spectral clustering theory are briefly introduced [73, 64].

Suppose it is given a set of N points S = {xi}Ni=1, where each xi ∈ Rd. The aim is
to partition the set S into k disjoint clusters, where k is given beforehand, such that
a predefined measure of quality is optimized (e.g. the ones described in Appendix
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A). The first step of any spectral clustering algorithm consists in constructing a
data-adjacency graph GD =

(
VD, ED

)
,1 where each vertex in VD corresponds to

a point in S, and each edge in ED weights the similarity among two points. An
adjacency matrix WD ∈ RN×N is also defined, where wDij is the similarity among
points xi and xj . There are many ways of constructing WD, corresponding to
different variants of frameworks and part of them is summarized as follows:

• The ε− neighborhood graph, where all of the points with a distance smaller
than ε are connected. At the end of the approach, all of the points obtain
a distance of the same scale (at most ε) so, the weighting of the edges will
not incorporate more information and the graph will be usually considered
unweighted.

• The fully connected graph all of the points with positive similarity are
connected each other. This model is useful if the similarity function itself
models local neighborhoods. As an example, a simple choice is a fully connected
graph based on a Gaussian weighting with bandwidth γ > 0:

wDij = exp
{
−γ ‖xi − xj‖22

}
. (5.1)

The parameter γ plays a similar role as the parameter ε in case of the ε-
neighborhood graph.

Although there are multiple choices for WD, it is important to stress here that
anyone of them practically depends on the Euclidean distance between points, an
aspect which is fundamental in the proposed distributed strategy’s design.

Once the weighting matrix WD is specified, the second step of the spectral
clustering consists in computing the Laplacian adjacency matrix, which is defined
as:

LD = DD −WD , (5.2)

where D is the degree matrix. Similarly to what happens with WD, there are many
variants for constructing LD, such as normalizing it by the degree matrix or using
an iterated version [64].

The third step of the spectral clustering procedure extracts the leading k eigen-
vectors (where k is the number of desired clusters) from LD. This operation could
be implemented efficiently, particularly if the elements of WD are symmetric [74].

Suppose that the eigenvectors are stacked column-wise in a matrix U. The ith
row of U can be interpreted as the transformation of xi in the space induced by the
eigenstructure of LD. Based on this consideration, the last step of SC algorithms
is to cluster in k groups the rows of LD, typically by using the standard k-means
procedure. A schematic description of the spectral clustering procedure can be given
in the Algorithm: 2.

The rationale for this is that clustering in this new space is generally simpler
since it exploits a priori the similarity information contained in the adjacency graph
(similar ideas can be found in other areas of machine learning, such as semi-supervised

1A superscript D is used to differentiate it from the agents’ graph introduced in the next section.
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Algorithm 2 Unnormalized spectral clustering
1: Input : Let K as the number of clusters and S ∈ Rnxn

2: Construct a similarity graph by one of the way described in the previous section
and let W be its weighted adjacency matrix.

3: Compute the unnormalized Laplacian L.
4: Compute the first k eigenvectors u1, . . . , uk as columns.
5: for i = 1 to n do
6: Let yi ∈ Rk be the vector corresponding to the i-th row of U .
7: end for
8: Cluster the points (yi)i=1, ... ,n in Rk with the k-means algorithm into clusters
C1, . . . , Ck

9: Output: Clusters A1, . . . , Ak with Ai = {j|yj ∈ Ci}

learning with manifold regularization [75]). As an extreme case, consider the toy
problem presented in Fig. 5.1. The original 2-dimensional points in Fig. 5.1a are
organized in two optimal clusters, one of which is non-trivial to capture with a
standard k-means, which assumes hypersphericity of the clusters. However, in the
new domain induced by U (see Fig. 5.1b), all the patterns belonging to a cluster
are mapped to a single point.

5.3 Distributed Spectral Clustering over Networks

5.3.1 Formulation of the problem

For the rest of this work, it is assumed that the dataset S to be clustered is not
available in a centralized location and that the following assumptions are needed:

Assumption 5.1. The dataset is partitioned over L agents, such that the kth agent
has access to a dataset Sk and the union of each local dataset gives us the original
one:

L⋃
k=1

Sk = S (5.3)

Assumption 5.2. The connectivity among agents can be represented as a second
graph, that in this work is called the agents’ graph, GA =

(
VA, EA

)
, such that:

• each vertex v ∈ VA is an agent;

• two agents i and j can communicate (i.e. exchange information) between them
only if the edge (i, j) is in the set EA.

Assumption 5.3. The agents’ graph is assumed to be:

• time-invariant;

• connected (i.e., two agents are always reachable by traversing a finite amount
of edges);
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• undirected, such that if (i, j) ∈ EA, then (j, i) ∈ EA.

Additionally, let us supposed that a mechanism of synchronization for performing
iterative computations is available for each node. This is a standard assumption in
most of the literature on distributed learning [76, 77, 78].

From what said in the previous section, it is clear that the distributed spectral
clustering problem is equivalent to the distributed computation of the matrix LD,
which in turn is equivalent to the computation of the EDM E. In the following
section, an efficient distributed gradient algorithm is proposed to this end.

5.3.2 Distributed computation of the EDM

In the proposed algorithm is presented the problem of EDM completion [79]. Gener-
ally, the matrix completion problem could be defined as the problem of recovering
the missing entries of a matrix only from a set of known entries [65]. It has many
practical applications, as well as sensors localization, covariance estimation, and
customer recommendations.

Generally, the problem is the one of recovering the missing entries of a distance
matrix when the dimension of the data unknown is generally smaller compared to
the number of considered data points.

Let Ek be the EDM computed only from the patterns in Sk; we are interested in
estimating, in a totally decentralized fashion, the global EDM with respect to all the
N patterns. To begin with, we note that with a proper rearrangement of patterns,
the global EDM E can always be expressed as:

E =

E1 ? ?

? . . . ?
? ? EL

 , (5.4)

This particular structure implies that the sampling set is not random, and makes
non-trivial the problem of completing E solely from the knowledge of the local
matrices. At the opposite, the idea of exchanging the entire local datasets between
nodes is unfeasible because of the amount of data which would need to be shared.

Based on these considerations, it is proposed a framework for the distributed
estimation of Ek, which consists of four steps:

1. Patterns exchange: every agent exchanges a fraction p of the available Sk
with its neighbors.
This step is necessary so that the agents can increase the number of known
entries in their local matrices. In order to maximize the diffusion of the data
within the network, this step is iterated n

(1)
max times; at every iteration, an

increasing percentage of shared data is constituted by pattern received by the
neighbors in previous iterations. A simple strategy to do this consists, at the
iteration n, to choose n

(1)
max−n+1
n

(1)
max

p patterns from the local dataset, and n−1
n

(1)
max

p

patterns received in the previous n− 1 iterations. In order to preserve privacy,
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this step can include one of the privacy-preserving strategies known in the
literature [80] (it is further detailed this in Sec.8.4).

2. Local EDM computation: each agent computes, using its original dataset
and the data received from its neighbors, an incomplete approximation Êk ∈
RN×N of the real EDM matrix E.

3. Entries exchange: the agents exchange a sample of their local EDMs Êk

with their neighbors. Again, this step is iterated n(2)
max times using the rule of

step 1. In this case, n(2)
max denotes the maximum number of iterations.

4. Distributed EDM completion: the agents complete the estimate Ẽ of the
global EDM using the strategy detailed next.

5.3.3 Diffusion gradient descent

The last step of the algorithm is concerning with the distributed EDM completion.
The idea is to complete the square matrix Ẽ containing the pairwise distances among
the training patterns:

Ẽij =
∥∥xi − xj

∥∥2
2 ,∀i, j = 1, . . . , N (5.5)

Definition 5.4. Generally the Euclidean distance matrix satisfies the following
conditions:

• the matrix is symmetric;

• Ẽij = 0 for all the elements on the main diagonal;

• it entries are not-negative and satisfy the triangle inequality;

• it is rank deficient. It is possible to show that the rank of Ẽ is upper bounded
by d+ 2 (and the rank is generally d+ 2), so in all practical applications it is
very small when is compared to the number of data points ( d� N).

By exploiting this property, it can be concluded that the full Euclidean distance
matrix from a restrictive set of given distances can be evaluated since the low-rank
property assures that there is redundancy between the available data.

Assumption 5.5. In the following, let us suppose to have observed only a subset
of entries of Ẽ, in the form of Ê. More formally, this can be formalized this in the
following way:

Ẽ =
{
Êij = Ẽij if Ωij = 1
Êij = 0 otherwise

. (5.6)

where the local matrix Ωk is:

Ωk =
{

1 if Êij 6= 0
0 otherwise

. (5.7)
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Starting from this formulation the aim is to recover the original matrix Ẽ from Ê
by minimizing an optimization problem. To this end, an associating with each agent
k to a twice-differentiable cost function Jk(Ẽ) is need to seek the unique minimizer
of the aggregate cost function Jglob(Ẽ) for finding a matrix Ẽ.

Definition 5.6. The specified (joint) cost function to be minimized can be expressed
as:

min
Ẽ∈EDM(N)

L∑
k=1

Jk(Ẽ) =
L∑
k=1

∥∥∥Ωk ◦
(
Êk − Ẽ

)∥∥∥2

F
, (5.8)

where EDM(N) is the set of EDMs of size N ×N , |A‖F is the Frobenius norm of
matrix A and ◦ denotes the Hadamard product.2

The problem in (5.8) is known to be NP-hard in general, but convex relaxations
can be realized in order to render the problem tractable. A convenient alternative
formulation is to cast it into an optimization one on the set of positive semidefinite
matrices. In particular, it is exploit the algorithm introduced in [69], which in turn
derives from the framework of diffusion adaptation (DA) for optimization [77] and
on previous works on EDM completion [67]. In this way, the objective function
can be formulated only in terms of the low-rank factor V, strongly reducing the
computational cost of the realized algorithm:

Definition 5.7. The problem in Eq. (5.8) can be reformulated in the following
way:

Jk(V) =
∥∥∥Ωk ◦

[
Êk − κ

(
VVT

)]∥∥∥2

F
k = 1, . . . , L , (5.10)

where κ(·) is the Schoenberg mapping, which maps every positive semidefinite (PSD)
matrix to an EDM, given by:

κ(E) = diag(E)1T + 1diag(E)T − 2E , (5.11)

such that diag(E) extracts the main diagonal of E as a column vector, and it is also
exploited the known fact that any PSD matrix D with rank r admits a factorization
{D = VVT}, where V ∈ RN×r∗ = {V ∈ RN×r : det (VTV) 6= 0}.

A practical advantage of this formulation is that the rank of V identifies the
dimension of the embedding space. In this way, the problem becomes to find out
a formulation that can obtain the low-rank factor V in a decentralized and online
manner. There are several possible ways by which the distributed strategies can be
used to seek the minimizer of Eq. (5.8). In this approach, it will be supposed that at
every iteration, are executed two operations. The first is an updating, where agent
k combine the existing iterates from its neighbors to obtain an intermediate iterate.
All of the other agents are simultaneously performing a similar step. In particular,

2 In particular, let us suppose to have two matrices A,B of the same dimension nxp, then the
Hadamard product A ◦ B is a matrix of the same dimension as the operands, evaluated in the
following way:

(A ◦B)i,j = (A)i,j(B)i,j (5.9)
For matrices of different dimensions (nxp ans mxq, where n 6= m and p 6= q) the Hadamard product
is undefined.
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the intermediate estimate is evaluated by using a gradient descent algorithm on the
smooth cost function.

The second operation is a diffusion step, where agent k approximates the vector
V and uses it to update its intermediate iterate. Again, all of the other agents in the
network are simultaneously performing a similar information exchange step. The

Algorithm 3 Pseudocode of the proposed distributed spectral clustering algorithm,
at the kth agent.
1: Input : Local dataset Sk, number of nodes L (global), maximum number of

iterations T .
2: for n = 1 to n(1)

max do
3: Select a set of input patterns and share them with the neighbors Nk.
4: Receive patterns from the neighbors.
5: end for
6: Compute the incomplete EDM matrix Êk n = 1 to n(2)

max

7: for n = 1 to n(2)
max do

8: Select a set of entries from Êk and share them with the neighbors.
9: Receive entries from the neighbors.

10: Update Êk with the entries received.
11: end for
12: Initialize Vk[0].
13: for n = 1 to T do
14: Compute Vk[n] using Eq. (5.12).
15: Diffuse local information using Eq. (5.14). end for
16: Compute the Laplacian matrix L̃ from Ẽ.
17: Perform spectral clustering using L̃.

distributed completion of the EDM is thus obtained by combining the following steps,
and it is generally defined as an alternation of updating and diffusion equations, in
the form of [69]:

1. Initialization: All the agents initialize the local matrices Vk as random N×r
matrices.

2. Updating of V: At time n, the kth agent updates the local matrix Vk using
a gradient descent step with respect to its local cost function:

Ṽk [n+ 1] = Vk[n]− ηk[n]∇Vk
Jk(V) . (5.12)

where ηk [n] is a positive step-size. It is straightforward to show that the
gradient of the cost function is given by:

∇Vk
Jk(V) = κ∗

{
Ωk◦

◦
(
κ
(
Vk [n] VT

k [n]
)
− Êk

)}
Vk [n] , (5.13)
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where κ∗(A) = 2 [diag (A1]−A) is the adjoint operator of κ(·).

3. Diffusion: In order to propagate information over the network, the updated
matrices are combined according to some mixing weights C ∈ RL×L:

Vk [n+ 1] =
L∑
i=1

CkiṼi [n+ 1] . (5.14)

where Cki > 0 if and only if agents k and i are connected, in order to send
information only through neighbors. The mixing weights are generally chosen
to provide a convex combination at every agent. A simple choice, which is used
throughout the experimental results, are the so-called ‘max-degree’ weights
(3.27).

This approach has two main advantages. First, it is able to take into account
naturally the properties of EDM matrices. Secondly, at every step, each node has a
complete estimate of the overall matrix, instead of a single column-wise block. Thus,
there is no need of gathering the overall matrix at the end of the optimization process.
For a rationale of this approach and an analysis of its convergence behavior in the
case of convex cost functions, it is possible refer to any introductory publication on
DA [72, 77]. Convergence of a similar family of algorithms in the case of non-convex
cost functions is instead derived in [45]. The proposed algorithm for distributed
spectral clustering over networks is summarized in Algorithm 3.

5.4 Experimental Validity

5.4.1 Experimental Setup

This section evaluates the performance of the proposed algorithm when is compared
with a fully centralized approach, where local data is sent beforehand to a (virtual)
centralized processor. Six different public datasets available on the UCI repository
[81] are considered; a schematic description of which is given in Table 5.1. In all

Dataset Features Instances Classes Original Task

Australian credit approval 14 690 2 Classification
Hill-Valley 100 606 2 Classification
Ionosphere 34 351 2 Classification
LSVT Voice Rehabilitation 309 126 2 Classification
Twomoons 2 400 2 Clustering
Vehicle Silhouettes 18 752 4 Classification

Table 5.1. Detailed description of each Dataset. Additional information on them is provided
in Section 5.4.1

cases, the optimal clustering is known beforehand for testing purposes, either in the
case of classification datasets (where clusters correspond to classes) or because the



64 5. Distributed spectral clustering

Agent 1 Agent 2

Agent 3

Cluster 1

Cluster 2

Figure 5.2. Example of distributed clustering over a network, involving two clusters
(denoted by circles and squares, respectively), and three agents. Every agent has a
varying number of points, and it may not have representatives from each of the clusters.

dataset is artificially generated. In the following, some additional information on
each of them is presented.

• Australian credit approval was already introduced in Sec. 7.5.2.

• Hill-Valley dataset has the task to identify whenever the plotted points will
create a Hill (a “bump” in the terrain) or a Valley (a “dip” in the terrain).

• Ionosphere: which was already discussed in Section 4.3.1.

• LSVT Voice Rehabilitation [82] dataset where the aim is to assess whether
voice rehabilitation treatment leads to phonations considered ’acceptable’ or
’unacceptable’. Each feature corresponds to the application of a speech signal
processing algorithm which has to characterize objectively the signal.

• Twomoons dataset contains two clusters, whose shape is similar to a waxing
and waning crescent moon.

• Vehicle Silhouettes [83]: it contains four classes of vehicles to be classified with
a set of features extracted from their silhouette. The vehicles may be viewed
from one of many different angles.

In all cases, input features were normalized between -1 and 1 before the experiments.
All experiments are then averaged over 5 different runs of simulations. In each run it
is considered a random topology of 7 nodes according to the so-called “Erdos-Rènyi
model” [84] such that every pair of nodes is connected with a fixed probability
p = 0.5. The only global requirement is that the overall topology is connected. At
each round the overall dataset is randomly partitioned among the agents (as in Fig.
5.2).The following two algorithms are compared:

• Distributed Spectral Clustering: this is the previously described approach where
the Laplacian Matrix is evaluated in a distributed fashion using the distributed
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EDM completion algorithm presented in Section 5.3.2. For the initial exchange
phase, a small value of n(1)

max = n
(2)
max = 150 is set. The EDM estimation

algorithm is run for T = 1000 iterations. For the step-size, a fixed step-size
strategy is used. In particular, the optimal values of η is chosen searching it in
the exponential interval 10j with j ∈ {−10,−9, ..., 2, 3}.

• Centralized approach: this is equivalent in having a centralized agent, where
the traditional spectral clustering algorithm is performed on the global dataset.
It is used as an optimal benchmark to evaluate the proposed approach.

It is used a standard spectral clustering procedure, where the Laplacian matrix is
constructed using Eq. (5.1) with γ = 1, which was found to work relatively well on
all datasets.

5.4.2 Results

Dataset Algorithm F-Measure Rand-Index K-Index F-M Index

Australian credit approval C 0.445 ± 0.198 0.499 ± 0.004 0.028 ± 0.014 0.564 ± 0.041

D 0.473 ± 0.000 0.500 ± 0.000 0.032 ± 0.000 0.504 ± 0.000

Hill-Valley C 0.488 ± 0.178 0.501 ± 0.001 0.042 ± 0.019 0.596 ±0.059

D 0.506 ± 0.024 0.500 ± 0.000 0.029 ± 0.000 0.499 ± 0.000

Ionosphere C 0.944 ± 0.000 0.811 ± 0.000 0.046 ± 0.000 0.655 ± 0.000

D 0.641 ± 0.035 0.504 ± 0.000 0.119 ± 0.000 0.638 ± 0.000

LSVT Voice Rehabilitation C 0.418 ± 0.000 0.509 ± 0.000 0.091 ± 0.000 0.542 ± 0.000

D 0.434 ± 0.113 0.499 ± 0.000 0.139 ± 0.000 0.532 ± 0.000

Twomoons C 0.723 ± 0.361 0.813 ± 0.000 0.792 ± 0.000 0.817 ± 0.000

D 0.788 ± 0.254 0.751 ± 0.000 0.711 ± 0.000 0.752 ± 0.000

Vehicle Silhouettes C 0.222 ± 0.139 0.448 ± 0.036 0.026 ± 0.007 0.386 ± 0.023

D 0.170 ± 0.080 0.650 ± 0.000 0.187 ± 0.000 0.312 ± 0.000

Table 5.2. Experimental results on the different dataset. The average and the standard
deviation of the F-Index, Rand Index, Kappa Index, FM-Index are shown for both the
centralized (C) and the distributed (D) approaches. Best results for each algorithm are
highlighted in bold.

The goal of the experiment was to evaluate how the proposed distributed EDM
algorithm can influence the performance of the external quality indexes introduced
in Appendix A.2 when is compared with a centralized algorithm:

• Rand Index [59]

• Falks-Mallows [60]

• F-measure [60]

• K-Index [85]
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Figure 5.3. The Rand Index for all of the described datasets for both the Centralized
Spectral Clustering algorithm and the Distributed approach.

The results are summarized in Table 5.2 where they have been averaged over 10
k-means evaluations and over the different agents in the distributed case. For each
dataset, the mean and the standard deviation of each quality index is computed.
The best result for each dataset and for each index is highlighted in bold.

As it can be seen, the results of the two approaches are reasonably aligned.
Whereas the centralized approach can significantly boost performance for almost all
the quality indexes in the Ionosphere dataset, in the other examples results are more
comparable. In particular, in the Australian credit approval, Hill-Valley, LSVT Voice
Rehabilitation, and Twomoons datasets the values of the quality indexes are very
similar, while in the Vehicle Silhouettes dataset the proposed approach outperforms
the centralized one with respect to the F-measure and the F-M Index. The most
important result suggested from Table 5.2 is that the distributed EDM computation
can indeed be an effective approach to be applied in a distributed scenario since it
is able to match very closely the performance of the centralized spectral clustering
algorithm.

To further strengthen the results, a visual representation of the Rand-Index is
given in Fig 5.3. As it has been noted the two approaches present a similar behavior
in the majority of datasets. A slightly worse trend is reported for the Ionosphere
dataset, but it is offset by the behavior of the Vehicle Silhouettes dataset that
presents an increase of nearly 20% of the Rand Index. To reinforce the conclusion,
it is reported a completion error during the iterations of the distributed EDM
estimation algorithm. The error is evaluated at each iteration in the following way:

Err = 1
L

L∑
k=1

∥∥∥E− Ẽk

∥∥∥
‖E‖ . (5.15)

The convergence of the proposed approach, averaged over the different runs, is
summarized in Fig. 5.4, where on the x-axis is reported the iterations number and
on the y-axis the EDM completion error.

The reported trend proves that the proposed approach is able to rapidly converge
to the real EDM. It can be said that, with the sole exception of the Twomoons, the
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(a) Australian credit approval
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(b) Hill-Valley
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(c) Ionosphere
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(d) LSVT Voice Rehabilitation

0 200 400 600 800 1000 1200 1400

0.3

0.32

0.34

0.36

0.38

Iterations

E
D

M
 c

o
m

p
le

ti
o
n
 e

rr
o
r 

E
(D

)

(e) Twomoons
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(f) Vehicle Silhouettes

Figure 5.4. Average EDM completion error of the distributed gradient procedure, at each
iteration. The vertical bars represent the standard deviation from the error.

algorithm is able to obtain very similar results in all of the datasets, where in a few
number of iterations it obtains very low errors. The error is independent of the size
of the dataset, although a low number of steps are necessary to reach convergence
to a reasonable accuracy.
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5.5 Discussion
This chapter has introduced a fully distributed procedure for performing spectral
clustering over networks of computing agents. The proposed approach is able to
efficiently match a fully centralized implementation, without however requiring the
presence of a coordinating node, and using only in-network communication.
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Chapter 6

Distributed Learning for
RWFNN

This chapter continues the investigation on distributed training algorithms from
a different point of view, adding the possibility to the data to arrive one-by-one
or chunk-by-chunk. Specifically, it is introduced an approach for random weight
fuzzy neural network, which is based on the Adaptive Neuro-Fuzzy Inference System
(ANFIS). The use of these models is widespread in the centralized case, due to their
good trade-off of algorithmic simplicity and non linear modeling capabilities. At the
same time, their use in the distributed learning setting has not been investigated in
depth and this is the main motivation for this chapter. After introducing the Random-
Weight Fuzzy Neural Networks, their application in the distributed approach has
been described.

6.1 Fundamentals

This section introduces some concepts and results that will be used in the rest of
this chapter. First of all, some preliminary information on the Adaptive Neuro
Fuzzy Inference System are given, then an explanation on how it can be extended
to realize the Random Weight Fuzzy Neural Network (RWFNN) is detailed. Finally,
an on-line training procedure is introduced.

6.1.1 Adaptive Neuro Fuzzy Inference System

A little description of the Adaptive Neuro Fuzzy Inference System (ANFIS), in-
troduced by Jang in 1993 [86] is presented in this section. In this technique, the
features of Artificial Neural Network (ANN) and the ones of a Fuzzy Inference System
(FIS) are linked together to realize a methodology able to model the imprecision
and uncertainty of a system by using the adaptability of the learning procedure
typical of a neural network. The capability to deal with incomplete, uncertain
and hypothetical information, makes it suitable tool for the solution of regression,
density estimation, classification and pattern recognition problems [87, 88]. The
idea underlying the operating model is very simple. Firstly, the initial fuzzy model
is derived by considering the input-output data. In particular, the Takagi Sugeno
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fuzzy inference system is used for learning the parameters of the C different fuzzy
rules, where the kth rule, can be defined in the following way:

Definition 6.1. The kth rule, k = 1 . . . C, of a TS system is:

If x1 is B(k)
1 , x2 is B(k)

2 . . . and xD is B(k)
D then

y(k) = h
(
x;ω(k)

) (6.1)

.

where x = [x1 x2 . . . xD] is a row vector (or pattern) in the D-dimensional
(embedded) input space and y(k) is the scalar output associated with the rule. The
latter is characterized by the membership functions (MFs) µ

B
(k)
j

(xj) of the fuzzy

input variables B(k)
j , j = 1 . . . D, and the set of parameters ω(k) of the related crisp

output functions in the consequent parts. Several alternatives are possible for the
fuzzification of crisp inputs, the composition of input MFs, and the way rule outputs
are combined [89].

Once obtained the parameters of the fuzzy inference system, in a successively step,
the artificial neural networks are used to tune the rules and produce the final ANFIS
model. A general scheme of the ANN is given in Fig. 6.1, where the architecture is
composed of one fixed hidden layer and a linear output one. In this particular case,
the connections from the hidden layer and the output are fixed, while the ones from
the input and the hidden are trained by the network. To produce the output value,

x1

x2

xd

h1

hi

hβ

yy

Figure 6.1. Architecture of an ANN

the input parameters must be opportunely combined.

Assumption 6.2. The mathematical model able to link the relationship between
the input and the output can be described in the following:

f(x) =
B∑
i=1

βihi(x) = βTh(x) (6.2)

where β ∈ RB and h(x) = [h1(x1), . . . , hB(xB)]T .
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This is equivalent to a linear model over the transformed vector h(x), and several
methods exist to solve this kind of formulation. These models are widespread in
different contexts: kernel methods, radial basis functions, wavelet expansions but in
this chapter, theirs application on the Random Weight Fuzzy Neural Network are
deepen investigated.

6.1.2 Random Weight Fuzzy Neural Networks

This section, the RWFNN [90] is considered, by reformulating the classical approach
represented by Adaptive Neuro-Fuzzy Inference System (ANFIS). The RWFNN is
an inference system where the fuzzy rule parameters of antecedents (i.e. membership
functions) are randomly generated and the ones of consequent are estimated using a
regularized least square algorithm.

The structure of an RWFNN consists of 5 feed forward layers and a visual
representation can be analyzed in Fig.6.2. Each layer is constituted by a set of nodes
and each node is associated with a fuzzy rule. Each node performs a particular
operation on the signals coming from the previous layer and sends the result of the
calculation to the nodes in the next layer.

X

Y

A1

A2

B1

B2

∏

∏

N

N

∑
f

xy

xy

I II III IV V

Figure 6.2. A typical ANFIS architecture for a two-input Sugeno model

The aim is estimate a scalar output y ∈ R from a d-dimensional input x =
[x1, . . . , xd]T. Each feature of the input is fuzzified and mapped onto a set of
membership functions (MFs). Let m be the number of rules of the RWFNN network,
then the structure of the fuzzy inference system can be summarized as follows:

• Layer 1. Every node i in this layer, i = 1 . . .m, is associated with an input
MF µ(i,j)(xj ,α(i,j)) operating on the jth dimension of the input vector x for
the ith rule. The number and the range of the antecedents’ parameters α
depend on the type of the MFs. Their values are chosen at the beginning of
the learning process from a fixed probability distribution, which is independent
of the training data.

• Layer 2. Every node in the second layer corresponds to an if-then rule of the
FIS. If the adopted operator for the logical AND is the algebraic product, then
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the output of the ith node is:

wi(x) =
d∏
j=1

µ(i,j)(xj), i = 1 . . .m. (6.3)

• Layer 3. Normalization:

wi(x) = wi(x)∑m
h=1wh(x) , i = 1 . . .m. (6.4)

• Layer 4. Local output of the ith rule:

f̃i(x) = wi(x)(βT
i x+), i = 1 . . .m, (6.5)

where βi is the (d + 1)-dimensional vector given by βi = [β(i,0), . . . , β(i,d)]T
and x+ = [1,x]T.

• Layer 5. This layer is constituted by a single node that computes the overall
output ŷ as the sum of all the normalized firing strengths:

ŷ =
m∑
i=1

f̃i . (6.6)

In first instance, the case when the entire training set is available before the learning
procedure is considered.

Definition 6.3. Let T = {(x1, y1), . . . , (xn, yn)} be the set of data available for the
training phase, and denoting with x(r,j) the jth component of the rth input vector,
then the hidden matrix H =

[
H1, . . . , Hm

]
can be defined as:

Hi =


wi wix(1,1) · · · wix(1,d)
wi wix(2,1) · · · wix(2,d)
...

... . . . ...
wi wix(n,1) · · · wix(n,d)

 , i = 1 . . .m, (6.7)

. Rearranging the parameters β in the form:

β = [β(1,0) . . .β(1,d)β(2,0) . . .β(2,d) . . .β(m,0) . . .β(m,d)]T, (6.8)

the optimization problem for training an RWFNN can be reformulated as a Least-
Squares (LS) problem:

min
β∈Rp

1
2 ‖y−Hβ‖22 + λ

2 ‖β‖
2
2 (6.9)

where p = m(d+ 1) and λ > 0 is the regularization factor.

The problem (6.9) has a unique solution, given by:

β∗ =
(
HTH + λI

)−1
HTy . (6.10)
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The learning procedure can be easily adapted to the classification problem. In the
case of binary classification, where y ∈ {−1, 1}, the estimated class of a pattern x is
given by:

ŷ = sgn f(x) . (6.11)

In a multi-class classification problem, the output y can assume values in set of M
labels, each one corresponding to a class. A possible way to represent this situation
is to represent a generic output yi as a vector of M elements yi,j , yi,j = 1 if the
correspondent x is of class j, and yi,j = 0 otherwise. In this case β becomes a p×M
matrix and y a N ×M matrix, and the norm in (6.9) is replaced with a matrix
norm (e.g. the Euclidean norm).

6.1.3 Online learning of RWFNNs

In the classical training of ANFIS networks, a typical problem arises in the estimation
of numerical parameters of antecedents and consequents for each fuzzy rule. The
methods used to update the parameters can be broadly divided into batch learning
schemes and sequential learning schemes.

Definition 6.4. Batch learning schemes assume that the entire training data is
available before starting the learning process.

They can be used exclusively for the training offline, keeping the system parameters
constant while computing the error associated with each sample in the input. In
particular, the learning algorithm updates its parameters after consuming the whole
batch. In [86, 91, 90] a batch version of the ANFIS technique is proposed, where
the algorithm requires a cycle on the complete dataset over a number of epochs.

On the other hand, there is the sequential approach:

Definition 6.5. Sequential learning schemes assume that the entire training data
is not available before beginning the training procedure, but data arrives one-by-one
or chunk-by-chunk.

The sequential learning should be used for both the off line and on-line training. The
former considers a static dataset, while in the latter some additional constraints have
to be inserted. In both cases, data used for learning become available in a sequential
order before being used to update the best predictor at each step. These methods are
particularly suited for those contexts where it is computationally infeasible to train
over the entire dataset for memory and computationally requirements, or for those
ones where the dynamical adaption of the algorithm to new patterns in the data is
mandatory. For their capability to work with non stationary dataset, the on-line
learning approaches started to be extensively studied. In [92] an approach based on an
on-line learning of Takagi-Sugeno (TS) type is proposed. Furthermore, a Simplified
eTS (Simpl_eTS) [93], a dynamic evolving neurofuzzy inference system (DENFIS)
[94], and a sequential adaptive fuzzy inference system (SAFIS) [95] represent only
few part of the literature involved in this field. However, all these approaches are
able to handle data on a one-by-one basis, causing problems when data arrive on a
chunk-by-chunk basis. For that, in the following section is presented an algorithm
able to work in contexts where data arrives chunk by chunk. Additionally, to make
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the problem more realistic, the application is allowed to be extended on a distributed
context where data are acquired in different local areas.

Thus, for the rest of these sections, an on-line learning will be considered:

Assumption 6.6. Let us assume that the training set is not entirely available before
the learning procedure but it is provided to the model in form of a sequence of
mini-batches T1, . . . , TN , such that:

T =
N⋃
k=1
Tk . (6.12)

This is a typical scenario in systems where data is acquired and processed
continuously over time (e.g. sensors in industrial plants, trade data in financial
markets), or when the size of the training set is extremely large to make the matrix
inversion in (6.9) computationally infeasible. In this case, the RWFNN can be
trained using the BRLS algorithm, which consists of a sequence of two-step updates.
Let β [0] = 0 and P [0] = λ−1I be the initial estimates of the consequents parameters
and of the state matrix respectively. At the (k + 1)th iteration, a new chunk of data
Tk+1 is presented to the model. Denoting with Hk+1 and yk+1 the hidden matrix
and the output vector computed on the new data, the estimates of the state matrix
and of the consequents parameters are updated according to:

P [k + 1] = P [k]−P [k] HT
k+1K−1

k+1Hk+1P [k] (6.13)
β [k + 1] = β [k] + P [k + 1] HT

k+1 (yk+1 −Hk+1β [k]) , (6.14)

where
Kk+1 = I + Hk+1P [k] HT

k+1 . (6.15)

The recursive formulation is based essentially on the use of the QR decomposition
and, at each iteration, the new matrix is appended to the matrices originated by the
QR decomposition of the preceding iteration. The ’old’ and the ’new’ information
are weighted by a forgetting factor λ. This procedure is characterized by very good
numerical stability, the new parameters are evaluated by using only raw data and
without forming any correlation matrix. Working directly on data, and using a
stable linear technique like the QR, the robustness of the algorithm is increased and
the numerical stability is enhanced. Details on the convergence of the algorithm can
be found in [96] and references therein.

