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iv 

F     orward scatter Radar systems designed to take advantage of the greater radar cross section, that is robust to 

Radar Absorbing Material and other stealth technology, and of the long integration times, due to the little phase 

and amplitude fluctuations, are attractive for a variety of applications. Many of which fit well with the needs of 

augmentation of the surveillance capabilities of low-observable targets that may have a small backscatter RCS 

when observed with the conventional radar systems. This thesis reports on research into this field of radar 

systems with additional contributions to target detection and motion parameters estimation.  

 Particularly, the first part of the thesis deals with the detection of moving targets that follow a linear trajectory 

in a single node FSR configuration. The detection scheme based on a square-law detector followed by an 

appropriate matched filter, here addressed as Crystal Video Detector (CVD) in accordance with the traditional 

terminology, has already been put forward in the literature. Performance prediction and FSR system design were 

key motivator to analytically characterize the detection performance of CVD in terms of both, probability of false 

alarm and probability of detection. The derived closed-form expressions were validate from Monte Carlo 

simulations under different geometrical conditions and from experimental data acquired by a passive FSR based 

on FM signals. Furthermore, new detection schemes based on the CVD ensuring the constant false alarm rate 

(CFAR) condition were devised and analytically characterized. The performance analysis showed quite small 

losses of the CFAR-CVD detectors compared to the fixed threshold CVD.  

The second part of the thesis still handles the problem of target detection through the derivation of innovative 

detection schemes based on the Generalized Likelihood Ratio Test (GLRT). A comparison with the detection 

performance of the CVD has proven the better performance of the GLRT-based detectors. In most cases the 

improvement has an upper bound of 3 dB. However, there are specific circumstances where the standard FSR 

detector shows significant losses while the GLRT schemes suffer a much smaller degradation. Moreover the 

possibility to have a set of secondary data assumed target free, drove to the devising of new GLRT schemes. The 

results demonstrated a non-negligible further improvement over the previous GLRT schemes when the operation 

conditions get close to the near field transition point. The detection performance of the derived detectors without 

and with secondary data were analytically characterized. This analytical performance allowed to derive simplified 

equivalent SNR expressions that relate the GLRT detection performance to the main system and target 

parameters. These expressions showed to be useful for the design of effective FSR geometries that guarantee 

desired detection performance for specific targets. 

In the third part of the thesis the focus is moved to the motion parameters estimation through both, a single 

baseline and a dual baseline FSR configuration. Accordingly, the Doppler signature extracted from the Crystal 

Video based scheme is exploited. Following motion parameters estimation approaches already introduced in the 

literature, a two dimensional filter bank technique was proposed. The main target parameters encoding Doppler 
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rate, main lobe width and crossing time instant were estimated from such technique. The accuracy of the 

proposed technique was investigated from a theoretical point of view through the derivation of simplified closed-

form expression of the Cramer Rao Lower Bound (CRLB). The analysis proved that unbiased estimates of the 

desired target parameters can be obtained that approach the derived CRLB in the high SNR region. After the 

dependence of the kinematic parameters on the parameters estimated from the bank was exploited. The cross 

baseline velocity in a single baseline configuration was estimated under the assumption that the baseline crossing 

point is known. Meanwhile the dual baseline configuration ensures the possibility to estimate also the baseline 

crossing point without a priori knowledge on the other target kinematic parameters. Once more, the CRLB of the 

target motion parameters for both reference scenarios was derived. The analysis proved that unbiased estimates of 

the target motion parameters can be obtained with high accuracy even for low SNR conditions. The effectiveness 

of the proposed approach was also shown from experimental data acquired by a passive FSR based on FM 

signals. 
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This chapter introduces the main topics of the work done for this thesis project. In particular, the research 

background is illustrated focusing on the Forward Scatter Radar systems, which is used as a baseline for 

highlighting the motivations, the objectives and the novel contributions of the thesis. The general overview of 

these aspects, which are deeply analyzed throughout the dissertation, is followed by a brief description of the 

chapters of this document. 

1.1  Background 

Radar has long being used in a variety of military and civilian applications. The main reason for this is an 

ability to survey rapidly wide areas in all weather conditions, during day and nights. The two main radars type as 

classified by their configurations are monostatic radar: with transmitter (TX) and receiver (RX) collocated and 

bistatic radar: with transmitter and receiver physically separated. This thesis concerns a particular configuration 

of bistatic radar: Forward Scatter Radar (FSR) which occurs when the bistatic angle approaches 180°, namely 

when the target is close to the segment (typically addressed as baseline) connecting TX and RX. However the 

physical operational principle of FSR is essentially different from that of bistatic radar, which is inherently a 

backscatter radar, [1]. The key peculiarity of the FSR is that its exploits the effect of electromagnetic wave 

shadowing the target rather than the scattering from the target, [2].  

It has been demonstrated that the Forward Scatter (FS) configuration has two important proprieties: an 

enhanced radar cross-section in Mie and optical scattering regions which was shown robust to coating and to 

other stealth technology, [1]-[5] and a signature with extremely low phase and amplitude fluctuation, which allow 

long coherent integration times, [6]. While their history dates back to the early days of radar, the two mentioned 

proprieties pushed a recent interest on the FSR systems. Phenomenological and practical aspects of single 

baseline FSR systems have been largely studied in, [1],[6],[7],[8]. Among the multiple recent scientific 

contributions related to the exploitation of the FSR geometry proprieties, here are mentioned a few recent papers, 

subdivided in four classes: target-detection, [7]-[11], localization, [12]-[13] motion parameters estimation, 

[7],[14]-[16] and classifications [6],[17]-[20]. 

In particular for the target detection the processing approach proposed in [8], has now become the reference 

processing scheme for FSR. Specially an envelope detector is applied to the received signal, this is followed by a 

DC removal filter and by a filter matched to the expected Doppler frequency response. This scheme employs the 

nice self-beating proprieties of the so called Crystal Video receiver to provide a coherent integration without 

requiring the I&Q demodulator. In addition it was recently shown to be very robust since it is able to operate 

effectively even against the modulated waveforms of passive forward scatter applications, [21].  

 Chapter 1                                                
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The feasibility of target motion parameters estimation in a single baseline configuration by exploiting the 

Doppler signature extracted by the Crystal Video receiver was shown in [10] and [8]. Moreover in [14] the 

potentialities of a multi-node FSR configuration for the estimation of the motion parameters through a crossing 

time-based technique was shown. 

Both detection scheme proposed in [8] and the motion parameters estimation approach proposed in [10], [8] are 

selected as references in this study.  

The work done for this thesis project fits within the field of target detection and motion parameters estimation 

in a FSR configuration, and represents a contribution to the progress of the knowledge, having also interesting 

application potentialities. 

1.2  Motivation 

In recent years, the systems operating in Forward Scattering are receiving a renewed interest, mostly because 

of their special appeal in detecting and localizing low-observable targets. Detecting such objects has been a 

significant challenge for the present decade, due to the recent wide diffusion of light, remotely piloted air 

platforms and drones that call for increased surveillance capabilities. This target may have a small backscatter 

RCS when observed with a conventional monostatic radar system. Instead, in the FSR configuration, a 

pronounced Forward Scatter (FS) cross section in Mie and optical scattering regions, greatly enhances the 

detectability of this target. Moreover, their shadow response, because of a non-fluctuating nature of FS cross 

section which depends on the target silhouette and not on the shape or the material will allow long integration 

times. These properties, as apparent, make the FSR particularly advantageous with respect to more usual 

monostatic or non-extreme bistatic radar sensors, when aiming at the detection of small objects or stealth target 

that certainly benefits of both non-reduced cross-section and long coherent integration time.  

The possibility to operate without the need of a phase synchronization systems in a FSR configurations which 

include a large separation between the TX and RX is extremely attractive for reducing  sensors cost. In [8]  the 

target signature was extracted through a square envelope detector. The target signature extracted is useful to 

perform target detection, pattern recognition, motion parameter estimation by investigating the Doppler signature 

carrying the kinematic information as shown in [10]. Therefore, the characterization of the performance of this 

scheme could be relevant in many FSR applications other than the target detection.  

The lack of a theoretical performance characterization of the detection scheme in [8] was a key motivator for 

research of Chapter 3. Also the possibility to exploits the I&Q baseband components to perform target detection 

drove to the devising of optimized detection scheme in Chapter 4 . 

Another important key task in FSR is the accurate estimation of the target motion parameters as full knowledge 

of the target position and velocity components allows appropriate location and tracking of the target. Moreover 

this is a prerequisite of classification/recognition approaches which are based on target profile recognition by 

extracting the signature frequency spectrum or the time domain waveform. This motivates the derivation of 
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explicit bounds on the performance of target motion parameters estimation through the formulation of the Cramer 

Rao Lower Bound (CRLB) in Chapter 5 . 

1.3  Objectives and novel contributions  

Following from the motivations, the main objective of this thesis is the development of innovative techniques 

for target detection and motion parameters extraction purposes, to be implemented in Forward Scatter radar 

systems. Analytical characterization of the detection performance and accuracy analysis of the estimated 

kinematic parameters will be a key feature, which will lead the definition of strategies for system design. 

Particularly for target detection a single node FSR is considered and a full analytical characterization of a widely 

used processing approach for target detection, [8] is provided. Meanwhile, in relation to motion parameters 

estimation, the possibility to exploit both a single baseline and a dual baseline configuration is considered: thus a 

specific technique is derived and its performance analyzed. The advantages coming from the use of dual baseline 

configuration with respect to the single node configuration is highlighted.  

Corresponding to the objectives previously discussed, the following novelties and main results have been 

reached and are presented which may be divided in two broad areas: 

Target detection: Firstly motivated by the low cost implementation and by the easy deployment of the 

proposed technique in [8] that is addressed here as Crystal Video Detector (CVD) a full characterization of the 

performance for the detection of moving target against Additive White Gaussian Noise (AWGN) under the 

assumption that the target follows a linear trajectory was derived in Chapter 3 . Then two new adaptive detection 

scheme was devised based on the CVD detector to achieve a constant false alarm rate (CFAR) by removing the 

requirement to use a fixed detection threshold. An approximate analytical derivation was obtained for the 

performance of the new adaptive detection techniques, validated through Monte Carlo simulations. Their 

performance comparison shows limited losses of the CFAR CVD detectors with respect to fixed threshold CVD. 

The theoretical performance of the CVD was validated by processing real data acquired by a passive FSR system 

based on the FM signals in Chapter 6 , showing the practical effectiveness and the consistency.  

Successively, advanced FSR detector schemes based on GLRT using both fixed threshold and CFAR threshold 

were derived in Chapter 4 , as previously under the assumption that the target embedded in AWGN follows a 

linear trajectory. The performance of the derived detectors is carefully investigated by providing a closed form 

characterization of the probability of false alarm and probability of detection. The performance analysis of the 

new detectors also in comparison with the standard scheme analytically characterized in the previous chapter 

shows that the new detectors always outperform the standard FSR detector (CVD). Finally, simplified equivalent 

SNR expressions that relates the SNR to the main system parameters and target size and motion parameters was 

provided which can be used for the design of effective FSR geometries.  

Target motion parameters estimations: Taking advantage of the Doppler signature extraction from the 

Crystal Video based scheme and following the line in [10] and [8] a two dimensional filter bank approach was 
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proposed for the estimation of the target parameters. Simplified closed-form expressions of Cramer Rao Lower 

Bound on the estimation of the target parameters of interest: Doppler rate, baseline crossing instant and main lobe 

width of the target pattern signature was derived. After exploiting the dependence of the kinematic parameters on 

the target parameters obtained from the bank, the cross-baseline velocity is estimated in a single node 

configuration. Meanwhile, in a dual baseline configuration also the baseline crossing point is estimated without a 

priori knowledge on the other target parameters. For both scenarios, the corresponding CRLB of the motion 

parameters that establish the minimum achievable variance of any unbiased estimator was derived. Finally, 

results obtained by applying the proposed processing to FM-based passive FSR experimental data in Chapter 6 

had demonstrated the effectiveness of the considered approach. 

1.4  Thesis structure 

Once a preliminary analysis of the main topic of the thesis is done and its objectives established, the thesis is 

structured in this way: 

Chapter 2 provides a short overview of the Forward scatter radar systems. Firstly general characteristic of the 

bistatic radar are discussed briefly in a qualitative manner and then the phenomenology of Forward scatter  is 

introduced followed by relevant work published in the FSR area. Among the topics discussed are the proprieties 

of the FSR systems, the target cross section and the target signature in a FSR configuration. The study of the state 

of art about this topic let us find not only the main peculiarity but also some commonly used detectors and motion 

parameters estimation approach, which are taken as references in our study and are presented in the second part 

of this chapter. Finally, some aspects related to the exploitation of the transmitters of opportunity in a FSR 

configuration are discussed. 

 Chapter 3 deals with the problem of target detection by  providing an accurate analytical expression for the 

detection performance in FSR configuration using the Crystal Video Detector. Firstly the signal model used 

through this study (also in the remaining chapters of the thesis) is introduced. Then the CVD scheme is described 

and the derived theoretical performance expressions are validated by comparison to Monte Carlo simulations 

under two different geometrical scenarios. In the second part of the chapter two fully adaptive detectors are 

derived, based on the structure of the CVD scheme, which are shown to provide a constant false alarm rate 

(CFAR). The performance of these CFAR detectors in terms of Pfa and Pd are provided in closed-form and 

validated through Monte Carlo simulations. 

Chapter 4  derives innovative detection schemes for FSR based on the GLRT for both cases, where a fixed 

threshold can be used and where a fully adaptive CFAR scheme is desired. The detection performance of the 

newly proposed detectors is characterized analytically and compared to the performance of the CVD scheme 

introduced in the previous chapter. This shows that the new detectors always outperform the standard FSR 

detector (CVD). In most cases the improvement has an upper bound of 3 dB, but there are specific cases where 

the standard FSR detector shows significant losses, while the new GLRT schemes suffer a much smaller 

degradation. Finally, simplified equivalent SNR expressions are introduced that relate the GLRT detection 
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performance to the main parameters describing the FSR observation geometry and the target size and motion. 

These expressions are shown to be useful for the design of effective FSR geometries that guarantee desired 

detection performance for specific targets. 

Chapter 5  deals with the motion parameters estimation of moving targets in a FSR configuration for both 

cases, where a single baseline and where a dual baseline with one transmitter and two separated receivers can be 

exploited. To this aim, based on the Crystal Video scheme introduced in Chapter 3 a two-dimensional filter bank 

approach is proposed to estimate the target signal parameters: Doppler rate, baseline crossing time and main lobe 

width of the target signature. Then taking advantage of the estimated target parameters, the cross-baseline 

velocity is estimated in a single baseline configuration. Meanwhile, the dual baseline configuration ensures the 

possibility to estimate two parameters without a priori knowledge: the cross-baseline velocity and the baseline 

crossing point. The performance of the proposed technique is investigated from a theoretical point of view in 

terms of accuracy. This lead us to the derivation of simplified closed-form expressions of Cramer Rao Lower 

Bound that establishes the minimum achievable variance of any unbiased estimator. 

Chapter 6 presents results related to an experimental campaign exploiting FM transmission as signals of 

opportunity in a FSR configuration. The aim of the acquisition campaign is to detect aircrafts landing at 16L 

runway of the “Leonardo Da Vinci” airport of Rome, Italy. The recorded signal data is used: (i) to assess the 

theoretical performance of the CVD derived in Chapter 3 in real environment and (ii) to assess the effectiveness 

of the two dimensional filter bank approach for the estimation of the target motion parameters through both 

single baseline and dual baseline configuration.  

Conclusions summarize the main results of the study, which have led to this thesis; additionally, the 

conclusions are drawn and future activities are discussed. 
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T 

This chapter provides a short overview of Forward Scatter phenomenology and of the principle characteristic 

of FSR systems. Firstly an abridged history of the development of radar is presented: FSR systems are historically 

thought of as the first type of bistatic radar. After we review the fundamental building blocks of bistatic radar in 

order to provide the concepts and definitions needed throughout the thesis and in order to emphasize the 

similarities and the differences with respect to monostatic radar. Lastly the study of the state of art about 

Forward Scatter Radar system let us find its peculiarities and some commonly used detectors and motion 

parameters estimation methods which are taken as references in our study.  

2.1  Introduction 

       he two most basic functions of radar are inherent in the word, whose letters are an abbreviation of Radio 

Detection And Ranging (The acronym was by agreement adopted in 1943 by the Allied powers of World War II 

and thereafter received general international acceptance, [1]). The basic radar concept is that the Radio Frequency 

(RF) energy is radiated by the transmitting antenna and reflected from the reflecting object (target). A small 

portion of the reflected energy (radar returns or echoes) is collected by the receiving antenna and the target is 

detected in the radar receiver. This is illustrated in Figure 2.1.  

 

Figure 2.1 Concept of radar operation 

Present-day radars are complex systems which by processing the radar returns can extract widely more 

information than its range. The principal radar function include: search or surveillance (examination of a volume 

of space for possible targets of interest), target detection, target position measurement and tracking,  measurement 

of target characteristic. The radar has been used in a wide range of applications, both in military and civilian 

systems, [22]. This has led to many diverse radar classifications. The two main radars type as classified by their 

configurations are monostatic radar which comprise the majority of modern radar systems and bistatic radar 

which has received currently intensive interest. In monostatic radar system the transmitter (TX) and the receiver 

(RX) are located in close proximity to one another. A common antenna is often used for transmitting and 

 Chapter 2                                                      
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receiving (see Figure 2.2). Conversely, in bistatic radar system the receiver is physically separated from the 

transmitter so that the echo signal does not travel over the same path as the transmitted signal (see Figure 2.3). 

 

Figure 2.2 Monostatic radar geometry. 

 

Figure 2.3 Bistatic radar geometry 

The bistatic principle was known and demonstrated many years before the monostatic radar was demonstrated 

to be practical. Taylor and Young of the Naval Research Laboratory first demonstrated the bistatic radar for the 

detection of ships in 1922 that was disclosed in a patent issue in 1934,[23]. Most of the early developed radar 

were of the bistatic type configured as fixed, ground-based forward-scatter fences to detect the presence of 

aircraft, an emerging threat in the 1930s, [1]. Almost 200 of these fences were developed in Japan, France and 

Soviet Union before and during the World War II and one was deployed for a short time after the World War II in 

the U.S AN/FPD-23,[1]. In this geometry, when the target is near the segment joining the transmitter and the 

receiver (addressed as  baseline) an enhanced radar cross section (RCS) was observed. The demonstration of the 

more versatile monostatic radar principle putted aside further development in bistaic radar that lay dormant for 

about 15 years, until in the early 1950’s, [3].   