6.1.4 Distributed Average Consensus

Sec.3.5 has already introduced the distributed average consensus protocol, while this
chapter applies this theory to the distributed learning of a RWFNN model.

Theoretically, different strategies can be employed in the distributed learning of
ANFIS networks. That is, by the application of rules’ synthesis based on distributed
fuzzy clustering and distributed least-squares estimation. A preliminary work can
be found in [97], where an OS-Fuzzy-ELM is presented. All of the antecedent
parameters of membership functions are randomly assigned first, and then, the
corresponding consequent parameters are determined analytically. However, this
topic has not been exploited sufficiently in literature.
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Exploiting the fact that when dealing with the RWFNNs the parameters of the
membership functions are randomly selected instead of being estimated during the
learning process, in the following section this approach is combined with the DAC
protocol, in a distributed scenario.

Differently from what is generally performed by the centralized online learning
algorithm, in the proposed distributed approach each agent is able to receive and
work with a stream of one-by-one data or chunk by chunk. The concept of epoch
disappears, allowing the algorithm to avoid retraining whenever new data is received.
In particular, when a new chunk of data is received each agent updates the estimate
of the consequent parameters by using the Block Recursive Least-Squares (BRLS)
algorithm. Then the approach is able to converge to a single model for all agents,
by using the DAC protocol. The learning algorithm is designed such that it does
not require the presence a coordination authority, nor the exchange of any possibly
sensitive data through the network.

For the rest of the work a network of L interconnected agents, whose connectivity
is described by a directed graph G(V, E) is considered, where V = {1, . . . , L} is the
set of the agents and each edge e ∈ E represents a connection. The existence of a
connection implies a communication between the two agents. An agent i is said
‘neighbor’ of an agent j if ei,j ∈ E .

Let us resume briefly the basic concept of DAC. Each agent i has a vector of
measurements θi, which represents its estimate of the quantity θ. The goal of the
protocol is for all the agents to converge to the global average:

θ̂ = 1
L

L∑
l=1

θl . (6.16)

For discrete-time distributed systems the (n+1)th iteration of the protocol is defined
by a set of linear updating equations:

θl [n+ 1] =
L∑
l=1

θl [n] , (6.17)

which can be represented in form of a linear system:

θ [n+ 1] = Wθ [n] . (6.18)

If the weights W are chosen appropriately, the iterations defined in (6.18) converge
locally to the average (6.16).

6.2 Distributed On-Line Learning of RWFNN

This section puts together all of the previous notations by formally introducing the
distributed on-line procedure for the RWFNN. A training set T distributed over a
network of agents is considered.

Assumption 6.7. Each agent k receives a stream of data in form of a sequence of
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mini-batches Tk,1, . . . , Tk,N , such that:

N⋃
i=1
Tk,i = Tk

L⋃
k=1
Tk = T

(6.19)

The goal is to agree on a single model for each agent, with performance comparable
to a centralized RWFNN trained using the entire data set available up until then. In
order to make the algorithm suitable to be implemented in a variety of architectures
and applications with stringent requirements in terms of connectivity and privacy, a
set of constraints have to been introduced.

Assumption 6.8. The algorithm must satisfy the following items:

• no agent is allowed to coordinate the training process;

• agents are not allowed to exchange any data pattern;

• only local communication between connected agents is possible.

By combining the problem of distributed learning with the RWFNN criterion, it
can be said that:

Definition 6.9. The global optimization problem of the distribute RWFNN can be
stated as:

β∗ = min
β∈Rp

1
2(

L∑
k=1
‖yk −Hkβ‖22) + λ

2 ‖β‖
2
2 (6.20)

where Hk and yk are the hidden matrix and output vector computed over the local
dataset Sk.

Remember from Section 6.1.2 the optimal weight vector, in this case, it can be
expressed as:

β∗ = (
L∑
k=1

(HT
kHk) + λI)−1

L∑
k=1

(HT
k yk)

=
(
HTH + λI

)−1
HTy .

(6.21)

The proposed algorithm finds the optimal solution of (6.21) in a distributed fashion,
using an alternation of local updating steps based on the BRLS algorithm introduced
in Sect. 6.1.3 and global averages steps computed using the DAC protocol illustrated
in sec. 6.1.4. Practically, the algorithm consists in the following steps:

1. Initialization: all the agents agree on the parameters of the antecedents. This
step can be achieved with a single run of the DAC protocol. Additionally, each
agent i initializes its state matrix Pi[0] = λ−1I and its consequents parameters
βi[0] = 0.
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2. At the (k + 1)th iteration, each agent i receives a new chunk Ti,k+1. Then the
iteration consists of two phases:

(a) Local update: the agents update their local estimates of the parameters
of the consequents βi[k + 1] and of the state matrix Pi[k + 1] according
to Eqs. (6.13)-(6.14), using the local data Ti,k+1.

(b) Global average: all the agents agree on a single vector for the conse-
quents parameters through the use of the DAC protocol. The final value
for the parameters of the consequents at the iteration k + 1 is given by:

β[k + 1] = 1
L

L∑
i=1

βi[k + 1] . (6.22)

The overall algorithm at the ith agent is summarized in Alg. 4.

6.3 Experimental validity

6.3.1 Description of the datasets

To validate the proposal, the algorithm has been tested on three datasets available
from the UCI Machine Learning repository1, whose characteristics are summarized
in Table 6.1. The datasets have been chosen in such a way that they could represent
a variety of applicative domains and problems. Below, more information about each
of them is provided:

• Concrete - This is a civil engineering dataset [98] representing a regression prob-
lem, where the attributes represent some chemical properties of the concrete,
and the goal is to predict the concrete compressive strength.

• Transfusion - This is a binary classification dataset, consisting in an extraction
of records from a donor database [99]. The features represent the statistics
about the donor’s past blood donations. The goal is to predict whether the
donor donated blood in March 2007.

• CCPP - This dataset represents the problem of predicting the electrical energy
output of a power plant from some ambient variables [100, 101]. Particularly
interesting in the context of the proposal is that the measurements have been
collected from a network of sensors located around the plant during a period
of 6 years.

All the datasets have been preprocessed before the training procedure by scaling
their input features between −1 and 1. Each input feature is mapped onto two
linguistic labels.

1http://archive.ics.uci.edu/ml
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Algorithm 4 Pseudocode of The On-line Distributed RWFNN Algorithm at The
ith Agent
1: Input : Let L (global) as the number of agents, N as the number of mini-batches,
Ti as the training set, λ as the regularization parameter and ε as the tolerance
threshold.

2: Output to be estimated is β∗.
3: Generate the parameters of the membership functions, in accordance with the

other L− 1 agents.
4: Initialize β∗i [0] = 0, Pi [0] = λ−1I.
5: for k = 0 to N − 1 do
6: Update βi[k + 1] and Pi[k + 1] according to:

P [k + 1] = P [k]−P [k] HT
k+1K−1

k+1Hk+1P [k]

β [k + 1] = β [k] + P [k + 1] HT
k+1 (yk+1 −Hk+1β [k]) ,

where
Kk+1 = I + Hk+1P [k] HT

k+1 .

7: Compute β∗i [k + 1] using the DAC protocol:

β[k + 1] = 1
L

L∑
i=1

βi[k + 1]

8: end for
9: return β∗i [k + 1]

Assumption 6.10. For each linguistic label a triangular Membership Function is
used:

µ(x; a, b, c) =



0 x < a

x− a
b− a

a ≤ x ≤ b

c− x
c− b

b ≤ x ≤ c

0 x > c

, (6.23)

where a, b and c are sampled from the uniform distribution in [−1, 1], with the
constraint that a < b < c.

Since in this work the aim is not the one of achieving the lowest possible error for
the datasets but rather to demonstrate the effectiveness of the proposal, a thorough
search of the best fuzzy set for each variable has not be conducted.
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Dataset Features Instances Task Desired Output

Concrete 8 1030 R Concrete Strength
Transfusion 4 748 BC Blood Donation
CCPP 4 9568 R Electrical Energy

Table 6.1. Description of The Datasets.

6.3.2 Experimental setup

An open-source MATLAB toolbox 2 has be used to implement the proposal. During
the implementation, the attention is not concerned on the effect of the communication
deriving by a distributed implementation, but more about the convergence behavior
of the algorithm. For this reason, it is provided a serial version of the algorithm
where the network is simulated. The following algorithms are compared:

• Cons-RWFNN: this is a RWFNN trained according to the DAC-based pro-
cedure illustrated in Sect. 6.2. For all the experiments the maximum number
of consensus iterations is set to 300 and ε = 10−4.

• OLS-RWFNN: this is a RWFNN trained using centralized BRLS-based
algorithm illustrated in Sect. 6.1.3, where all the training set is collected and
made available at a single node. This model serves as a lower bound for the
accuracy of the distributed approach.

• L-RWFNN: in this model, each agent receives a stream of data and updates
its local estimate of the consequents parameters, but no agreement takes place
in the network.

• ADMM-RWFNN: this is the model proposed in [90], where the training
data is distributed through the network and the RWFNN is trained in batch
on the entire dataset using the well-known Alternating Direction Method of
Multipliers (ADMM).

The results of the experiments are computed over a 10-fold cross validation on each
dataset, and each experiment is repeated 10 times to average out and mitigate
possible randomness effects due to the random initialization of the parameters of
the antecedents. The optimal values for the regularization factor λ are obtained
by running a 5-fold cross validation using OLS-RWFNN on the training data, and
then sharing them with all the other algorithms. The regularization parameter λ
is searched in the discrete interval 10j , j ∈ {−3,−2, . . . , 2}, and the optimal values
resulting from the search are reported in Table 6.2.

For all the experiments, a 12-agent network is constructed according to the so-
called ‘Erdős−Rényi model’[84], where every pair of agents has a 35% of probability
to be connected, and the network is forced to be strongly connected. The edge
weights W are chosen using the ‘max degree’ strategy (3.27) described in Section
3.5

2https://bitbucket.org/robertofierimonte/code-distributed-online-rwfnn
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Dataset name λ

Concrete 10−3

Transfusion 10−2

CCPP 10−2

Table 6.2. Optimal Values for The Regularization Factor λ

6.3.3 Results and discussion

In the experiments, an analysis on how the results change when new patterns are
presented to the systems is performed in terms of time of convergence. For all
the datasets, the models are initialized using a small block of 100 patterns, and
each subsequent mini-batch consists in 20 patterns. In case of regression datasets
- Concrete and CCPP - the performance of the models are evaluated using the
Normalized Root Mean-Squared Error (NRMSE):

NRMSE =

√√√√∑N
i=1(ŷi − yi)2

Nσ̂y
(6.24)

where σ̂y is the estimated variance of {yi, . . . , yN}.
For the Transfusion dataset, the average misclassification error is used. The

final measurement results are summarized in Table 6.3. As it can be expected, the

Dataset Algorithm Test Error Training Time [s]

Concrete
OLS-RWFNN 0.256± 0.147 18.410± 1.860

Cons-RWFNN 0.262± 0.013 17.870± 1.638
L-RWFNN 0.325± 0.022 17.780± 1.635

ADMM-RWFNN 0.258± 0.157 2.180± 0.174

Transfusion
OLS-RWFNN 0.223± 0.014 0.294± 0.028

Cons-RWFNN 0.229± 0.010 0.291± 0.009
L-RWFNN 0.237± 0.007 0.269± 0.009

ADMM-RWFNN 0.224± 0.014 0.211± 0.135

CCPP
OLS-RWFNN 0.072± 0.012 1.616± 0.325

Cons-RWFNN 0.087± 0.006 1.630± 0.399
L-RWFNN 0.154± 0.016 1.485± 0.316

ADMM-RWFNN 0.072± 0.012 0.370± 0.059

Table 6.3. Final Values of Test Error and Computational Time (Average and Standard
Deviation)

centralized approach is able to obtain the best results in terms of test error, for all
the considered datasets. This happens because the global vision of the entire dataset
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reduces the possibility of error during the training phase, although increasing the
amount of data to be treated in a single central processor. Coherently with the
expectations, L-RWFNN obtains the worst results in terms of test error since no
collaboration among the agents is allowed during the training procedure. Additionally,
it can be noted that the proposed algorithm is able to track efficiently the accuracy
of OLS-RWFNN and ADMM-RWFNN, since it achieves only a slightly higher error,
ranging from an additional 0.01 for Concrete and CCPP to approximately the same
values for Transfusion. Additionally, the training procedure for Cons-RWFNN is
generally faster when compared to the centralized approach, since the dataset is
partitioned among the agents, making the process faster and easier.

For a visual representation the evolution of the error as new data arrives at the
network, is reported on the left panel of Fig. 6.3. It should be observed that in all
cases, L-RWFNN fails in tracking the performance of OLS-RWFNN, especially for
Concrete. Additionally, it suffers from high variance, due to the different results
achieved by the agents. On the opposite, Cons-RWFNN is able to track the behavior
of OLS-RWFNN, achieving very similar performance, in particular for CCPP and
Concrete. For Transfusion dataset, it can be noted an imperceptible increase in the
error of Cons-RWFNN after 20 iterations caused by the procedure used for distribute
the data. Finally, on the panel on the right of Fig. 6.3 is shown the evolution of the
number of DAC iterations. As it can be expected, the number of iterations required
to reach consensus decreases as the numbers of available patterns increases, showing
that at the end all the agents converge to a common structure.

6.3.4 Observations

In this chapter an innovative on-line training method for RWFNN is introduced.
The parameters of the antecedent are randomly fixed before the training process and
the case is the one in which the training data are distributed across a network of
interconnected agents. Experimental results obtained on benchmark datasets prove
the effectiveness of our proposal and its ability to efficiently match a fully centralized
implementation, without however requiring the presence of a coordinating agent.
A natural extension of this problem might concern the use of different and more
complex FNN architecture.
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(b) Consensus Iterations (Dataset CCPP)
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(c) Training error (Dataset concrete)
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(d) Consensus Iterations (Dataset concrete)
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(e) Training error (Dataset Transfusion)
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Figure 6.3. Performance of Cons-RWFNN and L-RWFNN, compared to OLS-RWFNN,
as the agents obtain new data. The panels on the left show the evolution of the error,
while the panels on the right show the iterations to reach consensus.
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Chapter 7

Distributed
Expectation-Maximization

This section follows the lines of the previous chapters, where the problem of perform-
ing inference on data distributed across a network of agents, with limited connectivity,
is treated. A non-convex distributed optimization in multi-agent networks with
time-varying (not symmetric) connectivity, is applied to the well-known Expectation
Maximization (EM) approach. The local solutions of the EM problem are found by
exploiting a convexification-decomposition technique, through which a sequence of
strongly convex, decoupled, optimization subproblems is created. The agreement is
achieved by a consensus-based update.

7.1 Introduction

As widely discussed in the previous chapters, distributed optimization techniques
have witnessed a surge of interest for multi-agent systems fields. As previously
said, many such problems can be formulated as the cooperative minimization of the
agents’ sum-utility J :

min
w

L∑
k=1

Jk(w)

s.t. w ∈ W
(7.1)

where each Jk(w) : Rm → R is the smooth cost function of agent i ∈ {1, . . . , L} .
In some cases, to promote some extra structure in the solution, a nonsmooth term
is added to the overall objective function:

min
w

L∑
k=1

Jk(w) +G(x)

s.t. w ∈ W
(7.2)

In this way the solution could be regularized; for instance, the structuresG(x) = c ‖x‖1
or G(x) = c

∑N
i=1 ‖xi‖2 are widely used to impose sparsity on it.
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Optimization problems in the form of (7.2) are interesting in many scientific
endeavors, especially for those ones where the optimization could not be performed
in a centralized fashion. Motivated by these observations, a solution method, with
provable convergence, has been developed in the next section for the general class of
density-based clustering algorithms. Among them, the Gaussian Mixture Model is
certainly the most famous one [102], with batch and incremental versions rely on
data that is assumed to be available at a central processing unit [103, 104].

Recently, parallel and partially decentralized version of them starts to be pro-
posed, with the still presence of a master-slave architecture to achieve performances
comparable to the centralized scheme. However, they are not applicable for the
general formulation of (7.2), and/or in a fully distributed scenario as the one intro-
duced in chapter 3. For instance, some of them require the knowledge of the whole
J from all the agents; others call for the presence of a fusion center collecting at
each iteration data from all the agents; others are implementable only on specific
network topologies.

This chapter introduces a new proposal to this issue, where a distributed frame-
work with provable convergence for the nonconvex multi-agent optimization is
presented. It is based on the Gaussian Mixture Model for solving an Expectation
Maximization approach. The agreement among the local results is achieved by a
step of consensus learning. A convexification-decomposition technique [105] is used
to find the local solution of the EM problem of each agent, by means of a sequence
of strongly convex, decoupled, optimization subproblems. In each subproblem, the
agents compute theirs estimate locally, independently from the others. Successively,
a consensus step is performed to force an agreement on the different solutions. A
stopping criterion is inserted to break the procedure when an ad-hoc convergence
criterion will be satisfied.

In the following sections, the centralized Expectation-Maximization approach is
first introduced. Successively, is detailed the proposal to its distributed version.

7.2 Problem Statement
For the rest of the chapter, a distributed setting satisfying the below assumptions
will always considered.

Assumption 7.1. (On the problem)
The network is composed of I agents such that:

A1 each agent collects Mi measurements yi1, . . . yiMi , with yim ∈ RD for all
i, . . . m;

A2 the measurements are assumed to be independent and identically distributed
(i.i.d);

A3 the environment is stationary and unchanging during the course of the mea-
surement process thanks to the i.i.d. assumption.

Assumption 7.2. (On Data Distribution)
Let N (y|µ,Σ) denotes the evaluation of a Gaussian density with mean µ and
covariance Σ at point y, then:
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• the precision matrix is defined as P = Σ−1;

• the measurements are assumed to obey a Gaussian mixture distribution with
K classes of the form:

yim ∼
K∑
k=1

πikN (yim|µk,Σk), (7.3)

m = 1, . . . ,Mi, i = 1, . . . , I;

• πik is the prior probability of the agent i associated with the kth Gaussian
component, and such that

∑K
k=1 πik = 1.

All parameters are unknown, thus the goal consists in obtaining a distributed
algorithm for estimate such parameters from the underlying data y = {yim}i,m. Fol-
lowing a maximum likelihood (ML) approach, the proposal proceeds by maximizing
the log-likelihood function:

L(y|π, µ,Σ) =
I∑
i=1

Mi∑
m=1

log
(

K∑
k=1

πikN (yim|µk,Σk)
)

(7.4)

where the set of unknown parameters is given by the tuple θ = {π, µ,Σ}, where
π = {πi}Ii=1 with πi = {πik}Kk=1, µ = {µi}Ii=1, and Σ = {Σi}Ii=1.

The EM algorithm is a well known numerical method used to compute the ML
estimates in the presence of incomplete observations [106].

In particular, a set of latent variables z ∈ RIM , with M =
∑I
i=1Mi is generally

introduced. They are not directly observed but are rather inferred from the observa-
tions. They represent an indicator vector such that, the lth entry zl is equal to k if
the lth observation belongs to the kth class.

Hence, the incomplete observations are combined with the complete ones to give
the overall set of variables to the model. Since z is unknown, it will be treat as
a random variable. In the sequel, for completeness of exposition, a recall on the
centralized EM algorithm is given.

7.3 Centralized EM Algorithm
In a centralized approach, the entire vector of observations y is sent to a single
computing unit, which is in charge of performing the maximization of (7.4), which
could be rewrite avoiding the dependence on the number of agents:

L(y|π, µ,Σ) =
M∑
m=1

log
(

K∑
k=1

πkN (ym|µk,Σk)
)

(7.5)
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Assumption 7.3. Data Distribution

A1 Let βt = {[µtk]Kk=1, [vec(Σt
k)]Kk=1} be the set of estimates of means and covari-

ances at the tth iteration of the EM algorithm, where vec(·) denotes the
vectorization operator.

A2 for each node, let πt =
{
πti
}I
i=1 be the estimates of the mixing probabilities at

the t-th iteration over all the network.

A3 let θt = {πt, βt}.

Then, the EM iteration alternates between performing an expectation (E) step,
and a maximization one. In the former, it is created a function for the expectation
of the log-likelihood by using the current estimate of the parameters. While in
the latter, the parameters are evaluated by maximizing the expected log-likelihood
obtained in the previous step.

Expectation Step: at each iteration t, the algorithm replaces (7.4) with a concave lower
bound evaluated around the current estimate θt, which is given by the conditional
expectation:

Q(θ, θt) = Ez
{
L(y, z|θ)|y, θt

}
=

I∑
i=1

g̃i(θ; θt) (7.6)

where

g̃i(θ; θt) =
Mi∑
m=1

K∑
k=1

αtikm [ln πik + lnN (yim|βk)] (7.7)

αtikm = πtikN (yim|βtk)∑K
k=1 π

t
ikN (yim|βtk)

, m = 1 . . . Mi,

k = 1 . . . K, i = 1 . . . I.
(7.8)

It is easy to prove that (7.6) has the same gradient of (7.4) when is evaluated at
θt. Thus, (7.6) and (7.4) share the same optimality conditions at θt. Everything in
the E step is known before the step is taken except for the αikm, which is computed
according to (7.8) at the beginning of the E step section.

Maximization Step: the new estimate θt+1 is obtained by solving the optimization
problem:

θt+1 = arg max
θ∈C

Q(θ; θt), (7.9)

where C is a feasibility set that constrains the values of θ. Typically, C requires that
πi is a positive vector whose components sum up to one, for all i, and that each
matrix Σk ∈ SQ++ (or Pk ∈ SQ++), for all k, where SQ++ is the cone of positive definite
matrices.

Problem (7.9) admits the closed form solution:

πt+1
ik = 1

Mi

Mi∑
m=1

αtikm, for all i, k, (7.10)
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µt+1
k =

∑I
i=1

∑Mi
m=1 yimα

t
ikm∑I

i=1
∑Mi
m=1 α

t
ikm

, for all k, (7.11)

Σt+1
k =

∑I
i=1

∑Mi
m=1(yim − µtm)(yim − µtm)Tαtikm∑I

i=1
∑Mi
m=1 α

t
ikm

, for all k. (7.12)

The EM algorithm is guaranteed to convergence to a local maximum of the likelihood
function [107], but it is sensitive to the initialization of the parameters. Therefore,
to ensure convergence to a good local minimum, a suitable initialization is needed. It
is important to notice that while the estimate of prior probabilities in (7.10) requires
knowledge of local information only, the estimates of the other parameters in (7.11),
(7.12), require global information.

In the next section, it is illustrated a way of distributing the optimization in (7.9)
via local cooperation among agents embedded into a sparse communication network.

7.4 Distributed EM Algorithm over networks

Let us now consider a distributed environment, where agents are connected to each
other via a sparse undirected graph G = {V, E}, where V is the set of vertices (nodes)
and E is the set of edges. The neighborhood of agent i (including node i) is defined
as Ni = {j|(j, i) ∈ E} ∪ {i}; it sets the communication pattern between single-hop
neighbors: agents j 6= i in Ni can communicate with node i. Associated with graph
G, it is associated a set of positive weights W = {wij} ∈ RI×I matching the topology
of G, i.e., such that wij > 0 if j ∈ Ni, and 0 otherwise. The following assumption on
the network connectivity, and on the matrix W has also be performed:

Assumption 7.4. On the network topology/connectivity:

(A1) The graph G is connected, i.e., there exists a undirected path connecting any
pair of nodes in the network;

(A2) The weight matrix W is doubly stochastic, i.e., it satisfies

W 1 = 1 and 1TW = 1T . (7.13)

Several choices able to satisfy Assumption A2, such as the Laplacian weights,
the maximum degree weight, the Metropolis-Hasting and so on have already been
introduced in Sec 3.5 .

Leveraging on the previous assumptions, the sequel will introduce the proposed
distributed learning approach. Devising a distributed algorithm for maximizing (7.4)
faces two main challenges, namely: the nonconvexity of the L in and the lack of
global information at each agent side. To cope with these issues, a general framework
for distributed nonconvex optimization over networks recently proposed in [105] has
been exploit. It combines SCA techniques with dynamic consensus mechanisms, as
described next.

Local SCA optimization: each agent imaintains a local estimate of the global opti-
mization variables in (7.4) in the structure θti = {πti , xti}. Specifically, πti are the local
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prior probability vectors iteratively updated; while xi is equal to {[µtik]Kk=1, [vec(P tik)]Kk=1}
[with Pik = Σ−1

ik being the local estimate of the k-th precision matrix].
Following the approach proposed in [105], at each iteration t, every agent builds

a local (strongly concave) approximation (f̃) of the objective function (7.4) at the
current point θti . As for the centralized implementation of the EM algorithm, a
natural choice for such approximation exploits the surrogate function in (7.6)-(7.7),
in order to permit each agent to compute locally and efficiently the new iteration.
In particular, each agent i solves the following optimization problem:

max
(πi,xi)∈C

f̃i(πi, xi;πti , xti) +
∑
j 6=i

htj(xi) (7.14)

where

f̃i(πi, xi;πti , xti) = g̃i(πi, xi;πti , xti)−
τ

2‖xi − x
t
i‖2, for all i, (7.15)

htj(xi) =
Mj∑
m=1

K∑
k=1

αtjkm lnN (yjm|xik), for all j 6= i, (7.16)

with τ > 0. The solution of problem (7.14) cannot be computed by node i in a fully
distributed manner yet, because the second term in the objective function depends
on information (e.g., data) that is not locally available. To cope with this issue, the
second term in (7.14) is linearized around point xti, thus obtaining:

max
(πi,xi)∈C

f̃i(πi, xi;πti , xti) + qi(xti)T (xi − xti) (7.17)

where qi(xti) =
∑
j 6=i∇xihtj(xti). Now, all the missing information needed by agent

i to perform the computation in (7.17) is represented by the (unknown) gradient
vector qi(xti). Thus, as proposed in [105], the qi(xti) in (7.17) is replaced with a local
estimate, say q̃ ti , asymptotically converging to qi(xti), and solve instead:(

π̂ti , x̂
t
i

)
= arg max

(πi,xi)∈C
f̃i
(
πi, xi;πti , xti

)
+ q̃ ti

T (xi − xti) (7.18)

In the sequel, it has been shown how to update the local estimate q̃ ti in (7.18) in a
totally distributed manner.

Dynamic consensus over the network: Rewriting qi(xti) in (7.17) as

qi(xti) = I ·

1
I

I∑
j=1
∇xihtj(xti)


︸ ︷︷ ︸

,∇h(xti)

−∇xihti(xti) (7.19)

the updating of q̃ ti is obtained by mimicking (7.19):

q̃ ti = I · sti −∇xihti(xti), (7.20)
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where sti is a local auxiliary variable (controlled by user i) that aims to asymptotically
track ∇h(xti). Leveraging dynamic average consensus methods [108], this can be
done updating sti according to the following recursion:

st+1
i =

∑
j∈Ni

wijs
t
j +

(
∇xihti(xt+1

i )−∇xihti(xti)
)

(7.21)

with s0
i , ∇xihti(x0

i ), and where {wij}ij is any set of weights satisfying Assumption
A2. Since the weights are constrained by the network topology, agent i updates
its estimate sti by using messages received only from agents in its neighborhood Ni.
Furthermore, letting

∇xihti(xti) = {[∇µikh
t
i(xti)]Kk=1, [vec(∇Pikh

t
i(xti))]Kk=1},

it could be obtained:

∇µikh
t
i(xti) = P tik

Mi∑
m=1

αtikm(yim − µtik) (7.22)

∇Pikh
t
i(xti) = 1

2

Mi∑
m=1

αtikm

(
(P tik)−1 − (yim − µtik)(yim − µtik)T

)
(7.23)

for k = 1, . . . ,K, i = 1, . . . , I.

7.4.1 Distributed Maximization Step

Problem (7.18) can be recast as:

max
(πi,xi)∈C

Mi∑
m=1

K∑
k=1

αtikm ln(πik) +
Mi∑
m=1

K∑
k=1

αtikm lnN (yi,m|xik) + q̃ ti
T (xi − xti)

− τ

2‖xi − x
t
i‖2 (7.24)

From (7.24), the prior probability vector πi is obtained by solving the following local
sub-problem:

max
πi

Mi∑
m=1

K∑
k=1

αtikm ln(πik)

subject to
K∑
k=1

πi,k = 1, πi,k ∈ [0, 1],
(7.25)

which admits the closed form solution:

π̂ti,k = 1
Mi

Mi∑
m=1

αtikm, k = 1, . . . ,K. (7.26)

Also, let q̃ ti = {q̃ tµi , q̃
t
Pi
}, with q̃ tµi = [q̃ tµik ]Kk=1 and q̃ tPi = [q̃ tPik ]Kk=1. Thus, from (7.24),

the mean vectors µik’s are obtained by solving the following subproblem:

max
{µik}Kk=1

− 1
2

Mi∑
m=1

K∑
k=1

αtikm(yim − µik)TP tik(yim − µik) +
K∑
k=1

q̃ tµik
T (µik − µtik)

− τ

2

K∑
k=1
‖µik − µtik‖2. (7.27)
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Problem (7.27) is additive in the variables {µik}Kk=1, and thus it can be split into K
subproblems, each one having closed form solution given by:

µ̂ti,k =

Pik Mi∑
m=1

αtikm + τI

−1Pik Mi∑
m=1

αtikmyim + q̃ tµik + τµtik

 , (7.28)

k = 1, . . . K.
Finally, from (7.24), the precision matrices Pik’s are obtained by solving the

following subproblem:

max
{Pik}Kk=1∈S

Q
++

1
2

Mi∑
m=1

K∑
k=1

αtikm

(
ln |Pik| − Tr

(
(yim − µtik)(yim − µtik)TPik

))

+
K∑
k=1

q̃ tPik
Tvec(Pik − P tik)−

τ

2

K∑
k=1
‖Pik − P tik‖2F , (7.29)

where ‖ · ‖F denotes the Frobenius norm of a matrix. Problem (7.29) does not admit
a closed form solution. However, (7.29) is a (strongly) convex problem, which is
additive in the variables {Pik}Kk=1, and whose global optimal solution can be found
using very efficient numerical tools [109].

7.4.2 The EMC algorithm

This section is now in the position to formally introduce the proposed method,
which is termed expectation-maximization-consensus (EMC) algorithm. The method
builds on the iterates (7.26), (7.28), (7.29), (7.20), (7.21), introduced in the previous
sections.

The algorithm consists of three major steps, namely:

i The expectation step, where each agent i computes locally the posterior
probabilities {αtikm}i,m,k as in (7.8). This is the same step of the centralized
approach, since it can be performed locally by each agent, by using only its
local information;

ii The maximization step, where the optimal solutions (π̂ti , x̂ti) are computed using
(7.26), (7.28), (7.29). Then, the local estimates πt+1

i and zt+1
i are updated

via a convex combination of the computed solutions (π̂ti , x̂ti) and the current
iterate (πti , xti) throughout the step-size sequence γt;

iii The consensus step aimed at forcing global agreement on variables xti [cf.
(7.32)], and to update the local variables q̃ ti and sti [cf. (7.20)-(7.21)].

The convergence properties of Algorithm 5 are illustrated in the following Proposition.

Proposition 6.1: Let {θti = (πti , xti)}Ni=1 be the sequence generated by Algorithm 1.
Suppose that:

i Assumptions A1 and A2 hold;
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Algorithm 5 Pseudocode of the EMC algorithm at node i
1: Input : Local dataset {yim}m∈Mi , number of nodes I, maximum number of

iterations T , number of classes K, step-size sequence {γt}t.
2: Inizialization: π0

i , µ0
i , and P 0

i ; s0
i = ∇xih0

i (x0
i ), q̃ 0

i = (I − 1)s0
i ;

3: for t = 1 to T do;
4: Expectation Step: Compute αtikm as in (7.8), for all k,m;
5: Maximization Step: Evaluate π̂ti using (7.26), µ̂ti = {µ̂tik}Kk=1 as in (7.28),

and P̂i
t =

{
P̂ tik

}K
k=1

solving (7.29). Let x̂ti =
{
µ̂ti, vec

(
P̂i
t
)}

, and compute

πt+1
i = πti + γt

(
π̂ti − πti

)
(7.30)

zti = xti + γt
(
x̂ti − xti

)
(7.31)

6: Consensus Step: Agent i collects data {ztj}j∈Ni and {stj}j∈Ni from its
neighbors and updates xti, sti, and q̃ ti as:

xt+1
i =

∑
j∈Ni

wij z
t
j (7.32)

st+1
i =

∑
j∈Ni

wijs
t
j +

(
∇xiht+1

i (xt+1
i )−∇xihti(xti)

)
(7.33)

q̃ t+1
i = I · st+1

i −∇xiht+1
i (xt+1

i ) (7.34)

7: end for

ii the step-size sequence {γt}t is chosen so that {gammat ∈ (0, 1] for all t,∑∞
t=0 γ

t =∞, and
∑∞
t=0(γt)2 <∞;

iii the sequence {θti = (πti , xti)}Ni=1 is bounded.