Within the bistatic radar class there is a particular case, where the bistatic angle is large, near 180°  ( see Figure 

2.4) which is known as Forward Scatter Radar and as mentioned previously their history dates back to the early 

days of radar. This particular configuration is the focus of this thesis.  

FSR systems offers a number of interesting proprieties as an enhanced Radar Cross Section in Mie and optical 

scattering regions, which was shown robust to coating and to other stealth technologies, [3]-[5], and a signature 
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with extremely low phase and amplitude fluctuation, which allows coherent integration times much longer than in 

conventional radar, [6]. 

 

Figure 2.4 Forward Scatter Radar geometry. 

In the following sections firstly general characteristic of the bistatic radar are discussed briefly in a qualitative 

manner and then the phenomenology of Forward scatter  is introduced followed by a discussion of  some of the 

characteristics, capabilities and limitations of the FSR systems compared to conventional radar configuration 

(monostatic and bistatic radar). Among the topics discussed are the proprieties of the FSR systems and its 

applications, the target cross section and the target signature, detection techniques and methods for extracting 

target motion information and finally some aspects related to the exploitation of the transmitters of opportunity in 

a FSR configuration. 

2.2  Bistatic radar essentials  

In this section is reported a review of the fundamental building block of bistatic radar emphasizing similarities 

and differences with the monostatic counterpart. 

The IEEE standard 686-1997, [24] has defined bistatic radar as “a radar using antennas for transmission and 

reception at sufficiently different locations that the angles or ranges from those locations to the target are 

sufficiently different”. However, there is no stipulation as how far apart the two antennas should be.  

Figure 2.3 illustrate this definition showing a transmitter and a receiver being situated at two locations with a 

baseline separation distance, L. The bistatic angle which is also known as cut angle, 𝒞 is the angle formed 

between the line joining the target and the transmitter and the line joining the target and the receiver. The bistatic 

angle is one of the important parameters which characterize the bistatic radar and affects system performance. 

The distance 𝑅𝑇 is the range from the transmitter-to-target and the distance 𝑅𝑅 is the range from the receiver-to-

target.  

The inherent geometry of the bistatic radar results in considerably different radar characteristics with respect to 

the monostatic radar. They have the advantages that the receivers may be passive and hence undetectable (covert 

operation of the receiver), [25]. The receiving systems are potentially simple and cheap. Moreover a possible 

enhanced radar cross section of the target due to geometrical effects is achieved. Countermeasures are difficult to 
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deploy against bistatic radar. Now days the increasing use of systems based on Unmanned Air Vehicles (UAVs) 

makes bistatic systems very attractive and many of the synchronization problem and geolocation that were 

previously very difficult now are readily soluble using Global Navigation Satellite Systems (GNSS). However 

there are some drawbacks in exploiting a system like this such as,[1],[25]: system complexity with respect to the 

monostatic systems, costs of providing communication between sites, lack of control over transmitter (if 

exploiting a transmitter of opportunity) and reduced low-level coverage due to the need for line-of-sight from 

several locations.  

The bistatic radar is closer to that of a point-to-point communication systems than to the usual scanning 

monostatic radar. Moreover the bistatic geometry is more suited to a fixed fence-like coverage that is seen to be 

quite different from the hemispherical coverage of the monostatic radar.  

The bistatic radar equation is derived in the same way as the monostatic radar but taking into account that 𝑅𝑇  

and 𝑅𝑅 (see Figure 2.4 ) are different, and so the antenna gains of the transmitting  (𝐺𝑇) and receiving antennas 

(𝐺𝑅) that must be evaluated in the direction of the target, [1]: 

(𝑅𝑇𝑅𝑅)𝑚𝑎𝑥 = [
𝑃𝑇𝐺𝑇𝐺𝑅𝜆

2𝜎𝐵𝑆𝐹𝑇
2𝐹𝑅

2

(4𝜋)3𝐾𝑇0𝐵𝑆𝑁𝑅𝑚𝑖𝑛𝐿𝑇𝐿𝑅
]

1 2⁄

 ( 2.1 ) 

Additional terms in eq. ( 2.1 ) are 𝑃𝑇 the transmitter power output, 𝜆 the wavelength, 𝜎𝐵𝑆 the bistatic radar target 

cross section, 𝐹𝑇 the pattern propagation factor for transmitter-to-target-path, 𝐹𝑅 the pattern propagation factor for 

target-to-receiver path, 𝐾 the Boltzmann’s constant, 𝑇0 the receiving system noise temperature, B noise bandwidth 

of receiver’s predetection filter, 𝑆𝑁𝑅𝑚𝑖𝑛 the signal-to-noise ratio required for the detection and 𝐿𝑇 (𝐿𝑅) 

transmitting (receiving) system losses ( > 1 ) not included in other parameters. Usually 𝐹𝑇 and 𝐹𝑅 can be 

significantly different, whereas they are usually identical for the monostatic case.  

In agreement with eq. ( 2.1 ) the bistatic constant detection contours are defined by ovals of Cassini rather than 

by circles for the simplest monostatic case. In addition, the bistatic constant range sum contours (i.e. 𝑅𝑇 + 𝑅𝑅) 

that are ellipses are not collinear with the ovals of Cassini differently from the monostatic case where they are 

collinear circles, [1].  

Ovals of Cassini defines three distinct operating regions for a bistatic radar: receiver-centered region, the small 

oval around the receiver, transmitter-centered region, the small oval around the transmitter and receiver-transmitter 

centered, or simply the cosite region, any of the ovals surrounding  both transmitter and receiver. Figure 2.5 shows 

a contour plot of the ovals of Cassini in polar coordinate, [1]. In [1] useful bistatic radar applications based on the 

operating regions previously introduced are reported. The receiver-centered region can be used for air-to-ground 

attack (silent penetration), semiactive homing missile, short-range air defense, ground surveillance, passive 

situation awareness. The transmitter-centered region can be used for intelligence data gathering, missile lanch 

alert. The cosite region can be used for medium-range air defense, satellite tracking, range instrumentation, 

intrusion detection, semiactive homing missile.  
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Figure 2.5  Contour of constant SNR-ovals of Cassini, with 𝒦 = 30𝐿4 being 𝒦 = (𝑅𝑇𝑅𝑅)𝑚𝑎𝑥
2𝑆𝑁𝑅𝑚𝑖𝑛 the bistatic radar 

constant ( from [1]). 

The radiated signal from the transmitter arrives at the receiver via two separate paths: the direct path from 

transmitter to receiver and the scattered path that includes the target. The distance measured by the radar is the 

total scattered path, 𝑅𝑇 + 𝑅𝑅 that locates the target somewhere on the surface of a prolate spheroid  whose two 

foci are the transmitter and the receiver locations. To further localize the target position the two-dimensional angle 

of arrival of the scattered signal at the receiver is necessary. Techniques similar to that employed in monostatic 

radar may be employed for measuring the angle of arrival and the total scattered path length. For example for 

measuring the angle of arrival a transmitting antenna with a narrow fan beam in azimuth but wide in elevation may 

be used and a receiving antenna pattern with a number of independent, overlapping pencil beams arranged to cover 

a fan-shaped volume similar to that covered by the transmitting antenna. For measuring the total scattered 

path, 𝑅𝑇 + 𝑅𝑅 if for example pulse transmission are used and under the assumption that the baseline is known, the 

time difference of arrival between the scattered signals and the direct signals, 𝛥𝑡 may be evaluated as 𝑅𝑇 + 𝑅𝑅 =

𝐿 + 𝑐𝛥𝑡 being 𝑐 the speed of light, [1]. When the sum 𝑅𝑇 + 𝑅𝑅 −→ 𝐿 , the prolate spheroid degenerates into a line 

joining the two foci (i.e. the baseline) and the target position is indeterminate, other than it lies somewhere along 

the baseline, L. The location of the target in bistatic radar is not as in the monostatic case where the range 

measurements locates the target on the surface of a sphere.  

In the bistatic radar the Doppler shift of the target scattered signal with respect to the direct signal is 

proportional to the time rate of change of the total path of the scattered signal: 

𝑓𝑑 =
1

𝜆

𝜕

𝜕𝑡
[𝑅𝑇 + 𝑅𝑅 ] ( 2.2 ) 

Doppler shift depends on the motion of target, transmitter and receiver, and in general case the equation are 

quite complicated, [26]. In the case where only the target is moving is given by:  

𝑓𝑑 =
2𝑣

𝜆
cos 𝛿 cos  (𝒞/2) ( 2.3 ) 

where  𝑣 is the  magnitude of the target velocity vector and δ is the angle referenced to the bistatic sector and when 

the bistatic angle, 𝒞 = 180° the 𝑓𝑑 = 0 for any 𝛿. The maximal Doppler shift occurs for target trajectory normal to 
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the baseline, 𝛿 =0° that even in this case is smaller than the corresponding Doppler shift of a monostatic radar,  

𝑓𝑑𝑀𝑆
𝑚𝑎𝑥 =

2𝑣

𝜆
.  

The Doppler frequency shift may be determined by conventional frequency measurements as: filter banks, 

spectrum analyzers, zero crossing counters, discriminators, etc.   

The bistatic radar cross section is a measure of the energy scattered from the target in the direction of the 

receiver as in the monostatic radar but this does not mean that a monostatic radar and a bistatic radar viewing the 

same target will necessary see the same cross section, [1]. On the average the two cross section will be 

comparable besides when the bistatic angle is close to 180° in the forward scatter region that will be investigated 

in detail in Section 2.4. 

There are also some important differences in the technology between the bistatic and monostatic radars. For 

example in monostatic radar the synchronization between transmission and reception is done usually through a 

local oscillator meanwhile in the bistatic radar due to the separation of the transmitter and receiver as mentioned 

previously is done via synchronized automatic clock by exploiting GNSS signals or by reception of reference 

signal received directly from the transmitter (typically used in Passive Coherent Location, PCL systems). 

Furthermore, a directional receive antenna must scan at a non-uniform rate in order to follow the position of the 

transmitted signal through space hence the use of one or more electronically agile beams as in phased array radar 

is required because the design based upon mechanical scanning is very challenging.  

2.3  Forward Scatter Radar: phenomenology and applications 

The Forward Scatter Radar as extreme configuration of bistatic radar with the transmitter and the receiver 

facing each other and the target in a spatial region very close to the baseline (see Figure 2.4) exploits the 

enhanced RCS in the forward direction. The FSR system is able to provide a Forward Cross Section (FCS) 

several dB higher than the conventional backscatter RCS. This enhancement is produced by forward scatting, a 

phenomenon first discussed in a publish work in 1908 by Mie who observed that the forward scattering produced 

by a sphere was in many cases larger than the backscattering, [5].  

The forward scattered lobe is produced when an electromagnetic wave illuminates an object and casts a 

shadow. This fact puts an essential restriction on the FSR configuration as the target shadow exists  within a 

narrow corridor around ( < 20°) the baseline. For a bistatic angle, 𝒞 ≅ 170° that may be considered as a boundary 

of the FS corridor, in agreement with the above consideration of the Doppler shift in bistatic radar we have, 

𝑓𝑑 ~ 0.01𝑓𝑑𝑀𝑆
𝑚𝑎𝑥, [6].  

Moreover as is well known, close to the FSR configuration the range resolution is dramatically reduced, [1]. 

This is obvious also from the equation of the range resolution in a bistatic radar configuration, [1] where for a 

bistatic angle, 𝒞 180°  the range resolution goes to ∞ (i.e. a continuous wave (CW) can be effectively used in 

FSR configuration). Only very wide bandwidth systems introduce some range resolution, [27] that are not 
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considered here. Absence of range resolution and low Doppler shift even for relatively high-speed targets 

introduces a big threat for the FSR systems especially for ground clutters.  

Other disadvantages of the FSR systems are due to the geometry as the synchronization of the receiver and the 

transmitter and the saturation of the receiver due to a strong direct signal (the signal from the transmitter to 

receiver).  

However, as mentioned previously, the target scattering nature in this particular configuration shows quite 

useful proprieties that may be explained through the phenomenon of the electromagnetic shadowing described  

by the Physical Theory of Diffraction (PTD) developed by Ufimtsev, [2]. When an electromagnetic wave, 

illuminate an opaque object a shadow is produced on the opposite side of the object from the transmitter (see 

Figure 2.6) and describes a region in which the electromagnetic fields are very small (approximately zero field 

intensity) called as ombra region. 

 

Figure 2.6 Shadowing of the incident wave (the shadow field cancel the incident field behind the object). A is the cross-

section of the shadow beam and C is the shadow contour, i.e. the boundary between the illuminated and the shadow sides of 

the object surface (reproduced from [29]). 

The scattered field in the shadow region near the black body surface differs only in sign from the incident radar 

beam. For this reason it is called the shadow radiation. It is worth mentioning that the smaller the electrical size 

of the object and the bigger the distance receiver-object, the less will be the shadowing effect. Two fundamental 

proprieties are inherent to shadow radiation from the analysis in [2]: 

(i)  Forward Cross Section is rather robust with respect to the target material, so that non-metallic objects have 

a good chance to provide a high response, [3]-[5]. In fact, following the Shadow Contour Theorem in [2], the 

FCS only depends on the contour of the illuminated target area. Specifically, even a non-reflecting target made of 

purely absorbing material shows the same cross section of a metallic target with the same shape and size.   

(ii)  FCS it only depends on the contour and not on the amplitude and phase combination of the individual 

responses by a number of scattering centers inside the target body, as is usually the case outside the forward 

scatter configuration. Therefore the FCS has a long temporal stability and consequently a long integration time 

equal to the target time visibility can be considered and an enhanced Doppler frequency resolution is obtained, 

[6].  
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The two mentioned properties pushed a recent resurgence of the interest for the FSR systems, especially with 

reference to the detection of low-observable targets and to the design of e.m. fences for both air and sea targets, 

[30]. Among the multiple recent scientific contributions related to the exploitation of the properties of the FSR 

geometry, we devote in Section 2.6 a special attention to the target detection, [7]-[11] and motion parameters 

estimation techniques, [7], [14]-[16]. 

Also, a set of publications in FSR are dedicated to the target classification where the Fourier transform and 

Principle Component Analysis (PCA) are exploited, [6], [17], [18]. In [19] the low-frequency FSR network for 

the classification of ground target is shown supported by experimental results for different operational 

frequencies. The concept of micro-sensors wireless network for ground target recognition supported by 

experimental results has been presented in [9].Meanwhile a neural network-based methodology with various type 

of training algorithm for automatic target classification has been proposed in [20]. 

Moreover target localization in FSR system has been discussed in [12] where the feasibility of radiolocation of 

real air object was proved and in [13] where a multi-static FSR with several transmitter with omni-directional 

antennas and one multi-channel receiver has been exploited for measuring the target angular coordinates by the 

amplitude mono-pulse technique, [22]. The multiple frequencies are exploited for the first time as orthogonal 

waveforms of a MIMO (Multiple Input Multiple Output) FS radar, increasing robustness of FSR signal from a 

low-observable target in presence of clutter, multipath and interferences in [11]. 

In addition, the FSR principle of operation has recently been demonstrated largely compatible with the 

exploitation of transmitters of opportunity, [21]. This also confirms previous specific investigations of passive 

FSR  with specific sources of opportunity: GPS, [31], GSM, [32], Wi-Fi, [33], FM and DVB-T, [21], [34], so that 

we can state that the passive FSR is now an emerging research area (see Section 2.7).  

In this work we refer to airborne target detection application that are least affected by clutter. However, 

statistical and spectral characteristic related to the FSR clutter for ground-based applications mainly related to the 

vegetation may be found in [35],[36] and for seaborne target detection applications due to the dynamic sea 

surface may be found in [37]. 

2.4  Forward Scatter Cross-Section 

The RCS of a target illuminated by the radar is a measure of the energy scattered in the direction of the 

receiver. The scattering mechanisms depends on the ratio of the characteristic dimension of an object, denoted  

by D to the wavelength of the transmitted signal, λ this for both monostatic or bistatic configuration. In [22],[38] 

three different regions are defined: 

 the Rayleigh region, when the ratio 𝜆 𝐷⁄  is much larger than unity. In the Rayleigh region, the phase 

distribution of the scatterers of the target varies little, and the target signal is determined mainly by its 

volume, rather than by its shape. 
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 the Mie region or the resonance region when the ratio 𝜆 𝐷⁄  is close to unity. In this region both the volume 

and the shape of the target influence its RCS since the phase distribution starts to vary over the surface. 

 the Optical region when the ratio 𝜆 𝐷⁄  is much smaller than the unity. In this region the RCS of the target 

is determinate by a distribution of discrete scatterers determined by the shape of the target rather than its 

volume.  

For the FSR configuration it was shown that in the upper Mie region (𝜆 𝐷⁄ ≈ 1) there is some increase of the 

forward scatter cross section with respect to the backscattered radar cross section and in the optical region 

(𝜆 𝐷⁄ ≪ 1) a significant enhanced is observed.  

This increase can be explained through the well-known Babinet principle which consist in constructing a 

problem equivalent to the original problem but easer to solve it as shown in Figure 2.7, [5]. Babinet’s principle 

applied to the forward scatter case can be summarized as follows: the target (object) is replaced with an 

appropriate shape plane defined by the shadow contour (i.e. Shadow contour theorem, [2]) and then is replaced 

by a complementary aperture antenna. Therefore, the scattered radiation of a target in the forward direction is 

identical to the radiation produced by a planar aperture whose shape is the same of target’s silhouette. 

 

Figure 2.7 Illustration of Babinet’s principle to solve scattering problem (reproduced from [5]). 

The bistatic RCS of a target can be written as, [5]: 

𝜎𝐵𝑆 =
4𝜋

𝜆2
|∬𝑒𝑥𝑝(𝑗𝒌𝝆)𝑑𝑠|

2

 ( 2.4 ) 

where 𝒌 is the wavenumber vector and 𝝆 is the coordinate vector in the screen plane and 𝑑𝑠 is the differential 

surface area. From the eq. ( 2.4 ) when the target lies on the baseline the peak of the RCS in the forward scatter 

lobe is obtained, [1] : 

𝜎𝐹𝑆 =
4𝜋𝐴2

𝜆2
 ( 2.5 ) 
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where A is the target shadow area and the wavelength is assumed small compared to the target dimension. From 

this equation can be calculated that the FCS can be many orders of magnitude greater than the backscatter cross 

section. For example, for a small car with a physical area, 𝐴~4 𝑚2 at a frequency of 900 MHz, a FCS of 

𝜎𝐹𝑆 ~ 2000 m
2
 is expected while in monostatic case the same target is expected to have a RCS about 50m

2
, [6].  

In [39] the monostatic RCS and the FCS of a conductive sphere of diameter D has been compared as shown in 

Figure 2.8. We note that starting from the Mie region the normalized monostatic RCS does not depend on the 

wavelength meanwhile the FCS presents a monotonic rise.  

 

Figure 2.8 Radar cross section for spherical targets. Normalized values of monostatic radar cross-section and FCS are 

shown as function of the normalized dimensionless parameter p=πD/λ (from [39]). 

In the same paper, [39] for a side illuminated missile with horizontal dimension 3.6 m and vertical dimension 

equal to 1.1 m that moves with a velocity of 200 m/s the 3D RCS were simulated for two different wavelength, 

λ=3m (FM signal) and λ=0.3 m (satellite TV signal) (see Figure 2.9). 

Therefore in accordance with the scattering regions previously defined, when the  missile is illuminated by a 

FM signal (λ=3m) is in the upper-Rayleigh region (Figure 2.9 (a) and  Figure 2.9 (c) ) and when the missile is 

illuminated by a satellite TV signal (λ=0.3m) is in the optical scattering region (Figure 2.9 (b) and  Figure 2.9 

(d)). Figure 2.9 (c), shows that the back scattering (0°) and forward scattering (180°) are approximately with the 

same intensity.  Meanwhile when the missile is in the optical region, Figure 2.9 (d), the maximum intensities of 

both back and forward scattering are greater with respect to the case of  λ=3m and the forward scatter peak is 10 

dB stronger than that of back scattering. Also it is noted that in the bistatic (or side) scattering the RCS is 30-35 

dB smaller than the RCS in the forward direction.  

Also in  [39] for different shaped targets the bistatic radar cross section has been calculated in CST microwave 

studio for different carrier frequency. In accordance with the target dimension and the wavelength all the three 

scattering region (Rayleigh, Mie and Optical region ) were investigated. The results once more has shown a 

significant large FCS with respect to the bistaic RCS in the Mie and Optical region.  

The enhanced radar cross section in terms of both magnitude and stability is an important benefit of FSR 

configuration. 
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                     (a)                          (b)  

 

               (c)                           (d) 

Figure 2.9  Simulated 3D  bistatic RCS for missile (a) with λ=3 m and (b) with λ=0.3 m and their corresponding  cross-

sections in (c) and (d). In (c) and (d) the red line shows the RCS in the azimuth plane; 0° is the backscatter direction and 

180° is the Forward scatter (from [39]). 

2.5  Signature of moving target 

In this particular configuration a target crossing the baseline provides a variation (i) in the received signal’s 

phase due to the target movement producing a time-varying Doppler shift and (ii) in the received signal’s 

amplitude, specified by the FSR pattern approximately coinciding with the pattern of a uniform illuminated 

antenna with the shape of the target shadow as shown in [8].  

Considering the same geometry of the Figure 2.4 the transmitted signal from the TX arrives at the receiver via 

two separated paths, the direct path from the transmitter to the receiver (direct signal, 𝑠𝑑(𝑡)) and the scattered 

path due to the presence of the target (target signal, 𝑠𝑡(𝑡)), [8]: 

𝑠𝑡𝑜𝑡(𝑡) = 𝑠𝑑(𝑡) + 𝑠𝑡(𝑡)  ( 2.6 ) 

where 

𝑠𝑑(𝑡) =
𝑎
𝐿⁄ cos(2𝜋𝑓𝑐𝑡)  ( 2.7 ) 

𝑠𝑡(𝑡) = 𝛽𝜎𝑓𝑠(𝑡) sin (2𝜋𝑓𝑐(𝑡 + 𝑡𝑡𝑔)) ( 2.8 ) 
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A continuous wave is transmitted with a carrier frequency 𝑓𝑐 and amplitude 𝑎. A point-like target is considered 

in [8] where 𝜎𝑓𝑠(𝑡) is the pattern FCS of the target, 𝑡𝑡𝑔 the delay time of the signal form moving target and 𝛽 is 

proportional to the target dimension and takes into account the propagation losses. Let firstly analyze the target 

phase signature omitting for the moment the amplitude modulation due to the pattern FCS, 𝜎𝑓𝑠(𝑡): 

𝑠𝑡𝑜𝑡(𝑡) =
𝑎
𝐿⁄ cos(2𝜋𝑓𝑐𝑡) + 𝛽 sin (2𝜋𝑓𝑐(𝑡 + 𝑡𝑡𝑔)) ( 2.9 ) 

The target is assumed in the far field area of both transmitter and receiver, that means the far field parameter 

S= 2𝑑𝑚𝑎𝑥
2 𝜆𝑅𝑇⁄  ( 𝑆 = 2𝑑𝑚𝑎𝑥

2 𝜆𝑅𝑅⁄ ) is smaller than 1 where 𝑑𝑚𝑎𝑥 is the maximum dimension of the target.  

As mention previously in Section 2.3 the target shadow exists  within a narrow corridor around the baseline, 

therefore the assumption of a linear target trajectory can be regarded as reasonable. Moreover being shadow the 

target scattered signal is π/2 shifted with respect to the direct signal (in literature the direct signal is also indicated 

as leakage signal, [8]).  

The Doppler signature in a FSR configuration that occupies a very low frequency band may be extracted from 

an envelope detector with quadratic characteristic. After passing the signal in the square law detector and in the 

low pass filter the signal, 𝑠𝑡𝑜𝑡(𝑡) becomes, [8]: 

𝑠𝑅𝑂(𝑡) = 𝐷𝐶 − 𝑎𝑠𝑐 sin (
2𝜋

𝜆
(𝑅𝑇(𝑡) + 𝑅𝑅(𝑡) − 𝐿)) ( 2.10 ) 

where DC is the continuous component and 𝑎𝑠𝑐 = 𝑎𝛽  is the amplitude of the phase signature and 𝑅𝑇(𝑡) (𝑅𝑅(𝑡)) 

are the distance target-TX (target -RX) and L is the baseline as shown in Figure 2.4. For a target crossing the 

baseline the phase signature is a two sided chirped signal.  

Meanwhile the signature envelope of the target signal is specified by the pattern signature, 𝜎𝑓𝑠(𝑡) that is 

unknown a priori even if the target and its motion parameters are known as analytical solution of FCS are 

available only for few convex shapes based on the PTD. In [8]  the FCS pattern of a rectangular target was 

derived  and verified experimentally by considering a rectangular metallic plate and a similar plate covered by 

absorbing material as shown in Figure 2.10. 

Considering both, the FCS pattern signature and the phase signature the received target signal after passing 

through the DC removal filter is, [8] : 

𝑠𝑢(𝑡) = 𝜎𝑓𝑠(𝑡) sin (
2𝜋

𝜆
(𝑅𝑇(𝑡) + 𝑅𝑅(𝑡) − 𝐿)) ( 2.11 ) 

Also in [8]  measured signatures of maritime target for a baseline L=300 m and carrier frequency of 7.5 GHz 

(see Figure 2.11) has been reported. In particular, Figure 2.11 (a) shows  the signature of a inflatable boat of size 

2.9 m  1 m that is in the far field area, Figure 2.11 (b) shows the signature of a medium size sailing yacht of size 

5 m  3 m that is in the border between the near and the far field and Figure 2.11 (c) shows the signature from a 

large motor boat 15 m  4 m that is in the near field. From Figure 2.11 we observe in all cases the noticeable 

amplitude modulation due to the target crossing.  
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(a) (b) 

 
(c) 

Figure 2.10 Comparison of measured forward scatter signatures of (a) a rectangular metallic plate, (b) absorbing 

rectangular plane and (c) simulated signature of absorbing plate (from [8] ). 

 

                              (a)   (b)               (c) 

Figure 2.11 Recorded Doppler signature of the targets crossing the center of baseline: (a) small inflatable boat, (b) 

medium size yacht and (c) large motor boat, ( from [8]). 

Based on [14] and  [8] the forward scatter signal used through this work that refers to a rectangular target in the 

far field area following a linear trajectory is detailed in the Section 3.2. 
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2.6  Target detection and motion parameters estimation 

The processing approach in [10] and [8] has become the reference processing scheme for the FSR.  

Assuming the target in background of Additive White Gaussian Noise (AWGN) the received signal in 

accordance with eq. ( 2.6 ) is  𝑟(𝑡) = 𝑠𝑡𝑜𝑡(𝑡) + 𝑛(𝑡) being 𝑛(𝑡) the noise component. In agreement with the 

signal model introduced in Section 2.5 (i.e. the target is in the far field area of TX and RX and follows a linear 

trajectory) to test for target detection an envelope with quadrature characteristic is applied to the received signal 

this is followed by a DC removal filter and by a filter matched to the excepted target Doppler frequency response. 

Here with 𝑧(𝑡) and 𝑢(𝑡) are indicated the signal at the output of the square law detector and at the output of the 

DC removal filter respectively.  

The surviving signal, 𝑢(𝑡) after the DC removal filter may be approximated as the sum of two components: 

𝑠𝑢(𝑡) defined in eq.( 2.11 ) representative of the new useful signal containing the target signature and 𝑠𝑛(𝑡) the 

new noise component. The signal at the output of the matched filter is given by the correlation of the signal at the 

output of the DC removal, 𝑢(𝑡) and the impulse response, ℎ(𝑡), [10]: 

𝑠𝑜𝑢𝑡(𝜏) = ∫ 𝑢(𝑡)ℎ(𝑡 − 𝜏)
𝑇/2

−𝑇/2

𝑑𝑡 ( 2.12 ) 

The impulse response of the matched filter is equal to the possibly scaled, conjugate, time-reversed, target 

signature defined in eq. ( 2.11 ).  

This scheme employs the nice self-beating proprieties of the so-called crystal video receiver, [40]-[41], to 

provide a coherent integration without requiring the I&Q demodulator. In addition, it was recently shown to be 

very robust since it is able to operate effectively even against the modulated waveforms of passive forward 

scatter applications, [21]. Motivated by its low implementation cost and by its qualities we have fully 

characterized the performance of this Crystal Video Detector (CVD) in Chapter 3 ([42]-[43]).  

It is clear that the impulse response, ℎ(𝑡) depends on both FS pattern signature and the Doppler signature 

which in turn depend on the target electrical size and trajectory that are a priori unknown. In [10] an appropriate 

set of reference functions is defined to estimate the target velocity and target signal duration, ℎ𝑇𝑛,𝑣𝑚(𝑡) defined 

by considering different target speed, 𝑣𝑚 for m=1,2,3,… and time durations, 𝑇𝑛 for n=1,2,3,… under the 

assumptions that the unknown pattern signature is approximated with a rectangular signature and the distances 

target-TX and target-RX when the target is on the baseline are assumed known. The correlation of the signal at 

the output of the DC removal filter with each reference function is performed: 

𝑠𝑇𝑛,𝑣𝑚(𝜏) = ∫ 𝑠𝑢(𝑡)ℎ𝑇𝑛,𝑣𝑚(𝑡 − 𝜏)
𝑇𝑛/2

−𝑇𝑛/2

𝑑𝑡 ( 2.13 ) 

and the maximum is obtained for a specific value of (𝑇𝑛, 𝑣𝑚) that indicates the estimated target speed and time 

duration.  
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Figure 2.12 compares the velocity estimation of simulated and experimental data related to human target that 

moves with the velocity of 1.2 m/s crossing the baseline of L=50m perpendicularly in middle and it is noted that 

the velocity is correctly estimated.  

 

Figure 2.12 Normalized velocity estimation output: real data vs simulated data (from [10]). 

In [8] a similar approach as in [10] for the velocity and baseline crossing point estimation is derived. As 

previously, in [8] was shown that a complete knowledge of the pattern signature representative of the signal 

envelope is not necessary for relatively short integration time as the correlation between the signal at the output 

of the DC removal filter and the impulse response (see eq. ( 2.12 ) ) depends more on the target phase signature 

(the chirp like signal is a sign altering function) presenting fast variation than on the envelope signature that 

varies slowly. Therefore the FCS pattern signature for short integration time is approximated with the envelope of 

a rectangular target.  

Therefore a set of reference waveforms, ℎ𝑣𝑥,𝑣𝑦 𝑦0(𝑡) covering the desired range of velocities and baseline 

crossing points is considered. 𝑣𝑥 and 𝑣𝑦 represent the velocity component in the (x,y) coordinate system 

representative of the ground plane where the target is moving and the baseline crossing point, 𝑦0 is the distance 

target-RX when the target is on the baseline The total number of the reference functions is defined by the 

increments chosen in order to have an accuracy within 1-10% and by the expected ranges of the parameters under 

consideration. After the correlation of the signal at the output of the DC removal filter with each reference 

function is performed and the global maximum of all the correlations is searched. From the latter the trajectory 

and the velocity are estimated.  

Figure 2.13 show measurement of maritime target signatures relative to small inflatable boat of length 2.9 m 

that crosses the baseline with different trajectories. In particular in Figure 2.13 (a)the target crosses the baseline 

perpendicularly in the middle, in Figure 2.13 (b) the target crosses the baseline near to the receiver and Figure 

2.13 (c) the target crosses the baseline with an angle of 60°.  The results of parameter extraction compared to the 

data truth provided by a GPS tracking device confirm the feasibility of the proposed approach in  [8]. 
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(a) (b) 

 

(c) 

Figure 2.13 Comparison of the measured maritime target signature with matched waveforms from the correlation 

processing. Left images show the GPS location and trajectories, middle images show the measured target signatures and 

right images show the matching signature selected from the correlation processing (from [8]). 

Recently in [54] by exploiting the same proposed approach  in [8] the possibility to estimate the target motion 

parameters in a moving FSR systems was shown under the assumption that the transmitter and receiver position 

during the time are known. This system presents  the advantage to increase the flexibility of the surveillance area 

and allow the detection of stationary targets. 

In [14] was shown the potentialities to use a multiple FSR nodes for a reliable and accurate estimation of all 

target motion parameters. A crossing time-based estimation technique was devised that exploits the information 

concerning the time instants at which the target crosses each baseline in order to retrieve the motion parameters 

of the target. The performance, validated also through recorded Multi-input Multi-output (MIMO) FSR data, 

proved that unbiased estimate of the initial positions and velocity component can be achieved with high accuracy. 

The detection scheme proposed in [8] and the motion parameters estimation approach proposed in [10] and [8] 

are selected as references in this study.  

2.7  Passive Forward Scatter Radar  

As a particular configuration of bistatic radar, FSR can operate with dedicated transmitters of transmitters of 

opportunity dedicated to other purpose but find suitable for FSR operation.  

In particular in [21] the feasibility of a passive FSR for airborne target detection has been demonstrated using 

FM, DAB, and DVB-T waveforms. It has been shown that simultaneous multifrequency/multiband operation 

increases robustness of detection. Also, the velocity of the detected targets has been estimated using the approach 

proposed in [10] (see Section 2.6) and good correspondent to ground truth data has been demonstrated. Figure 

2.14 (a) and Figure 2.14 (b) shows the time domain signature of Cessna 172 light aircraft with dimension 7.3 m 

length and 2.3 m height that crosses the baseline of 25 km at the altitude of 650 m where the DVB-T and the FM 
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are exploited as waveforms of opportunity respectively. Figure 2.14 (c) and  Figure 2.14 (d) shows their 

respective spectrograms. Increasing the flight altitude results in smaller signal powers, and, therefore, in a more 

noisy picture (see  Figure 2.14 (c) and Figure 2.14 (d)) , but the typical V-shape Doppler chirp which indicates 

the presence of a target can still be seen in the spectrograms. 

  

(a) (b) 

  
(c) (d) 

Figure 2.14 DVB-T and FM Doppler signatures and spectrograms of Cessna 172 ultralight aircraft at the height of 659 m 

(from [21] ). 

In [31] the feasibility of GPS-FSR system was demonstrated. The amplitude modulation due to the aircrafts 

crossing the receiver-satellites baselines was shown through experimental results as in Figure 2.15. 

 

Figure 2.15 Measurements with 20 ms of integration time (from [31]). 
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In [32] results related to the detection of target located in the line of sight between the receiver and the non-

cooperative transmitter where GSM signals were exploited as waveform of opportunity was shown. 

In [33] some preliminary results related to WiFi-based Passive FSR system obtained through an experimental 

setup developed at Sapienza University of Rome are shown. The results shown that that different targets yield 

quite different vehicular signatures. Figure 2.16 (a) shows all the signatures of the Fiat Punto Evo obtained in the 

performed tests. A similar shape is clearly visible for all the cases. Figure 2.16 (b) shows the signature of the 

Peugeot 107 on 8 tests and again a very stable signature is noted. In addition is observed that different car models 

presents different signature shapes. 

  

 (a) (b) 

Figure 2.16 Signatures comparison for the same target model on different tests: (a) Fiat Punto Evo; (b) 

Peugeot 107 (from [33]). 

The extracted signatures are exploited in a classification stage where a minimum Euclidean distance criteria 

has been adopted to evaluate the similarity among different car models. The results had shown a good capability 

of the proposed system to correctly associate a vehicle signature to its car model. 

The reported results allows the conclusion that Passive FSR systems are a practical solution not only for target 

detection but also for motion parameter estimation, target classification.  

Summary 

This chapter introduced the fundamentals characteristics of FSR systems  that are of relevance to this research.  

Initial attention is given to the difference between the bistatic and monostatic radar before moving on to the FSR 

configuration. Then the phenomenology of forward scattering was briefly introduced.  After this the various 

applications that exploits the Forward scatter principle were summarized. Considerations is given to the Forward 

scatter cross-section and to the target time domain signature. The literature survey outlined the current 

publications of interest to the presented work. In particular the publications relating the target detection and 

motion parameters estimations were discussed.  
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T 

This chapter focus is on providing an accurate analytical expression for the detection performance of the FSR 

target detection using the Crystal Video Detector, both in terms of  probability of false alarm and of probability 

of detection in order to support performance prediction and FSR system design. The derived expressions are 

validated by comparison to Monte Carlo simulations under two different geometrical scenarios. Finally, to 

remove the need to operate the CVD with a fixed detection threshold, two fully adaptive detectors are derived, 

based on the structure of the CVD scheme, which are shown to provide a constant false alarm rate (CFAR). The 

performance of these CFAR detectors in terms of Pfa and Pd are provided in closed-form and validated through 

Monte Carlo simulations, showing quite small losses with respect to the fixed threshold CVD.   

3.1 Introduction 

        he possibility to operate without the need of a phase synchronization system is extremely attractive when 

aiming at reducing the sensor cost and providing its easy deployment. This is even more appreciable when 

passive FSR is considered, which usually does not even include the access to the TX device. 