Then:

a all the limit points of the sequence {θti}Ni=1 are stationary solutions of (7.4);

b all the sequences {θti}t asymptotically agree, i.e., ‖θti − θtj‖2 −→t→∞ 0, for all i, j.

Proof. Algorithm 1 is a special case of the NEXT framework proposed in [105]. Then,
under the above assumptions on the network among agents, and the algorithm’s
parameters, all conditions of Theorem 3 in [110] are satisfied, and the convergence
result follows.

On the choice of γt: The conditions on the step-size sequence {γt}t given in
Proposition 1 ensure that the step-size decays to zero, but not too fast. There are
many diminishing step-size rules in the literature satisfying such conditions. For
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instance, the following two rules have been founded very effective in the experiments:

Rule 1: γt = γ0

(t+ 1)δ , γ0 > 0, 0.5 < δ ≤ 1, (7.35)

Rule 2: γt = γt−1(1− µγt−1), t ≥ 1, (7.36)

with γ0 ∈ (0, 1] and µ ∈ (0, 1).

7.5 Experimental Results
In this section, the approach is validated by using real-world datasets when the EMC
algorithm is compared with the centralized EM and others distributed protocols.
Additionally, several toy problems have been inserted to give a graphical visualization
of the convergence properties of the procedure.

As the data features have a different physical nature, patterns are normalized
column-wise between -1 and 1. A time-invariant, connected and undirected graph is
used in 10 different runs of each simulation. In each run, it is used a predefined set
of agents, I = 10 and I = 20, and a random topology graph. In particular, every
pair of nodes has a fixed probability p = 0.4 to be presented in the graph, according
to the so-called “Metropolis” weight strategy introduced in sec. 3.5 . Each node has
a local dataset, obtained by partitioning the global one in a random fashion.

All the experiments are carried out using MATLAB R2013b on a machine with
Intel Core i5 processor with a CPU @ 3.00 GHz and 16 GB of RAM.

7.5.1 Toy Problems

In this section a graphical visualization of the results, in order to make more intuitive
how the procedure works, is given for the toy problems described below:

• Gaussian Mixture: in this dataset, the observations are sampled from four
Gaussian mixtures with a variance parameter enough small to avoid the classes’
overlapping. As it can be seen from Fig.7.1, a stationary point is reached.
This is confirmed in Fig.7.2, where it can be seen that each node is able to
accurately identify the different clusters.

• Crescent Moon: the synthetic dataset is composed of two intuitively separable
clusters. The first one is a sphere that could be associated with a full moon,
while the other one is a structure identified as a crescent moon. Even if there
are only two structures, the number of clusters is set to four in order to capture
the underlying moon-shaped non-convex structure of the data. By the way, the
estimation of the optimal number of clusters, wither centralized or distributed,
is not the scope of this work. As it can be seen from Fig.7.3 and Fig.7.4, the
algorithm is able to converge to a stationary point.

• Corner: the dataset contains four linearly separable clusters located at the
four corners of a quadratic grid as the one presented in Fig.7.5. The number of
clusters is firstly set to four, but as it can be seen from Fig.7.6, the algorithm
is not able to accurately model the real structure of the data.
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Figure 7.1. Gradient and Log-Likelihood for the Gaussian Problem

For these reasons, the number of classes has been increased to eight, allowing
the algorithm to accurately identify all of the given clusters as it can be shown
in Fig. 7.7 and 7.8.

7.5.2 Real-World Datasets

In this section, the performance of the proposed algorithm are evaluated when the
following algorithms are used for the comparison:

• EMC : the parameters are evaluated in a distributed fashion using the dis-
tributed EM algorithm presented in Section 7.4. The algorithm runs for
T = 100 iterations;

• Expectation-Maximization algorithm:[107] this is equivalent to having a cen-
tralized agent, where the traditional EM algorithm is performed on the global
dataset by using a Gaussian Mixture model. It is used as an optimal benchmark
to evaluate the proposed approach;

• GU : is a distributed expectation-maximization (EM) approach where a con-
sensus filter is applied to diffuse the local information over the network [111];

• DEM : it recasts the centralized problem in a set of smaller local clustering
problems with consensus constraints on the cluster parameters. The schemes
presented in [112] does not exchange local data among nodes but relies only
on single-hop communications.

A inner fold cross validation is performed to compute the optimal parameters
for all of the used approaches. In particular, for the EMC procedure, a grid-
search procedure is executed on the set {0.2; 0.4; 0.6; 0.8; 1} for the γ parameter,
and on the set {0.001; 0.002; 0.005; 0.01; 0.02; 0.05; 0.1; 0.2; 0.5} for λ. For the GU
approach, the set {0.001; 0.002; 0.005; 0.01; 0.02; 0.05; 0.1; 0.2; 0.5} is used for search-
ing the learning rate τ , and {0.001; 0.002; 0.005; 0.01; 0.02; 0.05; 0.1; 0.2; 0.5} for the
regularizing factor λ. Finally, for the DEM approach, the learning rate ηµ is searched
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Figure 7.2. Mixtures for the gaussian problem

in the set {0.001; 0.002; 0.005; 0.01; 0.02; 0.05; 0.1; 0.2; 0.5} set, while ησ in this one:
{1; 5; 10; 50; 100}. 1

Three different public datasets available on the UCI repository2are considered
for the trials. A schematic description of them is given in Table 7.1. In all cases, the
optimal clustering is known beforehand for testing purposes, either in the case of
classification datasets (where clusters correspond to classes) or because the dataset
is artificially generated. Below, some additional information on each one of them
are presented:

• Australian credit approval: [113] dataset is a binary classification dataset,
which concerns credit card applications. It is interesting because it contains a
good mixture of attributes, both continuous and nominal.

• Pima Indians Diabetes Data Set: was already introduced in Sec.8.4.2;

• Iris Dataset : whose description is already given in Sec.4.3.
1A threshold is added on the covariance matrix’s diagonal which, although positive definite in

theory, may become numerically singular in practice.
2https://archive.ics.uci.edu/ml/datasets.html

https://archive.ics.uci.edu/ml/datasets.html


7.5 Experimental Results 95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dataset at node 4

(a) Node 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dataset at node 2

(b) Node 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dataset at node 3

(c) Node 3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dataset at node 4

(d) Node 4

Figure 7.3. Mixtures for the Crescent Moon example
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Figure 7.4. Gradient and Log-Likelihood for the Crescent Moon example
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Figure 7.5. Mixtures for the Corner example with 4 clusters
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Figure 7.6. Gradient and Log-Likelihood for the Corner example with 4 clusters
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Figure 7.7. Mixtures for the Corner example with 8 clusters
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Figure 7.8. Gradient and Log-Likelihood for the Corner example with 8 clusters
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Dataset Features Instances Classes

Australian 14 690 2
Pima 8 768 2
Iris 9 100 2

Table 7.1. Detailed Description of each Dataset

The proposed approach is numerically validated by the use of several quality
indexes, detailed in Appendix A.2 and listed below:

• Rand Index [59]

• Falks-Mallows [60]

• F-measure [60]

• K-Index [85]

Precisely all of the indexes range in [0, 1], with 1 indicating a perfect correlation
between the true label of the cluster and the output of the clustering algorithm, and
0 the perfect negative correlation. In Table 7.2 and Table 7.3 there are summarized
the results averaged over 10 evaluations, and over the different agents, in a network
of 10 and 20 nodes respectively. The mean and the standard deviation of each
dataset is evaluated, highlighting in bold the best result for each dataset and for each
index. It should be noted that the results of the approach are reasonably aligned
with the other algorithms. In particular, especially when the network’s complexity
is increased, EMC can significantly boost performance for almost all the quality
indexes. To further strengthen the results, a visual representation of the indexes is
given in Fig. 7.9 for the Australian Dataset. As it can be noted, the EMC approach
is always better than the others algorithms, while also reaching similar performance
with the centralized one.

Finally, to reinforce the conclusion, it is also report the likelihood of the different
approaches for all of the dataset, showing what happens when the network complexity
changes. The function is evaluated at each iteration by using eq:(7.4), and in Fig.
7.11, the reported trends prove the robustness of the proposed approach and its
ability to scale with the size of the network. The same cannot be said for the GU
approach; in effect, if in a network of 10 agents it obtains a certain performance
when the number of nodes is increased, the trends are always worst. The overall
worst performances are obtained by the DEM approach, in both the configuration
networks. Conversely, the centralized EM outperforms the other approaches, but
this is obvious since it has a complete vision of the dataset.

7.5.3 Time of convergence

This section provides an analysis on the convergence behavior for both the distributed
and the centralized approaches. In the former, the convergence time for each node is
reported, while in the latter the overall time is considered. The results are analyzed
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Dataset Algorithm Rand-Index F-M Index F-Measure K-Index

Pima EM 0.524 ± 0.019 0.594 ± 0.144 0.373 ± 0.125 0.151 ± 0.125

EMC 0.528 ± 0.020 0.588 ± 0.054 0.440 ± 0.156 0.153 ± 0.151

GU 0.542 ± 0.025 0.592 ± 0.044 0.394 ± 0.101 0.182 ± 0.121

DEM 0.528 ± 0.023 0.646 ± 0.098 0.378 ± 0.188 0.017 ± 0.044

Australian EM 0.615 ± 0.019 0.648 ± 0.125 0.349 ± 0.125 0.452 ± 0.010

EMC 0.532 ± 0.078 0.704 ± 0.038 0.454 ± 0.250 0.289 ± 0.222

GU 0.569 ± 0.053 0.648 ± 0.049 0.390 ± 0.167 0.275 ± 0.206

DEM 0.603 ± 0.095 0.627 ± 0.084 0.299 ± 0.258 0.402 ± 0.245

Iris EM 0.786 ± 0.017 0.708 ± 0.025 0.689 ± 0.057 0.605 ± 0.087

EMC 0.802 ± 0.047 0.781 ± 0.033 0.633 ± 0.184 0.589 ± 0.150

GU 0.664 ± 0.114 0.609 ± 0.154 0.547 ± 0.355 0.300 ± 0.167

DEM 0.782 ± 0.016 0.735 ± 0.020 0.299 ± 0.258 0.586 ± 0.069

Table 7.2. Experimental results on the different dataset with a network of 10 nodes. The
average and the standard deviation of the F-Measures, Rand Index, Kappa Index, FM-
Index are used for the EM, EMC, GU, DEM approach. Best results for each algorithm
are highlighted in bold.

Dataset Algorithm Rand-Index F-M Index F-Measure K-Index

Pima EM 0.524 ± 0.019 0.594 ± 0.144 0.373 ± 0.125 0.151 ± 0.125

EMC 0.551 ± 0.016 0.627 ± 0.067 0.424 ± 0.195 0.232 ± 0.135

GU 0.549 ± 0.003 0.695 ± 0.007 0.306 ± 0.150 0.068 ± 0.012

DEM 0.535 ± 0.018 0.673 ± 0.072 0.361 ± 0.186 0.004 ± 0.035

Australian EM 0.615 ± 0.019 0.648 ± 0.125 0.349 ± 0.125 0.452 ± 0.010

EMC 0.5594 ± 0.097 0.674 ± 0.066 0.393 ± 0.270 0.346 ± 0.279

GU 0.558 ± 0.060 0.585 ± 0.053 0.382 ± 0.119 0.285 ± 0.171

DEM 0.558 ± 0.077 0.607 ± 0.065 0.357 ± 0.195 0.274 ± 0.218

Iris EM 0.786 ± 0.017 0.708 ± 0.025 0.689 ± 0.057 0.605 ± 0.087

EMC 0.630 ± 0.199 0.709 ± 0.086 0.540 ± 0.095 0.373 ± 0.258

GU 0.633 ± 0.063 0.513 ± 0.089 0.529 ± 0.043 0.317 ± 0.114

DEM 0.743 ± 0.035 0.781 ± 0.126 0.620 ± 0.087 0.521 ± 0.083

Table 7.3. Experimental results on the different dataset with a network of 20 nodes. The
average and the standard deviation of the F-Measures, Rand Index, Kappa Index, FM-
Index are used for the EM, EMC, GU, DEM approach. Best results for each algorithm
are highlighted in bold.
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Figure 7.9. The four indexes for all the described algorithm in the Australian Dataset
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Figure 7.10. Average convergence time for EMC, DEM and GU on a single node. In
the centralized procedure, the behavior is not represented as a straight line cause the
different initialization that impact on the time of convergence. A theoretical baseline
obtained by diving the centralized time by the number of nodes is added.
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(a) Pima 10 (b) Pima 20

(c) Australian 10 (d) Australian 20

(e) Iris 10 (f) Iris 20

Figure 7.11. The panel on the left shows the evolution of the likelihood for a network of
10 nodes, while the panel on the right shows the behavior of the Likelihood in a network
of 20 agents
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in terms of number of nodes, which is increased from 5 to 25. As it can be seen from
Fig.7.10 the distributed approaches are faster then the centralized procedure, which
requires more time for analyzing a bigger quantity of data. A theoretical baseline is
also reported. It represents the convergence time of the centralized approach, divided
by the number of agents. By analyzing the results, it could be said that the EMC
approach obtains the best results. Its performances are comparable with the baseline
approach, reporting a slight bigger time that is probably due to the consensus step
that is not present in the fully centralized EM. Additionally, the average training
time is monotonically decreasing with respect to the overall number of nodes. This
is not so trivial because, even if it could be expected that the convergence time
becomes lower as the number of nodes increases (because each one of them has
to analyze a lower number of data) the time required to find an agreement could
becomes bigger if the consensus step is not so optimized. This is the case of the
GU approach, which obtains the worst performances and an average time that is
certainly non decreasing. The DEM technique is slightly better compared to the
GU one, especially for the Iris Dataset; but in the Australian and Pima dataset it
could be shown how the error becomes bigger and not decreasing for some network
configurations.

7.6 Observation
In this chapter, it has been detailed a distributed algorithm based on a Gaussian
mixture approach. It exploits successive convex approximation techniques while
leveraging dynamic consensus as a mechanism to distribute the computation as well
as propagate the needed information over the network. Experimental results show
that the proposed algorithm is able to match very closely the performance of the
centralized approach in terms of accuracy and speed, as well the ones of others
recently distributed EM versions.

Clearly, the algorithms presented until now can be successfully applied to dis-
tributed learning problems laying outside this specific applicative domain, particularly
in real-world big data scenarios. This is the main motivation of the successive chap-
ters, where the distributed protocols realized in this thesis have been tested in
multiple real-world distributed clustering applications, including low power devices
or medical diagnosis.
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Chapter 8

Movement Analysis for
tele-rehabilitation

In the previous chapters, the distributed learning problem has been deeply inves-
tigated from a theoretical point of view, analyzing and detailing some algorithms
ad-hoc realized for this scenario. In the next sections, the focus will be given on
real-world data contexts and applications where these techniques are particularly
useful. To this end, in this chapter new techniques based on evolutionary intelligences
and exhaustive features selection will be presented. Successively, specific focus will
be given to some privacy-preserving problems that have to be dealt with when data
is distributed among several clinical parties, and moved among them.

In effect, medicine and e-health are two of the most prolific areas for the ap-
plication of data mining methods, with successful implementations ranging from
clustering of patients to rule extraction for expert systems, automatic diagnosis, and
many others. Considering the problem of training a classifier to perform automatic
diagnosis of a specific disorder (e.g. cancer) starting from standardized medical
measurements’ set, it could happen that different hospitals have access to historical
training data relative to disjoint patients, and it would be highly beneficial to collect
these separate sources in order to train an effective classifier. At the same time,
however, releasing medical data to a central location (to perform training) generally
goes against a number of problems in terms of privacy attacks even if identifiers are
removed before releasing it.

This could be a typical scenario of tele-rehabilitation, or telemedicine where
several tele-rehab points, like the patients’ home, could be linked together in order
to produce a network of agents wherein data (e.g. records from different patients) is
distributed among multiple clinical parties and the aim is to extract useful information
with machine learning techniques and computational intelligence approaches. The
ultimate target of this research, concerns the realization of a new multimedia ICT
platform that will allow users to access healthcare services for self-rehabilitation of
motor disabilities directly from their home. The first steps of the research will be
deeply investigated in the next sections.
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8.1 Problem Statement
The previous chapters, analyze the distributed scenario where data to analyze is
collected across a network of agents. In this section, it is thought challenging
to insert this theory in a real-world scenario, showing the potentiality and the
opportunities that this reality carries with it. For this purpose, the collaboration
with the Biomechanics and Movement Analysis Laboratory, Physical Medicine and
Rehabilitation of the University of Rome “La Sapienza” help us point out a typical
problem that clinicians usually face in their daily medical lives.

In particular, the number of patients needing rehabilitation has increased in recent
years, and several long-term disabilities like Stroke, Parkinson’s disease, Multiple
Sclerosis, or neurological disorder require new methods of rehabilitation and care
management. Stroke, for example, is one of the serious long-term disability’s leading
cause in the adult population and motor disability following a stroke is often due to
poor arm function [1]. People lose their ability to perform motor functions as a result
of a reduced neural drive from the cortex to motor units, and to a de-synchronized
firing rate of motor units. However, if on the one hand, recent researches show that
intensive rehabilitation reduces impairments and disabilities even in the chronic
stages of disabling conditions, on the other hand, clinicians have to get away from
the patient at home before concluding the rehabilitation treatment, treating them
in their disease’s acute phase only.

As a matter of fact, the health system is highly centralized since high costs, large
spaces that they require, poor transportability and direct experts executing the
analysis make this system suitable only for laboratory setting. The idea underlying
this project is the realization of an autonomous rehabilitation system, which can
be deployed outside hospitals in a distributed setting with reduced or no medical
supervision. In particular, a network of hospitals and health centers could allow to
monitor patients directly in their home, improving both the quality patients’ life
and the accuracy of a therapy.

On this issue, I am currently working on a project involving a new multimedia
ICT platform able to collect, integrate, and process data streams through a network
connection between clinicians and patients. It is essentially based on the following
items:

• low-cost Inertial Measurement Unit (IMU) sensing devices based on accelerom-
eter and gyroscope measurements;

• video acquisitions using smart cameras, depth sensors or RGB-D devices (e.g.,
the Microsoft Kinect technology);

• data fusion and pattern recognition techniques for movement analysis and
classification;

• a multimedia platform for remote control and communication with a Medical
Centre.

As illustrated in Fig. 8.1, a monitoring and detection system has to be installed at
the patient’s home. It is based on one or more RGB-D devices and wearable IMU
sensors, by which the data processing system will be able to track his movements, his
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Figure 8.1. Theoretical operating scenario

clinical status and the degree of rehabilitation without the direct, in situ supervision
of a doctor or a physiotherapist. A network gateway will be used to transmit the
sampled information, and the doctors will be able to see the data, remotely providing
the patient with a useful feedback.

The recorded information is inherently heterogeneous and it is represented in
heterogeneous space-time domains. This is the case of information related to sensor
data. In order to effectively cope with this heterogeneity, appropriate algorithms
with high local and distributed intelligence and capable to classify, select, aggregate,
fuse, and encode the information to transmit are also needed. In this section, it is
proposed a preliminary work where appropriate techniques, based on computational
intelligence and machine learning approaches, are realized for this purpose. Using
such techniques, which are also adequate for parallel and distributed computing, it is
automatically possible to identify data structures, and generate data-driven validation
models through a “black-box” approach, without considering the underlying physical
and neurological processes that originate the data.

8.2 Gait Analysis

As stated previously, the goal of this research is the realization of a tele-rehabiliation
system able to monitor motion for patients affected by specific neurological diseases.
Nowadays, in the adult population, an increasing number of pathologies are the
leading cause of serious long-term disabilities, such as stroke, Parkinson’s disease,
multiple sclerosis and so on. Most of them affect postural control and mobility,
and therefore, a careful gait analysis could be the useful indicator for clinicians
to form an assessment. The gait analysis is a particular movement test used in
several research fields as biomechanics, robotics or sports analysis. However, the
most commonly employed application is in the rehabilitation context where it is used
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to check the biomechanics of patients’ walking in addition to kinematic, dynamic
and electromyographic parameters. In this way, clinicians are allowed to evaluate
impairment’s degree of a patient.

The gait is described thanks to the coordinates of the main joints of the body.
It is presented as a cycle, where walking’s sequences are illustrated in Fig. 8.2. In
a more detailed classification, the gait is divided into three main phases and nine
sub-phases, whose names are self-descriptive, and based on the movements of the
foot. A brief description of each one is given below:

Stance Phase: is the main phase that involves about the 60% of a gait cycle.
Starting from the heel phase, when the heel touches the ground, and the toes do not
yet, it represents the phase in which the foot and the leg bear the body weight. It
lasts immediately before the detachment of the fingers from the floor and can be
summarized in the following sub-phases:

• Heel Strike: it represents the starting point of a gait cycle during which the
body’s center of gravity is at its lowest position;

• Foot Float: it represents the moment in which the plantar surface of the foot
touches the ground, and the body begins absorbing the impact of the foot by
rolling in pronation.

• Mid Stance: it represents the moment when the body’s center of gravity
reaches the highest position since the body is supported by a single leg (the
controlateral foot passes the stance phase).

• Heel-off: it represents the moment in which the heel leaves the floor. During
this phase, the triceps surae muscles cause the push-off and the plantar flexes
the ankle.

• Toe-off: it represents the ending point of the stance phase, during which the
toes leave the ground.

Swing Phases: involves the 40% of a gait cycle, and lasts from the ‘toe off’ to
the successive contact of the foot with the ground. It is composed by the following
subphases:

• Acceleration: it represents the moment in which the foot leaves the ground
and the hip flexor muscles accelerate the leg forward.

• Mid Swing: it represents the moment in which the foot goes under the body,
while the controlater is in the midstance phase.

• Deceleration: it represents the moments in which the muscles try to slow the
leg and stabilize the foot in preparation for the next heel strike.
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Figure 8.2. Gait cycle

Double Support time: it appears within the previous two phases, and it is the
time in which both feet are in contact with the ground. In each double support
phase, there is a foot leaning on the ground, and the other that has just left it. In
the double support phase, the leg in front is usually known as the “leading” leg and
the leg behind is the “trailing” leg. So, in each gait cycle, there are thus two periods
of double support, and two periods of single support.

8.2.1 Kinematics Analysis

The gait kinematics is the study of measures involved in evaluating the spatial-
temporal movements in the three planes of the space: frontal plane (Abduc-
tion/Inversion), sagittal plane (flexion/extension) and transverse plane (Int ro-
tation/ext rotation). The sagittal plane lies vertically, and divides the body into
right and left parts, the frontal one lies vertically, and divides the body into anterior
and posterior parts, the transverse one lies horizontally, and divides the body into
superior and inferior parts. Clinically, there is the tendency to emphasize on the
frontal plane motion during the gait analysis, while the others two are ignored.
However, there is a group of pathologies where the two other planes could give
useful information. The cyclic nature of the gait is a potential instrument to extract
different parameters from it. In literature, there are hundreds of parameters ex-
pressed in terms of the percent cycle, but often, there are more features than those
really required, which are those used by clinicians. For this reason, thanks to the
experience and the collaboration with the Biomechanics and Movement Laboratory,
the most important ones, for the scope of this work, are described below:

Spatial Parameters: they are related to the length of the stride and the step.
From these measures, it is possible to extract information on the frequency, the
symmetry and the speed of the gait.

• Step Length [m] is the distance traveling from the heel contact of one foot to
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the heel contact of the controlateral foot. It is correlated to the swing phase
so that a short swing phase will generate a short step length. In a pathological
gait, the step length is often reduced. In particular, for those pathologies
that affect one side of the body, the amount time spent on the “bad” foot is
generally shorter than the corresponding one on the “good” foot. Therefore,
a short step length on a foot generally means a problem on the controlateral
one.

• Stride Length [m] is the distance traveling from the heel contact of one foot
to the successive contact of the same one. It is composed of two steps length,
left and right, each one of them is the foot’s distance which moves forward
compared to the one left behind, and generally is the equivalent of a gait cycle.
It does not actually matter which instant is chosen, but it is very common
to find that it starts with the foot contact. Generally, in a healthy gait, the
stride length for one side must be the same as that for the other one. While,
in a pathological gait the length of the two steps is different, or could have
zero values (when the foot is put next to the other, rather than in front of)
or negative ones (when one foot does never reach the other one). It can be
measured directly, or indirectly by the ratio between the mean speed and the
cycle time.

• Base width [mm] represents the side-to-side separation of the feet and assumes
the same values for both the left and the right steps. Usually, it is considered as
the midpoint of the back of the heel and is evaluated in millimeters. Generally,
this parameter is evaluated by the distance from the heel, which can be easily
measured from the video.

• Swing Speed [m/s] is the speed during the Swing phase. It is evaluated by
using the stride length and the swing duration.

• Mean Speed [m/s] is the distance covered by a person in a given time. It can
be evaluated as the sum of stride lengths divided by the cycle time, or as the
product of the stride length and the cadence.

In Fig. 8.3 are reported the step length, the stride length and the step width for
both the side.

Temporal Parameters: they are related to the different lengths of the step
phases, both on the left and the right side.

• Stance Phase starts from the heel contact to the toe-off of the same foot. It
can be expressed in second, or as a percentage of a gait cycle.

• Swing Phase starts from the toe-off of a foot to the heel contact of the same
one. It is expressed as a percentage of the gait cycle.

• Stride Phase is the time of a gait cycle of a foot expressed in second.

• Double support is the percentage of gait when both feet are in contact with
the floor.
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Figure 8.3. Length of step, stride and width of both feet

• Cadence [step/min] is the number of steps executed in a given time. It refers
to the number of strides per minute, even thought it is often expressed as the
number of steps per minute. Generally, it is better to refer to the cadence
instead of the stride time, which is the duration of one gait cycle.

Therefore, the kinematic analysis is concerned with the motion analysis without
considering the forces involved during the gait.
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Figure 8.4. Knee motion, normal range during a gait cycle for free walking

8.2.2 Kinetics Analysis

Kinetics is the study of net forces, moments, mass and acceleration executed by the
body. It is not related to the position or the orientation of the object involved, but
it focuses on the ground reaction forces, inertia and muscle contractions.
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Generally, forces platform are used to collect ground reaction forces, which
are analyzed in the three main planes, divided into the vertical, front-back and
median-side components. Combined with the kinematic analysis, they provide a
useful instrument for studying moments and powers of specific articulation. Most
biomechanical data characterizing human movements appear as temporal waveforms
representing specific joint measures such as angles, moments, or forces. The three
main behaviors used by the doctors are explained as follows:

Knee Angles: during each stride, the knee passes through four arcs of motion,
with flexion and extension that occur in an alternating fashion. Fig. 8.4 shows
the knee flexion angle waveform for a normal subject, normalized to 100% of the
gait cycle. It can be noted a regularity in the movement, with two peaks occurring
in correspondence of the maximum knee flexion during the stance phase, and the
maximum knee flexion during the swing one. Generally, the angle flexion peak is
reached between the 60− 80% of the gait cycle, with a value around 50°.

Ankle Angles: The ankle angle is evaluated as the angle between the tibia and
an arbitrary line in the foot. Conventionally, the initial contact is considered as
the neutral position, and the ankle angle is put to 0°, even when it is around
90°. Successively, the movement in positive or negative directions occurs with the
dorsiflexion or the plantarflexion. Fig. 8.5 shows the ankle flexion angle waveform
for a normal subject, normalized to 100% of the gait cycle. As it can be seen, the
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Figure 8.5. Ankle motion, normal range during a gait cycle for free walking

ankle motion is not large. It is composed of four arcs of motion, three occurring
during the stance phase, and one, the dorsiflexion, in the swing one.

Hip Angles: it could be measured in two different ways, the angle between the
vertical and the femur, or the angle between the pelvis and the femur. In this work,
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Figure 8.6. Hip motion, normal range during a gait cycle for free walking

the second definition is used. Most of the movement is related to the sagittal plane,
where two arcs of motion are encountered: the extension during the stance phase,
and the flexion during the swing one. The flexion peak is reached in the middle of
the swing phase, with a value around 30°, while the extension peak reaches values
around 10°. In fig. 8.6 is shown the knee flexion angle waveform for a normal subject,
normalized to 100% of the gait cycle.

8.2.3 Optoelectronic system

The most adopted tools for gait analysis are based on motion capture systems
exploiting active or passive markers, electromyography (EMG), inertial systems,
electromagnetic sensors, dynamometric platforms and so on. Recently, the best
accuracy in gait analysis is obtained by using optoelectronic motion sensors in
stereophotogrammetry. Such systems employ several infrared (IR) cameras to record
patient’s movements, and subsequently, reconstruct and analyze theirs behavior
over the whole recording time. A typical scheme of an optoelectronic stereopho-
togrammetric system is illustrated in Fig. 8.7. In this case, the three-dimensional
kinematic data was collected using the 8 camera ELITE stereophotogrammetric
system (provided by BTS®, Milan, Italy) sampling at 100 Hz. Data is then filtered
using a fourth-order, zero lag, low-pass Butterworth filter with a cut-off frequency
of 6 Hz.

Before beginning the gait analysis, some parameters used for the final clinical
evaluation, like knee and ankle diameter, basin height and width, need to be taken
for each side of the body. Then, 20 retro-reflective spherical markers are applied on
the main joints of the subject’s body, as illustrated in Fig. 8.8. It was asked to the
subjects to wear a minimum number of garments to allow the marker application
by means of a double-sided adhesive hypoallergenic. The analysis consists of 4 or 5
trials during which the subject walks at a normal pace, starting at 3m of a walkway
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Figure 8.7. Example of a stereophotogrammetric system composed by several IR cameras
placed around a dynamometric footboard

10m long and stopping when the end of the footboard was reached.
The data obtained by IR cameras, which point at the markers worn by the

walking subject, is integrated into a central computer with those captured by the
dynamometric footboard, providing trajectories, angular sizes, speeds and acceler-
ations by thus realizing the final clinical report. So, the system is able to provide
information related to the gait cycle that will be used a posteriori to classify the
patient’s motions.

All of the experimental procedure and the data access were approved by the
Ethics Committee of the university hospital.

8.3 Features extraction for pattern recognition
The previous paragraph has introduced some definitions and a software used to
produce those clinical features able to characterize the movements of patients with
neurological disorders. Since the proposed research aims at finding out a new
multimedia ICT platform to deliver healthcare services accessible by the user from
his home, the following section will provide some techniques able to manage the
captured data.

In this context, clinicians have to face a huge amount of data coming from
several locations, which could be the homes of the patients or the different hospital
centers. Additionally, the complexity of the problem is increased by the presence
of multiple kinds of data (raw data, filtered data, statistical data) captured from
different technologies.

For these reasons, decision making for gait analysis will be supported by the use
of computational intelligence techniques, machine learning and ad-hoc algorithms
that could be able to extract only the actually relevant information useful for the
clinical analysis. Some extracted features can serve as potential biomarkers in
the definition of a disease, while extra features could increase the complexity of
the learning process. In effect, the presence of irrelevant or noisy features might
significantly reduce the performance of the synthesized model by impairing the
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Figure 8.8. The main joints of a skeleton body: seventh cervical vertebrae; acromion
clavicular join (Should); anterior superior iliac spine (Asis); Sacrum; lateral aspect of the
great trochanter (Thigh); middle point of the lateral aspect of the femur (Lat f); Knee
1 and 2; middle point of the lateral aspect of the shank (Lat s); the lateral malleolus
(Mall); the head of the fifth metatarsal bone (Met).

convergence of training procedure and the estimation of the model parameters.
In this case, it is useful to apply techniques allowing to sort the measured

features based on their contribution of information in the context of the considered
modeling problem. In fact, among all of these features, a specific subset might be
more suitable to discriminate among several diseases or to establish the level of
functional limitation due to the pathology. In several post-stroke hemiplegia, for
example, spatial-temporal variables, like gait speed, represent the most important
markers of deficit severity and functional ability characteristics. Similarly, gait in
Parkinson disease is mainly characterized by alterations of spatial-temporal features
like reduced gait speed and step length, start hesitation freezing and fenestration.

Feature selection is also intended to reduce the dimensionality of the data space,
thus increasing the computational efficiency. This stage relies on the choice of a
specific procedure able to determine which is the best subset of features. Generally,
this is performed by minimizing a particular fitness function able to measure the
behavior of the employed classification model. Several approaches can be applied
for feature selection [114, 115]; e.g., greedy algorithms based on heuristic search
[116, 117], exhaustive search optimization [118], or particle swarm optimization [119].
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Also, Principal Component Analysis (PCA), Independent Component Analysis (ICA)
and Projection Pursuit (PP) are used to extract relevant information from noisy
or redundant datasets. For instance, PCA can reduce a complex dataset to a lower
dimensionality with a simplified structure. However, all of these methods, generally
perform a transformation of the feature space or a projection of the dataset into a
possible, reduced data space, altering the original nature of the data.

In the present case, it is important to maintain the physical and clinical meaning of
the measured features representing the dataset, in order to facilitate the identification
of the relationship between the outcome of the classification diagnosis and the medical
condition of the patient. Consequently, the feature selection task must be performed
by using a selection approach working in the original data space, in order to preserve
the physical nature of the selected features.

To this end in the next sections a genetic algorithm (GA) and an exhaustive
search are adopted for the automatic selection of the meaningful features, considering
the misclassification rate of healthy/diseased patients as the fitness function (the
lower is better) of the diagnostic model.

8.3.1 Experimental setup

In the experimental process, which will be described in the detail successively, it
will be evaluated the gait of 5 sets of individuals. Precisely, four different diseases,
which generally present similar impairments in the gait of the subject, are considered:
Parkinson’s disease, Multiple Sclerosis, Ictus (Stroke), and Coxarthrosis. 85 people
who present a gait disorder and 30 healthy subjects with no history of neurological
disorders or gait’s impairment are called to participate in the analysis. So, a total
of 115 people were involved in the research, with 52 females and 63 males and an
average age of 56.65 (ranged from 23-86).

The considered features extracted are all the spatial and temporal parameters
described in Sec.8.2.1 with the addition of two indexes specifically designed for
measuring the dissimilarity of the gait. The Index 1 is evaluated as the ratio between
the double support time of the right foot and the left one, while the Index 2 is
evaluated as the ratio between the stance phase time of the right foot and the left
one. For all of the parameters, both the left and the right values were considered,
with the exception of the cadence and the mean speed that have a unique value
for both the feet. So, a total of 16 features were processed and, in order, they are
the following: Step (R), Step (L), Stride (R), Stride (L), Mean Speed, Cadence,
Index 1, Index 2, Width (R), Width (L), Stance (R), Stance (L), Double Support
(R), Double Support (L), Swing Speed (R), Swing Speed (L). The characteristics of
participants for the five groups are presented in Table 8.1, 8.2.

First of all the features are normalized with a linear transformation in the range
between 0 and 1. Let P the number of patterns of the dataset D = {x1,x2, ...,xP }
and N be the number of attributes of each pattern, that in this case is equal to 16.
Thus, each pattern, which is associated to a subject, is represented as a N -tuple of
real numbers as follows:

xh = [xh1 xh2 . . . xhN ] , h = 1 . . . P . (8.1)

As the data features have a different physical nature, patterns are normalized
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column-wise using the following substitution:

xhj ←−
xhj − bj
aj − bj

, h = 1 . . . P , j = 1 . . . N , (8.2)

where aj = max
h=1...P

{xhj} and bj = min
h=1...P

{xhj} .

After normalization, all of the spatio-temporal parameters normally acquired
in a biomechanical laboratory are analyzed in order to find the most relevant
features able to discriminate between diseased and healthy subjects. To this end,
computational intelligence techniques, and evolutionary computation will be used to
support decision making for gait analysis.

Group description Step R Step L Stride R Stride L Speed Cadence Index 1

N age Mean ± σ Mean ± σ Mean ± σ Mean ± σ Mean ± σ Mean ± σ Mean ± σ

Parkinson’s disease 17 64.35 (45-81) 0.369 ± 0.147 0.361 ± 0.126 0.794 ± 0.308 0.718 ± 0.268 0.580 ± 0.240 96.122 ± 14.123 1.016 ± 0.069

Multiple Sclerosis 29 49.76 (23-69) 0.335 ± 0.140 0.335 ± 0.135 0.664 ± 0.273 0.677 ± 0.251 0.403 ± 0.264 67.563 ± 25.310 1.098 ± 0.679

Post-stroke hemiplegia 16 56.13 (32-80) 0.334 ± 0.130 0.351 ± 0.093 0.681 ± 0.188 0.742 ± 0.360 0.408 ± 0.196 68.457 ± 18.767 1.015 ± 0.111

Hip osteoarthritis 23 67.59 (45-86) 0.457 ± 0.121 0.457 ± 0.121 0.461 ± 0.100 0.900 ± 0.207 0.580 ± 0.240 96.122 ± 14.122 1.015 ± 0.069

Healthy controls 30 31.40 (20-75) 0.638 ± 0.069 0.635 ± 0.070 0.701 ± 0.182 1.270 ± 0.124 0.910 ± 0.210 91.989 ± 13.005 0.991 ± 0.077

Table 8.1. Cardinality and mean age for each class as well as mean and standard deviation
of 7 features for each group.

Group Index 2 Width R Width L Stance R Stance L D.Supp R D.Supp L Speed R Speed L

Mean ± σ Mean ± σ Mean ± σ Mean ± σ Mean ± σ Mean ± σ Mean ± σ Mean ± σ Mean ± σ

Parkinson’s disease 0.947 ± 0.476 0.173 ± 0.118 0.159 ± 0.099 59.427 ± 15.554 58.715 ± 15.688 11.258 ± 3.995 13.272 ± 5.357 13.271 ± 5.357 1.547 ± 0.584

Multiple sclerosis 1.141 ± 0.614 0.174 ± 0.062 0.168 ± 0.063 68.717 ± 6.446 68.569 ± 12.142 20.034 ± 8.427 19.297 ± 7.805 1.142 ± 0.588 1.202 ± 0.557

Post-stroke hemiplegia 2.222 ± 1.589 0.178 ± 0.044 0.171 ± 0.037 67.788 ± 10.263 66.875 ± 8.058 24.700 ± 16.690 11.969 ± 4.712 1.249 ± 0.350 1.180 ± 0.384

Hip osteoarthritis 0.947 ± 0.476 0.173 ± 0.118 0.159 ± 0.099 59.427 ± 15.554 58.715 ± 15.687 11.259 ± 3.995 13.271 ± 5.357 1.555 ± 0.528 1.547 ± 0.584

Healthy Controls 1.034 ± 0.417 0.128 ± 0.033 0.123 ± 0.039 61.570 ± 5.207 62.221 ± 4.449 11.465 ± 3.845 12.287 ± 5.213 1.705 ± 0.452 1.777 ± 0.463

Table 8.2. Mean and standard deviation of 9 features for each group.

8.3.2 Genetic optimization

First of all it is proposed a technique based on a GA for selecting the optimal subset
of features in order to reduce the dimension of the data space, improve the automatic
classification accuracy and, above all, support the clinicians in evaluating the most
important spatio-temporal parameters when the aim is to identify an anomaly of
the gait.

Proposed Genetic Optimization

As stated before, the first underlying idea of the proposed approach is the adoption
of a genetic algorithm for the automatic selection of the meaningful features. It is
able to optimize a feature selection task by using a fitness function with no reliance
on any analytical cost function associated with the stereophotogrammetric, Kinect
or IMU measuring system and/or with the physiological model of the patient.
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Algorithm 6 Genetic algorithm
1: Initialization: a population G0 with P individuals is created and set as the

current generation.
2: for k = 0 to Mgen do
3: The individuals of G0 are sorted by ascending values of the fitness function.
4: The next generation Gk+1 is produced from the current one Gk as follows:

• The last two individuals of Gk are deleted.

• The best individual of Gk is cloned and put in Gk+1 (elitism).

• The second individual of Gk is mutated with probability equal to Mr by
using a ‘Uniform’ function, then it is put in Gk+1.

• do while Gk+1 contains exactly P individuals:

– A pair of parents are randomly selected by using a ‘Roulette Wheel’
procedure. With probability Cr, the two parents generate their off-
spring by means of a ‘Two-point’ crossover. Each of the two resulting
individuals is mutated with probability equal to Mr. The two resulting
individuals are placed in Gk+1.

• end do

5: The next generation becomes the current one.
6: end for

The genetic algorithms are adaptive or meta-heuristic search approaches used for
solving optimization problems, and belonging to the particular class of biologically
inspired optimization techniques. They start from a random population of candidate
solutions, called individuals, and repeatedly modify them in an iterative process
obtaining a succession of sets of individuals (i.e. the generations). Starting from the
current kth generation Gk, the next one, Gk+1, is determined by applying selection,
mutation and crossover operators. In other words, in each generation the fitness
of each individual is evaluated, multiple individuals are firstly randomly selected
from the current population (based on their fitness) and then modified (mutated or
recombined) to realize the new generation. In this way, the population ’evolves’ over
successive generations, toward an optimal solution obtained by the improvement of
the fitness of the best individual [120].

In the proposed approach, the genome of each individual is represented by a
binary string of N = 16 bits: each bit represents one spatio-temporal features and
takes value 1 if the corresponding feature will be selected for the classification process
and 0 otherwise. The adopted fitness is represented by the misclassification error,
which is the percentage of incorrectly classified patterns. Each pattern is labeled
either as healthy subject (in the Control group) or a diseased subject (affected by
Parkinson’s disease, Multiple Sclerosis, Ictus or Coxarthrosis). The details of the
adopted GA are summarized in the Alg.6. The behavior of the whole algorithm
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depends on the values of P and Mgen as well as on the mutation rate (Mr) and on
the crossover rate (Cr), which are two probability thresholds that control mutation
and crossover operators respectively.

Classification Models

When a subset of spatio-temporal features is identified by the bit string associated
with the genome of any individual of the population, its fitness is evaluated by
training a classification model using the reduced dataset.

It is important to remark that the genetic optimization proposed in this work is
independent of the classification model adopted in this regard, although the final
classification performance depends on the chosen model. A number of widely used
classification algorithms, whose performance has been already ascertained in many
real-world problems with respect to well-known classification benchmarks, have been
tested for the sake of comparison [121]. A detailed description of them is given in
Appendix C, while they are just listed as follows:

• K Nearest Neighbor (KNN);

• Probabilistic Neural Network (PNN);

• Classification And Regression Tree (CART);

• Naive Bayes classifier;

• Support Vector Machine (SVM);

• Fuzzy Inference System (FIS);

• Linear Discriminant Analysis (LDA);

• Quadratic Discriminant Analysis (QDA).

The experiment protocol has been performed by using a 10-fold cross-validation
process [122]. The original data is randomly partitioned into 10 subsets with equal
sizes and it is guaranteed that all classes are covered in each subset. For each round,
the classifier is trained with the patterns of the training set only, and the number of
correctly classified is evaluated using the hold out patterns from the test set. Each
fold uses a different subset of validation and the final result is determined using
the average misclassification error over the 10 folds. Therefore, the cross-validation
output is the misclassification error ε:

ε = L̂

L
, (8.3)

where L̂ ∈ [0, L] is the number of misclassified patterns (subjects).
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Experimental Results

In this section, the obtained resulted of each classifier are summarized. First, it
is considered the run for which the best individual is obtained among all the best
ones associated with each run. For such a run and for each classifier, the number
of generations necessary to reach convergence and the selected features of the best
individual are summarized in Table 8.3. Taking into account all the simulated runs,

Classifier Generations Selected Features Number of Features Best Fitness (µ± σ%) Average Fitness (µ± σ%)

PNN 6 0110000000110011 6 2.609± 0.000 3.650± 0.164

KNN 14 0111010100111111 11 2.609± 0.000 3.700± 0.248

FIS 8 1110000000001010 5 2.767± 0.800 4.857± 0.900

Naive Bayes 7 1111000000000010 5 3.339± 0.262 4.577± 0.210

CART 29 0110010001111010 8 3.399± 0.300 5.780± 0.864

SVM 6 1111000000111001 8 3.478± 0.000 4.470± 0.282

LDA 12 1010110110000010 7 4.502± 0.519 6.810± 0.429

QDA 13 0100110000000010 4 6.403± 0.119 8.889± 0.127

Table 8.3. Number of generations to reach convergence and selected features of the best
individual. Best and average fitness obtained in the final population are also reported.

the mean and standard deviation of the fitness of the best individual and the mean
and standard deviation of the average fitness of the final population are also reported
in Table 8.3. A discussion regarding the overall results is reported in below, splitting
the classification models into three different subsets according to the fitness values.

Classifier Subset #1: KNN, PNN and FIS
The first subset consists of KNN, PNN and FIS classifiers. These models are able
to achieve the best fitness value, representing the more suitable choice in terms of
classification accuracy among all the tested classifiers.
In particular, PNN algorithm appears as the best one, since it obtains the best
fitness of 2.609% with a relatively low number of generations, (only 6). Additionally,
it uses a small subset of 6 features only (i.e., left step length, left and right swing
speed, left and right stance phase, right stride length) to accomplish this result.
Three of these (left step length, right stride length, and right swing speed) are the
most employed by all the 8 considered classifiers, thus appearing as the most relevant
features for gait analysis. FIS and KNN are able to achieve similar results in terms
of best fitness value (2.609% and 2.767%), but increasing the number of generations
necessary to reach convergence or the dimension of the features set.
For the sake of illustration, the convergence analysis of the genetic algorithm applied
to the PNN classifier is reported in Fig. 8.9, showing that PNN is able to achieve
a quick converge with also a limited spread of fitness among the individuals of the
final population.

Classifier Subset #2: Naive Bayes, SVM, and CART
The second subset consists of Naive Bayes, SVM and CART classifiers. Theirs fitness
values (3.399 % and 3.478%) are very close to the best. All algorithms in this subset
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Figure 8.9. Convergence analysis of the genetic algorithm applied to the PNN classifier.

employ a similar number of both iterations and employed features. The last ones
are relatively small if are compared with the overall complete set.

Classifier Subset #3: LDA and QDA
The third subset consists of LDA and QDA classification algorithms. They perform
the worst fitness value (4.502% and 6.403%). In spite of this, QDA is able to exploit a
smaller number of features (i.e., only 4), while LDA adopt a larger number of features.

Final Discussion
Considering the results achieved by all of the employed classifiers, it is possible to
compare the different features in terms of number of times that they are selected
for classification. In Fig. 8.10 are reported the number of algorithms for which each
feature has been considered in the best individual selected by the genetic algorithm.
Independently of the left or right side, these results show that the most frequently
selected features are:

• step;

• swing speed;

• stride length.
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It can be also remarked that such features are also the ones selected by the classifiers
that reach the best fitness value (i.e., KNN, PNN and FIS) and, more important,
they correspond to the ones considered by the experience of the clinicians when have
to perform a diagnosis.
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Figure 8.10. Number of algorithms in which each feature has been considered within the
best set of selected features.

8.3.3 Exhaustive Features Selection

In the previous paragraph, it has been introduced a genetic optimization to perform a
heuristic search able to find a specific subset of suitable features for gait classification.
However, since it is an heuristic, it provides only an approximation of the real optimal
solution. Now, the interest is in knowing the exact solution of the problem. Thus,
firstly a feature selection method able to exhaustively evaluate all the possible
combinations of the input features is introduced and then, the procedure to select
the best subset one is detailed. In this way, the number of redundant features may
be reduced, gaining the maximal performance of the learning algorithm in terms of
quality, accuracy and also upgrading the results of the genetic search.

Proposed Exhaustive Search

Also in this case, the considered features are all the spatial and temporal parameters
described in Sec. 8.3.1.

The high motion variability due to patient’s body function impairment can
significantly increase the classification difficulty. Since there is not a unique definition
of normal gait, as shown in [123], a feature selection method to exhaustively evaluate
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all possible combinations of input parameters is proposed in this section. In this
way, the best informative subset could be given to the clinicians for help them in
making a diagnosis of the subjects.

After normalization, all of the spatio-temporal parameters are analyzed in order
to find the most relevant features able to discriminate between diseased and healthy
subjects. To describe the dataset a string of 16 bits is used, each bit represents a
feature and takes value 1 if the corresponding feature is selected and 0 otherwise. The
input set is composed of 16 features so since there are 216 − 1 possible combinations
of them, a total of 65535 subsets of features should be considered.

The correct choice of the most relevant features is crucial so, also in this case,
different classification’s functions, listed in Appendix C, are used to select the
most representative ones. For each possible combination of the input features, the
classification model is trained using all the P patterns in D but considering, for
every pattern, the selected features only.

Results are evaluated and compared in terms of the final classification error and
confusion matrix.

Validation procedure

The dataset is shuffled into a training set and a test one; precisely, a 10-fold cross
validation process is performed where 10 rounds of classification are carried out
for each classifier [124]. The numerical parameters to be set in advance for each
algorithm, have been determined using an inner three-fold cross-validation on each
training subset; they have been selected as explained below.

In the SVM a radial basis function is used with an SVM Karush-Kuhn Tucker
(KKT) violation level equal to 0.05 [122]. In the KNN, the value K of nearest
neighbors is varied in the range (2, 10) and, by using the Euclidean distance, the
final choice becomes K = 3. The Naive Bayes classifier adopts as prior the normal
distribution with diagonal covariance. Finally, in the FIS classifier the number of
Mamdani-type fuzzy rules has been varied in the range (1, 10) by selecting at the
end the value of 5.

The results are evaluated in terms of classification rate over 10 folds, which
is the percentage of patterns incorrectly classified, and considering the confusion
matrix, which gives us the total number of false positives, false negatives and subjects
correctly classified. A confusion matrix is a table that contains information about
actual and predicted classes. Each column represents the instances in a predicted
class, while each row represents the instances in a true class:

• element {C1, Ĉ1} is the number of healthy subjects that are correctly classified
as healthy subjects;

• element {C1, Ĉ2} is the number of healthy subjects that are incorrectly classified
as diseased subjects;

• element {C2, Ĉ1} is the number of diseased subjects that are incorrectly classi-
fied as healthy subjects;

• element {C2, Ĉ2} is the number of diseased subjects that are correctly classified
as diseased subjects.
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Classifier Minimum error Maximum error Average error Best subset Cardinality

KNN 0.020 0.356 0.065 1111001000101101 9
FIS 0.031 1.000 0.795 0111000000001010 5
Naive Bayes 0.035 0.318 0.104 0100000001000010 3
CART 0.039 0.367 0.090 1110011000110101 9
SVM 0.043 0.594 0.190 1100000000000010 3
LDA 0.055 0.566 0.110 1010110110000011 8
QDA 0.064 0.590 0.151 0100110000000010 4

Table 8.4. Classification results in terms of minimum, maximum and average classification
error. The last two columns report the best subset of features and its cardinality.

When more than one subset of features yields the same performance, only the
one having the minimum complexity is selected. Namely, for equal classification
errors, the subset that involves the minimum number of features is considered as
per well-known results of learning theory.

The performances of the classification algorithms are also evaluated in terms
True Positive (TP ), False Positive (FP ), False Negative (FN ), False Positive (FP ).
Namely, they are the basis for the following performance indexes:
Sensitivity: is the proportion of true positives that are correctly identified by the
test [125]:

SE = TP
(TP + FN ) (8.4)

Specificity: measures the proportion of true negatives that are correctly identified
[126]:

SP = TN
(TN + FP ) (8.5)

Accuracy: is the proportion of the true results, either true positives or true negatives
[127]:

ACC = TP + TN
(TP + TN + FP + FN ) (8.6)

Each pattern is labeled either as healthy subject (in the Control group) or as a
diseased subject (multiple sclerosis, post-stroke hemiplegia, hip osteoarthritis or
Parkinson’s disease). This approach aims at showing how the results are influenced
by the feature selection, showing also what happens when new information is added
to the dataset by the selection of new parameters.

Experimental results

The main classification results are summarized in Table 8.4, where for each classifi-
cation algorithm, are reported minimum, maximum and average classification error
among all of the possible combination of features, as well as the best solution and the
related cardinality. Since some algorithms require considerable time to compute the
errors, in Fig. 8.11 is illustrated the convergence time for each classification model.
It can be shown that KNN, QDA, and LDA are the faster classifiers, while SVM is
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associated with the worst computational time. In Table 8.5 a better description of

Figure 8.11. Computational time for each classification algorithm.

the input dataset is provided, there are 16 rows (one per feature) and 8 columns
(one per each algorithm plus the number of times that each feature is selected in an
optimal dataset); each element of the Table takes value 1 if the corresponding feature
is selected and 0 otherwise. The number of occurrences reported in the last column
of Table 8.5 is illustrated as a histogram in Fig. 8.12. The confusion matrices
are reported in Table 8.6, 8.7 for each classification algorithm. As the tests were
repeated several times, each entry of such confusion matrices contains average value
and standard deviation. Finally, the performance indexes introduced in (8.4)-(8.6)
are summarized in Table 8.8. The best feature set for each classification algorithm
and the relative classification error is reported in Table 8.4. Only the subsets having
minimum complexity are shown, but it is interesting to underline that even when
there is more than one subset scoring the lowest classification error, the one with
minimum complexity is always unique. A discussion regarding the overall results
is reported in the following, splitting the classification models into three different
subsets according to the range of classification performances.

Classifier Subset #1: KNN, Naive Bayes and SVM
It is clear from Table 8.4 that the KNN has the best performance in terms of
classification error that is around 2.00% only, while the features’ set cardinality
is not among the best ones since it selects 9 features. The NaiveBayes and the
SVM classifiers should be considered better because, despite the small increase of
classification error, which reaches 3.5% and 4.3% respectively, they are able to select
a small number of features that is equal to 3. This means that with three features
only, these algorithms are able to efficiently discriminate among the different patholo-
gies. It is also interesting to notice that the Step L and Swing speed R are selected
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Figure 8.12. Number of algorithms for which each feature has been considered within the
best set of the selected ones.

Features set LDA QDA KNN Naive SVM CART FIS Occurrences

Step R 1 0 1 0 1 1 0 4
Step L 0 1 1 1 1 1 1 6
Stride R 1 0 1 0 0 1 1 4
Stride L 0 0 1 0 0 0 1 2
Mean Speed 1 1 0 0 0 0 0 2
Cadence 1 1 0 0 0 1 0 3
Index 1 0 0 1 0 0 1 0 2
Index 2 1 0 0 0 0 0 0 1
Width R 1 0 0 0 0 0 0 1
Width L 0 0 0 1 0 0 0 1
Stance R 0 0 1 0 0 1 0 2
Stance L 0 0 0 0 0 1 0 1
D.Support R 0 0 1 0 0 0 1 2
D.Support L 0 0 1 0 0 1 0 2
Swing R 1 1 0 1 1 0 1 5
Swing L 1 0 1 0 0 1 0 3

Table 8.5. Best input dataset for each classification algorithm and numbers of times that
each feature is selected in the optimal dataset.
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Class LDA QDA KNN Naive Bayes

Ĉ1 Ĉ2 Ĉ1 Ĉ2 Ĉ1 Ĉ2 Ĉ1 Ĉ2

C1 28.80 ± 0.42 1.20 ± 0.42 28.00 ± 0.00 2.00 ± 0.00 28.90 ± 0.31 1.10 ± 0.31 28.50 ± 0.70 1.50 ± 0.70

C2 5.10 ± 0.73 79.90 ± 0.73 5.40 ± 1.07 79.60 ± 1.07 1.20 ± 0.42 83.80 ± 0.42 2.50 ± 0.52 82.50 ± 0.52

Table 8.6. Confusion matrix for each optimal subset and for LDA, QDA, KNN and Naive
Bayes algorithms.

Class SVM CART FIS

Ĉ1 Ĉ2 Ĉ1 Ĉ2 Ĉ1 Ĉ2

C1 29.00 ± 0.00 1.00 ± 0.00 27.70 ± 0.68 2.30 ± 0.68 27.80 ± 0.79 2.20 ± 0.79

C2 3.90 ± 0.88 81.10 ± 0.88 2.20 ± 0.42 82.80 ± 0.42 1.40 ± 0.70 83.60 ± 0.70

Table 8.7. Confusion matrix for each optimal dataset and for SVM, CART and FIS
algorithms.

Algorithm Sensitivity (%) Specificity (%) Accuracy (%)

LDA 98.5% 85.0% 94.5%
QDA 97.5% 83.8% 93.6%
KNN 98.7% 96.0% 98.0%
Naive 98.2% 91.9% 96.5%
SVM 98.8% 88.1% 95.7%
CART 97.3% 92.6% 96.1%
FIS 97.4% 95.2% 96.9%

Table 8.8. Performance indexes for the optimal subset and for each classification algorithm.

by both the results. This confirms that these two features have certainly a good
capability of discriminating the presence of a gait disorder, in fact, the first is selected
by other four algorithms and, the last one, by the majority of them (six out of seven).

Classifier Subset #2: FIS and QDA
Despite these two classifiers select a small number of features, 5 and 4 respectively,
the classification error is among the highest values. In fact, even if FIS obtains a
minimum error of 3.1%, the maximum error and the average one are poor, (the
latter reaches values around 80%). However, even if the QDA obtains the worst
minimum error (6.4%) when is compared to the other classifiers, it is also able to to
discriminate the subjects with a good accuracy.

Classifier Subset #3: CART and LDA
Finally, CART and LDA present slightly worse results with a bigger cardinality of
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the features set, 9 and 8 respectively, and similar behavior on the classification error
that ranges from 3.9% to 5.5%.

Final Discussion
The algorithms are tested also in terms of three indexes, in order to evaluate the
best one in terms of accuracy. As it can be seen from Table 8.8, KNN confirms its
best results, reporting the best values of sensitivity, specificity, and accuracy; in
general, the other algorithms do not present very different values of such indexes.
The results presented above confirm a high accuracy that allows us to obtain very
low errors in discerning among diseased and healthy subjects. In fact, in the worst
case of QDA, only 7.4 people out of 115 in mean are wrongly classified. While in
the best case of KNN only 2.3 subjects are inserted in the wrong class, as it can be
seen in Tables 8.6, 8.7.

The important aspect to underline when different algorithms are tested, is the
number of selected features; some algorithms are very efficient considering only 3
features out of the total 16, but in other cases, as for KNN or CART, the performances
are not so good because 9 features are included.

An exhaustive search among all of the possible combinations of the input features
demonstrates that some of them are more important when the aim is to discriminate
between diseased and healthy subjects. It can be noticed, by observing Table 8.5 and
Fig. 8.12, that the features most involved in this task are Step L and the Swing Speed
R that are selected by almost all the used algorithms (6 and 5 times, respectively).
Also, the stride length R, the cadence and the step length are quite informative
since they are selected by the majority of the algorithms. This is confirmed by
recent works that show the alteration of the step length in the Parkinson’s disease
patients [128], or of the cadence and the gait speed in the post-stroke hemiplegia
ones [129, 130]. Regardless what is often underlying about the importance of the gait
speed, [131, 128], in this case, it has not been found as one of the main parameters
able to discriminate among pathological and physiological gait.

The two indexes added to the spatio-temporal parameters are important especially
for those diseases that affect only one side of the body, where there is a dissymmetry
of the gait but also an increasing of the double support time on a single foot.
The width or the stance length are certainly the features that bring the minimum
information and that should be excluded when the aim is to discriminate among
several diseases.

8.3.4 Observation

In the previous paragraph, two techniques able to extract useful information from
medical data have been presented. In this regard, an optimization strategy based on
GA was firstly introduced in order to estimate the performance of several classification
algorithms, both in terms of number of selected features and misclassification error.
Results show that the proposed method is able to reduce the dimensionality of the
data space and to classify the patient’s status with a suitable classification accuracy
(higher than 97%). Since the number of features extracted in this study is not so
prohibitive, it is also added an exhaustively feature selection search able to evaluate
the classification results when all the possible combinations of the input parameters
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Classifier Minimum error GA Maximum error ES No feature selection

KNN 0.027 0.020 0.122
PNN 0.027 0.026 0.261
CART 0.039 0.027 0.104
Naive Bayes 0.035 0.035 0.139
FIS 0.035 0.031 0.122
LDA 0.055 0.044 0.130
QDA 0.064 0.044 0.174

Table 8.9. Classification results in terms of minimum error for the GA, ES and a no feature
selection approach

are presented as an input to the model. In this way, it has been provided an optimal
benchmark to the genetic approach, underlying its potentiality to be used in a more
complex context, like the one of tele-rehabilitation, where the high dimension of the
input data make impossible the evaluation of the optimal solution in a closed form.

In particular in Tab.8.9 the results of the procedures have been flanked, with
also a no feature selection method. It is evident that the exhaustive search is able
to provide the best results, however, the performances of the genetic approach are
very comparable. Putting together all of the previous results, it can be shown
that the several algorithms help us in finding out the best subset of features in
discriminating among diseased and healthy subjects. The step length, the swing
speed, and the cadence are the most representative features for detecting the presence
of a gait disorder since their lonely presence, with two additional features at most, is
sufficient for achieving good results in terms of classification accuracy. The number
of redundant features may be reduced and the outcomes show a suitable classification
accuracy, higher than 97%, which is also confirmed by some performance indexes
ranging from 83.8% to 98.8%. The KNN, Naive Bayes and SVM classifiers are the
best algorithms for this purpose since they obtain the lowest classification error and
the smallest number of selected features. Nevertheless, the proposed approaches
make gait classification simple to be solved, providing a direct information about
the relevant clinical features and avoiding transformation or projection of them into
a different data space.

This should be a great contribution especially in the perspective of a home-based
rehabilitation system, providing support to the clinicians in realizing a remote
diagnosis for the patients.

8.4 Privacy Preserving data mining for distributed con-
text

In the previous paragraph, it has been introduced a general approach able to detect
several diseases and that could help the clinicians and the patients in the early stage
of a disease as well as in the successive ones. Data processing procedures are used
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to combine the spatial temporal data of gait into a limited set of variables. Such
model, either based on neural network or not, are able to provide meaningful medical
information (such as optimal clustering of the subjects), also when are applied from
heterogeneous and spread data like the ones coming from several sensors or different
patients. However, in the medical context, each part is forbidden to disclose its local
dataset to a centralized location, due to privacy concerns over sensible portions of
the dataset. To this end, in this section a framework that essentially extends the
one introduced in chapter 6 is detailed. It allows involved parties to perform (in a
decentralized fashion) any data mining procedure relying solely on the Euclidean
distance among patterns, including kernel methods, spectral clustering and so on.
Once all the agents have access to the global estimate of the EDM, many data mining
techniques can be applied directly (e.g. spectral clustering) or by simple in-network
operations (e.g. SVMs), as it will be discussed subsequently. Additionally, if there is
the need of applying more than one technique, the same estimate can be reused for
all of them, making the framework particularly useful whenever data must be used
in an ’exploratory’ fashion, without a particular predefined objective in mind. And
this is particularly suited for the medical context.

8.4.1 Techniques for privacy preservation

Starting from the algorithm 3, which is extremely general, it can be underlined that
since it has an efficient implementation, it requires the distributed computation
of a small subset of distances (step 1 in the algorithm). In the medical context
these patterns cannot be exchanged over the network for privacy reasons, so, in this
section, two suitable protocols for privacy-preserving similarity computation have
been introduced. More formally, given two training patterns xi,xj ∈ Rd, belonging
to different agents, we want to compute xi

Txj, without exchanging the original data.
In the following, there will be described the two techniques used for this purpose.

Random projection-based technique

The first introduced technique is the random projection-based, developed in [80].
Supposing that both agents agree on a projection matrix R ∈ Rm×d, with m < d,
such that each entry Rij is independent and chosen from a normal distribution with
zero mean and σ2 variance, then the following definition can be given:

Theorem 8.1. Given two input patterns xi,xj, and the respective projections:

ui = 1√
mσ

Rxi, and uj = 1√
mσ

Rxj , (8.7)

we have that:
E
{
uTi uj

}
= xTi xj . (8.8)
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Proof. Let rij and εij be the i, j-th entries of a matrix R and RTR respectively.

εij =
p∑
t=1

rt,irt,j

E{εij} = E{
p∑
t=1

rt,irt,j} =
p∑
t=1

E {rt,irt,j}
(8.9)

Since the entries of a random matrix are independent and identically distributed
(i.i.d.):

E{εij} =
{∑p

t=1 E {rt,i}E {rt,j} if i 6= j∑p
t=1 E{r2

t,i} if i = j
(8.10)

Noting that E {ri,j} = 0 and E {r2
i,j} = σ2

r :

E{εij} =
{

0 if i 6= j

pσ2
r if i = j

(8.11)

Hence, E {RTR} = pσ2
rI. Similarly, we have E {RTR} = qσ2

rI

In light of Lemma 8.1, exchanging the projected patterns instead of the original ones
allows to preserve, on average, their inner product. A thorough investigation on the
privacy-preservation guarantees of this protocol can be found in [80]. Additionally,
it can be observed that this protocol provides a reduction in the communication
requirements since it effectively reduces the dimensionality of the patterns to be
exchanged by a factor m/d.

k-anonymity technique

The second introduced technique is the k-anonymity realized in [132]. In this case,
the pattern xi is assumed to be composed by the following fields:

• Identifiers: are all of those values which are guaranteed to be unique for each
object among patterns (e.g. Name).

• Quasi-identifiers: are all of those attributes that are not themselves unique
identifiers, but that are sufficiently well correlated with the object of the
patterns, that they could be combined with other information to become
personally identifying fields (e.g. age);

• Sensitive attributes: are all of those fields that can not be transmitted from
one site to another one since are strictly related to the object of the pattern
(e.g. diagnosis);

In this case, it is assumed that the pattern xi is composed by both quasi-identifiers
fields and sensible fields.

Definition 8.2. We say that a dataset is k-anonymous if, for any pattern, there
exist at least k − 1 other patterns with the same quasi-identifiers.
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Dataset Features Instances Classes

Pima Indians Diabetes 8 769 2
Breast Cancer Wisconsin 32 569 2

Parkinson Speech 26 1040 6

Table 8.10. Detailed description of each dataset.