In most of the mentioned papers,[10],[8], the target time domain signature is extracted from an envelope 

detector with quadrature characteristic followed by a low pass filter. This type of receiver is well known  from the 

early days of radar as the simplest form of signal demodulation and is typically addressed as Crystal Video 

Receiver, [40], [41]. Despite the absence of an external phase reference, it is well known that this type of receiver 

under specific circumstances is able to maintain the temporal coherence from sample to sample, so that a Doppler 

processing is still feasible in the receiver chain after its use. This is certainly the case in the presence of a received 

signal including a strong and stable signal component that is essentially a copy of the transmitted waveform, 

together with its attenuated and Doppler frequency-shifted reflection from the target. The stable signal 

component provides the coherent reference for the target-reflected signal, [40], [41]. This principle was largely 

used in the past for two types of radar systems: (i) to provide Moving Target Indication (MTI) capability to 

noncoherent radar, and (ii) to allow simple operation of Continuous Wave (CW) radar. In the first case, the strong 

echo from a stationary clutter yields a significant stable signal copy that is used as a reference for the target 

scattered signal, [22], [44]. In the second case, the feed-through of the continuous transmitted waveform that 

couples into the receiver provides the strong and stable copy of the transmitted waveform, so that CW Doppler 

operation is obtained without the need of I&Q receiver, [45]. 

In the FSR case, the stable copy of the transmitted waveform present in the received signal is provided by the 

direct signal, that acts as the stable reference for the echo scattered by the target. Its presence provides the FSR 

 Chapter 3                                                  

Crystal Video Detector and performance 

analysis  



  Crystal Video Detector and performance analysis 

27 

system with the required coherence to cancel the direct signal and apply the required Doppler processing before 

comparing the result to an appropriate threshold selected to detect the target. Consistently with the previous 

notation, we address  this detection scheme as Crystal Video Detector (CVD). As mentioned previously, when 

exploiting the long integration times allowed by the nonfluctuating echoes of the FSR configuration to detect 

low-observable targets, the target echo does not maintain a constant Doppler frequency. Therefore, the processing 

scheme required by the CVD after the square-law envelope detector is different from the standard Doppler 

processing required by noncoherent MTI and standard CW schemes.  It requires direct signal removal and 

appropriate matched filtering to collect all the available signal energy, [10]. Therefore, its detection performance 

cannot be directly obtained from previous contributions. 

In this chapter the issue of moving target detection against Additive White Gaussian Noise (AWGN) under the 

assumption that the target follows a linear trajectory is addressed through: (i) an analytical characterization of the 

CVD, when using a fixed threshold and (ii) by developing new adaptive detection schemes to achieve a constant 

false alarm rate (CFAR) by removing the requirement to use a fixed detection threshold, also analytically 

characterized.  

3.2  Forward scatter signal model 

In this extreme configuration of the bistatic radar the main characteristic feature with respect to the 

conventional bistatic configuration lies in the target scattered signal. In this section the FSR system geometry and 

the signal model used throughout this work are introduced following the forward scatter signal in [14] and [8].  

Figure 3.1 shows the considered FSR configuration where the x and y axes specify the ground plane : the 

receiver (RX) is placed at the origin of the coordinate system meanwhile the transmitter (TX) is placed along the 

y-axis at distance L (baseline) from the RX. 

  

 (a) (b) 

Figure 3.1 (a) FSR system geometry and (b) top view of the FSR configuration. 

We assume the transmitter emitting a continuous wave at a carrier frequency 𝑓𝑐 (𝜆 = 𝑐 𝑓𝑐⁄ ) with amplitude a. 

Let 𝑠𝑑(𝑡) =
𝑎

𝐿
𝑒𝑗

2𝜋

𝜆
𝐿 = 𝛼 be the received direct signal from TX to RX taking into account only the free space 
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propagation losses where 𝜆 is the wavelength and with 𝑀𝑑 = |𝛼| = 𝑎 𝐿⁄  is defined the amplitude of the received 

direct signal.  In the presence of a target crossing the baseline, the signal scattered from the target, 𝑠𝑡(𝑡) adds to the 

direct signal, 𝑠𝑑(𝑡) to provide a total signal 𝑠𝑡𝑜𝑡(𝑡).  

We consider a rectangular shaped target with horizontal and vertical dimensions 𝑙ℎ and 𝑙𝑣 respectively, large 

with respect to the probing wavelength that moves in the area between TX and RX with constant velocity 

component vx and vy, respectively along the x and y axes and  crosses the baseline at a distance 𝑦0 from RX 

indicated as baseline crossing point at time 𝑡0 = 0. This yields a global speed (𝑣 = √𝑣𝑥
2 + 𝑣𝑦

2), with an angle 

𝜑 = 𝑡𝑎𝑛−1 (
𝑣𝑦

𝑣𝑥⁄ ) with respect to the normal to the baseline. The assumtion of a linear trajectory can be 

regarded as reasonable for many practical scenarios as FSR systems typically operate within narrow angles 

around the baseline. Due to the target motion, the distance target-TX (target-RX) 𝑅𝑇(𝑡) = √𝑥(𝑡)
2 + [𝐿 − 𝑦(𝑡)]2 

(𝑅𝑅(𝑡) = √𝑥(𝑡)
2 + 𝑦(𝑡)2) and the target aspect angle with respect to the TX (RX) 

𝜃𝑇(𝑡) = 𝑡𝑎𝑛
−1[𝑥(𝑡) (𝐿 − 𝑦(𝑡))⁄ ] (𝜃𝑅(𝑡) = 𝑡𝑎𝑛

−1[𝑥(𝑡) 𝑦(𝑡)⁄ ]) vary with time being [x(t), y(t)] the 

instantaneous target position (see Figure 3.1 (b)). The target is assumed in the far field of both TX and RX: this 

requires the far field parameter, 𝑆 = 2𝑑𝑚𝑎𝑥
2 𝜆𝑅⁄  to be smaller than 1, being and 𝑅 = 𝑚𝑖𝑛{𝑦0, 𝐿 − 𝑦0} and 

𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑙ℎ , 𝑙𝑣} , [46]. 

To be noted that the angular interval from which the target is viewed is 𝛥𝛺 = 2𝑡𝑎𝑛−1(𝑣𝑥𝑇/𝐿) being T the 

observation time.  

As previously mentioned the signal scattered from the target in the forward direction, 𝑠𝑡(𝑡) is due to the shadow 

of the emitted electromagnetic energy which occurs in the opposite side of the TX and introduces a variation in 

the received signal’s phase, 𝜙(𝑡) and in the received signal’s amplitude, 𝜎𝑓𝑠(𝑡). The RCS pattern, 𝜎𝑓𝑠(𝑡) , 

modulates the amplitude of the signal scattered by target:  it depends on the shape of the shadow contour, [2], and 

on the motion parameters, [29],[9], [8] and can be explained by considering the target as a secondary antenna 

having an area outlined by the target shadow profile. For the above rectangular shadow aperture the pattern can be 

written as, [15]: 

𝜎𝑓𝑠(𝑡) =
𝐿2

𝑅𝑇(𝑡)𝑅𝑅(𝑡)

𝑐𝑜𝑠(𝜃𝑇(𝑡) − 𝜑) + 𝑐𝑜𝑠(𝜃𝑅(𝑡) + 𝜑)

2
 

𝑠𝑖𝑛𝑐 {
𝑙ℎ
𝜆
[𝑠𝑖𝑛(𝜃𝑇(𝑡) − 𝜑) + 𝑠𝑖𝑛(𝜃𝑅(𝑡) + 𝜑)]} 

( 3.1 ) 

The Doppler shift is induced by the target motion. The phase variation of the target signal with respect to the 

direct signal is here defined only by the path difference, [29],[14] and it is written as follows:  

𝜙(𝑡) =
2𝜋

𝜆
[𝑅𝑇(𝑡) + 𝑅𝑅(𝑡) − 𝐿] ( 3.2 ) 

Finally, the received target signal can be represented as: 
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𝑠𝑡(𝑡) = 𝛽𝑠𝑡0(𝑡) ( 3.3 ) 

where 𝑠𝑡0(𝑡) = 𝜎𝑓𝑠(𝑡)𝑒
𝑗𝜙(𝑡) is the global target signature (pattern and Doppler signature) and 𝛽 = 𝑗

𝑙𝑣𝑙ℎ

𝜆𝐿

𝑎

𝐿
𝑒𝑗

2𝜋

𝜆
𝐿
 is 

a complex factor  proportional to the target dimensions and to the transmitted signal (i.e. proportional to α). We 

define with 𝑀𝑡 = |𝛽|max𝑡|𝜎𝑓𝑠(𝑡)| the maximum peak of the received target signal. We note that the target 

scattered signal in the forward direction is π 2⁄  phase shifted with respect to the direct signal, 𝑠𝑑(𝑡) (∠𝛽 = ∠𝛼 +

𝜋
2⁄ ) since as previously mentioned, the object’s size is large with respect to λ, [3]. Disregarding for the moment 

possible disturbances, the received signal can be written as 

𝑠𝑡𝑜𝑡(𝑡) = 𝑠𝑑(𝑡) + 𝑠𝑡(𝑡) ( 3.4 ) 

An example of a typical received signal for a target crossing the baseline perpendicularly in the middle is shown 

below. 

  

 (a) (b) 

Figure 3.2 (a) Received signal and (b) Pattern signature and Doppler signature of a target crossing the baseline 

perpendicularly at midpoint 

Figure 3.2 shows the amplitude of the received signal 𝑠𝑡𝑜𝑡(𝑡) normalized to the amplitude of the direct signal 

(sub-figure (a)) and the target RCS pattern 𝜎𝑓𝑠(𝑡) and Doppler signature ℜ{𝑠𝑡0(𝑡)} both normalized to the RCS 

patterns peak value (sub-figure(b)). It is noted the chirped phase term characterized by a zero Doppler frequency 

at the crossing time, 𝑡0 and a linearly increasing Doppler frequency when departing from this time instant. It is 

also evident the similar amplitude modulation provided by the RCS pattern (𝜎𝑓𝑠(𝑡) term).  

Finally, white Gaussian thermal noise is added to the combination of the direct and forward scattered signal 

thus providing the received signal 𝑟(𝑡) = 𝑠𝑡𝑜𝑡(𝑡) + 𝑛(𝑡) = 𝑠𝑑(𝑡) + 𝑠𝑡(𝑡) + 𝑛(𝑡)  being 𝑛(𝑡) the noise 

component with power 𝜎𝑛
2 = 𝐾𝑇0𝐵𝐹 where K is the Boltzmann’s constant, T0 the standard temperature, B the 

receiver bandwidth and F the noise figure. This gives rise to a Direct signal to Noise Spectral Density Power 

Ratio (DNSR) defined as: 
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𝐷𝑁𝑆𝑅 =
|𝛼|2

𝑁0
=
|𝑎|2

𝐿2𝑁0
 ( 3.5 ) 

being N0=kT0F, while the Direct signal to Noise power Ratio (DNR) is: 

𝐷𝑁𝑅 =
|𝛼|2

𝑁0𝐵
=
|𝑎|2

𝐿2𝜎𝑛
2 ( 3.6 ) 

3.3  Crystal Video Detector 

We deal with the issue of the detection of moving targets in the considered FSR configuration introduced in 

Section 3.2 against AWGN. In agreement with the model previously introduced for the received signal, the 

detection problem can be described in terms of a binary hypothesis test as follows: 

𝐻0:    𝒓 = 𝛼𝒔𝒅𝟎 + 𝒏
 

𝐻1:     𝒓 = 𝛼𝒔𝒅𝟎 + 𝛽𝒔𝒕𝟎 + 𝒏
 ( 3.7 ) 

where 𝐫 , 𝐬𝐭𝟎 and 𝐧 are N1 column vectors collecting the samples respectively of the baseband-equivalent 

received signal 𝑟𝑖, of the global target signature 𝑠𝑡0𝑖  and of the noise contribution 𝑛𝑖 at sampling times ti=i/B for 

i=0, …, N-1. Since the transmitted signal is a pure tone, the baseband-equivalent  𝐬𝐝𝟎 = 𝜻𝟎 is a N1 column 

vector with all elements set to unity (i.e. constant direct signal). Under this condition the PDF of the received 

signal is a circular complex Gaussian distribution: 

{
 
 

 
 𝑝𝒓 (

𝒓
𝐻0⁄ ) =

1

𝜋𝑁𝜎𝑛
2𝑁 𝑒

−
1

𝜎𝑛
2‖𝒓−𝛼𝒔𝒅𝟎‖

2

𝑝𝒓 (
𝒓
𝐻1⁄ ) =

1

𝜋𝑁𝜎𝑛
2𝑁 𝑒

−
1

𝜎𝑛
2‖𝒓−𝛼𝒔𝒅𝟎−𝛽𝒔𝒕𝟎‖

2
 ( 3.8 ) 

with mean vector respectively equal to µ𝒓 = 𝛼𝒔𝒅𝟎 under hypothesis H0 and µ𝒓 = 𝛼𝒔𝒅𝟎 + 𝛽𝒔𝒕𝟎 under hypothesis 

H1 and the same variance under both hypothesis 𝜎𝑟
2 = 𝜎𝑛

2.  In eq. ( 3.8 )  ‖∙‖2 denotes the Euclidean norm. 

For such detection problem the Crystal Video Detector has been proposed in previous literature, [9], [15], as a 

sub-optimal detection strategy under the assumption that the global target signature, 𝑠𝑡0(𝑡) is known: the CVD is 

composed by the cascade of a square-law detector followed by a DC removal filter and finally by a filter matched 

to the target signature. The output from this processing chain is compared to a decision threshold to assess the 

presence of the target (see Figure 3.3).  

The main steps related to the CVD are summarized in the following. 
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Figure 3.3 Crystal Video Detector block diagram 

Based on Section 3.2, the i-th element of the received signal vector z, at the output of the square law detector 

under hypothesis H0 and H1 can be written as: 

𝑧𝑖|𝐻0 = |𝛼|
2 + |𝑛𝑖|

2 + 2ℜ{𝑛𝑖𝛼
∗} ( 3.9 ) 

𝑧𝑖|𝐻1 = |𝛼|
2 + |𝛽|2|𝑠𝑡0𝑖|

2
+ |𝑛𝑖|

2 + 2ℜ{𝛼∗𝛽𝑠𝑡0 𝑖} + 2ℜ{𝑛𝑖𝛼
∗} + 2ℜ{𝑛𝑖(𝛽𝑠𝑡0 𝑖)

∗} ( 3.10 ) 

where ℜ{∙} is the real part operator and (∙)∗denotes the complex conjugate. Even under the null-hypothesis (see 

eq. ( 3.9 )) the expected value of z gives a non-zero direct component (DC), 𝜻 = (|𝛼|2 + 𝜎𝑛
2) 𝜻𝟎, due to the direct 

signal equal to its square value and to the noise component which contribution is equal to the noise power. To 

remove this DC component, a narrow highpass filter is applied. By operating on the sampled vector z, this is 

encoded by the projection of  z into the subspace orthogonal to the DC component vector 𝜻𝟎. We observe that the 

DC removal filter, perfectly removes the direct signal component, so that the only non-DC noise terms are left 

under hypothesis H0. In contrast, under the alternate hypothesis H1, various additional terms remain, that depend 

on the target-scattered signal: (i) the mixed product between target-scattered signal and direct signal, (ii) the 

mixed term between target-scattered signal and noise, and (iii) the squared envelope of the target-scattered signal 

(see eq.( 3.11 )). In practical application, both noise and target-scattered signal are much smaller than the direct 

signal component, so that is reasonable to assume that the squared envelope of these two terms are not the 

dominant contributions. Moreover, they are also partially removed by the highpass filter. Therefore, in addition to 

the residual non-DC noise term of the H0 case, only components (i) and (ii) represent the important contributions. 

After DC removal, we have the signal vector 𝒖 = 𝑷⊥𝒛, where 𝑷⊥ = 𝑰 −
𝜻𝟎𝜻0

𝐻

‖𝜻𝟎‖
2 is the NN symmetric and 

idempotent projection matrix, [47].By neglecting all smaller terms, the expected value of u can be approximated 

by the projection of component (i) as: 

𝐸{𝒖} = 𝐸{𝑷⊥𝒛} ≈ 2ℜ{𝛼∗𝛽𝑷⊥𝒔𝒕𝟎} ( 3.11 ) 

which can be interpreted as the new useful signal term, 𝒔𝒖 = 𝐸{𝒖}of the signal vector u being 𝐸{∙} the 

expectation operator, As mentioned previously, we notice that this mixed term between target-scattered signal 

and direct signal maintains a coherence from sample to sample, due to the presence of the stable direct signal 

component that keeps the phase reference. 

The random component of z under H0, is given by a vector with elements 2ℜ{𝑛𝑖𝛼
∗} and under the H1 

hypothesis, is given by a vector with elements 2ℜ{𝑛𝑖(𝛼 + 𝛽𝑠𝑡0 𝑖)
∗}  for 𝑖 = 0,… ,𝑁 − 1.Its projection through 

𝑷⊥ can be seen as the noise component of vector u indicated ad 𝒔𝒏.  This last component is still zero mean white 
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Gaussian noise, but with a different variance under the two hypotheses. Under hypothesis H0 only the direct 

signal is present, thereby the variance of  the random component of z is equal to  2𝜎𝑛
2|𝛼|2 in each of the N-1 

remaining dimensions. Under the alternative hypothesis H1, also the target contribution must be considered so 

that the variance of  the random component of z is equal to 2𝜎𝑛
2|𝛼 + 𝛽𝑠𝑡0 𝑖|

2, and the variance of u is directly 

obtained through the projection through  𝑷⊥ . Based on the approximation above that only retains terms (i) and 

(ii), after applying to the received signal the squared modulus operation and the DC removal filter, the target 

detection problem can be reformulated as a standard binary decision problem.  The detector must decide between 

Hypothesis H0 (the considered sample vector only contains zero mean Gaussian noise samples) and the alternate 

Hypothesis H1 (the considered sample vector contains zero mean Gaussian noise samples, plus a target vector 

with known shape).  

Under this approximation, we can resort to the matched filter theory to detect the target-scattered signal present 

inside y. To this purpose, we define the filter vector 𝒉𝑴𝑭 = κ E{𝐮}, being κ any desired scalar value. Under the 

assumption that the global target signature, st0 is known and as the useful signal after squared modulus and Dc 

removal is given by term (i), we can set  𝒉𝑴𝑭 =
2ℜ{α∗βst0}

|α β|
= −2Im{st0} ≡ 𝒉 , so that the global filter vector 

applied to z is given by  𝑷⊥𝒉 . Under hypothesis H1, the maximum output of the matched filter is known to be 

given by q0 = h
T𝐮 

Finally, the output of the matched filter is compared to a specific decision threshold 𝑇𝐶𝑉𝐷 chosen in order to 

ensure the desired false alarm rate at the decision device: 

𝑞0 = h
T𝐮 = 𝒉𝑇𝑷⊥𝑷⊥𝒛 = 𝒉𝑇𝑷⊥𝒛  

𝐻1
≷
𝐻0

  𝑇𝐶𝑉𝐷  ( 3.12 ) 

where (∙)𝑇 denotes the transpose. Therefore, the CVD statistic consists in applying to the output of the square-law 

detector, z, first the projector operator 𝑷⊥ which is followed by a coherent integration operated by the filter h, 

with impulse response defined by: 

ℎ(𝑡) = −𝜎𝑓𝑠(𝑡) 𝑠𝑖𝑛 𝜙(𝑡)  ( 3.13 ) 

This implies that ℎ(𝑡) depends on both the FS pattern signature and the Doppler signature which in turn depend 

on the target electrical size and target trajectory. We explicitly  notice that, the filter h compensates for the time-

varying Doppler frequency (chirped) component, by performing a proper coherent target signal integration. In the 

typical case, where a target with unknown size and velocity is searched for, an appropriate bank of filters h is 

used, after the DC removal filter,[10] (see Chapter 5 ). 

3.4  Performance analysis of CVD 

This section focuses on the analytical characterization of the performance of the CVD detector. Firstly an 

accurate closed-form expression of the probability of false alarm is derived and its correctness is shown and then 
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the theoretical expression of the probability of detection is derived and also approximated closed-forms are 

provided useful to support performance prediction and system design. It is worth mentioning that two scenarios 

are taken as references in the following analysis : the first one corresponds to a target in the deep far field area 

(S=0.085) and the second one to a target approaching the transition to the near field (S=0.76), but still satisfying 

the far field condition (S<1). In both cases the target trajectory is orthogonal to the baseline intersecting it in the 

middle (𝑦0 = 𝐿/2).  

Figure 3.4 and Figure 3.5 show the amplitude of the received signal 𝑠𝑡𝑜𝑡(𝑡) normalized to the amplitude of the 

direct signal (sub-figures (a)) and the target RCS pattern 𝜎𝑓𝑠(𝑡) and Doppler signature ℜ{st0(t)} both normalized 

to the RCS patterns peak value (sub-figures (b)); all plots refer to noise free conditions while Table 3.1 shows 

the main system and target related parameters.Three different observation time intervals are investigated, 

corresponding to the same observation angle, 𝛥𝛺 for both scenarios and representative of a long observation  time 

(time to span the main lobe and 6 side lobes of the pattern signature, 7L, 𝛥𝛺 = 5.96°), a medium observation 

time (only main lobe, ML, 𝛥𝛺 = 1.49°) and a small observation time (i.e. the time to move between the -3dB 

level points of the maximum Forward Scatter pattern,1/2ML, 𝛥𝛺 = 0.89°). Both cases show the chirped phase 

term characterized by a zero Doppler frequency at the crossing time and a linearly increasing Doppler frequency 

when departing from this time instant. Comparing the two cases it is possible to observe that a large number of 

phase cycles related to the Doppler component occur in the main-lobe of the RCS pattern when S=0.085, while in 

contrast the Doppler signature is only appreciable in the side lobes region when S=0.76 namely when 

approaching a near field condition. 

  

(a) (b) 

Figure 3.4 (a) Received signal and (b) Pattern signature and Doppler signature of a target crossing the baseline 

perpendicularly at midpoint for different observation times when S = 0.085. 
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(a) (b) 

Figure 3.5 (a) Received signal and (b) Pattern signature and Doppler signature of a target crossing the baseline 

perpendicularly at midpoint for different observation times when S = 0.76. 

Table 3.1 System parameters and target related parameters of the reference scenarios 

 S=0.085 S=0.76 

System parameters 

Carrier frequency fc = 4.612GHz  
 (λ = 6.5 cm) 

fc = 4.612GHz  
 (λ = 6.5 cm) 

Baseline L=4500 m L=500 m 

Observation time T=6.5 sec (7L) 

T=1.63 sec (ML) 

T=0.98 sec (1/2ML) 

T=0.72 sec (7L) 

T=0.18 sec (ML) 

T=0.1 sec (1/2ML) 

Target related parameters 

Target size lh = 2.5 m (lh λ⁄ ≈ 38) 
lv = 1.5 m (lv λ⁄ ≈ 23) 

lh = 2.5 m (lh λ⁄ ≈ 38) 
lv = 1.5 m (lv λ⁄ ≈ 23) 

Motion parameters  v = 36 m/s 
 𝜑 = 0° 
 y0 = L 2⁄  

 v = 36 m/s 
 𝜑 = 0° 
 y0 = L 2⁄  

To characterize the detection performance of the CVD, we rewrite the test statistic 𝑞0 as follows: 

𝑞0 = 𝒉
𝑇𝑷⊥𝒛 = 𝜼𝑻𝒛 = ∑ 𝜂𝑛𝑧𝑛

𝑁

𝑛=1

 ( 3.14 ) 

where: 

𝜂𝑛 = ℎ𝑛 −
1

𝑁
∑ℎ𝑘

𝑁

𝑘=1

 ( 3.15 ) 

is the n-th sample of the impulse response projected onto the subspace orthogonal to the DC component 

(coincident with the n-th sample of the matched filter vector previously defined). 

This formulation allows us to easily verify that 𝑞0 is an indefinite quadratic form in normal random variables that 

is not necessarily symmetric. In accordance with [48], we notice that 𝑞0 can be written as the difference between 
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two positive variables 𝑞1  and 𝑞2, namely 𝑞0 = 𝑞1 − 𝑞2, where 𝑞1 is related to the N1 positive values of 𝜂𝑖 (𝜂𝑖
+) 

while 𝑞2 is related to the N2 negative values of 𝜂𝑖 (𝜂𝑖
−): 

𝑞1 =∑𝜂𝑖
+𝑧𝑖

𝑁1

𝑖=1

    ,     𝑞2 =∑𝜂𝑖
−𝑧𝑖

𝑁2

𝑖=1

 ( 3.16 ) 

Indeed, it can be easily verified that both 𝑞1 and 𝑞2 are positive definite quadratic forms of Gaussian random 

variables. For the sake of compactness, a general formulation for the three quadratic forms 𝑞𝑚, m=0, 1, 2 is 

introduced, as: 

𝑞𝑚 = ∑𝜃𝑛(𝑞𝑚)𝑧𝑛

𝑁

𝑛=1

 ( 3.17 ) 

where  

𝜃𝑛(𝑞0) = 𝜂𝑛  

𝜃𝑛(𝑞1) = (|𝜂𝑛| + 𝜂𝑛) 2⁄     

𝜃𝑛(𝑞2) = (|𝜂𝑛| − 𝜂𝑛) 2⁄   

( 3.18 ) 

To obtain an approximate statistical characterization of these quadratic forms, we start from the evaluation of 

their s-th moment, which is derived in Appendix A: 

𝜇𝑞𝑚(𝑠) = ∑
(𝑠−1)!

𝑖!
𝜎𝑛
2(𝑠−𝑖−1)

𝜇𝑞𝑚(𝑖)
𝑠−1
𝑖=0 ∙  

{(𝜎𝑛
2 + (𝑠 − 𝑖)|𝛼|2)∑ 𝜃𝑘

(𝑠−𝑖)(𝑞𝑚)
𝑁

𝑘=1

+ (𝑠 − 𝑖)|𝛽|2∑ 𝜃𝑘
(𝑠−𝑖)(𝑞𝑚)|𝑠𝑡0𝑘|

2 + 2(𝑠 − 𝑖)|𝛼||𝛽|
𝑁

𝑘=1
∑ 𝜃𝑘

(𝑠−𝑖)(𝑞𝑚)ℎ𝑘
𝑁

𝑘=1
} 

( 3.19 ) 

To provide the performance in terms of Pfa and Pd we analyze separately the case of the null-hypothesis, H0 and 

the case of the hypothesis H1. 

3.4.1  Probability of false alarm 

An accurate characterization of the PDF under hypothesis H0, particularly on the PDF tails by means of a 

moment-based approximation is firstly provided and the behavior of the high order moments is here investigated. 

After the correctness of the closed-form expression of the Pfa is established through Monte Carlo simulations.  

Under hypothesis H0, 𝑞0 is by definition a zero mean value random variable, while the generic moment of qm 

is given by the simplified recursive expression: 

𝜇𝑞𝑚(𝑠) =∑
(𝑠 − 1)!

𝑖!
𝜎𝑛
2(𝑠−𝑖−1)

𝜇𝑞𝑚(𝑖)(𝜎𝑛
2 + (𝑠 − 𝑖)|𝛼|2)∑ 𝜃𝑘

(𝑠−𝑖)(𝑞𝑚)
𝑁

𝑘=1

𝑠−1

𝑖=0

 ( 3.20 ) 
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Table 3.2 reports the first ten normalized moments 𝜇𝑞𝑚
𝑁 (𝑠) = 𝜇𝑞𝑚(𝑠) 𝜇𝑞𝑚

𝑠 (1)⁄   for s=1,…, 10 of both 𝑞1 and 𝑞2 

for the reference scenario characterized by  S=0.085  and the three different integration times (see Table 3.1) and 

DNSR=10 dB (see eq. ( 3.5 ) ). For comparison the table also reports the same normalized moments of a Gamma 

distributed random variable with PDF written as, [49]: 

𝑝𝑞𝑚(𝑞𝑚) =
1

Γ(𝜈𝑞𝑚)

𝑞𝑚
𝜈𝑞𝑚−1

𝜇𝑞𝑚
′ 𝜈𝑞𝑚

𝑒
−
𝑞𝑚

𝜇𝑞𝑚
′
 ,      𝑞𝑚 > 0  ( 3.21 ) 

with shape parameter 𝜈𝑞𝑚and scale factor µ𝑞𝑚
′ respectively, being Γ(∙) the Gamma function, [50]. 

𝜈𝑞𝑚 =
𝜇𝑞𝑚
2 (1)

𝜇𝑞𝑚(2) − 𝜇𝑞𝑚
2 (1)

 ,     𝜇𝑞𝑚
′ = 𝜇𝑞𝑚(1) 𝜈𝑞𝑚⁄  ( 3.22 ) 

Table 3.3 shows the same moments for DNSR=40 dB. Table 3.4 and Table 3.5 contain similar results for a 

shorter baseline, which provided a valued of S=0.76, namely when approaching the near field. 

Table 3.2 Moments of 𝑞1 and 𝑞2  for S=0.085 and DNSR=10 dB 

 

 

 

 

 

 

 

 

 

Table 3.3 Moments of 𝑞1 and 𝑞2  for S=0.085 and DNSR=40 dB 

𝑞1 𝑞2 

 7ML ML 1/2ML 7ML ML 1/2ML 

s 

G
am

m
a 

𝜈 𝑞
1
=

6
9
2
8
.7

6
 

𝑞 1
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am

m
a 

𝜈 𝑞
1
=

2
6
4
9
.9

4
 

𝑞 1
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a 

𝜈 𝑞
1
=

1
6
2
4
.5

4
 

𝑞 1
 

G
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m
a 

 

𝜈 𝑞
2
=

4
3
6
3
.9

5
 

𝑞
2
 

G
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m
a 

 

𝜈 𝑞
2
=

2
4
9
6
.2

5
 

𝑞
2
 

G
am

m
a 

 

𝜈 𝑞
2
=

1
9
2
0
.8

4
 

𝑞
2
 

 1 1 1 1 1 1 1 1 1 1 1 1 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.01 1.01 

6 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.01 1.01 

7 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 

8 1.00 1.00 1.01 1.01 1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.01 

9 1.01 1.01 1.01 1.01 1.02 1.02 1.01 1.01 1.01 1.01 1.02 1.02 

10 1.01 1.01 1.02 1.02 1.03 1.03 1.01 1.01 1.02 1.02 1.02 1.02 

𝑞1 𝑞2 

 7ML ML 1/2ML 7ML ML 1/2ML 

s 

G
am

m
a 

𝜈 𝑞
1
=

1
3

7
.6

7
 

𝑞 1
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𝜈 𝑞
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=

5
2

.6
5
 

𝑞 1
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𝜈 𝑞
1
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3
2

.2
8
 

𝑞 1
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𝜈 𝑞
2
=

8
6

.7
0
 

𝑞
2
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𝜈 𝑞
2
=

4
9

.6
0
 

𝑞
2
 

G
am

m
a 

 

𝜈 𝑞
2
=

3
8

.1
6
 

𝑞
2
 

1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1.00 1.00 1.02 1.02 1.03 1.03 1.01 1.01 1.02 1.02 1.03 1.03 

3 1.02 1.02 1.06 1.06 1.10 1.10 1.03 1.04 1.06 1.06 1.08 1.08 

4 1.04 1.04 1.12 1.12 1.20 1.20 1.07 1.07 1.13 1.13 1.16 1.17 

5 1.07 1.08 1.20 1.20 1.34 1.35 1.12 1.12 1.22 1.22 1.29 1.29 

6 1.11 1.12 1.32 1.32 1.55 1.56 1.18 1.19 1.34 1.34 1.46 1.46 

7 1.16 1.17 1.47 1.48 1.84 1.86 1.27 1.27 1.50 1.51 1.68 1.69 

8 1.22 1.23 1.66 1.68 2.24 2.27 1.37 1.38 1.71 1.72 1.99 2.00 

9 1.29 1.30 1.91 1.94 2.80 2.84 1.50 1.51 1.99 2.01 2.41 2.44 

10 1.38 1.38 2.24 2.28 3.58 3.66 1.65 1.67 2.35 2.38 2.98 3.02 
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Table 3.4 Moments of 𝑞1 and 𝑞2 for S=0.76 and DNSR=10 dB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.5 Moments of 𝑞1 and 𝑞2 for S=0.76 and DNSR=40 dB 

 

 

 

 

 

 

 

 

 

As apparent, there is a close match between the normalized moments of both 𝑞1 and 𝑞2 and the corresponding 

moments of the Gamma PDF with the same normalized second moment. This justifies the use of the Gamma 

PDF as the approximate PDF for both 𝑞1 and 𝑞2. By inverting the first and second order moments defined in eq. ( 

3.20 ) and in accordance with eq. ( 3.22 ) these are characterized by the following shape factors and scale 

parameters: 

{
 
 

 
 𝜈𝑞1 =

1

2

(1 + 𝐷𝑁𝑅)

𝜌(𝐷𝑁𝑅)

𝜔2

(1 + 𝛿)

𝜈𝑞1 =
1

2

(1 + 𝐷𝑁𝑅)

𝜌(𝐷𝑁𝑅)

𝜔2

(1 − 𝛿)

 ( 3.23 ) 

{
𝜇𝑞1
′ = 𝜎𝑛

2𝜀 𝜌(𝐷𝑁𝑅) 𝜔⁄ (1 + 𝛿)

𝜇𝑞2
′ = 𝜎𝑛

2𝜀 𝜌(𝐷𝑁𝑅) 𝜔⁄ (1 − 𝛿)
 ( 3.24) 
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𝜈 𝑞
2
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2
8

0
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0
 

𝑞
2
 

1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.00 1.01 1.01 1.01 1.01 

4 1.00 1.00 1.01 1.01 1.02 1.02 1.01 1.01 1.01 1.01 1.02 1.02 

5 1.01 1.01 1.02 1.02 1.04 1.04 1.01 1.01 1.02 1.02 1.04 1.04 

6 1.01 1.01 1.03 1.03 1.06 1.06 1.02 1.02 1.04 1.04 1.05 1.05 

7 1.01 1.01 1.05 1.05 1.09 1.09 1.03 1.03 1.05 1.05 1.08 1.08 

8 1.02 1.02 1.06 1.06 1.12 1.12 1.04 1.04 1.07 1.07 1.10 1.10 

9 1.02 1.02 1.08 1.08 1.15 1.15 1.05 1.05 1.09 1.09 1.14 1.14 

10 1.02 1.02 1.10 1.10 1.20 1.20 1.07 1.07 1.12 1.12 1.17 1.17 
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1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1.00 1.00 1.01 1.01 1.02 1.02 1.01 1.01 1.01 1.01 1.02 1.02 

3 1.01 1.01 1.04 1.04 1.07 1.07 1.02 1.03 1.04 1.04 1.06 1.06 

4 1.02 1.02 1.08 1.08 1.15 1.15 1.05 1.05 1.09 1.09 1.13 1.13 

5 1.03 1.03 1.13 1.13 1.25 1.25 1.09 1.09 1.15 1.15 1.22 1.22 

6 1.05 1.05 1.20 1.21 1.40 1.40 1.13 1.13 1.23 1.23 1.35 1.35 

7 1.07 1.07 1.30 1.30 1.59 1.60 1.19 1.19 1.34 1.34 1.51 1.51 

8 1.09 1.09 1.41 1.41 1.85 1.86 1.25 1.26 1.47 1.47 1.73 1.73 

9 1.12 1.12 1.56 1.56 2.19 2.21 1.34 1.34 1.64 1.64 2.01 2.02 

10 1.15 1.15 1.73 1.74 2.65 2.67 1.44 1.44 1.85 1.85 2.39 2.40 
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where the other parameters in eq. ( 3.23 ) and eq. ( 3.24) are : 

𝛿 =
∑ |𝜂𝑛|𝜂𝑛
𝑁
𝑛=1

∑ 𝜂𝑛
2𝑁

𝑛=1

 ,     𝜀2 =∑ 𝜂𝑛
2

𝑁

𝑛=1
   ,   𝜔 =

∑ |𝜂𝑛|
𝑁
𝑛=1

√∑ 𝜂𝑛
2𝑁

𝑛=1

   ,   𝜌(𝐷𝑁𝑅) = 1 +
𝐷𝑁𝑅

1 + 𝐷𝑁𝑅
 ( 3.25 ) 

As the test statistic is given by the difference 𝑞0 = 𝑞1 − 𝑞2, its PDF is given by the correlation between the two 

gamma PDFs which approximate respectively 𝑞1and 𝑞2. In order to simplify the expression of the PDF, as well 

as the resulting Pfa, we restrict to integer values of 𝑛𝑞1 = 𝑟𝑜𝑢𝑛𝑑(𝜈𝑞1). In practice, approximating the values with 

the closest integer is not expected to introduce any significant approximation error. As clearly apparent from 

Table 3.2 to Table 3.5 these values are typically large and in this case the Gamma PDF is well known to have a 

limited sensitivity to the order parameter values.  