In other words, the information of each person contained in a dataset cannot be
distinguished from at least k − 1 individuals whose information also appears in
the dataset. Let suppose to have a table with n rows and m columns, each row
represents a record, while each column an attribute associated with the member of
the population. There are two methods to preserve k-anonymity:

• The “suppression”, is the simplest way to proceed, where the values to be
preserved are replaced by an asterisk ’*’;

• The “generalization” on the dataset, wherein the quasi-identifiers are binned
in a set of Q predefined bins, and only the information on the corresponding
bins is included in the dataset. Different values for Q correspond to different
privacy values for k, with an inverse relation. In this case, the values to be
protected are replaced by with a broader category.

In the next section, an analysis on the influences of these approaches on the dis-
tributed spectral clustering is given. For this reason, the generalization is performed
artificially on the full dataset, while a fully decentralized implementation would
require a more sophisticated procedure going outside the scope of this work.

Although these two protocols have been used due to their wide diffusion and
simplicity, it can be stressed that the proposed algorithm does not depend specifically
on any of them.

As follows is presented an algorithm 7, which extends t3, where in the first step
it will be applied a technique of privacy-preserving.

8.4.2 Experimental validation

In this section, the performance of the proposed algorithm are evaluated for the
decentralized spectral clustering with the privacy-preserving protocols described
in Section 8.4.1. Three different (medical) public datasets available on the UCI
repository 1 are considered and, a schematic description of them is given in Table
8.10. The number of attributes is always greater than three and depends on the
specific features of the dataset. In all cases, for clustering, the optimal solution is
known beforehand for testing purpose. Below some additional information on each
dataset is given.

• Pima Indians Diabetes Dataset [133]: the task is to identify whenever the tests
are positive for diabetes or negative.

1https://archive.ics.uci.edu/ml/datasets.html

https://archive.ics.uci.edu/ml/datasets.html


8.4 Privacy Preserving data mining for distributed context 133

Algorithm 7 Pseudocode of the proposed distributed spectral clustering algorithm
(with privacy constraints), at the kth agent.
1: Input : Local dataset Sk, number of nodes L (global), maximum number of

iterations T .
2: for n = 1 to n(1)

max do
3: The input data are protected through one of the following privacy-preserving

strategies:

• K−anonymity

• Random projection-based

4: Select a set of input patterns and share them with the neighbors Nk.
5: Receive patterns from the neighbors.
6: end for
7: Compute the incomplete EDM matrix Êk n = 1 to n(2)

max

8: for n = 1 to n(2)
max do

9: Select a set of entries from Êk and share them with the neighbors.
10: Receive entries from the neighbors.
11: Update Êk with the entries received.
12: end for
13: Initialize Vk[0].
14: for n = 1 to T do
15: Compute Vk[n] using Eq. (5.12).
16: Diffuse local information using Eq. (5.14). end for
17: Compute the Laplacian matrix L̃ from Ẽ.
18: Perform spectral clustering using L̃.

• Breast Cancer Wisconsin Dataset [134]: it is a binary classification dataset,
where the features describe the characteristics of the cell nuclei present in an
image. The task is to identify the correct diagnosis (M = malignant, B =
benign).

• Parkinson Speech Dataset: [135] the dataset contains data of 20 Parkinson’s
Disease patients (PD) and 20 healthy subjects for which multiple types of
sound recording are taken. The aim is to identify the correct type of recorded
sound.

Five different runs of simulation are performed for each dataset which is preventively
normalized between −1 and 1 before the experiments and randomly partitioned
among the agents. A network of 7 agents is considered, where every pair of nodes
is connected with a fixed probability p = 0.5 according to “Erdos-Rènyi model”.
The only requirement is that the graph is connected. The following strategies are
compared:
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Dataset Algorithm F-Measure Rand-Index F-M Index

Pima Indians Diabetes Centralized 0.511 ± 0.000 0.542 ± 0.005 0.721 ± 0.014

No-privacy 0.682 ± 0.106 0.505 ± 0.000 0.711 ± 0.000

Randomization 0.679 ± 0.050 0.523 ± 0.004 0.723 ± 0.003

Breast Cancer Wisconsin Centralized 0.785 ± 0.000 0.543 ± 0.004 0.728 ± 0.004

No-privacy 0.772 ± 0.330 0.624 ± 0.169 0.779 ± 0.086

Randomization 0.609 ± 0.389 0.682 ± 0.106 0.815 ± 0.041

Parkinson Speech Centralized 0.665 ± 0.001 0.450 ± 0.000 0.705 ± 0.000

No-privacy 0.674 ± 0.0.047 0.504 ± 0.000 0.710 ± 0.000

Randomization 0.672 ± 0.027 0.501 ± 0.003 0.708 ± 0.002

Table 8.11. Experimental results for the randomization. It can be shown that the average
and the standard deviation of the indexes. Best results for each algorithm are highlighted
in bold.

• Centralized: this simulates the case where a dataset is collected beforehand on
a centralized location (for comparison).

• No-privacy: the dataset is used without any privacy protocol applied to the
data;

• Randomization protocol: the privacy of the data in step 1 is preserved by
computing the distance on the projected patterns according to (8.7); parameter
d is chosen in k = [2, . . . , 8] to minimize RMSE;

• K-anonymity: the privacy of the data is preserved by generalization on the
quasi-identifiers of the dataset. 4 bins are used for each quasi-identifier.

Dataset Algorithm F-Measure Rand-Index F-M Index

Pima Indians Diabetes No-privacy 0.682 ± 0.106 0.505 ± 0.000 0.711 ± 0.000

Randomization 0.679 ± 0.050 0.523 ± 0.004 0.723 ± 0.003

K-anonymity 0.779 ± 0.167 0.561 ± 0.031 0.749 ± 0.021

Table 8.12. Experimental results for the k-anonymity. It can be shown the average and the
standard deviation of the F-Index, Rand Index, FM-Index for both the Randomization,
k-anonymity and free-privacy protocol. Best results for each algorithm are highlighted
in bold.

The results of the framework are firstly evaluated by the randomization procedure.
Three quality indexes are computed for both the privacy-preserving protocols and
the privacy-free algorithm, namely the Rand Index, the Falks-Mallows index and
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the F-measure. In Table 8.11 are reported the mean and the standard deviation
of each quality index averaged over 10 k-means evaluations and over the different
agents in the distributed case. The best result for each index is highlighted in bold.
The results of the three approaches are reasonably aligned. As it can be noted from
the table, the results for all of the dataset are very similar and in some cases, the
algorithm with privacy-preservation outperforms the traditional one. For evaluating
the k-anonymity, the Pima Indians Diabetes Dataset, described in Section 8.4.2, is
used. The first and the eighth feature, which are the number of times pregnant and
the age of the subject respectively, are used as quasi-identifiers. In Table 8.12 are
reported the three quality indexes for the k-anonymity protocol, the randomization,
and the no-privacy transformation strategy. As it can be seen from Table 8.12 the
performance are comparable with respect to the privacy-free algorithm, precisely in
the k-anonymity protocol the results are even better.

8.4.3 Observation

In conclusion, two techniques able to extract useful information from medical data
have been presented. Results are very good both in terms of classification accuracy
and misclassification error. However, in a medical scenario, they could not be directly
applied. In effect, one of the main requirements in this context is that data could
not be transferred from one site to another for privacy concerns over sensible portion
of the dataset. To this end, a general framework for performing distributed data
mining procedure has been realized, with a specific emphasis on privacy-preserving
protocols. Preliminary results on a clustering application show the feasibility of the
approach, which is able to reach almost-optimal performance with respect to a fully
centralized implementation.

All of the previously cited works, are only the first steps that could be realized for
a possible telemedicine context. In effect, in addition to the possibility of achieving
a protocol for analyzing and managing distributed data, a deep study on recent low-
cost technologies able to acquire those data (from the home’s patients) is necessary.
In the next section, I will be present my contribution to this issue.
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Chapter 9

Low-cost devices for
tele-rehabilitation

The previous chapter introduces a genetic optimization and an exhaustive search
for detecting the presence of an abnormality of the gait even when data is acquired
from several sensors. In effect, analyzing data spread across multiples sources of
information is the typical behavior of a tele-rehabilitation context. Since the aim
of this part of the thesis is the realization of a complete tool to be used in the
home of a patient where there is no or reduced medical supervision, in this section
the attention is shifted on the capability of low-cost devices in capturing all of the
spatio-temporal parameters used before now. Machine learning techniques are used
to analyze and extract data from two low power devices (an RGB-D camera and
IMU sensors), whose potentiality in acquiring the gait of a patient are also assessed.

In recent years, a lot of motion sensors started to be used to this end [136, 137],
like inertial sensors, gaming device like Nintendo [138, 139] and Kinect Device
[140, 141]. In [142] is summarized a comprehensive review of them. Besides gaming
purposes, several works prove the potentiality of the device in applications outside
gaming [143], showing its ability in assess stride dynamics during walk [144], evaluate
the postural control [145], capture the upper extremity movements [146], or perform
gait recognition from the frontal view [147]. All of these devices are promising
technologies for the medical context, especially in the perspective of an outpatient
medical facility. However, a careful analysis on theirs ability to effectively capture
all the spatio-temporal gait parameters, which are the ones used by a movement
laboratory, is still lacking.

Thus, in this work, the Microsoft Kinect device is used to monitor and quantify
the movement of a patient, his clinical status, the degree of rehabilitation and the
success of a therapy made ad-hoc for him. It allows the tracking of the movements of
a person avoiding need of markers, controllers or force platforms. To have a complete
representation of the movement, it will be flanked by the Inertial Measurement Unit
(IMU), like accelerometers and gyroscope. They could not be used alone since they
can be affected by noise and signal drift. Additionally, they need to be exactly
positioned and, since each sensor is able to capture very few gait properties, several,
redundant sensors are necessary to achieve an accurate analysis. On the other hand,
they are very cheap and do not require complex software systems, thus their use, in
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combination with camera’s data, seems to calibrate well the system.

9.1 Microsoft Kinect Device

9.1.1 Description of the device

The Microsoft Kinect Device is the first technology, proposed in this work, to record
patient’s motion before and after the training session. It allows a three-dimensional
reality perception, similar to that obtained by the humans. It is composed by
sensor components able to analyze the scene, and perception ones able to analyze the
reaction of the sensor in the scene. Owning an angular field of view of 57°horizontally
and 43°vertically, it is composed by:

• a 640 x 480 RGB camera that makes possible the capturing of a color image;

• a depth sensor able to capture a depth image;

• a 3-axis accelerometer used to determine the current orientation of the Kinect;

• a multi-array microphone, used to find the location of the sound source and
the direction of the audio wave.

The sensor has different potentiality, it can be used to perform gesture recogni-
tion, facial recognition as well as voice recognition. However, the most important
innovation that it brought with it, is linked to the capability to inference body
position. The device captures the three-dimensional motions of a person thanks to
the realization of a depth map. By capturing color and depth images at 30 frames
per second, it provides detailed information about the twenty joints of the user’s
body such as hands, elbows, knees, head and so on. This is obtained by a two-stage
process, firstly a depth map is computed, then the extracted information is used to
infer the body position.

The infrared laser emitter is used to create a constant pattern of speckles projected
onto the scene to be reconstructed. Successively, depth information is obtained in
a very simple way: the translation of the pattern features is determined by the
difference between a speckle pattern, which is observed by using an infrared (IR)
camera, and the reference data at a known depth. In other words, it is possible to
recover the distance of the patterns, by measuring their distortion. The depth map
is an image whose pixel’s values represent the distance from the origin of the sensors.
The reference pattern is obtained by capturing a plane at a known distance from
the sensor and storing it in the internal memory.

When there is an object with a distance smaller or larger than the one of the
reference plane, the speckle pattern is projected on it and its position will be shifted
in the direction of the baseline between the laser projector and the perspective
center of the infrared camera. The shifts are evaluated for all the speckles thanks
to an image correlation procedure able to produce a disparity map. The last one,
combined with the known depth of the memorized plane, is used to estimate the
depth for each pixel through triangulation.

The sensor can be used in all room light conditions (complete darkness or fully
lit room) it does not require the user to wear anything and it does not require
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calibration. Thus, its capability to track the movements of a person avoiding need
of markers, sensors, controllers or force platforms makes it suited for those patients
that cannot stand for a long time.

9.1.2 Experimental setup

Fifteen people are asked to participate in the analysis. Precisely, 6 males and 9
females with an average age of 27.57 (ranged from 21 to 52) were recruited. After
the informed consent, the participants were examined by experienced doctors and
the ones with severe cognitive, perceptual or communication problems or any other
health conditions that could have been not suitable for the experiment have been
carefully excluded during the selection process.

It was asked to participants to wear a minimum number of garments (a pair
of slip) in order to allow the application of the reflective markers by means of
a double-side hypo-allergenic adhesive. Successively, the participants perform at
least five walks that are analyzed simultaneously with the Kinect Sensor and the
stereophotogrammetric system (already introduced in sec 8.2.3).

For the Kinect the analysis begins when the subject is standing in front of the
device in a range not visible from the camera. In that instant, the gait’s video
recording, the depth map and a three-dimensional vision of the movement is obtained
by the Microsoft sensor. Simultaneously, a software realized ad-hoc for this purpose
is activated to record the three-dimensional coordinates of the skeleton joints.

The captured features are all the spatio-temporal parameters described in Sec.
8.2.1. For all of the parameters, both the left and the right values are considered,
with the exception of the cadence and the mean speed that have a unique value for
both feet; thus a total of 16 features are processed in the analysis.

9.1.3 Kinect’s calibration

A skeleton model was directly obtained from the official Microsoft Software Devel-
opment Kit (SDK). It allows to recognize people and follows their actions when
are standing or sitting, but facing the sensor. Precisely, it was used to acquire the
skeleton joint positions in the three axes coordinates. Successively, a software specif-
ically designed for the experiments, able to convert them into the spatio-temporal
parameters described in Sec.8.2.1, is realized. The analytic properties of the vectors
and angles during the walk are exploited. A brief description of the proceeding is
given as follows for each parameter:

Step length: by a video analysis it is possible to retrieve the instants in which the step
begins and ends. Let (x1, y1, z1) as the starting instant’s coordinate and (x2, y2, z2)
as the ending one, then the step length can be evaluated as:

Step length =
√

(y2 − y1)2 + (z2 − z1)2 (9.1)

The coordinate along the x-axis is not inserted into the formula since it causes a not
realistic displacement into the horizontal plane that falsifies the real value of the
parameter.
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Stride length: similarly to the step length, it can be evaluated by considering
the instants in which the foot touches the ground for two consecutive steps. Let
(x1, y1, z1) as initial contact foot’s coordinate and (x2, y2, z2) as the ending one, then
the stride length can be evaluated as follows:

Stride length =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (9.2)

In this case, the coordinate along the x-axis is also considered since the displacement
in the horizontal plane is not so relevant for a linear gait.

Base width: is evaluated by considering the distance from one foot and the mean
axes between the feet. Let (x1, y1, z1) as the first step’s coordinate and (x2, y2, z2)
as the second one, then the base width can be evaluated as:

Base width =
√

(x2 − x1)2

2 (9.3)

Swing Speed considering (x1, y1, z1) as the beginning starts of the swing phase and
(x2, y2, z2) as the ending one, then the swing speed can be evaluated as the ratio
between the total covered distance during the swing phase and the total employed
time to executed it. The space is evaluated thanks to the coordinates, while the
time by considering the timestamp of the device.

Mean Speed: considering (x1, y1, z1) as the starting point of the gait, and (x2, y2, z2)
as the ending one, then the mean speed can be evaluated as the ratio between the
total covered distance during the gait cycle and the time employed to executed it.
The space is evaluated thanks to the coordinates, while the time by considering the
timestamps of the device.

Stance Phase: since the video of the movement and the timestamps of the device
are known, this parameter can be evaluated in a very simple way. It is obtained by
subtracting the instant in which the foot leaves the ground and the one in which
the heel is in contact with it. It is averaged over all of the stance phases performed
during the analysis.

Swing Phase: similarly to the previous parameter it is obtained by only changing
the initial and the final instant of the phase. In this case, the parameter is evaluated
as the time difference between the heel contact and the toe-off, averaged over all of
the swing phases executed during the analysis.

Stride Phase: it is obtained by summing the swing and the stride phase, or by
performing the time difference between two successive heel contacts of the same foot,
averaged over all of the stride phases executed during the analysis.

Double support: is the percentage of gait when both feet are in contact with the
floor. It is evaluated as the difference between the toe off of the controlateral foot
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and the heel contact of the foot one.

Cadence: it is evaluated by counting the number of steps executed between the
initial and the end instants of a subjects’ gait (the video analysis help us in obtaining
this value). The parameter is evaluated as follows:

Cadence = 60 N. Step
Total length[s] (9.4)

Table 9.1 shows the parameters acquired by the Microsoft Kinect with the above
procedure. Specifically, it is compared with the stereophotogrammetric system when
a typical behavioral walking cycle is analyzed by both systems. It can be noticed
that there are no significant differences among the gait parameters since the obtained
values are very similar.

Once considered the kinematic analysis, the attention is shifted on the kinetics
one. In the stereophotogrammetric system, a dynamometric platform is used to
analyze the reaction forces of the movement in the ground. The same possibility is
not allowed for the Microsoft Kinect device, thus the properties of angles, vectors
and inner products are exploited to reconstruct the kinetics parameters during the
walk. Since the Kinect is not able to well recognize the fine movements of the feet, in
this work are considered only the knee’s and the hip’s angles during the gait. Below
is given the procedure to determine them:

• Knee angle: since only the movement joints’ coordinates are available from the
Kinect device, this parameter is evaluated by exploiting the inner product of
the angle to be reconstructed. To this end, the origin of an imaginary Cartesian
plane is put in the knee’s coordinate. Then, the hip and ankle coordinates are
considered as the extremes of two vectors connected with the origin. In this
way, the angle’s behavior for each time stamp is evaluated thanks to the inner
product between these two vectors.

• hip angle: similarly to the previous parameter, the hip’s behavior is obtained
by considering the inner product between the vector that joins the knee and
the hip coordinates (which is the origin of an imaginary Cartesian plane) and
the one that joins the hip with the shoulder coordinate.

Representative trajectories of hip and knee sagittal range of motion throughout
the whole gait cycle have been represented in Fig. 9.1a and Fig. 9.2a for the
stereophotogrammetric system and in Fig. 9.1b and Fig. 9.2b for the Kinect device,
respectively. The trend is reported for both left and right side with a blue and red line,
respectively. The Kinect is very accurate in the reconstruction of movements, with
a peak that occurs immediately before the beginning of the swing phase (indicated
by the purple vertical line) and at the end of the stance phase. In the knee angle,
the flexion peak is reached among the 60-80% of the gait cycle, with a value of 50◦
that is correctly checked by the proposed system.

9.1.4 Statistical analysis

To prove the reliability of the device several statistical tests have been carried on to
assess the possible discrepancies among the stereophotogrammetric system and the
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Microsoft Kinect Device Stereophotogrammetric System

Feature µL ± σL µR ± σR µL ± σL µR ± σR

Step length (m) 0.74 ± 0.02 0.71 ± 0.00 0.76 ± 0.06 0.66 ± 0.04

Stride length (m) 1.44 ± 0.04 1.44 ± 0.00 1.41 ± 0.08 1.34 ± 0.15

Base width (m) 0.05 ± 0.00 0.06 ± 0.00 0.10 ± 0.01 0.08 ± 0.02

Swing speed (m/s) 2.63 ± 0.49 2.73 ± 0.00 2.89 ± 0.11 2.99 ± 0.17

Stance phase (%) 55.70 ± 1.00 57.10 ± 0.30 55.10 ± 2.70 57.20 ± 3.00

Stance phase (s) 0.59 ± 0.03 0.60 ± 1.79 0.60 ± 0.04 0.60 ± 0.04

Swing phase (%) 44.60 ± 1.00 42.90 ± 0.30 44.90 ± 2.70 42.80 ± 3.00

Swing phase (s) 0.47 ± 0.03 0.45 ± 0.26 0.49 ± 0.02 0.45 ± 0.06

Double sup. phase (%) 7.33 ± 0.39 6.29 ± 0.39 7.30 ± 0.00 6.20 ± 0.00

Stride phase (s) 1.07 ± 0.06 1.06 ± 0.18 1.09 ± 0.02 1.05 ± 0.06

Mean speed (m/s) 1.30 ± 0.00 1.29 ± 0.00

Cadence (step/m) 111.55 ± 5.89 112.45 ± 3.45

Table 9.1. Comparison between the optoelectronic system and the Microsoft Kinect Device.
The mean and standard deviation for both left (L) and right (R) measured values of
every feature are reported.
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Figure 9.1. An example of the hip motion during the gait cycle. Blue line is for left hip,
red line is for right hip. The purple line represents the end of the stance phase and the
beginning of the swing phase for both the stereophotogrammetric system (a) and the
Kinect Device (b).

Microsoft Kinect device. Precisely, the results are validated thanks to the following
statistical coefficients:

• Pearson coefficient correlation;
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Figure 9.2. An example of the knee motion during the gait cycle. Blue line is for left knee,
red line is for right knee. The purple line represents the end of the stance phase and the
beginning of the swing phase for both the stereophotogrammetric system (a) and the
Kinect Device (b).

• Bland and Altman Plot;

• Limit of Agreement (LOA);

• Intra-class correlations coefficients.

A further analysis of them is given in Appendix B. The results are reported in Table
9.2 where is shown a great agreement between the two systems with a Pearson
coefficient of above 0.9 in most of the cases. The temporal parameters obtain the
better results, while the spatial parameters are slightly less good because there is a
feature that undergo a great error. This is the base width. Since the Kinect is not
able to acquire the fine movements of the feet, a variation of 3 or 4 centimeters on a
value of few centimeters’ order causes the important underlined error. Therefore,
the Kinect is able to reasonably measure the most clinically relevant spatio-temporal
parameters. Additionally, in Fig. 9.3 are showed the Bland-Altman plots for two of
the captured parameters (Stride phase and Double support L time) where points
are uniformly and tightly scattered around the horizontal axis.

9.2 A smartphone device
Once ascertained the capability of the Microsoft Kinect device in acquiring the
most important gait parameters, it will be combined with data obtained by IMU
sensors to obtain a complete representation of the gait of a subject. They are a
possible alternative for monitoring motion in an economical way. However, these
sensors have shown to have possible drift problems caused by the accumulation
of measurement errors. For this reason, they must be used in parallel with other
devices. In particular, the combination of accelerometer, gyroscope and camera’s
data seems to calibrate well the system, making it more accurate.

Since the IMU sensors could be difficult to retrieve in a home context, this
work will use the sensors contained in a smartphone. Its advantages of being
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Feature Pearson ICC R2 LoA

Step length (m) 0.836 0.905 0.699 [0.14 -0.13]
Stride length (m) 0.965 0.977 0.931 [0.14 -0.07]
Base width 0.517 0.668 0.267 [0.07 -0.07]
Swing speed (m/s) 0.560 0.614 0.313 [0.67 -1.19]
Stance phase (%) 0.938 0.966 0.880 [1.63 -1.51]
Swing phase (%) 0.939 0.966 0.881 [1.51 -1.63]
Double support (%) 0.969 0.977 0.939 [1.42 -1.53]
Stride phase (%) 0.888 0.923 0.788 [0.09 -0.08]
Mean speed 0.971 0.983 0.943 [0.11 -0.08]
Cadence (step/m) 0.981 0.984 0.963 [3.47 -5.05]

Table 9.2. Numerical results of statistical tests.
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Figure 9.3. Bland-Altman plot with limits of agreement. The difference between the two
devices is plotted on the Y-axis, and the mean score on the X-axis.

compact, cost-effective and relatively easy to operate when is compared to other
expensive technologies, make it particularly promising for this context. Additionally,
the filtered and captured data will be compared with data fusion and pattern
recognition techniques able to support clinicians by extracting the important features
for performing a diagnosis.

9.2.1 Protocol setup

Similarly to what done for the Microsoft Kinect, in this section it will be performed
an analysis on the data captured from the smartphone. To this purpose, the flow-
chart 9.4 summarizes the scheme for gait monitoring, while a detailed description of
each phase is given as follows:

Collected Raw Data From Sensors: the data acquisition is performed by the following
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Collected raw data from sensors

Resample @200 Hz (for homogeneity)

Wavelet Transform
(approximation coefficient)

Denoising & Low Pass
Filtering @12.5 Hz

Power Spectrum Density
(frequency features extraction)

Gait Feature Extraction
(Cadence, Cycle Time, Regularity)

Feature Normalization

Data Classification & Results

Figure 9.4. Script’s Flowchart

steps:

• The user opens the application of the Android device and sets the recording
time;

• The smartphone is put into the band’s pocket and fasten around the calf;

• The user presses the “Start” command on the screen and, after a countdown
of 3 seconds, the app begins to record;

• During the recording time the user performs the walking test; a vibration of
the device will advise him/her that the time expired;

• At the end of the trial, the user has to upload data to the database answering
“Yes” to the upcoming question on the screen.

If the user is a voluntary hemiplegic patient, an assistant helps him/her in any
demands. Accelerometer, gyroscope, and magnetometer data are captured during
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each trial. Firstly, the magnetometer ones are discarded because they are too sensible
to metal objects eventually present in the environment. In effect, since no video
reports were made by Medical Center, magnetometer data disturbs are unpredictable.

Resampling of data: once captured data from sensors, the second step consists in its
resampling to achieve a homogeneous set of measures even when different physical
devices are used for the acquisition. In effect, the app’s code does not establish
sampling frequency but it depends on the sensor’s technology available on the single
device. A sampling rate of 200 Hz is used, evaluated as an average weighted of its
lowest (around 50 Hz) and highest (around 350-380 Hz) value.

Wavelet Transform and filtering: the successive step consists in evaluating the wavelet
transform firstly to the de-noised acceleration and gyroscope data, and successively to
the filtered ones. The sampling rate’s choice allows us to set the wavelet coefficients
to values that better fit the target of de-noising and low pass filtering. A wavelet
de-noise algorithm (’wden’) is firstly applied [148], and modeled in the following
way:

s(n) = f(n) + σe(n) (9.5)

whereas n is the time of sample, s is the noisy signal, f is the neat signal, and e(n) is
a Gaussian white noise N(0,1) with σ equal to 1. This algorithm is able to suppress
the noise part of the signal s and recover f by the following three steps:

1. Decomposition: a wavelet decomposition of the signal is evaluated by choosing
a level W and a type of wavelet.

2. Detail coefficients thresholding: the algorithm applies soft thresholding for
each level from 1 to W in order to detail coefficients.

3. Reconstruction: the algorithm computes wavelet reconstruction on the basis
of the original approximation coefficients of level W and of the modified detail
coefficients of levels from 1 to W .

In this work, the level coefficient W is set equal to 4 in order to scale the signal
through Mallat’s filter banks down-sampling algorithm at 12.5 Hz. Let us suppose
that the average walking frequency of healthy people is about 1.8 Hz [149], then
the frequency 12.5 Hz is suitable for a noise reduction without wasting possible
pieces of pattern information. Subsequently, both reconstructed and de-noised
acceleration and gyroscope 3-axis signals are passed through a level 4 wavelet filter
bank. Low pass filters and down-sampling to 12.5 Hz make signals easier to be
understood (Figure 9.5). In this way, once obtained the de-noised and filtered signal,
the successive step of features extraction will be easier performed.

Power Spectrum Density: the translation of de-noised (but not filtered) acceleration
and gyro absolute values is performed through the “periodogram” Power Spectrum
Density (PSD). As literature suggests [150], the maximum PSD magnitude value
is used as a feature for the classification purpose, for both the acceleration and
gyroscope data (Figure 9.7). In particular, it should be noted that in most cases
the acceleration’s average frequency is located on gyro’s second harmonic. However,
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Figure 9.5. Effects of wavelet transform on acceleration signal. In the top figure is reported
the raw acceleration, while in the bottom the denoised and filtered one.

because of important fluctuations, this rules could not be always satisfied.

Gait Feature Extraction: as said before, the first features used for the classification
problem are the PSD magnitude values. In Fig.9.7 are reported the PSD extraction
and the frequency values. The last ones, are then used, with a specific algorithm, to
perform the gait stride recognition represented in Fig.9.6. Each stride is recognizable
from the acceleration pattern as the time between two “valleys”: in fact, when
the foot hits the ground, the sudden acceleration causes a spike followed by a
deceleration that is represented by a valley, then the successive leg swinging causes
a new acceleration and the process is repeated cyclically. However, this behavior
is more evident in healthy people rather than hemiplegic ones. In order to find
out the foot contact’ instants, both cycle time durations (from accelerometer and
gyroscope data) are considered: the intersection of these two arrays is considered for
cycle recognition and discrimination (Figure 9.6). In addition to the PSD magnitude
values, other three features are used for gait cycles discrimination: cycle duration,
cycle regularity, and cadence. Assuming that the first valley is the starting point
of the stride and that the last one is performed during the time gap between two
consecutive valleys, the Cycle Duration (Cd) can be defined as:

Cd[n] = V [n+ 1]− V [n] (9.6)

whereas V is the array containing valleys’ locations, and n is the time index of them.
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Figure 9.6. Stride recognition. In the top panel is reported the cycle recognition for an
healthy subject, while in the bottom one a non-healthy subject behavior is described.

Every value is expressed in seconds. It represents the difference between the valley
of a gait cycle.
The Cycle Regularity (Cr) is expressed as the standard deviation of the Cycle
Duration, measured in second:

Cr = σ(Cd) (9.7)

It reaches greater regularity when the value becomes close to zero. Anyway, 0 is
reached only with one cycle detected.
Finally, the Cadence or “revolutions per minute” (RPM) Rp can be defined as:

Rp = 60Nc

Vl − Vf
(9.8)

whereas Nc is the number of cycles taken from the length of cycle duration array,
Vl is the last element of the valley location and Vf is the first one. Cadence is the
projection of how many strides could be performed in a minute. It is expressed in
cycles/min.

All the features extracted are summarized in Table 9.3:

Features Normalization: before running the classifying script it is helpful normalizing
features for scaling results to the range between 0 and 1. Data normalization can be
defined as follows:
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Feature Description

Mean Cycle Time [s] Mean value of the cycle duration
Cycle Regularity [s] Standard deviation of the stride length during a trial.
Cadence [step/min] The number of step executed in a given time.
Max PSD Acc Maximum value of the acceleration PSD
Max PSD Gyro Maximum value of the PSD of the gyroscope

Table 9.3. A detailed description of the spatio-temporal parameters used for the analysis.
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Figure 9.7. Maximum PSD extraction. In the top panel is reported the power spectrum
density for the acceleration, while, in the bottom one, is reported the gyroscope behavior.

let M be the number of data files of the dataset D = x1, x2, ..., xM and N be the
number of features; i.e., each file in the dataset is represented by a row of N numbers:

xm = [xm1 xm2 . . . xmN ], m = 1 . . .M. (9.9)

Since data features are completely heterogeneous, patterns cannot be normalized
globally, but through each column independently:

xmj ←
xmj − bj
aj − bj

, m = 1 . . .M and j = 1 . . . N (9.10)

whereas: aj = maxm=1...M
(
xmj

)
and bj = minm=1...M

(
xmj

)
.
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Data Classification and results: the last step in flowchart consists of running different
types of classifiers in order to categorize data of healthy people and patients. Anyway,
this kind of passage is useful even to understand if the considered gait features are
able to perform this kind of classification. All the possible combinations of input
features are performed and saved in a different dataset. A 10 fold cross validation is
used and several classification algorithms are compared in terms of misclassification
error.

9.2.2 Experimental trials

The experiments are performed by putting the smartphone in the pocket of a band
and ties around the user’s calf as is shown in Fig. 9.8. The choice of the calf is
not casual because most of the gait information and lower limb’s angle movements
involve only to this muscle. An only smartphone is used for the experiment in

Figure 9.8. Device position

order to realize the most possible simple and cheap approach, without finding what
happens when two or more devices are added to the analysis. However, in this way,
it was not possible to deal with difficult scenarios, e.g. time synchronism and sensor
mismatch between smartphones, missing all of the information on the “not-sensing”
limb. Thus, it is not possible provide a full representation of the gait cycle presented
in sec:8.2, since one sensor node is not able to achieve this. Rather, the aim of this
work is to evaluate some additional features, that could be flanked to those obtained
by the Microsoft Kinect device, in order to obtain a more accurate description of
the movement for a possible home-based lower limb rehabilitation. In particular,
features like the average stride length, the total walking stance or the number of
steps are added to the previous ones acquired by the RGB, to make more affordable
the gait analysis.