By integrating the resulting PDF on the interval [𝑇𝐶𝑉𝐷, ), Appendix B, we obtain: 

𝑃𝑓𝑎 = 𝑒
−

𝑇𝐶𝑉𝐷 (𝜎𝑛
2𝜀)⁄

𝜌(𝐷𝑁𝑅)/𝜔(1+𝛿)(1 + 𝛿)𝜈𝑞2 ∑
1

𝑚!
(

𝑇𝐶𝑉𝐷 (𝜎𝑛
2𝜀)⁄

𝜌(𝐷𝑁𝑅) 𝜔(1+𝛿)⁄
)
𝑚

∑
Γ(𝑟+𝜈𝑞2)

2𝜈𝑞2+𝑟Γ(𝜈𝑞2)
(1 − 𝛿)𝑟

𝑛𝑞1−1−𝑚

𝑟=0

𝑛𝑞1−1

𝑚=0   ( 3.26 ) 

Figure 3.6 and Figure 3.7 compare the expression above of the Pfa with the results from Monte Carlo 

simulation with 107 independent trials based on the exact PDF of the decision statistic 𝑞0, respectively for the 

deep far field case, S=0.085 and getting close to the near field, S=0.76  as function of the threshold, 𝑇𝐶𝑉𝐷 𝜎𝑛
2⁄ 𝜀, 

namely the decision threshold (𝑇𝐶𝑉𝐷) normalized with respect to the standard deviation of the noise at the output 

of the matched filter (𝜎𝑛
2ε). This last assumption can be easily explained by recalling the decision statistic in eq. ( 

3.14 ) and the definition of ε2 in eq. ( 3.25 ) that, in presence of noise only, yield a noise power at the output of  

the matched filter equal to 𝜎𝑛
4ε2. 

  

(a) (b) 

Figure 3.6 Simulated and theoretical Pfa  as function of  𝑇𝐶𝑉𝐷 (𝜎𝑛
2𝜀)⁄  when S=0.085 and for (a) DNSR=10 dB and (b) 

DNSR= 40 dB. 
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(a) (b) 

Figure 3.7 Simulated and theoretical Pfa as function of  𝑇𝐶𝑉𝐷 (𝜎𝑛
2𝜀)⁄  when S=0.76 and for (a) DNSR=10 dB and (b) 

DNSR= 40 dB. 

As it can be observed in all the cases there is a close match between the closed form expression in eq. ( 3.26 ) 

and the corresponding simulated results. It is well known that for large shape factor 𝜈𝑞𝑚 (m=1,2), the Gamma 

PDF of 𝑞1 and 𝑞2 converges to Gaussian distribution with mean and variance respectively equal to: 

{
 

 𝜇𝑞𝑚 = 𝜈𝑞𝑚𝜇𝑞𝑚
′ =

𝜎𝑛
2𝜀

2
(1 + 𝐷𝑁𝑅)𝜔

𝜎𝑞𝑚
2 = 𝜈𝑞𝑚𝜇𝑞𝑚

′ 2
=
𝜎𝑛
4𝜀2

2
 (1 + 2𝐷𝑁𝑅)(1 − (−1)𝑚𝛿)

 ( 3.27 ) 

Therefore, 𝑞0 = 𝑞1 − 𝑞2 also converges to a Gaussian random variable with zero mean and variance: 

𝜎𝑞0
2 = 𝜈𝑞1𝜇𝑞1

′ 2
+ 𝜈𝑞2𝜇𝑞2

′ 2
= 𝜎𝑛

4𝜀2(1 + 2𝐷𝑁𝑅) ( 3.28 ) 

We notice that this certainly applies when DNR goes to infinity, so that both 𝜈𝑞1and 𝜈𝑞2 go to infinity. In 

consequence, for high DNR values, the PDF for 𝑞0 can be approximated with a Gaussian variate: 

𝑝𝑞0(𝑞0) =
1

√2𝜋𝜎𝑛
2𝜀

1

√1 + 2𝐷𝑁𝑅
𝑒
− 

𝑞0
2

2𝜎𝑛
4𝜀2(1+2𝐷𝑁𝑅) ( 3.29 ) 

and the Pfa is expressed as: 

𝑃𝑓𝑎 =
1

2
𝑒𝑟𝑓𝑐 (

𝑇𝐶𝑉𝐷 (𝜎𝑛
2𝜀)⁄

√2(1 + 2𝐷𝑁𝑅)
) ( 3.30 ) 

The Gaussian approximate expression has been reported in [42], where it is shown that such approximation 

provides a nice fit to Monte Carlo simulations for DNSR high enough and Pfa up to 10-3. Figure 3.8 and Figure 

3.9 compare the exact Pfa, eq.( 3.26 ) with the approximated Pfa, eq.( 3.30 ) for a long (7L) and short (1/ML) time 

interval cases for both reference scenarios. The comparison highlights that the Gaussian approximation can show 

non-negligible errors in the low Pfa region compared to the exact Pfa particularly for low values of DNSR. 
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(a) (b) 

Figure 3.8 Theoretical and approximated Pfa as function of 𝑇𝐶𝑉𝐷 (𝜎𝑛
2𝜀)⁄    when S=0.085 and for (a) DNSR=10 dB and (b) 

DNSR= 40 dB. 

  

(a) (b) 

Figure 3.9 Theoretical and approximated Pfa as function of  𝑇𝐶𝑉𝐷 (𝜎𝑛
2𝜀)⁄    when S=0.76 and for (a) DNSR=10 dB and (b) 

DNSR= 40 dB. 

This can be also verified by comparing the moments of the test statistic to the moments of a zero mean 

Gaussian random variable with the same variance. Similarly to 𝑞1and 𝑞2, 𝑞0 is a quadratic form of Gaussian 

random variables. Therefore, its generic moment of order s is: 

𝜇𝑞0(𝑠) =∑
(𝑠 − 1)!

𝑖!

𝑠−1

𝑖=0
𝜎𝑛
2(𝑠−1−𝑖)(𝜎𝑛

2 + (𝑠 − 𝑖)|𝛼|2)∑ 𝜂𝑛
𝑠−𝑖

𝑁

𝑛=1
𝜇𝑞0(𝑖) 

( 3.31 ) 

Table 3.6 reports the first ten normalized moment 𝜇𝑞0 
𝑁 (𝑠) = 𝜇𝑞0(𝑠) 𝜇𝑞0

𝑠 2⁄⁄ (2) for DNSR=10 dB and DNSR=40 

dB, and the three different integration times for a far field condition of S=0.085. The normalized moments for the 

zero-mean Gaussian random variable are reported in column 2 for comparison.  
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Table 3.7 reports similar results for a shorter baseline, namely getting close to near field for a far field parameter 

S=0.76.  

Table 3.6 Moments of the CVD statistic 𝑞0 under H0 hypothesis for S=0.085. 

  DNSR=10 dB DNSR=40 dB 

s Gaussian 7L ML ½ ML 7L ML ½ ML 

1 0 4.3x10-15 1.9x10-15 1.3x10-15 3.0x10-14 1.3x10-14 9.1x10-15 

2 1 1 1 1 1 1 1 

3 0 -0.07 -0.01 0.048 -0.01 -0.00 0.01 

4 3 3.07 3.09 3.12 3.01 3.00 3.00 

5 0 -0.73 -0.05 0.50 -0.08 -0.01 0.05 

6 15 16.23 16.41 16.82 15.01 15.01 15.02 

7 0 -8.05 -0.58 5.74 -0.80 -0.06 0.54 

8 105 123.66 125.58 132.18 105.18 105.20 105.26 

9 0 -104.12 -7.15 77.97 -9.5875 -0.75 6.43 

10 945 1251.60 1271.40 1388.90 947.85 947.96 948.91 

Table 3.7 Moments of the CVD statistic 𝑞0 under H0 hypothesis for S=0.76. 

  DNSR=10 dB DNSR=40 dB 

s Gaussian 7L ML ½ ML 7L ML ½ ML 

1 0 2.8x10-15 8.1x10-17 2.4x10-15 6.8x10-15 1.9x10-16 5.9x10-15 

2 1 1 1 1 1 1 1 

3 0 -0.11 -0.02 0.03 -0.04 -0.01 0.01 

4 3 3.04 3.05 3.09 3.00 3.00 3.01 

5 0 -1.15 -0.22 0.30 -0.37 -0.07 0.09 

6 15 15.77 15.75 16.21 15.07 15.07 15.11 

7 0 -12.44 -2.34 3.39 -3.86 -0.72 1.00 

8 105 117.88 115.81 122.65 106.20 105.98 106.57 

9 0 -155.95 -29.67 44.35 -46.52 -8.62 12.11 

10 945 1173.40 1113.00 1224.40 965.93 959.79 968.79 

By comparing the moments of 𝑞0 to the moments of a Gaussian random variable, the following comments are 

in order: (i) a disagreement on the high order moments (and particularly on the odd-order) is observed that is 

consistent with the behavior of the curves in the low Pfa region observed in the Figure 3.8 and Figure 3.9 (ii) the 

disagreement increases as the DNSR decreases as also observed moving from Figure 3.8 (b) and Figure 3.9 (b) 

to Figure 3.8 (a) and Figure 3.9 (a) respectively. 

Furthermore from Figure 3.8 and Figure 3.9 it is also noted that the Gaussian approximation is independent 

of the integration time providing a fixed threshold dependent only on the DNSR value. 

Above results nicely validate the proposed closed form expression, eq.( 3.26 ), that is extremely important for 

the practical application of the CVD scheme, since it allows us to set the detection threshold required to 

guarantee a specified false alarm rate, once the noise level and the DNR values are known. 
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3.4.2  Probability of detection 

Likewise, the PDF under hypothesis H1 need to be defined in order to establish a closed-form expression for the 

Pd and as the exact fitting of the PDF tails is not strictly required as for the Pfa an analysis of the moments of the 

decision statistic will not be reported and the validation of the analytical expression will be verified directly by 

comparison with results obtained from Monte Carlo simulation based on the exact PDF. 

Under hypothesis H1 the PDF of the test statistic 𝑞0 follows very closely the Gaussian PDF, [42]: 

𝑝𝑞0(𝑞0) =
1

√2𝜋𝜎𝑞0
𝑒
− 
(𝑞0−𝜇𝑞0)

2

2𝜎𝑞0
2

 ( 3.32 ) 

being mean value and variance respectively given by: 

𝜇𝑞0 = 𝜇𝑞0(1) = |𝛽|2∑ 𝜂𝑘|𝑠𝑡0𝑘|
2

𝑁

𝑘=1
+ 2|𝛼||𝛽|𝜀2 ( 3.33 ) 

𝜎𝑞0
2 = 𝜇𝑞0(2) − 𝜇𝑞0

2 (1) = 𝜎𝑛
2 [(𝜎𝑛

2 + 2|𝛼|2)𝑠2 + 2|𝛽|2∑ 𝜂𝑘
2

𝑁

𝑘=1
|𝑠𝑡0𝑘|

2 + 4|𝛼||𝛽|∑ 𝜂𝑘
2ℎ𝑘

2
𝑁

𝑘=1
] ( 3.34 ) 

as directly obtained from eq. ( 3.19 ).  

Figure 3.10 compare the test statistic histogram under hypothesis H1 obtained from Monte Carlo simulation 

with 10
6
 independent trials based on the exact PDF, normalized with respect to its standard deviation, 𝜎𝑞0  and the 

PDF defined in the eq. ( 3.32 ) for two different values of DNR (see ( 3.6 )) and observation times (long, 7L and 

short, 1/2ML) when the target is in the far field area, S=0.085. Figure 3.11 reports similar results for a shorter 

baseline, namely getting close to near field for a far field parameter S=0.76.  For all cases is noted a good 

agreement between the simulated results and the PDF. 

  

(a) (b) 

Figure 3.10 Histogram and PDF of the normalized test statistic, 𝑞0/ 𝜎𝑞0 when S=0.085 and (a) for a long observation 

time, 7L and (b) short observation time, 1/2ML. 



  Crystal Video Detector and performance analysis 

43 

  

(a) (b) 

Figure 3.11 Histogram and PDF of the normalized test statistic, 𝑞0/ 𝜎𝑞0 when S=0.76 and (a) for a long observation time, 

7L and (b) short observation time, 1/2ML. 

Therefore, after some simple manipulations, an approximate expression of the CVD detection probability can 

be obtained as: 

𝑃𝑑 =
1

2
𝑒𝑟𝑓𝑐

{
 
 

 
 𝑇𝐶𝑉𝐷
𝜎𝑛
2𝜀√2(1 + 2𝐷𝑁𝑅)

−
𝐷𝑁𝑅

√2(1 + 2𝐷𝑁𝑅)
𝜀 (|𝛾|2

∑ 𝜂𝑘|𝑠𝑡0𝑘|
2𝑁

𝑘=1

𝜀2
+ 2|𝛾|)

√1 +
2𝐷𝑁𝑅

(1 + 2𝐷𝑁𝑅)
(|𝛾|2

∑ 𝜂𝑘
2|𝑠𝑡0𝑘|

2𝑁
𝑘=1

𝜀2
) + 2|𝛾|

∑ 𝜂𝑘
2ℎ𝑘

𝑁
𝑘=1

𝜀2
}
 
 

 
 

 ( 3.35 ) 

where 𝛾 = 𝛽 𝛼⁄ = 𝑗𝑙𝑣𝑙ℎ 𝜆𝐿⁄  depends on the target size for an assigned system geometry (𝜆, 𝐿) and the other 

parameters in eq. ( 3.35 ) have been defined in the Section 3.4.1. From the eq. ( 3.35 ) it can be easily verified 

that in absence of the target signal (i.e  𝛾 = 0) the approximated Pfa in eq. ( 3.30 ) is obtained. The closed form 

expression for the detection probability in eq. ( 3.35 ) as function of the DNR (see ( 3.6 )) is compared to the 

results of a Monte Carlo simulation with 106 independent trials based om the exact PDF of the decision statistic 

q0 under hypothesis H1 in the Figure 3.12 , respectively for the case of deep far field and for the transition 

between far and near field for three different integration times having set a Pfa=10-5. 
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(a) (b) 

Figure 3.12 Simulated and theoretical 𝑃𝑑 of the CVD detector for a 𝑃𝑓𝑎 = 10
−5 when (a) S=0.085 and  (b) S=0.76. 

As apparent, for all considered cases, the theoretical expression provides a complete agreement with the 

simulated results hence eq. ( 3.35 ) can be used to exactly predict the CVD detection performance. Moreover, the 

denominator term in eq.( 3.35 ) does not change with the DNR being almost constant and equal to one in all 

considered conditions as shown in the Figure 3.13.  

Accordingly, the expression of the Pd can be simplified as follows: 

𝑃𝑑
𝐴𝑝𝑝𝑟𝑜𝑥−1

≅
1

2
𝑒𝑟𝑓𝑐 {

𝑇𝐶𝑉𝐷

𝜎𝑛
2𝜀√2(1 + 2𝐷𝑁𝑅)

−
𝐷𝑁𝑅

√2(1 + 2𝐷𝑁𝑅)
𝜀 (|𝛾|2

∑ 𝜂𝑘|𝑠𝑡0𝑘|
2𝑁

𝑘=1

𝜀2
+ 2|𝛾|)} ( 3.36 ) 

Equation ( 3.36 ) can be further simplified by dropping the term depending on |𝛾|2, by approximating 1 +

2𝐷𝑁𝑅 ≈ 2𝐷𝑁𝑅 and by substituting eq. ( 3.30 ) we obtain: 

𝑃𝑑
𝐴𝑝𝑝𝑟𝑜𝑥−2

≅
1

2
𝑒𝑟𝑓𝑐[𝑒𝑟𝑓𝑐−1(2𝑃𝑓𝑎) − √𝐷𝑁𝑅𝜀|𝛾|] ( 3.37 ) 

 

  

(a) (b) 

Figure 3.13 The term at the denominator of the analytical expression in eq. ( 3.35 )  when (a) S=0.085 and (b) S=0.76. 



  Crystal Video Detector and performance analysis 

45 

Figure 3.14 compares the complete closed form expression in eq. ( 3.35 ) to the two approximations in eqs. ( 

3.36 ) and ( 3.37 ) and under the same conditions considered in Figure 3.12. It is quite apparent that the proposed 

approximated expression in eq. ( 3.36 ) still provides an accurate fit to the complete closed form whereas the 

approximated expression in the eq. ( 3.37 ) shows differences in the order of 2 dB in the worst case for the target 

getting close to the near field, S=0.76 ((b)). 

Nevertheless the simplified expression in eq. ( 3.37 ) can very usefully support preliminary system design and 

performance prediction of the FSR system. 

  

(a) (b) 

Figure 3.14 Theoretical and approximated 𝑃𝑑 of the CVD detector for a 𝑃𝑓𝑎 = 10
−5 when (a) S=0.085 and (b) S=0.76. 

 

3.5  CFAR CVD and performance analysis 

The theoretical expression of the probability of false alarm derived in 3.4.1 allows us to select an appropriate 

threshold for the CVD detector so that a desired Pfa value is achieved. However, it is apparent from eq.( 3.26 ) 

that this fixed threshold depends on both the values of noise variance 𝜎𝑛
2 and DNR. In some cases these 

parameters are easy to estimate and vary slowly in time, however the CVD still requires to adapt the fixed 

threshold accordingly. In some other conditions, the variations are faster and more difficult to track. In any case, 

it is quite useful to have a detector that does not require to change the threshold as the system conditions change. 

Therefore, we look for a modified version of the CVD scheme that maintains a constant false alarm rate (CFAR) 

independent on the values of 𝜎𝑛
2 and DNR. To obtain the desired CFAR characteristic, we aim at normalizing the 

CVD test statistic by an appropriate function of the received data that contains a similar dependency of the CVD 

on noise variance and DNR.  

We approach this problem in the following sections under two different assumptions, respectively availability 

of secondary data (Section 3.5.1) and absence of secondary data (Section 3.5.2). Likewise for the CVD detector 

firstly the decision statistic is derived and after a closed-form expression of the performance in terms of Pfa and Pd 
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is obtained and validated through Monte Carlo simulations. Finally in Section 3.5.3 the performance of the two 

CFAR CVDs are compared to that provided by the fixed threshold CVD  derived in the previous section.  

3.5.1  CFAR CVD with secondary data 

We first assume that a set of K target-free secondary data are available, namely K independent acquisitions of 

the same number of samples N under the same system conditions (i.e. sharing the same noise variance and DNR) 

as the primary data. For example, these sets of data can be relative to the K previous temporal frames preceding 

the frame under test, where no targets have been detected. 