Both healthy people and post-stroke patients took part in the experiments. 60
different walking trials through heterogeneous devices and from different places
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Classifier Maximum error Average error Best subset Best Cardinality

LDA 0.933 0.822± 0.128 00001 1
QDA 1.000 0.884± 0.135 10101 3
KNN 0.983 0.875± 0.125 10011 3
Naive Bayes 0.967 0.904± 0.898 01001 2
SVM 1.000 0.898± 0.138 00101 2
Neuro-Fuzzy 0.983 0.894± 0.112 10001 2
CART 0.950 0.877± 0.107 00001 1
PNN 1.000 0.911± 0.112 00101 2
FIS 0.967 0.864± 0.119 00001 1

Table 9.4. Classification results in terms of minimum, maximum and average classification
error. The last two columns report the best subset of features and its cardinality.

have been collected. Among these 60 records, 25 of them belong to voluntary
patients from Rehabilitation Medical Center of the 2nd Hospital of Jiaxing, Zhejiang
province, China; the remaining 35 are splitted between researchers of the university
and doctors from the previous-cited medical center. Additionally, data differs for
the length of the recording session: 41 of them (respectively 13 from patients and
28 from healthy people) are recorded in 10 seconds, the remaining 19 (12 of which
are patient) are recorded in 20 seconds. People are asked to perform a walking in a
straight path, without deviation.

Figure 9.9 immediately explains how fitting maximum PSDmagnitude is. Through
sorting adjacently the two groups of files and showing magnitude differences, the
reader could have a good estimation of classification results using the acceleration
and gyroscope’s PSD magnitude. Numerical results are reported in table 9.4, where
the effectiveness of the device is tested by comparing several classification algorithms
(detailed in Appendix C) in terms of misclassification error. The best feature set,
after an exhaustive search over all of their possible combinations, is reported. It can
be shown that, for each algorithm, the extracted features are able to well discriminate
among a diseased patient and a control one.

9.2.3 Observation and conclusions

The beginning of this chapter carries on an analysis on the reliability and the validity
of a novel method for full body gait analysis achieved through the Microsoft Kinect
device. It is a low-cost portable device that provides us a low-cost portable system
able to track the movements avoiding need of markers, sensors or controllers. This
is an important aspect to underline, because the traditional systems often require a
considerable time for marker application, as well as for the execution of the test that
often must be repeated several times for marker detection, creating difficulties for
those patients that cannot stand for a long time. Once asserted the accuracy of the
Kinect, several statistical tests shown that results are comparable when assessing
spatio-temporal parameters during the commonly used clinical tests. To this end,
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Figure 9.9. maximum PSD acceleration’s differences between healthy and not healthy
users

the traditional optoelectronic system, which is a gold standard in the gait analysis,
is used for comparison. Successively, the gait monitoring has been extended by using
the sensors contained in a smartphone. Respect to the state of the art applications,
the data acquired and filtered from the device is compared with data fusion and
pattern recognition techniques able to provide a correct definition of the gait’s
movements. The results show that the system is able to well acquire some interesting
gait parameters, allowing also a good discrimination among diseased and healthy
subjects.

In this way, these data could be combined with those captured from the Kinect
Device producing a calibrated system to be used for a telerehabilitation project. In
this context, the use of technology has become relevant in order to better understand,
improve and develop cutting-edge treatment approaches, often allowing a decreasing
of the procedures’ costs.
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Chapter 10

Neural Networks Implemented
with Finite Precision
Arithmetic

As discussed in Chapter 8, to infer knowledge from big data partitioned over
geographically distinct locations is a fundamental problem in the context of tele-
rehabilitation. However, this is not the only possible implementation, in fact, in
this chapter, the focus is shifted on another field of distributed learning application,
which is the one of sensors networks and low-power devices. In this case, traditional
centralized techniques could not be applied for the presence of additional constraints
on the hardware resources. For these reasons, a Random-Vector Functional Link is
used to make possible the learning on simple architectures. Additionally, a genetic
optimization will be adopted to determine the quantization level of both the input
data and the interval parameters of the network.

10.1 Introduction

Internet of Things (IoT), cloud computing, pervasive computing and so on, have
revolutionized the way by which signals are processed and the information is managed.
New ways of processing, sensing, and computing have overcome the traditional
centralized architectures posing new challenges and new opportunities for distributed
networked signal processing. Thus, it is no longer possible to send data in a central
node where traditional learning algorithms will extract the important information,
while new techniques able to model and manage data are mandatory.

A large class of environments requires the deployment of distributed wireless
sensors networks (WSN), e.g. environmental monitoring, habitat sensing, disaster
management. They have significant benefits, for example, they can be used to
remotely monitor inhospitable and toxic environments or to realize an intelligent
patient monitoring as the one introduced in the previous chapter. Typically, a WSN
is composed of a large number of low-cost, low-power and heterogeneous devices,
called wireless sensors nodes. They are densely deployed in a region of interest
in order to sense, process and communicate information from their surroundings.
A WSN may be realized rapidly and without large requirements by involving the
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following items:

• environmental sensors;

• tools to communicate the information among neighbors and to the external
users (wifi, Bluetooth. . . );

• techniques able to extract the information from raw data.

In effect their nature allows an optimum trade-off between precision and imple-
mentation (costs and performances): the technological advances allow to build
small, inexpensive and battery-powered sensing devices, while the self-organized and
infrastructure-less wireless sensor network let be possible the transmission of data
packets thanks to the coordination between the sensor nodes. The performances of
these devices are characterized by parameters such as power/weight ratio, strength,
response rate, physical size, speed of motion, reliability cost and so on. To maxi-
mize these features, other aspects, including circuits, architectures, algorithms, and
protocols, have to be energy efficient.

Generally, these sensors are used to make inference about the environments that
they are sensing by monitoring physical conditions, such as temperature, sound,
pressure and so on. However, separate domains of application may largely im-
pose different constraints on the solution, including low computational power at
every location, limited underlying connectivity (e.g. no broadcasting capability),
or transferability constraints related to the enormous bandwidth requirement. The
computational power may not be sufficient to analyze a too high quantity of infor-
mation. Thus, the problem on which this chapter focuses the attention, is how to
best map learning applications onto hardware, implementing low power protocols
and overcoming the intrinsic energy constraints.

It is known that neural networks are traditionally used to provide solutions to
many problems in the areas of pattern recognition, signal processing, and time series
analysis. However, these approaches are computationally intensive and memory
demanding, making difficult to deploy them on distributed systems with simple
hardware. Usually, neural networks parameters are estimated via learning algorithms
running on standard computers with double precision floating point arithmetic.
However, uploading the network model on a digital architecture with finite precision
arithmetic, after a direct quantization of coefficients, leads to unsatisfactory results
due to the non linear nature of the network [151, 152]. Nonetheless, many real-time
applications need an adaptive learning, as in the case of the well-known consensus
strategy, where the model must be dynamically adapted to new observations even
after hardware implementation. There have been various proposals to make inference
in contexts with limited hardware resources. A learning procedure for generating
multilayer integer-weight neural networks has been presented in [153]. Differential
evolution strategies have been also applied to train neural networks with small
integer constraints [154]. In [155], a training mechanism with quantized weights
that reduces the cost of hardware implementation has been presented and in [156]
both approximation and quantization techniques are used for network pruning.
However, all of such models are not suited to deal with distributed learning and
data processing.
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In this work, the attention is given on the Random Vector Functional-Link
(RVFL), which can be applied to signal processing applications where function
approximation, classification or time series forecasting is required. In particular, this
technique has been used to implement distributed learning systems where training
data is diffused under a decentralized information structure [157], or to solve specific
classification problem [158]. For instance, an RVFL can be implemented on each
node of a network of interconnected agents, where the constraints imposed by the
hardware implementation of the node (e.g. by using Arduino, Raspberry or other
cheap electronic cards) make necessary to deal with a finite precision arithmetic.

So far, only preliminary studies have been proposed for RVFL networks with
limited hardware resources; for instance, in [159] the algebraic properties of the
mathematical model are investigated, considering the implementation on FPGA
architectures with a relatively high number of bits (i.e., more than 16). In the
following, a novel optimization strategy based on a Genetic Algorithm (GA) is
introduced to estimate the inner parameters of the network under the constraint of
finite precision arithmetic. It will be also described a nonuniform quantization of
the input data feeding the network, in order to cope with the actual structure of
datasets and also to compensate the rounding of internal parameters of the neural
model. The problem will be around how to balance between the need for numeric
precision, which is important for network accuracy, the speed of convergence, and
the cost of more logic areas associated with increased precision.

10.2 RVFL architecture

In Section 6.1.2 is introduced a random vector functional link for a classification
purpose, now it will be used for a regression one.

The RVFL can be viewed as a feed-forward neural network with a single hidden
layer, resulting in a linear combination of a fixed number of non-linear expansions
of the original input. The peculiarity of an RVFL feed-forward neural network is
the inner layer fixed a priori with a predefined set of nodes. Given a d-dimensional
input x = [x1 . . . xd]T , the RVFL aims at estimating a scalar output y ∈ R. The
traditional formulation uses a weighted sum of C non-linear transformations of the
input:

f(x) =
C∑

m=1
βmhm(x; wm) . (10.1)

Each h : X → R is a base, hidden function, or functional link. In the following, a
sigmoid basis functions is adopted:

h(x; w, b) = 1
1 + exp {−wTx + b}

. (10.2)

The resulting model is linear in the β parameters and the parameters w1, ...,wC

are initially assigned randomly before the training process, according to a uniform
probability distribution. A schematic depiction of an RVFL with two inputs, three
hidden nodes, and one output is given in Fig. 10.1. Under few assumptions on
the smoothness of the underlying function, the RVFL has universal approximation
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Figure 10.1. Schematic depiction of an RVFL architecture with two inputs, three hidden
nodes, and one output. Fixed connections are shown as dashed lines, while trainable
connections as fixed lines.

capability if a large number of hidden functions is provided, that is forcing C to be
large enough [160].

The problem of learning an RVFL model of the form (10.1) should be reorganized
as a linear regression model over the coefficients β = [β1 . . . βC ]T . Considering a
training set of N input-output pairs {xi, yi}, i = 1 . . . N , a hidden matrix H can be
organized in the following way:

H =

h1(x1) · · · hC(x1)
... . . . ...

h1(xN ) · · · hC(xN )

 , (10.3)

while the output vector is y = [y1 . . . yN ]T .

Definition 10.1. The optimization procedure can be expressed as a standard
regularized least-squares (RLS) problem where the optimal β for training an RVFL
is found by minimizing the following objective function:

min
β∈RC

1
2 ‖y−Hβ‖22 + λ

2 ‖β‖
2
2 , (10.4)

where λ > 0 is the regularization factor. The problem (10.4) is strictly convex, so
the solution can be found by setting the gradient of J (β) equal to 0:

∂J
∂β

= HTHβ −HTY + λβ = 0, (10.5)

from which the well-known solution is obtained:

β∗ =
(
HTH + λI

)−1
HTy . (10.6)

where I is the identity matrix of suitable dimensionality. The computational
complexity of RVFL training is influenced by the CxC matrix inversion (10.6).
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When N � C, the solution (10.6) can be simplified by consider that, for any λ > 0,
we have that:

(HTH + λI)−1HT = HT(HTH + λI)−1. (10.7)

Combining equations (10.6) and (10.7) an alternative formulation for the optimal
weight vector is obtained, where the matrix to be inverted is reduced to dimensionality
NxN :

β∗ = HT
(
HTH + λI

)−1
y . (10.8)

However, in the following study it will not be performed any assumption on data thus,
for the rest of the chapter, the optimal solution given in (10.6) will be considered.
The implementation of RVFL networks on a hardware with finite precision arithmetic
imposes that all the computed functions and the related parameters are quantized.
How this can be obtained by the combination of specific digital circuits (i.e., adders,
multipliers, lookup tables, etc.) is not in the purpose of the work. However, by a
theoretical point of view, it is important to consider the quantization procedure on
the underlying model.

10.3 Finite precision model of RVFL Networks
In this section, it is firstly tested what happens when all the introduced parameters,
input and output values, and the computation of hidden functions are subject to a
uniform quantization. Successively, a non-uniform distribution of the input interval
is also investigated to underline how the results change. Namely, it is proposed a
non linear A/D conversion of input signals by considering the actual structure of
data to be processed. In both cases, the genetic optimization is used to tune their
implementation on hardware architectures based on a finite precision arithmetic.

10.4 Uniform quantization
In a finite precision implementation of an RVFL network all the introduced param-
eters, input and output values, and the computation of hidden functions must be
quantized. The first proposed approach is based on a uniform quantization.

Let qn(·) be a uniform quantizer in the respective range of the input variables,
with a two’s complement binary representation using n bits. It is applied element-wise
if the input is either a vector or a matrix. With respect to the previous processing,
given the same generation of random of weights, a quantized hidden matrix H(n)

will be arranged on the basis of the following hidden functions:

h(n)(x; w, b) = qn

( 1
1 + exp {−qn(wT )qn(x) + qn(b)}

)
. (10.9)

Then, the generic output for an n-bit finite precision implementation of an RVFL
will be:

f (n)(x) = qn

(
C∑

m=1
β(n)
m h(n)

m (x; wm)
)
. (10.10)

Since the weights are extracted from a uniform distribution, the parameters w1, ...,wC

can be considered as forced to be quantized, as well as the results of the hidden
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functions, in such a way that the intrinsic randomness of the RVFL input and inner
layers is still preserved. However, the main problem arises in the computation of
finite precision β(n) parameters in (10.10), which can be reformulated as an Integer
Least Squares (ILS) problem:

Definition 10.2. The Integer Least Squares Problem, could be defined as in the
following:

min
β(n)∈RC

1
2

∥∥∥y− qn(H(n)β(n)
)∥∥∥2

2
+ λ

2

∥∥∥β(n)
∥∥∥2

2

s.t. β(n) ∈ Z(n) ,

(10.11)

where Z(n) represents here a generic set of integers to which quantized values can be
assimilated. Also, due to the nonlinear nature of the output quantization, the finite
precision RVFL in (10.10) is no longer linear in the β(n) parameters.

ILS is a common problem in many fields of signal processing as, for example,
channel coding, cryptography, radar imaging and global positioning [161, 162]. It
has been shown that ILS is a NP-hard problem and the algorithms for solving it have
exponential complexity [163, 164]. Computationally, an ILS problem is equivalent
to an LS where there is a constraint on the quantization of the results. In fact, a
constraint on the bounded representation of the weights can be treated as a box
constraint and solved similarly to an ILS problem regardless of the bounds [165].

Assumption 10.3. A straightforward approximation of the ILS solution, which
will be the baseline for the successive experiments, is to quantize, with a two’s
complement representation using n bits, the result obtained from (10.6):

β
(n)
rnd = qn

((
H(n)TH(n) + λI

)−1
H(n)T qn(y)

)
, (10.12)

where outputs y are in general quantized, as this learning step could be performed
on a fixed point hardware as well.

As previously said, such an approach is only an approximation of the correct
ILS solution and the performance of the resulting RVFL may be worse due to the
nonlinear nature of the overall processing system. For such a reason, it is proposed
an optimization of the NP-hard nonlinear ILS problem, which is based on a GA
approach, in order to obtain an optimal set of quantized β(n) parameters.

10.4.1 Genetic Optimization

The genetic algorithm was already introduced in section 8.3.2, now the algorithm 6
will be used to find out the optimal β(n) parameters.

In this case, the quantized parameters β(n) we are searching for are binary
coded in a finite precision arithmetic. These are combined to form the so-called
chromosome, which is a string of bits each one treated as a gene. In the proposed
approach, the genome of each individual is represented by a binary string of nC bits
as illustrated in Fig. 10.2.
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Figure 10.2. Visual scheme of the binary organization of a β(n) solution.

Given a dataset on which the GA optimization is being performed, the quantized
weights and the related quantized hidden functions h(n)

m , m = 1 . . . C, are computed
once for all at the beginning of the process. Then, for each individual and in every
generation, the output (10.10) is computed for all inputs of the dataset by using the
particular instance of β(n) associated with the chromosome of the individual. The
fitness of the individual is the Noise-to-Signal Ratio (NSR):

NSRdB = 10 log10

∑N
i=1

(
yi − f (n)(xi)

)2

∑N
i=1 (yi − ȳ)2 , (10.13)

where ȳ is the average value of the output values yi on the dataset. Thus, the lower
is the NSR the better is the fitness.

10.4.2 Experimental setup

The performances are evaluated on four different public datasets summarized in
Table 10.1, which are available on the UCI repository 1:

• Airfoil is a NASA dataset where data of two or three-dimensional airfoil blade
section conducted in an anechoic wind tunnel is acquired at various tunnel
speeds and angles of attack. The aim is to predict the scaled sound pressure
level [166].

• Concrete has been already introduced in Sec. 6.3.1.

• Energy contains an energy analysis using 12 different building shapes. Varying
several characteristics, like the glazing area distribution, the orientation and
so on, the aim is to assess the heating load requirement of buildings [167].

• Istanbul includes returns of Istanbul Stock Exchange with seven other interna-
tional indexes [168].

The input and output values of datasets are normalized before training in order to
accommodate every feature in the range between 0 and 1. The weights w of the
sigmoid basis functions are extracted randomly from a uniform distribution over
the interval [−1,+1], while the scalars b are extracted randomly from a uniform
distribution over the interval [−0.1,+0.1]. The performance is obtained through a
10-fold cross validation, where the overall NSR is obtained comparing actual values
of outputs with the predicted ones in every fold.

1(https://archive.ics.uci.edu/ml/datasets.html)
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Dataset Features Instances Desired output

Airfoil 6 1503 Pressure level
Concrete 9 1030 Compressive strength
Energy 8 768 Heaating Load
Istanbul 8 536 Stock exchange returns

Table 10.1. Detailed Description of Datasets

10.4.3 Discussion

First of all, the standard rounding β
(n)
rnd parameters obtained from (10.12) is consid-

ered as a baseline solution. Four different number of bits for the weight quantization
n are then considered: 4, 8, 12, and 16. The performance of such solutions is
compared to the one obtained by a software implementation on standard computers
using 64-bit floating point arithmetic, which will be assimilated to the analog result
β∗ in (10.6).

In order to compute the optimal number of hidden nodes C and the regularization
factor λ, it is executed an inner-fold cross-validation of the training data. In particu-
lar, the optimum number of hidden nodes C is searched with a grid-search procedure
in the set {200, 300, 400, 500}, while λ is evaluated in the set {2−10, 2−9, . . . , 29, 210}.

The optimum C and λ values, for every number of bits, are reported in Table 10.2.
It can be noted that the optimum value of C for Airfoil, Concrete and Energy datasets
is low for n = 4 and n = 8 and it increases as the precision increases. Instead, for
the Istanbul dataset it is constant (i.e., C = 300). The regularization factor has a
different trend; as the number of bits varies, the behavior is almost the same for
every dataset. In fact, it is as high as possible (i.e., λ = 210) for n = 4 and then
decreases.

Dataset n=4 n=8 n=12 n=16 float-64
C λ C λ C λ C λ C λ

Airfoil 200 210 200 28 300 2−4 300 2−10 500 2−10

Concrete 200 210 200 22 200 2−6 500 2−10 400 2−10

Energy 200 210 200 22 500 2−5 500 2−10 500 2−10

Istanbul 300 210 300 22 300 2−4 300 2−5 300 2−5

Table 10.2. Optimal Number of Hidden Nodes (C) and λ Found by The Inner-fold
Cross-validation

Taking the optimal choices of C and λ, the baseline performance in terms of
NSR versus the number of bits is shown in Table 10.3. For every dataset, the
NSR for values of n greater than 8 is similar to the 64-bit floating point precision,
with differences as low as 0.1 dB. Therefore, it is worth considering optimized
implementations where a number of bits equal to or lower than 8 is considered. The
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Dataset n=4 n=8 n=12 n=16 float-64

Airfoil -23.816 -26.604 -28.858 -30.175 -30.237
Concrete -6.644 -11.233 -13.181 -15.038 -15.150
Energy -8.386 -18.025 -19.909 -23.738 -24.122
Istanbul 1.784 -5.420 -6.674 -6.722 -6.723

Table 10.3. Performance (NSR) of Basic Rounding Vs. Bit Precision

results obtained by using the GA optimization, keeping the same choices of C and
λ, are reported in Table 10.4. It can be outlined that GA optimization improves
the performance for n ≤ 12. This can be explained taking into account that, for a
higher number of bits, the huge cardinality of the search space makes more sparse
and evanescent the GA approach in a relatively limited time.

Dataset n=4 n=8 n=12 n=16

Airfoil -25.784 -26.484 -29.067 -30.082
Concrete -7.982 -11.537 -13.386 -14.673
Energy -10.779 -18.595 -20.437 -23.137
Istanbul 1.531 -6.026 -6.619 -6.608

Table 10.4. Performance (NSR) of Genetic Optimizer Vs. Bit Precision

Finally, for the sake of illustration, Fig. 10.3 reports the comparison of actual
and predicted values of Energy dataset using a software implementation with 64-bit
floating point precision, and a GA optimization using 8 bits (Fig. 10.4). Evidently,
the behavior is comparable even with a numerical difference of about 5.5 dB.

The experimental results show that the performance gap between the basic
rounding and the GA optimization shrinks as the number of bits increases, while
the GA procedure obtains better performance using even 4 and 8 bits.

In the following paragraph, it will be seen how happens when the quantization
levels become non uniform.

10.5 A nonuniform quantizer
Once tested the RVFL on a uniform quantization over all of the parameters of the
network, in this section is proposed a nonuniform quantization of the input data
feeding the network, in order to cope with the actual structure of datasets and also
to compensate the rounding of internal parameters of the neural model. In effect, it
is well-known that, except in the case of the uniform distribution, the non-uniform
quantization is superior in the sense that it results in a smaller average quantization
error. For these reasons, it is assumed for the rest of the chapter, a nonuniform
quantization of input values and a uniform quantization elsewhere.
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Figure 10.3. Output on Energy dataset using 64-bit floating point precision.
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Figure 10.4. Output on Energy dataset using 8-bit precision optimized by GA.

To this end, let introduce qn(·) as a uniform quantizer within the range of the
input variables, with a two’s complement representation using n bits. It is applied
element-wise if the input is either a vector or a matrix. If the input to qn lies in
the range between qmin and qmax, the quantization levels of qn will be in the form
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qmin + r2−n(qmax − qmin), r = 0, 1, . . . , 2n − 1.
Also, let un(·; θ) be a nonuniform quantizer using n bits for representing the

quantization values. Since x is a d-dimensional array, the nonuniform quantizer
is applied with different quantization values on each dimension. Thus, θ is a
2n × d matrix of real numbers and the output un(x; θ) of the quantizer will be a
d-dimensional array where the jth element is un,j = θrj , j = 1 . . . d, being θrj ∈ θ
the largest value no greater than xj in the jth column of θ, for any 1 ≤ r ≤ 2n.

Consequently, given the same generation of random of weights, the quantized
hidden matrix H(n) in this case could be arranged on the basis of the following
hidden functions:

h(n)(x; w, b, θ) = qn

( 1
1 + exp {−qn(wT )un(x; θ) + qn(b)}

)
. (10.14)

Then, the generic output for an n-bit finite precision implementation of an RVFL
will be:

f (n)(x) = qn

(
C∑

m=1
β(n)
m h(n)

m (x; wm, θ)
)
. (10.15)

As seen in the previous paragraph, the weights are extracted from a uniform
distribution and the nonuniform quantization of input values should also improve
the numerical accuracy in representing the quantized outputs of hidden functions,
which undergo strong saturation effects. As before, the problem can be reformulated
as an Integer Least Square problem:

min
β(n)∈RC

1
2

∥∥∥y− qn(H(n)β(n)
)∥∥∥2

2
+ λ

2

∥∥∥β(n)
∥∥∥2

2

s.t. β(n) ∈ Z(n) ,

(10.16)

where Z(n) refers here to a generic set of integers to which quantized values can be
assimilated. Also in this case, it is considered a straightforward approximation of
the result obtained in (10.6), by using a finite precision representation:

β
(n)
rnd = qn

((
H(n)TH(n) + λI

)−1
H(n)T qn(y)

)
, (10.17)

where output values y are in general quantized, as they can be obtained from
measures by digital equipment.

10.5.1 Genetic Optimization

Once again, a genetic optimization is used to tune the parameters of the model.
Differently, from before, it is used to determine the quantization levels of the non
linear A/D converter, considering as analog signals also the data represented in
floating point precision.

Hence, the optimization procedure is applied to the θ parameters of the nonuni-
form quantizer and hence, the chromosome of each individual is represented by an
array of d · 2n real numbers (i.e., quantization values) as illustrated in Fig. 10.5.
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Figure 10.5. A chromosome defining the nonuniform quantizer, where θT
j , j = 1 . . . d, is

the jth column of θ.

It represents a possible solution that implements a nonuniform quantizer. Also in
this case, the quantized weights wm and the related quantized hidden functions h(n)

m ,
m = 1 . . . C, are computed once for all at the beginning of the process. Then, for each
individual and in every generation, the RVFL is trained using (10.17) and the hidden
matrix H(n). The former, is evaluated through (10.14) where is used the particular
instance of θ associated with the chromosome of the individual. Successively, the
output on a test set is computed using (10.15). The fitness of the individual is the
Noise-to-Signal Ratio (NSR) (10.13) thus, the lower is the NSR the better is the
fitness.

10.5.2 Experimental setup

To validate the proposal, the datasets have been chosen in order to represent a
variety of applicative domains and problems. In particular, the performance of

Dataset n=4 n=8 n=12 n=16 float-64
C λ C λ C λ C λ C λ

Airfoil 50 29 50 20 50 2−3 50 2−7 500 2−10

Concrete 200 28 200 22 200 2−4 500 2−6 400 2−10

Energy 50 29 100 20 50 2−4 150 2−5 500 2−10

Table 10.5. Optimal Number of Hidden Nodes (C) and λ Found by The Inner-fold
Cross-validation

the proposed approach is evaluated on the three different and well-known datasets
available on the UCI machine learning repository 2 and already described in the
Sec:10.4.2:

• Airfoil;

• Concrete;

• Energy;

Both input and output values of datasets are normalized before training in order
to accommodate every feature in the range between 0 and 1. The weights w of the

2http://archive.ics.uci.edu/ml
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sigmoid basis functions are extracted randomly from a uniform distribution over
the interval [−1,+1], while the scalars b are extracted randomly from a uniform
distribution over the interval [−0.1,+0.1]. Every test result of RVFL is obtained
through a 10-fold cross validation, where the overall NSR is obtained comparing the
actual values of outputs with the predicted ones in every fold. Nonetheless, given the
stochastic nature of the RVFL initialization, as well as for GAs, all the performances
reported in the following are an average of the results obtained by repeating the
same experiment over 10 independent runs.

10.5.3 Discussion

This section describes the details of the proposed implementation. First of all, it is
considered the baseline solution where a finite precision RVFL is trained and tested
using the above steps and a uniform quantization of input values. Four different
values of n (i.e., bits for quantization) are considered: 4, 8, 10, and 12. Higher values
of n are not considered because in such cases the hardware complexity makes the
performances closer to those achieved by a floating point arithmetic.

The performances are compared with respect to the ones obtained by a software
implementation on a standard computer or DSP using 64-bit floating point arithmetic.
In order to compute the optimal number of hidden nodes C and the regularization
factor λ, it is executed an inner-fold cross-validation of the training data. In
particular, it is performed a grid-search procedure where C was varied from 50 to 500
in a step of 50 and λ was in the set {2−10, 2−9, . . . , 29, 210}. The optimum values
of C and λ for every number of bits are reported in Table 10.5, respectively. It can
be noted that the optimum value of C tends to increase as the precision increases,
whilst λ decreases. Taking the optimal choices of C and λ, the performances in
terms of NSR versus the number of bits are shown in Table 10.6. As expected,
it is worth considering optimized implementations of finite precision RVFLs using
12 or a lower number of bits, as the related performances are different from the
one using a floating point architecture. The results obtained by using the GA

Dataset n=4 n=8 n=12 n=16 float-64

Airfoil -24.358 -28.055 -28.339 -28.890 -30.369
Concrete -6.635 -11.233 -11.883 -12.997 -15.326
Energy -8.578 -18.061 -18.920 -19.862 -24.433

Table 10.6. Performance (NSR) using a Uniform Quantizer of RVFL Inputs

optimization, keeping the same choices of C and λ, are reported in Table 10.7. While
the improvements on Airfoil are not relevant, as it probably contains noisy and
spread data, for the Concrete and Energy case, the NSR decreases of 1 or 2 dB,
more significantly with a higher number of bits as the space of solution enlarges
and there is more margin to found a better local optimum. To confirm the efficacy
of the proposed approach, Fig. 10.6 reports the quantization levels obtained in the
case of a 10-bit finite precision implementation of an RVFL trained on the Energy
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Dataset n=4 n=8 n=12 n=16

Airfoil -24.453 -28.165 -28.362 -28.851
Concrete -7.105 -11.573 -11.855 -13.202
Energy -8.629 -19.424 -21.682 -24.262

Table 10.7. Performance (NSR) using a GA-optimized Nonuniform Quantizer of RVFL
Inputs

dataset. The optimal solution found by the GA determines an evident nonuniform
distribution of the quantization levels, which is also different for each dimension.
Finally, in Fig. 10.7 is reported the comparison of actual and predicted values of

Figure 10.6. Quantization levels of a 10-bit nonuniform quantizer optimized by GA on
the Energy dataset.

Energy dataset using an 8-bit nonuniform quantizer optimized by GA. Evidently,
the behavior is comparable with a numerical difference of about 1.4 dB and for NSR
values around 19 dB.

The numerical results show that the proposed approach is effective even using a
small number of bits and it compensates the effects of rounding in the successive
layers of the neural networks.

10.6 Conclusion

In this chapter, the problem of distributed learning on pervasive sensor networks and
multiple sources of big data has been treated. This scenario needs computationally
efficient techniques on simple and cheap hardware architectures. A modified version
of RVFL, with finite precision arithmetic, is adopted. In particular, an RVFL can
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Figure 10.7. Output on Energy dataset using a 8-bit precision and GA optimization.

be implemented on each node of a network of interconnected agents where the
constraints imposed by the hardware implementation have been firstly dealt with a
uniform quantization on all of the parameters of the model.

Successively, a nonuniform quantization is introduced at the input layer of the
neural network. Namely, it has been proposed a nonlinear A/D conversion of input
signals by considering the actual structure of data to be processed. In both cases,
a genetic optimization is adopted for optimize the performances of the model and
tune the quantization levels of both the input data and the internal parameters.

The proposed approaches are assessed by several experimental results obtained
on well-known benchmarks for the general problem of data regression. In particular,
it has been shown that they are effective even using a small number of bits and it
compensates the effects of rounding in the successive layers of the neural network.
Hence, they are suited for those contexts where are allowed low computational
power at every location and limited underlying connectivity (e.g. no broadcasting
capability).

Future works might consider hardware architectures and finite precision adaptive,
online strategies reflecting the numerical results herein obtained.
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Chapter 11

Prediction in photovoltaic
power plants

In this chapter, it is introduced another application for the distributed learning
problem. It is related to the capability of model identification and the accuracy of
renewable energy plants prediction, in the context of a highly connected network
of agents. The main task to be solved to this end is the prediction of every time
series related to the measure of some physical parameters (voltage, current, power,
wind speed, temperature, etc). Then, agents are enabled to interact and combine
such results in a decentralized hierarchical network, so as to exploit the information
correlating the stations (e.g. photovoltaic panels), such as movement of clouds,
gradient of temperature, and so forth.

In the following, the basic problem of time series prediction in power plants
will be focused on, considering four techniques based on neural and fuzzy neural
networks: Adaptive Neuro-Fuzzy Inference System (ANFIS); Mixture of Gaussian
(MoG); Radial Basis Function (RBF); Higher-Order Neuro-fuzzy Inference System
(HONFIS). As it will be illustrated, a predictor based on such function approximation
models, whose parameters are estimated by data-driven learning procedures, will be
adopted to perform prediction of solar photovoltaic outputs.

In the recent years, distributed generation (DG) has significantly penetrated
into the electrical power systems’ infrastructure, leading to a new scenario where
centralized bulk systems are being progressively replaced by decentralized ones. They
enable a new way of seeing the energy production, where smaller generating units
are directly connected, through a network, to the consumer. Although, performing
inference on data which is partitioned over geographically distinct locations is
considered a fundamental problem in many scientific endeavors, renewable energy
systems are the most promising, being both wind-electric conversion and photovoltaic
systems in advances stages of development.

The diffusion of DG in the energy market, especially from renewable resources,
e.g. solar power and wind energy, has received a considerable boost by several
economical and environmental reasons, as well as by government financial incentives
[169, 170, 171]. However, the entrance of DG with a significant penetration level into
the current distribution infrastructure, is often impeded by technical barriers. In
fact, the intermittent nature of the renewable energies often do not match the energy
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load demands [172]. Furthermore, variability and reliability characterizes these
non-dispatchable resources [173]. Hence, the usual habits of working of transmission
system operator, utility companies, as well as power producers, e.g., voltage and
frequency regulation, islanding detection, harmonic distortion, electromagnetic inter-
ference, are particularly challenging tasks of interest [174, 175, 176, 177]. Certainly,
energy storage systems (EES) could become a valuable response to provide specific
support services for renewable energy production. In this way, short-term output
fluctuations will be reduced and, consequently, the quality will be improved.

In this chapter, it is underlined the paramount importance to forecast accurately
the power output of plants for the next hours or days. The aim is to allow an optimal
integration of the DG from non-programmable renewable resources into large scale
power systems. The ability to forecast the amount of power fed by renewable
energy plants into substations is a necessary requirement for the Independent System
Operator (ISO). In this way, short and middle term decisions such as connections
to out-of-region trade and unit commitments are optimized. Besides, accurate
short-term and intra-hour forecasting are required for regulatory, dispatching and
load following issues, while power system operators are more sensitive to intra-days
forecasts, especially when handling multiple load zones. In effect, they avoid possible
penalties that are incurred to the deviations between forecasted and produced energy.

Forecasting techniques can be broadly divided into four major’s categories,
namely, long, medium, short and very short-term forecast. It depends on the
time horizon’s scale, ranging from several years in the long-term forecasting to
hours in the medium forecasting, till arriving in minutes in the very short term
forecasting. When facing to photovoltaic (PV) power plants, forecasting techniques
can be applied directly or indirectly. The direct methods are directly applied on
the produced power, while the indirectly ones are initially interested in evaluating
the solar irradiation; the produced power is computed only in a subsequent step.
Both cases share similar techniques, which can be broadly divided into persistence
methods, physical techniques, statistical techniques, and hybrid models. Usually,
physical methods try to obtain an accurate forecast using a white box approach,
that is to say, physical parametric equations. Oppositely, statistical methods predict
the future behavior of a series by using and extracting dominant relations from past
data. In addition, both methods can be properly mixed in order to originate the
so-called gray box approach.

Generally, in the prediction of time series, the statistical models are the most
promising. Being able to extrapolate future values by using past observations, they
are usually adopted for describing the underlying relationships among data. They
are helpful especially for those contexts where missing and incomplete data can limit
the ability to gain knowledge about the unknown process generating observations.
In fact, complexity and dynamics of real-world problems require advanced methods
and tools able to use past samples of the sequence in order to make an accurate
prediction. Additionally, the problem of forecasting future values of a time series is
often mandatory for the cost-effective management of available resources.

For many years, regressive statistical approaches have been the only ones con-
sidered for prediction; among them, it could be found out Moving Average (MA),
Auto Regressive (AR), Auto Regressive Moving Average (ARMA), Auto Regressive
Integrated Moving Average (ARIMA) and Autoregressive Integrated Moving Average
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with Exogenous Variables (ARIMAX). Unfortunately, standard structural models
provide a poor representation of actual data and therefore result in a poor accuracy
when used for forecasting.

Consequently, many worldwide research activities are intended to improve the
accuracy of prediction models. In this regard, computational intelligence is considered
as one of the most fruitful approaches. Several forecasting methods, with different
mathematical backgrounds, such as fuzzy predictors, artificial neural networks,
evolutionary and genetic algorithms, and support vector machines have resorted.
However, the stochastic and often chaotic behavior of time series in this field makes
necessary ad-hoc procedures to forecast power time series.

The main idea presented in this chapter is to properly tailor new learning
approaches for analyzing data associated with renewable power sources [178, 179].
Starting from available techniques based on computational intelligence [180], the
goal is to provide intuition into how solar-panel power generation depends on a
combination of multiple weather metrics. Such results will be the basis for the
successive developments of fully distributed tools in the same context.

The complexity in predicting solar intensity from one or more weather metrics is
the main motivation for the next section, where automatically generating prediction
models, able to threat chaotic sequences, are introduced. The preliminary results
concerning the prediction of power generated by a large-scale photovoltaic plant, in
Italy, show that all of the considered approaches are suitable for the proposed goal
in normal operating conditions.

11.1 The function approximation approach to time se-
ries prediction

There is a huge amount of literature pertaining to time series prediction techniques
that rely on neural and fuzzy neural networks [181]. In effect the solution of
a prediction problem, can coincide with data regression solved by using neural
networks and fuzzy logic [182, 183].

A sequence S(t) can be predicted by considering a function approximation
y = f(x), f : IRN → IR. For instance, by using linear models each input vector
xt is made of N subsequent samples of S(t) and the output yt is the sample to be
predicted:

xt =
[
S(t) S(t−1) . . . S(t−N + 1)

]
, yt = S(t+m) , flin(xt) =

N∑
j=1

λjxtj . (11.1)

Then, we obtain

S̃(t+m) =
N∑
j=1

λjS(t− j + 1) , (11.2)

where S̃(t+m) is the prediction of the true value S(t+m) at the time distance m.
Considering the statistical properties of S(t), as the autocorrelation function, it is
possible to determinate the parameters λj , j = 1 . . . N , of the function flin(·).

Generally speaking, input vectors xt are obtained through the so called ‘embed-
ding technique’, which makes use of previous samples of S(t) to build the vectors
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themselves. Two are the parameters to be set in this regard, the embedding dimension
D and the time lag T , resulting in the following embedding structure:

xt =
[
S(t) S(t− T ) S(t− 2T ) . . . S(t− (D − 1)T )

]
. (11.3)

These two parameters are estimated in two different ways. The first one is evaluated
by using the False Nearest Neighbors (FNN) algorithm, while the Average Mutual
Information (AMI) criterion is used to find out the time lag [184]. Subsequently, D
and T will be chosen by such algorithms thanks to the VRA software 1.

The performances of a predictor that relies on a linear approximation model,
as the one in (11.1), are very poor when it is applied to real environments’ data
sequences. In effect, theirs noisy and chaotic components force the model to wisely
choose the embedding parameters, as well as the function approximation model
[185].

Conversely, in this context, the underlying, unknown system is observed through
S(t) and its state-space evolution is obtained by the trajectories of embedded vectors
even in the presence of a non linear behavior of the series.

Overall, the estimated sample S̃(t+m) predicted at a distance m will be:

S̃(t+m) = f (xt) , (11.4)

where f(·) is the regression model to be determined. Thus, the function f(·) will
approximate the link from the reconstructed state xt to the corresponding output
yt [184]. It is important to note that f(·) must be non-linear since the considered
system has a complex behavior. In the following it will be considered the usual case
of a ‘one-step-ahead’ prediction, that is m = 1.

By driving the function approximation model with embedding data, neural
networks and fuzzy logic are very suited to solve a prediction problem dealing with
real-world sequences. In the next section, four models of this kind are proposed
for study photovoltaic time series. They are introduced below, considering as a
baseline for benchmarking in the successive tests: the linear predictor reported in
(11.1), whose parameters are estimated through a common least-squares estimator
(LSE) [186]; the well-known ARIMA model, which handles non-stationarity and
seasonality and whose parameters are determined by a maximum likelihood approach
[187]. Both these models will be estimated by using lagged samples at the input, as
determined by the embedding procedure similarly to the adopted neural networks.

11.2 Neural and fuzzy neural approaches
In the following sections, four models are proposed for this particular study.

11.2.1 ANFIS

The ANFIS neural network has been already introduced in Sec:6.1.1.
It is composed of M rules of Sugeno first-order type to approximate a function

y = f(x), f : IRN → IR.
1http://visual-recurrence-analysis.software.informer.com/4.9/
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The structure of a fuzzy rule has also already introduce, thus, in this work the
rule output are combined with the input MFs [89], to represent the output of the
ANFIS network as:

ỹ =

M∑
k=1

µB(k)(x) y(k)

M∑
k=1

µB(k)(x)
, (11.5)

where ỹ is the estimation of y and µB(k)(x) is the composed MF of the kth rule.
The ANFIS learning of network coefficients is based on a classical Back-Propagation

technique associated with a least-squares estimation [86].

11.2.2 MoG

In the MoG neural network M different Gaussian components in the joint input-
output space <N ×< are used in a mixture density model:

p(x, y) =
M∑
j=1

π(j)G(j)
x,y(x, y) , (11.6)

where π(j) is the prior probability of the jth Gaussian component G(j)
x,y, j = 1 . . .M .

The mixture parameters are estimated by the Splitting Hierarchical Expectation
Maximization (SHEM) technique [104].

The conditional density p(y|x) is computed from (11.6):

p(y|x) =
M∑
j=1

hj(x)G(j)
y|x(y) , (11.7)

where G(j)
y|x(y), j = 1 . . .M , is the conditional density of G(j)

x,y, and hj(x) is the
projection of G(j)

x,y into the input space. It can be evaluated by the marginal density
G

(j)
x of G(j)

x,y:

hj(x) = π(j)G
(j)
x (x)∑M

k=1 π
(k)G

(k)
x (x)

. (11.8)

A least-square estimation is used to predict the output y corresponding to the input
x:

ỹ =
M∑
j=1

hj(x)m(j)
y|x , (11.9)

where m(j)
y|x is the conditional mean of each mixture component in (11.7).

11.2.3 Radial Basis Function

A Radial Basis Function (RBF) neural network is used to build up a function
approximation model having the following structure:

f(x) =
M∑
i=1

λiφ(‖x− ci‖) , (11.10)
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where x ∈ RN is the input vector, φ(·) is a radial basis function centered in ci and
weighted by an appropriate coefficient λi. The approximation capability depends on
the choice of φ(·) and ci. Commonly used types of radial basis functions include:

• Gaussian
φ(r) = e−(εr)2

; (11.11)

• Multiquadric

φ(r) =
√

1 + (εr)2 ; (11.12)

• Inverse Quadratic

φ(r) = 1
1 + (εr)2 . (11.13)

Several methods can be used to minimize the error between the desired output and
the model one and hence, to identify the parameters ci and λi [188].

11.2.4 HONFIS

This section introduces a new algorithm able to solve the power prediction problem.

Model formulation

A Takagi-Sugeno (TS) fuzzy inference system for data regression is introduced, it is
referred to HONFIS model. It is a generalization of ANFIS where the consequent
part in (6.1) is a polynomial of order greater than one that combines the input
values xj , j = 1 . . . N . It uses C different fuzzy rules to find out the scalar output
y(k) associate with the rule (11.5).

In this work, a training set of NR input-output pairs (xn, yn) will be considered,
where xn is an embedded vector at time n, as in (11.3), and yn is the related sample
S(n+ 1) to be predicted at the usual distance m = 1. Thus, the training set R will
be represented by the NR integers associated with the time indexes n ∈ R of the
embedded (and already observed) pairs (xn, yn), which are adopted for learning the
parameters of the regression model.

In order to maximize the generalization capability of the approach, with the
aim to reduce overfitting in case of noise and ill-conditioned data, is reported a
constructive procedure for the automatic determination of the rule parameters. In
effect, the generalization capability is maximized only if the TS system consists of a
suitable number of rules. The regularization of the network architecture is performed
by using learning theory and hyperplane clustering methods [189, 190, 191].

As follows, it is illustrated how the parameters of the TS rules are determined
through an alternating optimization technique in the joint input-output data space.
Let us introduce Γ = {Γ1,Γ2, . . . ,ΓC} as the set of C clusters (each associated with
a rule output) to be determined. Supposing that every pattern of the training set is
assigned randomly to one of these clusters during the initialization phase, the cluster
prototypes are estimated by the following iterative steps:
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• Step 1 . The coefficients ω(k), k = 1 . . . C, of each rule consequent are evaluated
by solving a set of Nk nonlinear equations through an iterative least squares
estimation [192]. The generic equation is:

yt = h
(
xt;ω(k)

)
, (11.14)

where: yt is the output associated with the input xt; index ‘t’ spans the
set R(k) of pairs of the training set assigned to the kth cluster only, that is
t ∈ R(k) ⊆ R; Nk is the cardinality of R(k).

• Step 2 . By using the new values of coefficients ω(k), all the sets R(k), k =
1 . . . C, are updated by assigning each pair (xn, yn), n ∈ R, of the training set
to the cluster Γqn , 1 ≤ qn ≤ C, scoring the minimum approximation error,
which is therefore defined as:

dn =
∣∣∣yn − h (xn;ω(qn)

)∣∣∣
= min

k=1...C

∣∣∣yn − h (xn;ω(k)
)∣∣∣ . (11.15)

• Step 3 . The convergence is based on the quantity:

Θ =

∣∣∣D −D(old)
∣∣∣

D(old) , (11.16)

where D is the global approximation error over the whole training set in the
current iteration, which is defined as

D = 1
NR

∑
n∈R

dn , (11.17)

and D(old) is the global approximation error calculated in the previous iteration.
The algorithm stops when Θ is less than a predetermined threshold θ (set
by default to 0.01). Otherwise it goes back to Step 1 (by using the current
updated association of patterns to clusters) and it repeats until the stopping
criterion will be satisfied.

At the end of the previous procedure, only the consequents of Sugeno-type rules
are obtained. To complete the structure of the TS system, and calculate the output
ỹ by using (6.1) and (11.5), the firing strengths of the rules’ antecedents must be
evaluated too. Let qn, 1 ≤ qn ≤ C, be the label representing the rule (cluster) to
which the nth pair, n ∈ R, of the training set has been assigned during Step 2 of
the latest iteration. In this way, a classification model able to assign a fuzzy label to
any pattern of the input space must be determined.

To this end, it has been proposed a K-nearest neighbor (K-NN) classification
strategy [121] in order to determine the firing strengths. Namely, let xn1 ,xn2 , . . . ,xnK
be the K patterns of the training set that score the smallest Euclidean distance from
any input x; the firing strengths of x will be determined as:

µB(k)(x) = 1
K

K∑
r=1

µB(k)(xnr) , k = 1 . . . C , (11.18)
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where

µB(k)(xnr) =
{

1, k = qnr
0, k 6= qnr

(11.19)

Thus, the output ỹ is calculated through (11.5) by means of the firing strengths
contained in the fuzzy label and the output consequents whose parameters have
been early determined by clustering in the joint input-output space. For instance,
in the case of a 3rd order polynomial as adopted in the following (sec. 11.3.2), the
kth rule’s consequent, k = 1 . . .M , is:

y(k) = a
(k)
31 x

3
1 + · · ·+ a

(k)
3Nx

3
N+

a
(k)
21 x

2
1 + · · ·+ a

(k)
2Nx

2
N+

a
(k)
11 x1 + · · ·+ a

(k)
1NxN + a

(k)
0 .

(11.20)

As follows, a simple toy problem is considered in order to illustrate the properties
of regression and convergence of the proposed approach. This example considers a
quadratic function for the output of the k-th rule of the TS system, k = 1 . . . C:

h
(
x;ω(k)

)
= ω

(k)
21 x

2
1 + · · ·+ ω

(k)
2Dx

2
D+

ω
(k)
11 x1 + · · ·+ ω

(k)
1DxD + ω

(k)
0 .

(11.21)

A dataset of 2000 points is generated by the function:

y =
{ 1 + x2

1 − 9.5ε1x1 + 1.5ε2x2 + 0.4ε3, x1 ≤ 0

1− x2
1 + 1.5ε4x1 + 8.0ε5x2 − 0.1ε6, x1 > 0

(11.22)

where each pattern x = [x1 x2] in the input space is obtained by pseudorandom
values drawn from a standard normal distribution (zero mean and unitary standard
deviation) independently for the two coordinates x1 and x2; εi, i = 1 . . . 6, are random
values drawn from a standard normal distribution independently of each other.

A TS system having two rules is chosen for the regression (training) of this
dataset. In the initialization every pattern of the training set is assigned randomly
to one of the two clusters representing the rules. After that, the first iteration
of the clustering procedure takes place and the consequents of rule 1 and 2 are
the ones illustrated in Fig. 11.1-a and Fig. 11.1-b, respectively. It is evident that
the underlying kernels of the dataset, discriminated by x1 ≤ 0 or x1 < 0, are not
determined accurately; consequently, also considering the firing strengths of the rule
antecedents, the total approximation of the dataset is poor, as illustrated by two
different 3-D projections in Fig. 11.1-c and Fig. 11.1-d, respectively.

The proposed clustering procedure in the joint input-output space converges
very rapidly after 13 steps. At the end, the consequents of rule 1 and 2 are the
ones illustrated in Fig. 11.2-a and Fig. 11.2-b, respectively. The two kernels of
the dataset, discriminated by x1 ≤ 0 or x1 < 0, are determined accurately now;
consequently, also considering the firing strengths of the rule antecedents, the total
approximation of the dataset is satisfactory, as illustrated by two different 3-D
projections in Fig. 11.2-c and Fig. 11.2-d, respectively.
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(a) Consequent of rule 1 (b) Consequent of rule 2

(c) A first 3-D projection. (d) A second 3-D projection

Figure 11.1. In the panel on the top is reported an approximation of dataset (11.22) by
the consequent of rule 1-2 after the first iteration of the clustering procedure: patterns
projected onto the input space are the ones assigned to rule 1 and 2 by the 3-NN
classification procedure. In the bottom panel a global approximation of dataset (11.22)
after the first iteration of the clustering procedure is reported.

(a) Consequent of rule 1 (b) Consequent of rule 2

(c) A first 3-D projection. (d) A second 3-D projection

Figure 11.2. In the panel on the top is reported an approximation of dataset (11.22) by
the consequent of rule 1-2 after the convergence of the clustering procedure: patterns
projected onto the input space are the ones assigned to rule 1 and 2 by the 3-NN
classification procedure. In the bottom panel a global approximation of dataset (11.22)
after the convergence of the clustering procedure is reported.
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Optimization of The Network Complexity

The main problems with the learning in a TS model are the right determination of
the number of rules C and the local convergence of the algorithm for the synthesis of
rules (which depends upon the random initialization of the parameters of each rule).

Regarding the generalization capability, the optimal number of rules is automat-
ically determined on the basis of learning theory [193, 194]. Specifically, different
values of C and different initialization for every value of C are considered to solve
the previous problem. Then, the best model is chosen by evaluating a cost function
based on network complexity and approximation error [183, 182].

In particular, the mean squared error (MSE) is adopted as a measure of the
network performance on the training set:

E = 1
NR

∑
n∈R

(yn − ỹn)2 , (11.23)

where NR is the number of samples in the training set to be predicted, and ỹn is the
output generated by HONFIS in correspondence to the t-th input pattern xn of the
training set.

The optimal network is selected by maximizing the following cost function that
depends upon the maximum allowed number of the HONFIS rules:

F (C) = (1− λ)E(C)− Emin
Emax − Emin

+ λ
C

NR
, (11.24)

where Emin and Emax are the extreme values of the performance E that are encoun-
tered during the analysis of the different TS systems; λ is a weight in the range
0 ≤ λ ≤ 1, which will be set by default in middle of the interval at 0.5.2.

The best network is the one showing the best performance E(C̄) on the training
set. To maximize (11.24), the number of rules is varied from 1 to Cmax, where the
maximum value is the highest complexity that the network can allow. If Q different
initializations are carried out for each value of C, the optimization procedure will
generate QCmax networks and the optimal one will be selected according to (11.24).
The number of initializations has to be determined without increasing too much the
computational cost while having a good TS system after the clustering [104].

11.3 Illustrative Tests
In this section, the prediction performances of the considered models were investigated
by means of several simulation tests, carried out using data from the De Nittis Power
Plant in the Apulia Region, Italy (latitude φ = 41◦26′16′′, longitude λ = 15◦45′47′′).
Data is relative to a single photovoltaic plant, organized with eight cabins with two
inverters each. The output current is used as the variable to be predicted. The
value is sampled with a 5 minutes sample interval and it is collected from 6:00
AM to 10:55 PM (resulting in 204 samples per day). The data stream used is of
a single inverter of a single cabin and it is relative to the year 2012. In order to

2 This weight is found to be not critical, since the results are slightly affected by its variation in
a large interval centered in 0.5
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Figure 11.3. Histogram of the output current.

provide a statistical characterization of the handled time series, whose samples are
measured in Ampere, the first four statistical moments of the whole 2012 dataset
are computed and the relative histogram is reported in Fig. 11.3: Mean 85.1291;
Variance 1.0244 · 104; Skewness 0.8151; Kurtosis 2.1082. Successively, the whole
time series has been normalized linearly between 0 and 1 in order to cope with
the numerical requirements of learning algorithms, especially for neural network
models. The prediction performances are measured by different metrics commonly
adopted for energy time series, which are independent of the said procedure for data
normalization:

Definition 11.1. The Mean Squared Error (MSE) is a risk function that measures
the average of the squares error. In other words, it evaluates the difference between
the prediction ỹ and the real values y . It corresponds to the expected value of the
squared error loss or quadratic loss:

MSE = 1
NS

∑
t∈T

(yt − ỹt)2 ; (11.25)

Definition 11.2. The Normalized Mean Square Error (NMSE), similarly to the
MSE, measures the overall deviations between predicted ỹ and measured values y:

NMSE =

NT∑
t=1

(yt − ỹt)2

NT∑
t=1

(yt − ȳ)2
, (11.26)

where ȳ is the average value of samples yt in the test set. Unlike it, the NMSE
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normalized the data by the squared error of the predicted value and the average of
the samples.

Definition 11.3. The Noise to Signal Ratio (NSR) (in dB) can be defined as the
inverse of the Signal to Noise Ratio (SNR). It is expressed as the ratio between the
noise power and the signal power. A ratio higher than 1:1 indicates more noise to
ratio.

NSRdB = −10 log10

∑
t∈T

(yt − ỹt)2

∑
t∈T

y2
t

; (11.27)

Definition 11.4. Mean Absolute Range Error (MARE) measures the absolute
deviation as a proportion of the maximum possible error. Compared to the RMSE,
it is dimensionless and incorporates the inherent property of the data structure being
analyzed. It can be calculated as follows:

MARE = 1
NT

NT∑
t=1

|yt − ỹt|
ymax − ymin

, (11.28)

where ymax and ymin are the maximum and minimum value of samples yt in the test
set, respectively.

All the experiments have been performed using MATLAB® 2016b, running on a
3.1 GHz Intel Core i7 platform equipped with 16GB of memory.

11.3.1 First set trials

In this section, three of the introduced models are trained using either 7-days or
30 days series with no subsampling (resulting in a training set of 1428 and 6120
samples, respectively). The embedding parameters D and T were chosen analyzing
the time series using the ’VRA 4.2’ software package [195]. It is very interesting to
note that the time delay value (i.e., T = 54) can be associated with the intrinsic
properties of the solar time series itself. In fact, most of the information of the
time series is contained in three or four samples lagged about 4 hours each. This is
because the irradiation of the solar panel has a periodic component (linked to the
sun rising and setting).

A typical prediction behavior is presented in Table 11.1 and Table 11.2 where
the predicted data (i.e., test set) is relative to one day in the month of June 2012
and the training set is based on the previous 7 or 30 days, respectively. The results
are reported in terms of the four metrics before introduced, the NMSE (eq. (11.26)),
the MSE (eq. (11.25)) the NSR (eq. (11.27)) and the MARE (eq.(11.28)).

The graphical illustration of the actual and predicted time series obtained by
using the model performing the best result for such a day, is shown in Fig. 11.4-1
and Fig. 11.4-b, respectively.

From the obtained results, it can be claimed that in normal operational conditions
all of the presented solutions are suitable for the proposed goal. In particular, the
tests are very accurate when considering a 7-days training set, mostly because in
a single week window the solar irradiation is more stable. Good LSE results can



11.3 Illustrative Tests 181

Predictor NMSE MSE NSR (dB) MARE

LSE training 0.00182 24.37 -31.60 0.00580
LSE test 0.00024 3.340 -40.23 0.00483

RBF training 0.00111 14.96 -33.71 0.00478
RBF test 0.00021 2.898 -40.91 0.00390

ANFIS training 0.00114 15.32 -33.61 0.00468
ANFIS test 0.00350 48.26 -28.63 0.14730

MoG training 0.03804 510.6 -18.39 0.01286
MoG test 0.00039 5.392 -38.15 0.00603

Table 11.1. Prediction Results Using the 7 Days Training Set

(a) RBF (b) LSE

Figure 11.4. Prediction using the best model LSE and RBF using the 7 and 30 days
training set respectively.

be explained taking in account the intrinsic periodicity of the sequence, given the
inherited structure of the dataset and the day/night natural cycle.

In the next section, the experimental trials are changed by adding the HONFIS
model as well as the environmental conditions.

Predictor NMSE MSE NSR (dB) MARE

LSE training 0.08875 1214.6 -14.18 0.04715
LSE test 0.00097 13.69 -34.24 0.00999

RBF training 0.04798 656.7 -16.85 0.04005
RBF test 0.00163 22.93 -32.00 0.01156

ANFIS training 0.06454 887.2 -15.62 0.03893
ANFIS test 0.00278 39.16 -29.68 0.01237

MoG training 0.05567 763.1 -16.33 0.03454
MoG test 0.00105 14.49 -33.85 0.01117

Table 11.2. Prediction Results Using the 30 Days Training Set
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11.3.2 Second set of trials

In this section, the proposed HONFIS model is added to the previously approach,
and the surrounding environment is also complicated.

Precisely, all of the computational models are trained using time series subsampled
at an interval of 1 hour, thus resulting in 17 samples per day. Four different kinds
of training conditions are considered: 1-day, 3-days, 7-days and 30-days, associated
with training sets composed of 17, 51, 119 and 510 samples, respectively. Every
computational model estimated by using one of these training sets, is applied to
test the day following the latest one in the training set, which is on a test set of 17
samples. The successive experiments will consider for testing one day for each season
of 2012 and the 15th of each month has been chosen for the sake of uniformity3.
After a preliminary analysis it has been carried out that the embedding parameters
do not show a considerable sensitivity to seasonality and to the length of the training
set. The last one, is relatively small with respect to the usual length of time series
processed by the AMI and FNN methods, hence the values T = 5 and D = 3 are
used for every training set as optimal choice. It can be underlined that all of the
test sets have different irradiation and meteorological conditions and thus, they can
be considered as a good ensemble for representing the typical behaviors that might
be encountered.

In addition to the three proposed neural and fuzzy neural models (RBF, ANFIS,
HONFIS), the linear (LSE) and ARIMA predictors are adopted for benchmarking.
LSE does not have parameters to be set in advance, while for ARIMA, RBF and
ANFIS the default options provided by the software platform for training and model
regularization have been adopted. 4 Regarding HONFIS, a preliminary analysis
was performed in order to estimate the best model order for the rule consequents.
The 3rd order was found as the best model in the almost of the considered case,
thus only its values will be considered in the following results. The input space
classification is obtained by a 3-NN classifier (i.e., K = 3). The optimal number of
rules is determined by eq.(11.24), using λ = 0.5 and varying M from 1 up to 50% of
NT . The prediction are measured only in terms of two of the previously described
metrics: the NMSE eq.(11.26) and the MARE eq.(11.28).

The numerical results for each tested day are reported in Tables 11.3–11.6, where
the performance of the best model is marked in bold font. As per the following
discussion, being HONFIS the model that assures the best performance in most of
the situations, the graphical illustration of the actual time series (blue line) and the
one predicted by HONFIS (red line), over the four training conditions, is reported in
Figs. 11.5–11.8, respectively. In the x-axis there is reported the cumulative index of
samples of the considered day, starting from index 1 for the first sample of March 1st,
2012 and considering 17 samples per day. The output current reported in the y-axis
is a dimensionless value between 0 and 1, as the whole dataset has been normalized
before the model processing. Some negative values may occur because of possible
numerical issues of a trained model when its performance is inadequate.

3 For further analysis, in [196] the analysis is extend to over the year, where the experiments
will consider for testing one day for each month of 2012.

4 ARIMA, RBF, and ANFIS models are trained by using the supported functions in the
Econometrics, Neural Network, and Fuzzy Logic toolbox of Matlab, respectively.
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Prediction model NMSE MARE

1-day 3-days 7-days 30-days 1-day 3-days 7-days 30-days

LSE training 0.0399 0.0428 0.1248 0.2093 0.0663 0.0682 0.0946 0.1061
LSE test 0.0393 0.0388 0.0412 0.0463 0.0657 0.0651 0.0673 0.0720

ARIMA training 0.6048 0.3498 2.3712 0.4085 0.2417 0.1752 0.0692 0.0688
ARIMA test 0.0091 0.0190 0.6537 0.5065 0.0292 0.0437 0.0426 0.0687

RBF training 0.0041 0.0002 0.0323 0.1225 0.0168 0.0037 0.0476 0.0715
RBF test 0.0063 0.0002 0.0153 0.0128 0.1508 0.0040 0.0355 0.0310

ANFIS training 0.0001 0.0005 0.0134 0.1268 0.0002 0.0011 0.0269 0.0720
ANFIS test 0.0021 0.0003 0.0086 0.0216 0.0120 0.0010 0.0208 0.0399

HONFIS (3rd ord.) training 0.0001 0.0001 0.0039 0.0012 0.0002 0.0012 0.0090 0.0035
HONFIS (3rd ord.) test 0.9437 0.0002 0.0062 0.0003 0.1985 0.0013 0.0129 0.0035

Table 11.3. Prediction Results for March, 15th

Prediction model NMSE MARE

1-day 3-days 7-days 30-days 1-day 3-days 7-days 30-days

LSE training 0.0108 0.0121 0.0096 0.0957 0.0363 0.0383 0.0318 0.0579
LSE test 0.0119 0.0118 0.0118 0.0137 0.0376 0.0375 0.0372 0.0361

ARIMA training 0.7354 1.3923 0.3083 0.3240 0.2934 0.3922 0.1314 0.1667
ARIMA test 0.8885 0.0115 0.0670 0.0205 0.3397 0.0327 0.0831 0.0473

RBF training 0.0003 0.0002 0.0002 0.0367 0.0054 0.0049 0.0046 0.0326
RBF test 0.0005 0.0002 0.0002 0.0075 0.0073 0.0049 0.0048 0.0266

ANFIS training 0.0001 0.0005 0.0003 0.0423 0.0005 0.0017 0.0053 0.0353
ANFIS test 0.0010 0.0006 0.0004 0.0118 0.0099 0.0019 0.0064 0.0303

HONFIS (3rd ord.) training 0.0001 0.0006 0.0001 0.0053 0.0001 0.0010 0.0022 0.0068
HONFIS (3rd ord.) test 0.1763 0.0004 0.0006 0.0004 0.0482 0.0008 0.0012 0.0045

Table 11.4. Prediction Results for June, 15th

Prediction model NMSE MARE

1-day 3-days 7-days 30-days 1-day 3-days 7-days 30-days

LSE training 0.7511 0.3141 0.2900 0.2971 0.1845 0.1280 0.1281 0.1192
LSE test 0.7526 0.7263 0.7265 0.7262 0.2181 0.2088 0.2099 0.2114

ARIMA training 1.3369 1.3875 0.9725 0.3571 0.4424 0.2483 0.2423 0.1741
ARIMA test 0.4237 0.6639 0.5273 0.3427 0.3354 0.2334 0.1888 0.1604

RBF training 0.2025 0.1243 0.1076 0.1840 0.1016 0.0855 0.0708 0.0883
RBF test 1.2412 0.2118 0.3201 0.3445 0.3014 0.1155 0.1379 0.1362

ANFIS training 0.0001 0.0001 0.0498 0.1953 0.0001 0.0001 0.0467 0.0903
ANFIS test 0.4766 0.0001 0.0633 0.4668 0.1738 0.0008 0.0529 0.1582

HONFIS (3rd ord.) training 0.0001 0.0001 0.0122 0.0032 0.0001 0.0010 0.0138 0.0050
HONFIS (3rd ord.) test 1.7032 0.0002 0.0068 0.0092 0.3168 0.0011 0.0136 0.0125

Table 11.5. Prediction Results for September, 15th
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Prediction model NMSE MARE

1-day 3-days 7-days 30-days 1-day 3-days 7-days 30-days

LSE training 0.6335 0.5107 0.5513 0.3814 0.1109 0.1110 0.0970 0.0984
LSE test 0.4326 0.3922 0.4051 0.4512 0.1436 0.1552 0.1526 0.1518

ARIMA training 1.0407 1.1536 1.9333 1.1766 0.3000 0.2067 0.2194 0.2016
ARIMA test 0.9998 0.8886 0.5563 0.4208 0.2272 0.2090 0.1557 0.1769

RBF training 0.0754 0.0379 0.0540 0.2106 0.0412 0.0481 0.0383 0.0665
RBF test 0.9442 0.0793 0.1061 0.1270 0.2207 0.0768 0.0627 0.0684

ANFIS training 0.0609 0.0043 0.0556 0.2272 0.0401 0.0064 0.0410 0.0719
ANFIS test 1.2890 0.0057 0.1005 0.1443 0.2599 0.0074 0.0639 0.0643

HONFIS (3rd ord.) training 0.0060 0.0039 0.0198 0.1012 0.0083 0.0069 0.0094 0.0316
HONFIS (3rd ord.) test 1.1232 0.0079 0.0544 0.1017 0.1951 0.0083 0.0298 0.0416

Table 11.6. Prediction Results for December, 15th

Considering the experimental results reported in this work, it can be underlined
that all of the proposed approaches are suitable for the prediction of the considered
time series, depending on the chosen training set. The numerical results, in terms
of either NMSE or MARE, basically agree and are coherent with the graphical
behaviors between actual and predicted time series. By the way, a perfect match is
obtained when the NMSE is smaller than about 5 · 10−4.

In the days with the most stable meteorological conditions (i.e., March 15th
or June 15th), the prediction results are better than the others. Also, there are
differences among the results associated with different training procedures. For each
algorithm, the prediction with 1-day training data is highly affected by the difference
in irradiation between the day of the training and the one of test. In fact, when
the meteorological condition varies a lot from the training day to the sequent (test
day), the algorithms are trained on a set that is almost not correlated with the test
one. It can also be noted that when the irradiation is very similar (no clouds, good
weather), the performance is very good also for the 1-day training set.