Using these secondary data, 𝒛𝒌, for k=1, …, K that are N1 column vectors containing only the direct 

signal, 𝑠𝑑(𝑡), and the noise component, 𝑛(𝑡), defined in the Section 3.2, the normalized CVD test statistic 

considered is:  

𝜓0 =
𝒉𝑻𝑷⊥𝒛

√1
𝐾
∑ (𝒉𝑻𝑷⊥𝒛𝒌)

𝟐𝐾
𝑘=1

 

𝐻1
≷
𝐻0

  𝑇𝐶𝑉𝐷
′  ( 3.38 ) 

where 𝑇𝐶𝑉𝐷
′  is the threshold selected such that the Pfa equals a predetermined value. In the Figure 3.15 the 

CFAR CVD with secondary data block diagram is sketched. As apparent, the quantity 
1

𝐾
∑ (𝒉𝑻𝑷⊥𝒛𝒌)
𝐾
𝑘=1   is a 

zero mean value random variable under hypothesis H0, so that it cannot be used to normalize the decision statistic 

𝑞0 = 𝒉
𝑻𝑷⊥𝒛  defined in eq.( 3.14 ). However, the quantity 

1

𝐾
∑ (𝒉𝑻𝑷⊥𝒛𝒌)

𝟐𝐾
𝑘=1  has a non-zero mean value and is 

expected to share the same dependency on noise variance and DNR as 𝑞0 as it actually can be seen as an 

estimator of the variance of q0 . Thus, the normalization is expected to provide a test statistic that has a negligible 

variation with those parameters.   

 

Figure 3.15 CFAR CVD  with secondary data block diagram. 
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Now the test statistic in eq. ( 3.38 ) is examined under each hypothesis. Under hypothesis H0, using results in 

Section  3.4 and assuming that the Gaussian approximation  is valid for the PDF of both 𝑞0 and 𝒉𝑻𝑷⊥𝒛𝒌 (k=1, …, 

K), we notice that 𝜓0 has a Student’s T distribution with K degrees of freedom (dof), [48]: 

𝑝𝜓0 (
𝜓0

𝐻0
⁄ ) =

(1 +
𝜓0
2

𝐾
⁄ )

−
(𝐾+1)
2

√𝐾𝐵 (
1
2
,
𝐾
2
)

 
( 3.39 ) 

where 𝐵(𝑎, 𝑏) is beta function, [50].  

Figure 3.16 shows the test statistic, 𝜓0 histogram under hypothesis H0 for different values of  DNSR (see eq. ( 

3.5 )) obtained from Monte Carlo simulations with 107 independent trials based on the exact PDF for both 

reference scenarios considering an integration time equal to the main lobe. Also shown is the T-student PDF 

defined in the eq.  ( 3.39 ) that provides a good fit to the test statistic histogram. For both reference scenario K=16 

secondary data is considered. Therefore, the false alarm probability is obtained by integrating eq. ( 3.39 ) over the 

interval [𝑇𝐶𝑉𝐷
′ , ∞) yielding,[48]: 

𝑃𝑓𝑎 =
1

2
−
1

2
𝐼
𝑇𝐶𝑉𝐷
′ 2

𝐾+𝑇𝐶𝑉𝐷
′ 2

(
1

2
,
𝐾

2
) 

( 3.40 ) 

where 𝐼𝑥(𝑎, 𝑏) is the regularized incomplete beta function of order x, [50].  

From eq. ( 3.40 ) it is clear that no prior knowledge of any unknown parameters is required to set the decision 

threshold needed in order to achieve a given Pfa level.   

  

(a) (b) 

Figure 3.16 Histogram and PDF for different value of the DNSR of the test statistic, 𝜓0 for an observation time equal to 

the ML and (a) for S=0.085 and (b) for S=0.76. 

Figure 3.17 shows the Pfa of the CFAR CVD with K=16 secondary data versus the threshold 𝑇𝐶𝑉𝐷
′ , for 

different values of DNSR, as obtained from eq. ( 3.40 ) and from Monte Carlo simulations considering an 
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observation time equal to the main lobe. We note a close match between the simulated results and the 

approximated closed form expression of the Pfa. 

  

(a) (b) 

Figure 3.17 Simulated and theoretical Pfa of the CFAR CVD detector with secondary data for an observation time equal 

to ML and for (a) S=0.085 and (b) S=0.76. 

For both scenarios we observe that the CFAR property is ensured as the same value of Pfa (i.e. the same test 

statistic histogram, Figure 3.16) is obtained independently from the specific DNSR. The same results are obtained 

for long and short observation times (namely, 7L and 1/2ML) even here not reported. 

Under hypothesis H1, we notice that the numerator 𝒉𝑻𝑷⊥𝒛  and the variable 𝒉𝑻𝑷⊥𝒛𝒌, k=1,..,K,  at the 

denominator of eq. ( 3.38 ) have a different variance as the secondary data are assumed to be target free.  Let 

define the quantity 𝑅0 as square root of the ratio between the variance of the numerator (i.e the variance of 𝑞0 

under H1 as from eq.( 3.34 )) and the variance of  the variable 𝒉𝑻𝑷⊥𝒛𝒌 (i.e. the variance of 𝑞0 under H0 as from 

eq.( 3.28 )):  

𝑅0 = √
𝜎𝑞0
2 |

𝐻1

𝜎𝑞0
2 |

𝐻0

= √1 +
2𝐷𝑁𝑅

(1 + 2𝐷𝑁𝑅)
(|𝛾|2

∑ 𝜂𝑘
2|𝑠𝑡0𝑘|

2𝑁
𝑘=1

𝜀2
) + 2|𝛾|

∑ 𝜂𝑘
2ℎ𝑘

𝑁
𝑘=1

𝜀2
 ( 3.41 ) 

By scaling 𝜓0 by the ratio 𝑅0 and using the same approximate Gaussian assumption adopted under hypothesis H0 

to derive the PDF in eq. ( 3.39 ), the normalized statistic,�̂�0 = 𝜓0 𝑅0⁄   is nicely approximated by a non-central 

Student’s T distribution, [48], with K degrees of freedom:  

p�̂�0 (
�̂�0

H1
⁄ ) =

e−
𝜏𝐶𝑉𝐷
2

2
⁄

√πKΓ (
K
2
)
∑

(�̂�0𝜏𝐶𝑉𝐷)
r

r! K
r
2⁄

∞

r=0

 (1 +
�̂�0
2

K
)

−
K+r+1
2

2
r
2⁄ Γ (

K + r + 1

2
) ( 3.42 ) 

where𝜏𝐶𝐹𝐴𝑅−𝐶𝑉𝐷 is non centrality parameter of �̂�0 that depends on the mean value and variance of the decision 

statistic 𝑞0 (i.e the numerator of �̂�0) under hypothesis H1 defined respectively in eq. ( 3.33 ) and eq. ( 3.34 ): 
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𝜏𝐶𝑉𝐷 =
𝜇𝑞0|𝐻1

√𝜎𝑞0
2 |

𝐻0

=
𝐷𝑁𝑅 𝜀

√1 + 2𝐷𝑁𝑅
 
1

𝑅0
(|𝛾|2

∑ 𝜂𝑘|𝑠𝑡0𝑘|
2𝑁

𝑘=1

𝜀2
+ 2|𝛾|) ( 3.43 ) 

Figure 3.18 compare the test statistic histogram under hypothesis H1 obtained from Monte Carlo simulation with 

106 independent trials, and the PDF defined in the eq. ( 3.32 ) for two different values of DNR (see ( 3.6 )) and 

observation times (long, 7L and short, 1/2ML) when the target is in the far field area, S=0.085.  

  

(a) (b) 

Figure 3.18 Histogram and PDF of the normalized test statistic �̂�0 when S=0.085 and (a) for a long observation time,7L 

and (b) short observation time, 1/2ML. 

Figure 3.19 reports similar results for a shorter baseline, namely getting close to near field for a far field 

parameter S=0.76. For all cases is noted a good agreement between the simulated results and the PDF.  

  

(a) (b) 

Figure 3.19 Histogram and PDF of the normalized test statistic �̂�0 when S=0.76 and (a) for a long observation time,7L 

and (b) short observation time, 1/2ML. 
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For sake of simplicity by defining the cumulative distribution function, [48], as 𝑛𝑐𝑡_𝑐𝑑𝑓(𝑡, 𝑛, 𝑏) =

𝑃𝑟𝑜𝑏{𝑡′ < 𝑡} where 𝑡′ is a random variable following the generic noncentral -Student’s T distribution with 

𝑛 degrees of freedom and noncentrality parameter 𝑏, the detection probability of  �̂�0 is written as: 

𝑃𝑑 = 1 − 𝑛𝑐𝑡_𝑐𝑑𝑓 (
𝑇𝐶𝑉𝐷
′

𝑅0
, 𝐾, 𝜏𝐶𝑉𝐷)  ( 3.44 ) 

The closed form expression in eq. ( 3.44 ) for the detection probability is reported in Figure 3.20 as a function of 

the DNR and compared to the results of Monte Carlo simulations having set a Pfa=10-5 and again K=16. As 

apparent, the theoretical expression provides a good agreement with the simulated results. Hence eq.( 3.44 ) can 

be used to predict the detection performance of the CFAR CVD with secondary data. 

  

(a) (b) 

Figure 3.20 Simulated and theoretical 𝑃𝑑 of CFAR CVD detector with K=16 for a 𝑃𝑓𝑎 = 10
−5 when (a) S=0.085 and (b) 

S=0.76. 

3.5.2  CFAR CVD without secondary data 

In this section a fully adaptive detector based on the CVD is developed in the absence of secondary data and 

analytically characterized. By assuming that no secondary data are available, the normalization of the CVD test 

statistic, 𝑞0 must be obtained from the primary data set. To this purpose, we need to establish a suitable estimator 

of the variance of the decision statistic 𝑞0 based on  primary data only. Since primary data may contain the target 

signal, the adopted strategy has to include the removal of the corresponding contribution. This is obtained by 

considering the signal at the output of the DC removal stage, 𝒖 = 𝑷⊥𝒛 and projecting it into the subspace 

orthogonal to 𝜼 = 𝑷⊥𝒉 defined in Section 3.4.1. Once this second projection has been accomplished, the 

variance can be estimated and its square root used to normalize the test statistic, 𝑞0.  

Thus the decision rule can be written as: 
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𝜓1 =
𝒉𝑻𝑷⊥𝒛 √𝒉𝑻𝑷⊥𝒉⁄

√𝒛𝑻 (𝑷⊥ −
𝑷⊥𝒉𝒉𝑻𝑷⊥

𝒉𝑻𝑷⊥𝒉
)𝒛 𝑁 − 2⁄

 

𝐻1
≷
𝐻0

𝑇𝐶𝑉𝐷
′′  ( 3.45 ) 

In the Figure 3.21 the CFAR CVD without secondary data block diagram is sketched. As previously, the 

performance of the test statistic, 𝜓1 in terms of Pfa and Pd is derived and its CFAR behavior demonstrated.  

 

Figure 3.21 CFAR CVD without secondary data block diagram. 

Under hypothesis H0, we assume that the Gaussian approximation  is valid for the PDF of 𝑞0 and a Chi-square 

distribution with N-2 degrees of freedom is a good approximation for the PDF of 𝒛𝑻 (𝑷⊥ −
𝑷⊥𝒉𝒉𝑻𝑷⊥

𝒉𝑻𝑷⊥𝒉
) 𝒛 (i.e. can 

be seen as the sum of squares of N-2 independent Gaussian variate) being 𝒛 a Nx1 column vector. Under these 

assumptions, 𝜓1has a Student’s T distribution with N-2 degrees of freedom, [48]: 

𝑝𝜓1 (
𝜓1

𝐻0
⁄ ) =

(1 +
𝜓1
2

(𝑁 − 2)
)
−
(𝑁−2+1)

2

√𝑁 − 2𝐵 (
1
2
,
𝑁 − 2
2

)
 

( 3.46 ) 

Figure 3.22 compare the test statistic, 𝜓1 histogram under hypothesis H0 for different values of  DNSR 

obtained from Monte Carlo simulations with 107 independent trials based on the exact PDF with the T-student 

PDF defined in the eq. ( 3.46 ) for both reference scenarios considering an observation time equal to the main 

lobe. It is noted that the PDF  provides a good fit to the test statistic histogram for both reference scenarios. The 

same agreement is obtained for a long and short integration time even here not reported.  
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(a) (b) 

Figure 3.22 Histogram and PDF for different value of the DNSR of the test statistic, 𝜓1 for an observation time equal to 

the ML and (a) for S=0.085 and (b) for S=0.76. 

Hence, the Pfa obtained by integrating eq. ( 3.46 ) over the interval [𝑇𝐶𝑉𝐷
′′  ∞) is written as: 

𝑃𝑓𝑎 =
1

2
−
1

2
𝐼

𝑇𝐶𝑉𝐷
′′ 2

𝑁−2+𝑇𝐶𝑉𝐷
′′ 2

(
1

2
,
𝑁 − 2

2
) ( 3.47 ) 

 

  

(a) (b) 

Figure 3.23 Simulated and theoretical Pfa of the CFAR CVD detector without secondary data for an observation time 

equal to ML and for (a) S=0.085 and (b) S=0.76. 

For the same cases considered in Figure 3.17, Figure 3.23 compares the analytical expression of the Pfa in eq. 

( 3.47 ), and the simulated Pfa of the CFAR CVD without secondary data for different values of the DNSR.  The 

reported results show that, despite the absence of secondary data, the proposed detector ensures the CFAR 

property and also we note a good agreement between simulation results and the approximated closed form of the 

Pfa. 
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Under hypothesis H1, by proceeding in similar way to Section 3.5.1, the numerator and the denominator of the 

test statistic, 𝜓1 in eq. ( 3.45 ) have different variance. Let us define 𝑅1 as the square root of the ratio between the 

variance of the numerator (i.e. obtained normalizing the variance of 𝑞0under H1 in eq., ( 3.34 ) by 𝒉𝑻𝑷⊥𝒉 ) and 

the variance of the generic Gaussian variable that defines the Chi-square variate with N-2 dof at the denominator. 

In accordance with the property of the Chi-square distribution, [48], this variance can be obtained as the mean 

value of the Chi-square distributed variable divided by the number of dof, namely 

𝐸 {𝒛𝑻 (𝑷⊥ −
𝑷⊥𝒉𝒉𝑻𝑷⊥

𝒉𝑻𝑷⊥𝒉
) 𝒛} 𝑁 − 2⁄  where 𝐸{∙} is the expectation operator. Thus 𝑅1 is written as: 

𝑅1 = √

𝜎𝑞0
2 |

𝐻1
𝒉𝑻𝑷⊥𝒉⁄

𝐸 {𝒛𝑻 (𝑷⊥ −
𝑷⊥𝒉𝒉𝑻𝑷⊥

𝒉𝑻𝑷⊥𝒉
)𝒛} 𝑁 − 2⁄

 ( 3.48 ) 

After some simple manipulation it yields: 

𝑅1 = √

1+
2𝐷𝑁𝑅

(𝑁−2)(1+2𝐷𝑁𝑅)
(|𝛾|2

∑ 𝜂𝑘
2|𝑠𝑡0𝑘|

2𝑁
𝑘=1

𝜀2
)+2|𝛾|

∑ 𝜂𝑘
2ℎ𝑘

𝑁
𝑘=1

𝜀2

1+
2𝐷𝑁𝑅

(𝑁−2)(1+2𝐷𝑁𝑅)
[|𝛾|2((1−

1

𝑁
)∑ |𝑠𝑡0𝑘|

2𝑁
𝑘=1 −

∑ 𝜂𝑘
2|𝑠𝑡0𝑘|

2𝑁
𝑘=1

𝜀2
)+2|𝛾|((1−

1

𝑁
)∑ ℎ𝑘

𝑁
𝑘=1 −

∑ 𝜂𝑘
2ℎ𝑘

𝑁
𝑘=1

𝜀2
)]

  ( 3.49 ) 

Finally, the normalized test statistic with respect to the ratio 𝑅1, �̂�1 = 𝜓1 𝑅1⁄  can be approximated by a non-

central Student’s T-distribution with N-2 dof, [48] and the same non-centrality parameter 𝜏𝐶𝑉𝐷defined for CFAR 

CVD with secondary data in eq. ( 3.43 ). 

pψ1

(

 ψ̂1
H1
⁄

)

 =
e−

τ𝐶𝑉𝐷
2

2
⁄

√π(𝑁 − 2)Γ (
N − 2
2 )

 ∑
(ψ̂1𝜏𝐶𝑉𝐷)

r

r! (𝑁 − 2)
r
2⁄

∞

r=0

(1 +
ψ̂1
2

N − 2
)

−
N−2+r+1

2

2
r
2⁄ Γ (

N − 2 + r + 1

2
) ( 3.50 ) 

Figure 3.24 compare the test statistic histogram under hypothesis H1 obtained from Monte Carlo simulation 

and the PDF defined in the eq. ( 3.50 ) for two different values of DNR and observation times (long, 7L and 

short, 1/2ML) when the target is in the far field area, S=0.085.  

Figure 3.25 reports similar results for a shorter baseline, namely getting close to near field for a far field 

parameter S=0.76. For all cases as for the CFAR CVD with secondary data is noted a good agreement between 

the simulated results and the PDF.  

The detection probability in accordance with the cumulative distribution function previously defined in Section 

3.5.1 is written as: 

𝑃𝑑 = 1 − 𝑛𝑐𝑡_𝑐𝑑𝑓 (
𝑇𝐶𝑉𝐷
′′

𝑅1
, 𝑁 − 2, 𝜏𝐶𝑉𝐷) ( 3.51 ) 
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(a) (b) 

Figure 3.24 Histogram and PDF of the normalized test statistic �̂�1 when S=0.085 and (a) for a long observation time,7L 

and (b) short observation time, 1/2ML. 

  

(a) (b) 

Figure 3.25 Histogram and PDF of the normalized test statistic �̂�1 when S=0.76 and (a) for a long observation time,7L 

and (b) short observation time, 1/2ML. 

Figure 3.26 shows the comparison between the analytical and simulated Pd of the CFAR CVD without 

secondary data for both reference scenarios and a complete agreement between the analytical and simulated 

results is noted that validates the proposed theoretical performance investigation. 
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(a) (b) 

Figure 3.26 Simulated and theoretical 𝑃𝑑 of CVD CFAR detector without secondary data for a 𝑃𝑓𝑎 = 10
−5 when (a) 

S=0.085 and (b) S=0.76. 

3.5.1 CFAR CVD comparison 

By relying the theoretical performance of both CFAR CVD detectors with and without secondary data, the focus 

of this section is on the comparison of the performance with respect to the fixed threshold CVD in terms of 

probability of detection. 