A similar discussion can be made, with smaller variability, for the 3-days tests.
It has to be noted that the 1-day and 3-day tests have been inserted mainly to
show the sensitivity of the models. The 7-days tests are much more stable for all of
the algorithms and the days. The 30-days tests are stable too, but the sequence is
much longer. Hence, if the days are variable in terms of meteorological conditions,
the model has a worse performance because the training is more difficult. Overall,
a 1-day training is based on a very small number of samples in the training set.
This is an interesting issue for the computational cost of the learning procedure
when a lot of model parameters must be estimated, which is the well-known curse of
dimensionality for neural networks. In fact, the 3rd order polynomial adopted for
HONFIS makes it the most complex model among the ones considered in this work,
and its performances improve, with respect to the other models, as much as the the
number of samples increases in the training set. Although, a larger training set may
not be the optimal choice.

The performance of the prediction is highly affected by the intrinsic seasonality
of the considered time series. Anyway, the HONFIS model achieves the best results
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(a) 1-day training (b) 3-days training

(c) 7-days training (d) 30-days training

Figure 11.5. Prediction behavior using the best model (HONFIS) for March, 15th.
for almost all of the training sets with respect to the other proposed ones. Each of
them outperform both the LSE benchmark and the ARIMA approach. The latter, is
not a feasible solution for this purpose, due to the the intrinsic chaotic properties of
the sequence. This reinforces the fact that the prediction of photovoltaic production
is a promising field for the application of neural and fuzzy neural approaches, along
with the use of a suitable embedding procedure.

11.3.3 Third set of trials

In this section, the focus is given only on the fuzzy neural networks, analyzing the
performance of the HONFIS model when the order of the polynomial changes. In
effect, in the previous paragraph the best HONFIS order was selected and inserted
for comparisons. Now, it is detailed a procedure by which it could be find out.

All of the tests are done using either a 7-days or 30-days time series that stems
from a subsampled version of the original sequence, with a sample interval of 1 hour.
This results in a sequence with 17 samples per day and a training set of 119 and 510
samples, respectively. The performances of the resulting predictors are tested on the
successive 17 samples of the sequence (the single day after the 7 or 30 days used for
training).

The procedure is run from C = 1 to C = 200; this value is considered as the
maximum complexity allowed by the network. Ten different initializations are carried
out for each value of C as well as for the other compared models that undergo a
random initialization of their parameters. The average values over the 10 runs are
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(a) 1-day training (b) 3-days training

(c) 7-days training (d) 30-days training

Figure 11.6. Prediction behavior using the best model (HONFIS) for June, 15th.

(a) 1-day training (b) 3-days training

(c) 7-days training (d) 30-days training

Figure 11.7. Prediction behavior using the best model (HONFIS) for September, 15th.



11.3 Illustrative Tests 187

(a) 1-day training (b) 3-days training

(c) 7-days training (d) 30-days training

Figure 11.8. Prediction behavior using the best model (HONFIS) for December, 15th.

reported in the following. As aforementioned, for TS predictors the classification
in the input space is performed by the K-NN procedure with K = 3. The training
samples are also applied to determine both the values of D and T by using the
methods suggested in [184]; for the sake of comparison D = 3 and T = 5 are used
for all the considered models.

Let us consider a test set T of NS pairs (xt, yt) successive to the ones used for
training; the test set will be represented by the integers t ∈ T , which are the time
indexes of such pairs. The prediction performance will be measured in terms of
NMSE eq.(11.26), MSE eq.11.25, NSR eq.11.27, MARE eq.(11.28).

First of all, the performance of the HONFIS approach are evaluated considering
different orders for the polynomial function h(·) of the TS rule consequent. There
are considered five different cases, that is from first-order to fifth-order functions.
The results are reported in Table 11.7 in terms of NMSE only, as it is sufficient to
determine the best order to be used for the next comparisons. Such results are relative
to the test performed on the 30th of June as test set. This day has be chosen because
of the stability of the sequence in terms of meteorological condition and irradiation.
The best results are given by third-order and fourth-order functions for the 7-days
and 30-days training set, respectively. Fig. 11.9 illustrates a comparison between
the worst performance for 7-days training set, obtained by the fifth-order function,
and the best performance one, as said, by the third-order function. Similarly, in
Fig. 11.10 is shown a comparison between the worst performance for 30-days training
set, obtained by the first-order function, and the best performance one obtained,
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TS Rule 7-days 30-days

First-order training 4.043 1.636
First-order test 0.058 0.019
Second-order training 0.596 2.019
Second-order test 0.053 0.018
Third-order training 0.611 1.591
Third-order test 0.052 0.017
Fourth-order training 0.639 1.514
Fourth-order test 0.055 0.016
Fifth-order training 0.819 1.513
Fifth-order test 0.097 0.016

NMSE values are scaled by 10−2

Table 11.7. Prediction Results (NMSE) for Different TS Orders of The Rule Consequent

in this case, by the fourth-order function. Then, the prediction performances
of the proposed TS approach are compared with three prediction models already
introduced: LSE, RbF (sec.11.2.3) and HONFIS (sec.11.2.4).

A cross-validation technique is adopted by using a suited early-stopping procedure
in order to optimize the model complexity.

In Table 11.8 and Table 11.9 are illustrated the results by using the 7-days and
30-days time series, respectively. Evidently, the proposed TS approach is able to
obtain the best performance in both the 7-days and 30-days prediction problems. It
also important to remark that, even in the case of a poor choice of the polynomial
order in the TS model, its performance still remains better than the ones of compared
models. In Fig. 11.11 is reported a comparison between the worst performance

Predictor NMSE MSE NSRdB MARE

LSE training 7.105 0.709 -15.175 0.056
LSE test 1.541 0.136 -22.287 0.038
RBF training 2.129 0.212 -20.408 0.023
RBF test 0.200 0.018 -31.159 0.014
ANFIS training 1.166 0.116 -23.023 0.027
ANFIS test 1.067 0.094 -23.882 0.028
TS (third-order) training 0.611 0.110 -25.780 0.011
TS (third-order) test 0.052 0.094 -38.780 0.003

NMSE and MSE values are scaled by 10−2

Table 11.8. Comparison of Prediction Performances on The 7-Days Training Set
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Figure 11.9. TS prediction on the 7-days training set: worst performance of fifth-order
consequents (left); best performance of third-order functions (right).
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Figure 11.10. TS prediction on the 30-days training set: worst performance of first-order
consequents (left); best performance of fourth-order functions (right).
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Predictor NMSE MSE NSRdB MARE

LSE training 14.99 1.498 -11.839 0.078
LSE test 2.162 0.191 -20.817 0.047
RBF training 7.060 0.706 -15.109 0.049
RBF test 1.601 0.141 -22.122 0.032
ANFIS training 9.401 0.940 -13.865 0.057
ANFIS test 1.633 0.144 -22.036 0.041
TS (fourth-order) training 1.514 0.304 -19.328 0.005
TS (fourth-order) test 0.016 0.025 -80.251 0.004

NMSE and MSE values are scaled by 10−2

Table 11.9. Comparison of Prediction Performances on The 30-Days Training Set
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Figure 11.11. Prediction on the 7-days training set: worst performance of LSE predictor
(left); best performance of TS model using third-order consequents (right).

for 7-days training set, obtained by the LSE predictor, and the best performance
obtained by the TS model using third-order functions. Again, in Fig. 11.12 is
illustrated the comparison between the worst performance for 30-days training set,
obtained once again by the LSE predictor, and the best performance obtained by
the TS model using in this case fourth-order consequents.

11.3.4 Observations

In this chapter, neural and fuzzy neural networks approaches are considered for time
series prediction. In particular, an approach based on Takagi-Sugeno fuzzy inference
systems using higher-order polynomials for the rules’ consequent is introduced. A
constructive procedure able to automatically determine the optimal number of
fuzzy rules and avoid overfitting is also introduced. In this way, the generalization
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Figure 11.12. Prediction on the 30-days training set: worst performance of LSE predictor
(left); best performance of TS model using fourth-order functions (right).

capability of the fuzzy neural network are maximized. The validation performed
on historical data shows that the fuzzy approach generates values that are able to
replicate accurately the data behavior.

Additionally, new embedding approaches based on neural and fuzzy networks have
been properly tailored to be efficiently applied to PV time series prediction. They
provide an accurate description of time series dynamics, allowing us to estimate future
values over a long time horizon. Nevertheless, the proposed models outperforms in
almost all cases well-known benchmarks.

The results are very promising, hence the proposed models could be applied
also to different applications in electrical engineering, where data regression and
time series prediction represent a key issue for obtaining a better management of
economic and energetic resources. Detrending techniques, such as mean-reverting
approaches, could be used to remove seasonal differences and spike outliers as well
as to improve the training accuracy. Additionally, these proposals could be useful for
the distributed learning approach, by which the results could be improved sharing
the data from different cabins of the same plant or from different nearby plants.
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Chapter 12

Conclusions

This thesis focuses on distributed machine learning problems, wherein data to be
analyzed is partitioned into a set of interconnected agents with limited connectivity.
It has been pointed out that separate domains of application may impose very
different constraints in respect of the traditional centralized solution. Among these,
low computational power at every location, limited connectivity, or transferability
constraints related to privacy and security reasons, are just few examples that could
be mentioned. With this in mind, this thesis looked at the possibility of performing
inference on data in a decentralized fashion (i.e., without a centralized authority
or coordinator), leaving out the exchange of training data. Previously works have
failed to address this issue, since they are often just a parallel version of some
centralized techniques. Accordingly, they are not actually distributed since they just
split the computation and successively send the results to a central node that makes
a decision. In other applications, bridge sensors or a loop through all the networks’
node is necessary to reach out a common agreement on final results.

In this context, several innovative solutions have been proposed to overcome the
main limits of the existing approaches. The challenge was to avoid that a central
node detains all of the information, while reaching a solution that is similar to the
centralized one, only through a process of communication and collaboration among
the agents. To achieve this, throughout the present thesis, different approaches
working on a fully distributed scenario have been presented.

Firstly, an extension of the well-known centralized clustering ensemble technique
has been detailed. It is largely adopted in the centralized case because of its capability
to improve the quality of individual data clustering. At the same time, its use on
the distributed learning setting has not been considered so far; this is the main
motivation that has brought us to introduce the V-DEC procedure. The novelty
of this approach is the capacity of working in a fully distributed scenario, with a
network of interconnected agents that acquire data locally and autonomously. They
are allowed to start with a different partition constructed by considering its own
data only as well as a different number of initial clusters. The agreement among the
partitions is reached by an automatic and mutual refinement of the results until the
different partitions become statistically similar with a good internal validity index.
The idea behind this approach is very simple, yet it allows us to reach a solution
similar to the centralized one, by only exchanging the local representatives onto the
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network and increasing the efficiency and the speed of the whole procedure.
The V-DEC algorithm, as most of the clustering methods, relies on suitable

metrics encoded in a matrix of pairwise distances between patterns. Thus, it is
proposed a new solution for building in a totally decentralized fashion the matrix
of Euclidean distances EDM among all points. Recasting the problem in this way
allow us to leverage over a large number of works on matrix completion and EDM
completion, especially in the distributed setting. Moreover, although the attention
is focused on the spectral clustering algorithm, nothing prevents the framework
from being used with different other approaches based on a similarity measure.
To the best of our knowledge, this is the first distributed protocol for its solution
and experimental results show that such approach is efficiently able to match a
fully centralized implementation for reconstructing a matrix of similarity measures,
without requiring the presence of a coordinating node.

Returning to the constraints posed at the beginning of the study, it is possible to
claim that in many distributed applications, it is not realistic to assume that the entire
training set is available before to begin the learning procedure, but data arrives one-
by-one or chunk-by-chunk. In this regard, it has been proposed an on-line learning
algorithm under the hypothesis of training data distributed across a network of
interconnected agents. In particular, each agent in the network is assumed to receive
a stream of data as a sequence of mini-batches. When receiving a new chunk of data,
each agent updates its estimate of the model parameters and, periodically, all agents
agree on a common model through a distributed average consensus DAC protocol.
This approach has been applied to the learning of fuzzy neural network architectures
and the learning algorithm is faster than a solution based on a centralized training set.
The experimental results on well-known datasets validate the proposal. Nonetheless,
the same problem is analyzed from a different point of view, where a non-convex
distributed optimization in multi-agent networks with time-varying connectivity
is applied to the well-known expectation-maximization EM approach. It exploits
successive convex approximation techniques while leveraging dynamic consensus as a
mechanism to distribute the computation as well as propagate the needed information
over the network. Numerical results show that the new method compares favorably
to the existing approaches and to the centralized one.

Successively, several possible applications of the distributed learning are intro-
duced and discussed. The first one concerns the framework of telemedicine, wherein
data is distributed across multiple clinical parties. The final aim was to put the basis
for a new multimedia ICT platform able to deliver healthcare services accessible by
the user from his home. The collaboration with the Biomechanics Laboratory of the
Policlinico Umberto I of Rome and the Rehabilitation Medical Center of the 2nd
Hospital of Jiaxing has helped us in pointing out the main problems that can arise
in a scenario like this. The capability of two low-cost devices, Microsoft Kinect and
inertial IMU sensors, are firstly tested and assessed in acquiring clinical relevant
information. It has been found that they represent an innovative alternative to the
standard systems, thanks to their ability to track the movement of a person avoiding
need of markers or controllers. Once obtained a method for acquiring data in a home
context, the successive step was involved in the analysis of data acquired at the single
locations. To this end, a decision making system for gait analysis has been proposed.
It relies on the use of machine learning and ad-hoc algorithms able to extract the
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relevant information useful for the clinical analysis only. In effect, some extracted
features can serve as potential biomarkers in the definition of a disease, while extra
features could increase the complexity of the learning process. The experimental
results show that the proposed methods are able to reduce the dimensionality of
the data space and to determine the patient’s status with a suitable classification
accuracy higher than 97%. However, in a medical scenario, these methods could
not be directly applied since data could not be transferred from one site to another
for privacy concerns over sensible portions of the dataset. In this regard, the afore-
mentioned distributed spectral clustering procedure has been extended, by adding
suitable protocols for privacy preserving.

The second application context is related to sensor networks. Typically, a
wireless sensor network is composed of a large number of low-cost, low-power and
heterogeneous devices, which are used to learn from the environment that they
are sensing. However, to upload learning algorithms on a digital architecture with
a finite precision arithmetic, after a direct quantization of coefficients, leads to
unsatisfactory results due to the non-linear nature of the network. To this end, some
modified learning algorithms have been proposed for neural networks. Specifically,
they relies on random vector functional-link RVFL models, for processing distributed
data. The novelty is in the quantization procedure able to make them suited
to hardware architectures even based on a simple microcontroller. Both uniform
and non-uniform quantization has been introduced in order to optimize the neural
network implementation. It has been shown that the proposed approaches are
effective even using a small number of bits, which compensates and regularizes the
effects of rounding in the successive layers of the neural network.

Finally, the last application of distributed learning that has been considered is
the prediction of electric power produced by renewable energy plants. This is an
interesting area of application, being both wind-electric conversion and photovoltaic
systems in advances states of developments. New embedding approaches based
on neural and fuzzy networks have been properly tailored to be efficiently applied
to photovoltaic PV time series prediction. Additionally, a Takagi-Sugeno fuzzy
inference system using higher-order polynomials for the rules’ consequent has been
introduced. In Italy, the proposed models outperform in almost all cases well-known
benchmarks and the preliminary results concerning the prediction of power generated
by a large scale photovoltaic plant are very promising.

In conclusion, this thesis has proposed an extensive research focused on the design
and the implementation of useful and practical distributed data mining systems.
On one hand, the work focuses on the realization of new distributed algorithms;
on the other hand, it also presents applications on large scale real-world problems.
The present findings, supported by encouraging experimental results, highlight the
importance to set new goals and develop further scientific research for solving a new
class of machine learning problems in a fully distributed scenario.
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Appendix A

Clustering Validation Indexes

As introduced in Section 2.3.2, the validation procedure can be difficult in the
unsupervised learning context, since no label is able to give information on how
the algorithm performs when tracking the underlying structure of the data. In this
thesis, two kinds of evaluation criteria have been used. Their are based on either
an internal evaluation, or an external one. In the former, the clustering is summed
up to a single quality score, whereas in the latter the clustering is compared to an
existing ground truth classification. The next sections is about some of the validity
indexes used in the overall work to judge the validity of the proposed techniques.

A.1 Internal Validity Indexes

These indexes are based on the data clustered itself, and usually, assign the best
scores to the algorithm able to produce clusters with the high similarity within a
cluster and the low similarity between clusters. The list below present some of the
validity indexes used to evaluate the performances in the unsupervised proposed
approaches:

• Davies-Bouldin Index [53] is an internal evaluation index, where quantities
and features inherent to the dataset are used to verify the efficiency of the
clustering. Given n patterns, being Ci the cluster of data points, and Xj

the vectors assigned to cluster CCi, then the average distance of the points
belonging to the cluster Ck and their barycenter A is expressed as follows:

δi = ( 1
Ti

Ti∑
j=1
|Xj −Ai|p)1/p (A.1)

where Ai is the centroid of Ci and Ti is the size of the cluster i. Usually,
the value of p is equal to two, so the Euclidean distance function between
the centroid of the cluster, and the individual feature vectors are considered.
Denoting the distance between the barycenters Ai and Aj of clusters Ci and
Cj :

∆i,j = ‖Ai −Aj‖p = (
n∑
k=1
|ak,i − ak,j |)1/p (A.2)
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among all the clusters the Davies-Bouldin index is the mean value of the
quantities Mk:

DB = 1
K

K∑
k=1

Mk = 1
K

K∑
k=1

max
k′ 6=k

(δk + δk′

∆kk′
) (A.3)

where Mk is defined as:
Mk = max

k′ 6=k
(δk + δk′

∆kk′
) (A.4)

The algorithm with the lowest Davies-Bouldin index will be considered as the
best one.

• Dunn Index [54] is of the same group of the Davis-Bouldin Index, because it
is an internal evaluation scheme, where the result is based on the clustered
data itself. The aim is to identify sets of clusters that are compact, with a
small variance between members of the cluster, and well separated, where the
means of different clusters are sufficiently far apart, as compared to the within
cluster variance. Let Ci be a cluster of vectors and x and y be any two n
dimensional feature vectors assigned to the same cluster Ci. Introducing the
distance between clusters Ck and Ct:

dij = min
i,j

∥∥∥Mk
i −M t

j

∥∥∥ (A.5)

and the largest distance separating two distinct points in the clusters:

Dk = max
i,ji6=j

∥∥∥Mk
i −M t

j

∥∥∥ (A.6)

the smallest distance between points of different clusters and the largest
within-cluster distance can be formulated as:{

dmin = mink 6=t dkt
dmax = max1≤k≤K Dk

(A.7)

Then, the Dunn index is defined as the quotient of dmin and dmax:

C = dmin
dmax

(A.8)

The intra-cluster distance may be measured in several ways, such as the
maximal distance between any pair of elements in cluster k. Algorithms that
produce clusters with high Dunn index shall be preferred.

• DW-DB index [55] the double weighted Davies-Bouldin index is a modified
version of the DB Index. It avoids to falling into some local minimums that
affect the standard Davies-Bouldin Index. Introducing:

FE =
∑
~xi∈E

(µα(~xi)− µr(~xi)) =
∑
~xi∈E

fe(~xi) (A.9)

where µα is the membership value for the wrong class and µr is the membership
value to the correct class (whose label is derived from the data set). If the crisp
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case is considered, then FE will be equal to the total number of misclassified
patterns (nerr). The second quantity is the overall fuzzy reliability (FR),
defined as:

FR =
∑
~xi 6∈E

(µr(~xi)−max
j 6=r
{µj(~xi)}) =

∑
~xi 6∈E

fr(~xi) (A.10)

In the crisp case, FR is equal to the total number of well-classified patterns
(N − nerr). The DW-DB index can be so expressed as follows:

FCQ =
∑
~xi∈E fe(~xi) +

∑
~xi 6∈E(1− fr(~xi))

N
(A.11)

By considering (A.9) and (A.10), the (A.11) can be rewritten as follows:

FCQ = FE + (N − nerr)− FR
N

(A.12)

A.2 External validity indexes

In these criteria, the results are evaluated on the basis of data for clustering, for
example by the known class labels. The problem is the usually practical applications,
such labels are unknown. On the other hands, labels are only a partitioning of data
set, implying that a different, perhaps better clustering might even exists. Otherwise,
results are compared with those obtained by benchmark approaches in order to
analyze how close the clustering results are in respect to predetermined benchmark
classes. In the following list, a further detail on some particular indexes that are
used for comparing the results of the proposed approaches is given. In particular, in
the indexes we refer on the following quantities:

• True Positive (TP ): the object belonging to positive class and classified as
positive;

• False Positive (FP ): the object belonging to negative class and classified as
positive;

• True Negative (TN): the object belonging to negative class and classified as
negative;

• False Negative (FN): the object belonging to positive class and classified as
negative.

A visual representation can be given as follows:

• F-Measure ([60]) is used to reduce the number of false negatives by weighting
recall through a parameter β ≥ 0. It is based on two features:

P = TP

TP + FP

R = TP

TP + FN

(A.13)
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actual
value

Prediction outcome

p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

where P is the precision rate (the fraction of relevant instances among the
retrieved ones) and R is the recall rate (the fraction of relevant instances
that have been retrieved over the total amount of relevant ones). Then the
F-measure can be calculated in the following way:

F = (β2 + 1)PR
β2P +R

(A.14)

When β = 0, the index coincides with the precision, while when it increases,
the influence of the recall increases too. The index does not take into account
the number of true negatives.

• Fowlkes–Mallows index ([60]) is used to evaluate the resulting clustering
structure, by comparing it to an independent partition of the data according
to a benchmark approach. It can be evaluated by the following formula:

FM =
√

TP

TP + FP
· TP

TP + FN
(A.15)

The index is the geometric mean between the precision and the recall. High
values of the index indicate shows similarity between the partitions. The higher
these indices, the more similar the partitions are.

• Rand Index ([59]) like the others measures, this index is use to compare the
results of clustering algorithms with benchmark classification. The Rand index
measures the percentage of the correct decision in the following way:

RI = TP + TN

TP + FP + FN + TN
(A.16)

In this way, the two kinds of errors, false negative and false positive are equally
weighted.

• K Index ([61, 85]), is a statistical measure of the agreement, into account
the possibility of the agreement occurring by chance. The K index can be
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described as follows:

KI = p0 − pe
1− pe

= 1− 1− p0
1− pe

(A.17)

being p0 the relative observed agreement among raters, it can be associated
with the accuracy of the results, while pe is the hypothetical probability of
chance agreement. The probability of each observer can be evaluated randomly
by seeing each category. When the index is equal to one, then there is a
complete agreement among the results. Conversely, there is no agreement
among the raters other than what would be expected by chance. pe can be
described in the following way:

pe = 1
N2

∑
k

nk1nk2 (A.18)

where N is the number of items, k is the class and nki represents the number
of times rater i predicts category k.





219

Appendix B

Statistical tests

This section introduces some statistical tests that have been used in the thesis to
perform inference on random variables. The statistical analysis is used when is
necessary to compare the relationship between two statistical dataset. In particular,
they are used to determine whether there is enough evidence to “reject” a hypothesis
on a process. Specifically, a statistical test requires:

• H0: a null hypothesis that has to be confirmed;

• H1: an alternative hypothesis that might be true.

The test procedure is generally made in order to avoid the risk of rejecting the
null hypothesis when it is true. This risk is what is usually called significance level
of a test. In particular, when the relationship between the dataset is an unlikely
realization of the null hypothesis, we could say that the difference is statistically
significant. Obviously, the risk of failing to reject the null hypothesis when it is false
is possible and two kinds of errors can occur: error of type 1 and type 2. The first
one causes an incorrect rejection of a true null hypothesis, while the second one
causes an incorrect retaining of a false null hypothesis.

There is a wide range of statistical tests. Choosing which statistical test to use
depends on the type of data, variable and research design. Below are summarized
the statistical tests used in this thesis.

• Pearson Coefficient (r): is used to test the correlation between two continuous
variables. It is based on the realization of the best fit through the data of the
two variables, and the measures show the distance between data points and
this line. It is evaluated in the following way:

r =
∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2√∑
i(yi − ȳ)2 (B.1)

Essentially, it is given by the ratio between the two variables covariance, whose
correlation has to be tested, and the single variance of each one. It generally
takes value ranging from −1 and 1. A 0 value indicates a no correlation
between data. Values greater than 0 indicates a positive correlation, while
values less than 0 indicates a negative correlation (if a variable increases, the
other decreases). Obviously, the closer the coefficients’ value to 1 or -1, the
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smaller the variation around the line of the best fit. The index is not able
to tell the difference between dependent and independent variables, and the
variables should approximately be normally distributed. Additionally, it is not
able to capture nonlinear relationship between the variables.

• Bland and Altman Plot is a statistical test used to analyze the agreement
between two different variables. It proposes an alternative analysis performed
in a very simple way: considering n patterns they will be represented in a
graph where the mean of the two measurements is reported on the x-axis,
whereas the difference between the two values is reported on the ordinate. As
a result, the Cartesian coordinates will be evaluated as follows:

S(x, y) =
(
S1 + S2

2 , S1 − S2

)
(B.2)

Often, it is better to represent these values with a log transformation of the
measurements before beginning the analysis:

S(x, y) =
(
log2S1 + log2S2

2 , log2S1 − log2S2

)
(B.3)

The test is used to evaluate the agreement between two different instruments,
or a possible systemic difference, this time by considering the bias among the
variables and the standard deviation of the difference’s deviation. Often, the
95% limit of agreement is used to better visualize the number of patterns which
are statistically similar among the two methods of measurement. Consequently,
the final result is composed by a scatter diagram of the mean difference,
represented by a horizontal lines and the limits of agreement which represent
the mean difference plus and minus 1.96 times the standard deviation of the
differences. It only defines the intervals of agreements, and it does not say
whether those limits are acceptable or not.

• Limit of Agreement (LoA) is used in the Bland and Altman plot to estimate
the interval within which a proportion of the differences measurements lies. It
is generally used to analyze the differences between the patterns extracted by
two statistical methods. It considers both the random error (precision) and the
bias among the measures. It is important to underline that the construction of
this type of graph needs the assumption of normality among the differences.

• Intra-class correlation coefficient (ICC) measures the correlation among the
variables in the same group. There are many kinds of ways to evaluate this
model, the most important one concerns the analysis of variance (ANOVA),
which is defined in terms of the random effects model:

Yij = µ+ αj + εij (B.4)

where Yij is the ith observation in the jth group, while µ, αj , εij are respectively
the unobserved overall mean, random effect shared by all values in group j
and unobserved noise term. Generally, the index is evaluated as:

σ2
α

σ2
α + σ2

ε

(B.5)
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where σ2
α and σ2

ε are the variances of αj and εij . The index is not always
negative, and measures the proportion of total variance that is “between
groups”. It ranges from 0 to 1. A value close to 1 indicates high similarity
between values in the same group, while values close to 0 indicates a low
similarity.
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Appendix C

Classification algorithms

In chapter 8 and 9 several classification procedures have been used to solve a specific
feature selection problem. In particular, eight widely used classification algorithms,
whose performances have been ascertained in many real-world problems compared
to well-known classification benchmarks, are considered. Below, a short description
of them is provided.

Linear Discriminant Analysis (LDA): [197] tries to characterize data using a linear
polynomial in order to divide patterns into two or more classes. It maximizes
the discriminatory information between classes by using the Fisher discriminant
technique for surface separation. In particular, relying on the Bayes’ rule, the
conditional probability P (X|y) is modeled as a multivariate Gaussian distribution:

p(X|y = k) = 1
(2π)n|Σk|1/2

exp(−1
2(X − µk)tΣ−1

k (X − µk)) (C.1)

In that way, we just need to estimate the class priors P (y = k) from the training
data, using class k instance’s proportion, the mean µk and the covariance matrices
Σk. In this model, classes are supposed to have the same covariance matrix: Σk = Σ
∀ k, so that the homoscedastic hypothesis must be satisfied from input data.

Quadratic Discriminant Analysis (QDA), similarly to the LDA, it tries to make
predictions by using the Bayes’s rule to model P (X|y) as a multivariate Gaussian dis-
tribution (C.1) where the homoscedastic hypothesis is overcome and no assumption
on the input data has to be realized [198]. It is more suited for real contexts, where
heterogeneous covariance matrices could be presented Σi 6= Σj for some i 6= j. In
this way, we cannot throw away the quadratic terms, and the discriminant function
becomes a quadratic decision surface. The procedure is still the same as in the
same of the LDA approach, where the aim is to find the class k that maximizes the
quadratic discriminant function. The model is able to better fit the data, compared
to the LDA procedure, making necessary an increase of the parameters to be trained.
Therefore, a trade-off between the fitting and the complexity of the model has to be
performed to decide which choice is better between the two models.

Naive Bayes classifier is a statistical technique that tries to verify if an element
belongs to a class [199]. The algorithm is based on Bayes’s theorem and takes in inputs
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the attributes of the relative class for each object (x = x1, . . . , xn). Then, it calculates
various conditional probability and assigns the object to the class with the highest
probability of belonging. The correct classification is obtained when the conditional
probability of one class C respected to the attributes Xn(P{C|x1, x2, ..., xn}) is the
maximal one:

ŷ = argmax
k∈{1, ...,K}

p(Ck)
n∏
i=1

p(xi|Ck) (C.2)

This is known as the maximum a posterior decision rule. To estimate the parameters
for the feature, an assumption on their distributions has to be performed. The most
frequent ones are the Gaussian, the Multinomial or the Bernoulli.

Fuzzy Inference System (FIS) is used to partition the feature space into fuzzy classes
[200]. The aim is to optimize the system’s parameters, such as the membership
function defined for each feature of the parametrized t-norms. Any FIS is based on
an “if-then” rule, and the learning procedure is based on three different steps:

• Clustering of training data: a subtractive clustering is applied to the training
data in order to automatically determine the number of clusters;

• Generation of the initial fuzzy rules: for a cluster j belonging to class Ci the
“if-then” rules can be written as follows:

if X1 is Aj1 and X2 is Aj2 and . . .
then class is Cj

where Xk is the k-th element of a feature vector X and Ajk is the membership
function;

• Optimization of the fuzzy rules: each membership function is tuned according
to gradient descent procedure.

Once trained, the FIS can classify new vectors using its set of fuzzy rules.

Classification and regression tree (CART) operates by the recursively splitting of
the data until ending points, which are defined by some preset criteria, are achieved
[201].
Each root node represents a single input variable (x) and a split point on that
variable, while the leaf nodes represent the output variable (y). When a new point
is presented to the model, the tree is crossed by evaluating the specific input, which
starts at the root node of the tree, and ends when a stopping criterion is satisfied,
such as the minimum number of training instances assigned to each leaf node of the
tree. Being nonlinear relations between features and classes, they represent a correct
trade-off among computational complexity and accuracy.

K-Nearest Neighbors (KNN) approach, assigns a class on the basis of the most
frequent one of the patterns in the neighborhood [9]. It does not require any
assumptions on data, and is based on the following steps:
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• Training: space is partitioned into several regions, on the basis of the objects
in the training set;

• Distance calculation: the Euclidean distance is evaluated among all the possible
pairs in the dataset. On the other hand, the Manhattan or the Minkowski
distance could also be used for this purpose;

• Classification: each point is assigned to the closer class;

It is useful to assign weight to the neighbors’ contributions so that the nearest ones
contribute more to the average than the more distant ones. Obviously, the value
of K will influence the results, and the correct choice of the parameter has to be
evaluated in terms of training error rate and validation error rate. Generally, a large
value of K is more precise as it reduces the overall noise even though there is no
guarantee. Cross-validation is another technique to determine a good K value by
using an independent dataset to validate it. Historically, the optimal parameter has
been between 3− 10.

Support Vector Machine (SVM) is a supervised learning approach that should be
applied for both regression and classification problems [198]. Based on the solution
of a quadratic convex problem, it could be used for finding global minimum also in
non linear complex problems. It represents the input data [(x1, y1), . . . , (xN , yN )]
as points in a graph, and the classification procedure is performed by finding the
hyperplane able to maximize margin among the patterns, and by minimizing the
mistakes on the training data. If the training data is linearly separable, we can select
two parallel hyperplanes to separate them in order to maximize the margin (the
region bounded by these two hyperplanes) otherwise, an additional consideration
has to be performed. In particular, the potentiality of this model lies non-linear
problems solving capability carried out by performing a transformation into an
high-dimensional feature space with kernel functions. In fact, in the transformed
space, data becomes linearly separable and the problem is easily solved.

Probabilistic Neural Network (PNN) is a statistical algorithm where the operations
are organized into a multilayered feedforward network [202]. It is organized in four
layers:

• Input layer: composed of N − 1 neurons when there are N number of cate-
gories,and each one of them represents a predictor variable;

• Pattern layer: contains a single neuron for each case in the training data, and
when a new input is presented to the network, it computes the Euclidean
distance and then applies the radial basis function kernel;

• Summation layer: is characterized by a neuron for each category of the target
variable. It sums up the contribution for each class of inputs and produces its
net output as a vector of probabilities.

• Output layer: compares the weighted votes for each target, and the largest
one is used to predict the target category. In this way, the associated class
label is determined.
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