Figure 3.27 compares the theoretical Pd as a function of the DNR of the three detectors when the target is in the 

far field area, S=0.085 and for three different observation times. Again K=16 is assumed for the CFAR CVD with 

secondary data. Figure 3.28 reports similar results for a target getting close to the near field, S=0.76.  

Some comments are in order. First, for the target in the deep far field (Figure 3.27) we observe that the CFAR 

CVD without secondary data presents performance close to that of the CVD with fixed threshold. In contrast, the 

CFAR CVD with K=16 experiences losses in the order of 3 dB to achieve the same detection performance. This 

can be explained by investigating the definition of decision statistic of CFAR CVD detector with and without 

secondary data in eq.( 3.38 ) and eq. ( 3.45 ) respectively. It is apparent that the variance estimator in eq. ( 3.45 ) 

(i.e.: the term at the denominator) uses N-2 data (N-2 degrees of freedom) for the variance estimation, as two 

orthogonal projections of the primary data are performed before averaging. For the CFAR CVD with secondary 

data, even though K N1 target-free vectors are considered, the variance estimator in eq. ( 3.38 ) (i.e. the term at 

the denominator) uses K data (K degrees of freedom) coinciding with the K outputs of the CVD detector applied 

to each of the K secondary vectors (see Figure 3.15). Since N-2>>K a lower fluctuation on the variance 

estimation is experienced by the CFAR CVD without secondary data and therefore a smaller threshold is needed 

to guarantee the same Pfa, thus improving detection performance. Obviously if K=N-2 the Pd of the CFAR CVD 

detector with secondary data is expected to converge to the Pd of the CFAR CVD without secondary data.  
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(a) (b) 

 
(c) 

Figure 3.27 Theoretical 𝑃𝑑 for a 𝑃𝑓𝑎 = 10
−5  of the CVD detector compared to the CFAR CVD detector with K=16 and 

CFAR CVD without secondary data when S=0.085 and for (a) long observation time, 7L, (b) main lobe, ML and (c) short 

observation time, 1/2ML. 

The above considerations also apply for the target in the border between the far and near field, namely S=0.76 

(Figure 3.28) with the difference that the Pd of the CFAR CVD without secondary data slightly outperforms the 

fixed threshold CVD for integration time smaller than 7L (Figure 3.28(b) and Figure 3.28 (c)). This behavior 

can be explained by recalling that an estimator of the noise power is used to normalize the decision statistic of the 

CFAR CVD detector (i.e. the denominator term in the eq. ( 3.45 )): such power changes when moving from 

hypothesis H0 (2𝜎𝑛
2|𝛼|2 ) to hypothesis H1 (mean noise power over the integration interval 2𝜎𝑛

2‖𝛼 + 𝛽𝒔𝒕𝟎‖
2/𝑁  ) 

and, due to use of primary data only, this change affects the normalization factor. Additionally the fixed threshold 

CVD could be written similarly to the CFAR CVD with a normalization factor equal to the square root of the 

noise variance under hypothesis H0. In the border between far and near field, when very short (short than 1/2ML)  

or very long integration times are involved, the power under H1 is higher than or almost equal to that under H0. In 

contrast, for intermediate values of the integration time (i.e. ML and 1/2ML), the reverse situation can occur. This 

particular situation implies that the decision threshold optimized to cope with the fluctuations of the estimator 
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when primary data are constituted by direct signal and noise (so that a desired Pfa is achieved) will face 

fluctuations in a region characterized by lower values when primary data include also the target contribution (H1). 

This causes  the very slight outperformance.  Obviously the disturbance variance changes from H0 to H1 also in 

the far field case but the considerable phase variation observed for all the values of the integration time (see 

Figure 3.4) prevents the occurrence of this unusual behavior. Concluding, we can state that both the CFAR CVD 

detectors provide performance close to the CVD with all parameters known. 

  

(a) (b) 

 
(c) 

Figure 3.28 Theoretical 𝑃𝑑 for a 𝑃𝑓𝑎 = 10
−5  of the CVD detector compared to the CFAR CVD detector with K=16 and 

CFAR CVD without secondary data when S=0.76 and for (a) long observation time, 7L, (b) main lobe, ML and (c) short 

observation time, 1/2ML. 

Summary 

In this chapter analytical expressions have been provided to fully characterize the detection performance of 

FSR radar based on  the CVD. Both Pfa and Pd have been accurately approximated and validated by comparison 

to Monte Carlo simulations. This allows us to design a FSR that guarantees assigned detection performance. 
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Moreover, two adaptive detection schemes have been proposed assuming: (i) the availability of  target free 

secondary data and (ii) that some form of secondary data has to be extracted from the individual snapshot. Their 

performance has been fully characterized with both analytical and simulated analysis for both detection and false 

alarm probability and the desired CFAR propriety was demonstrated. The comparison of the detection 

performance shows limited losses of the CFAR detectors with respect to the fixed threshold CVD. 
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O 

This chapter introduces innovative detection schemes for FSR based on the GLRT for both cases, where a fixed 

threshold can be used and where a fully adaptive CFAR scheme is desired. The detection performance of the 

newly proposed detectors is characterized analytically and compared to the performance of the CVD scheme 

introduced in the previous chapter. This shows that the new detectors always outperform the standard FSR 

detector. In most cases the improvement has an upper bound of 3 dB, but there are specific cases where the 

standard FSR detector shows significant losses, while the new GLRT schemes suffer a much smaller degradation. 

Finally, simplified equivalent SNR expressions are introduced that relate the GLRT detection performance to the 

main parameters describing the FSR observation geometry and the target size and motion. These expressions are 

shown to be useful for the design of effective FSR geometries that guarantee desired detection performance for 

specific targets. 

4.1 Introduction 

      ptimized detection schemes by exploiting the GLRT approach applied to the I & Q baseband components 

of the specific FSR signal model are devised. The forward scatter signal model exploited is the same introduced 

in Section 3.2 referring to a rectangular target large with respect to the wavelength and in the far field area of 

both transmitter and receiver. The performance of the obtained detectors is carefully investigated by providing a 

closed form characterization of the probabilities of false alarm and detection. This also provides analytical tools 

to predict the FSR detection performance of the new GLRT schemes as a function of the system parameters and 

of the target characteristics. The performance comparison of the newly derived detectors with the CVD and its 

CFAR version derived in the previous chapter shows that the GLRT schemes always outperform the CVD.      

By analyzing the GLRT schemes and their performance, we notice that under some conditions, they may 

experience performance losses related to a small number of available independent samples. This yields in turn a 

coarse estimate of the parameters used inside the detector, thus degrading performance in terms of both false 

alarm and detection probability.  Therefore, we derive a second set of GLRT detection schemes that also exploit 

secondary data that are target-free, but are assumed to share the same direct signal and noise power. We show 

that they further improve the performance especially in the cases where the CVD has its major losses. The 

obtained analytical performance expressions depend on equivalent SNR (Signal to Noise Ratio). By resorting to 

appropriate analytical approximations of the equivalent SNR, we propose simplified expressions that allow to 

easily relate the SNR to the main parameters encoding observation geometry, as well as target size and motion 

 Chapter 4                                                    

GLRT-based techniques and performance 

analysis 
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parameters. These measures are shown to be useful to design desired FSR operation geometries that are able to 

guarantee the desired detection performance against specified classes of targets.   

Therefore we can summarize that in this chapter the issue of moving target detection against Additive White 

Gaussian Noise under the assumption that the target follows a linear trajectory is addressed through: (i) the 

development  of advanced FSR detector schemes based on GLRT using both fixed threshold and CFAR 

threshold, (ii) by providing a performance analysis of the new detectors also in comparison with the standard 

scheme introduced in the Chapter 3 and (iii) by providing simplified equivalent SNR parameters which can be 

used for the design of effective FSR geometries. 

4.2  GLRT-based detectors and performance analysis 

In accordance with the Forward scatter received signal model introduced in Section 3.2, coherent detection 

strategies are derived based on the Maximum Likelihood criterion and under the assumption that the global target 

signature, 𝑠𝑡0(𝑡) define din eq. ( 3.3 ) of the rectangular target is known. Specifically, three GLRT-based 

detectors are derived indicated as: 

 GLRT-1 with 𝛺 = [∠𝛽]  

 GLRT-2 with 𝛺 = [𝛼 𝛽] and 

 GLRT-3 with 𝛺 = [𝛼 𝛽 𝜎𝑛
2] 

where the Ω vector collects the unknown parameters and then an analytical characterization of their performance 

is provided (Section 4.2.2). The consideration of a progressively increasing number of unknowns allows us to 

assess the impact on the performance of the different unknowns providing in this way a complete analysis. In 

particular we move from GLRT-1 detector which is an upper bound of any coherent detector in a FSR 

configuration to GLRT-3 detector which is independent on the noise power and the direct signal ensuring the 

constant false alarm rate condition.  

The FSR geometry taken under investigation is the same of the Figure 3.1 and the detection problem consists 

of testing the null-hypothesis H0, i.e. absence of the target signal (the received signal is the sum of the direct 

signal and the noise component assumed AWGN with variance 𝜎𝑛
2) versus the alternative hypothesis, H1, i.e. 

presence of the target signal as defined in the eq.  ( 3.7 ). 

4.2.1  GLRT-detectors 

To deal with the unknown parameters we resort to the generalized likelihood ratio approach deriving the test:   

𝑚𝑎𝑥
𝛺

𝑃𝒓 (
𝒓
𝐻1⁄ )

𝑚𝑎𝑥
𝛺

𝑃𝒓 (
𝒓
𝐻0⁄ )

𝐻1
≷
𝐻0

𝑇𝛬  ( 4.1 ) 
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where TΛ is the threshold and 𝑃𝒓 (
𝒓
𝐻0⁄ ) and 𝑃𝒓 (

𝒓
𝐻1⁄ ) are the PDF of the received signal under hypothesis H0 

and H1 respectively, (i.e. circular complex Gaussian distribution) defined in the eq. ( 3.8 ). 

4.2.1.1  GLRT-1: Target signal phase unknown 

The GLRT-1 provides an upper bound for the achievable detection performance being all signal parameters 

completely known, except for the target signal phase. The test statistic derived in Appendix C is: 

𝑥1 = ||
𝒔𝒕𝟎
𝐻 (𝒓 − 𝛼𝒔𝒅𝟎)

√𝒔𝒕𝟎
𝐻 𝒔𝒕𝟎𝜎𝑛

||
𝐻1
≷
𝐻0

 
(𝜎𝑛

2 𝑙𝑛 𝑇𝛬 + |𝛽|
2‖𝒔𝒕𝟎‖

2)

2|𝛽|√‖𝒔𝒕𝟎‖
2𝜎𝑛

= 𝑇𝐺𝐿𝑅𝑇1 ( 4.2 ) 

where (∙)𝐻 denotes the Hermitian operator, 𝑇𝐺𝐿𝑅𝑇1 is the new threshold to be set accordingly to the desired false 

alarm rate value, Pfa and the other signal parameters are defined in Section 3.2. We observe that GLRT-1 detector 

is equivalent to the cancellation of the direct contribution by simply subtracting it from the received signal 

followed by a filter matched to the global target signature, 𝑠𝑡0(𝑡). Then the absolute value of the output of this 

filter is compared to the detection threshold, TGLRT1 as shown in Figure 4.1. 

 

Figure 4.1 GLRT-1 detector block diagram. 

Based on the signal model of the Section 3.2, 𝒔𝒕𝟎
𝑯 (𝒓 − 𝛼𝒔𝒅𝟎) √𝒔𝒕𝟎

𝑯 𝒔𝒕𝟎𝜎𝑛⁄  is a circular complex Gaussian variate 

with zero-mean under hypothesis H0 and with mean value equal to β√𝐬𝐭𝟎
𝐇 𝐬𝐭𝟎 σn⁄  under the hypothesis H1 and unit 

variance under both hypothesis. Therefore, the test statistic 𝑥1 has a Rayleigh distribution under H0 and a Rice 

distribution under H1: 

{
 
 

 
 𝑃𝑥1 (

𝑥1
𝐻0
⁄ ) = 2𝑥1 𝑒

−𝑥1
2

𝑃𝑥1 (
𝑥1
𝐻1
⁄ ) = 2𝑥1  𝑒

−(𝑥1
2+
|𝛽|2‖𝒔𝒕𝟎‖

2

𝜎𝑛
2 )

𝐼0

(

 2𝑥1

|𝛽|√𝒔𝒕𝟎
𝐻 𝒔𝒕𝟎

𝜎𝑛
)

 
 ( 4.3 ) 

where 𝐼0(∙) is the modified Bessel function of the first kind with order zero, [50]. 

4.2.1.2  GLRT-2: Direct and target signal complex amplitudes unknown 

In this case it is assumed that only the noise power 𝜎𝑛
2  is known. The direct signal is unknown and also the 𝛽 

parameter as far as depend on 𝛼 (see Section 3.2). The test statistic is derived as (see Appendix C):  
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𝑥2 = ||
�̃�𝒕𝟎
𝑯 �̃�

√�̃�𝒕𝟎
𝑯 �̃�𝒕𝟎𝜎𝑛

||
𝐻1
≷
𝐻0

√𝑙𝑛 𝑇𝛬 = 𝑇𝐺𝐿𝑅𝑇2 ( 4.4 ) 

where �̃� = 𝑷𝒔𝒅
⊥ 𝒓 and �̃�𝒕𝟎 = 𝑷𝒔𝒅

⊥ 𝒔𝒕𝟎 denotes the projection of the received signal and of the global target signature 

respectively onto the subspace orthogonal to the direct signal. 𝑷𝒔𝒅
⊥ = 𝑰 −

𝒔𝒅𝟎𝒔𝒅𝟎
𝑯

‖𝒔𝒅𝟎‖
𝟐 is a NN symmetric and 

idempotent matrix representing the orthogonal projector onto the subspace of the direct signal, [47] and 𝒔𝒅𝟎 is a 

N1 column vector with all elements set to unity  (see eq. ( 3.7 )). We note that GLRT-2 detector is equivalent to 

the cancellation of the direct signal by projecting the received signal onto the subspace orthogonal to the direct 

component. The residual signal �̃� is then passed through the filter matched to �̃�𝐭𝟎, namely the global target 

signature projected onto the subspace orthogonal to the direct signal. Then the absolute value of the output is 

compared to the threshold TGLRT2 selected to guarantee the desired Pfa as shown in the Figure 4.2. 

 

Figure 4.2 GLRT-2 detector block diagram. 

Once more exploiting the proprieties of the Gaussian distribution of the received signal in eq. ( 3.8 ), 

�̃�𝒕𝟎
𝑯 �̃� √�̃�𝒕𝟎

𝑯 �̃�𝒕𝟎𝜎𝑛⁄  is still a circular complex Gaussian variate with zero-mean value under hypothesis H0 and mean 

value equal to 𝛽√�̃�𝒕𝟎
𝑯 �̃�𝒕𝟎 𝜎𝑛⁄  under hypothesis H1 and unit variance under both hypothesis. As previously, the test 

statistic 𝑥2 has a Rayleigh distribution under H0 and a Rice distribution under H1: 

{
 
 

 
 𝑃𝑥2 (

𝑥2
𝐻0
⁄ ) = 2𝑥2 𝑒

−𝑥2
2

𝑃𝑥2 (
𝑥2

𝐻1
⁄ ) = 2𝑥2 𝑒

−(𝑥2
2+
|𝛽|2‖�̃�𝒕𝟎‖

2

𝜎𝑛
2 )

𝐼0

(

 2𝑥2

|𝛽|√�̃�𝒕𝟎
𝐻 �̃�𝒕𝟎

𝜎𝑛
)

 
 ( 4.5 ) 

4.2.1.3  GLRT-3: All parameters unknown  

The aim now is to define a GLRT detector with the direct signal, the β parameter and the noise power, unknown, 

[51]. The test statistic of GLRT-3 detector is derived by maximizing the PDF in eq. ( 3.8 ) with respect to these 

parameters and is written as follows (see Appendix C): 
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𝑥3 = [
‖�̃�‖2

‖𝐏�̃�𝐭𝟎
⊥ �̃�‖

2]

𝑁
𝐻1
≷
𝐻0

𝑇𝛬 ( 4.6 ) 

𝑥3 = (𝑁 − 2)
‖𝑷�̃�𝒕𝟎�̃�‖

2

‖𝑷�̃�𝒕𝟎
⊥ �̃�‖

2

𝐻1
≷
𝐻0

(𝑁 − 2) (𝑇𝛬
1 𝑁⁄ − 1) = 𝑇𝐺𝐿𝑅𝑇3 ( 4.7 ) 

Two orthogonal projections of the received signal are performed: (i) first onto the subspace orthogonal to the 

direct signal, �̃� = 𝐏𝐬𝐝
⊥ 𝐫 and (ii) after onto the subspace orthogonal to �̃�𝐭𝟎,  𝐏�̃�𝐭𝟎

⊥ �̃� being 𝐏�̃�𝐭𝟎
⊥ = 𝐈 −

�̃�𝐭𝟎�̃�𝐭𝟎
𝐇

‖�̃�𝐭𝟎‖
𝟐   NN symmetric and idempotent matrix, [47]. Meanwhile, 𝑷�̃�𝒕𝟎 =

�̃�𝐭𝟎�̃�𝐭𝟎
𝐇

‖�̃�𝐭𝟎‖
𝟐 define the projector onto the 

subspace of the �̃�𝐭𝟎 which in turn is orthogonal to the subspace of the direct signal. TGLRT3 is the new decision 

threshold selected such that the Pfa equals an assigned value.  

 In  Figure 4.3  is sketched  the block diagram of the GLRT-3 detector in accordance with the test statistic 

defined in eq. ( 4.6 ). 

 

Figure 4.3 GLRT-3 detector block diagram. 

As proven in Appendix C it is possible to rewrite the test statistic, 𝑥3 as: 

𝑥3 =
𝑥2
2 2⁄

∑ |�̃�𝑘|
2𝑁−2

𝑘=1

2(𝑁 − 2)𝜎𝑛
2

𝐻1
≷
𝐻0

𝑇𝐺𝐿𝑅𝑇3 ( 4.8 ) 

This mean that the GLRT-3 detector is obtained by normalizing the squared of the GLRT-2 test statistic defined 

in eq. ( 4.4 ) with a suitable noise variance estimator based on the received signal orthogonally projected in order 

to remove the contribution of the direct and of the target signal. 

Therefore exploiting the definition of a non-central F-distribution, [51] the test statistic 𝑥3 under hypothesis H0 

has a central F-distribution with 2 and 2(N-2) degree of freedom and under hypothesis H1 has a non-central F-

distribution with the same dof as in the null-hypothesis and non-central parameter 𝜏𝐺𝐿𝑅𝑇−3 =
2|𝛽|2�̃�𝒕𝟎

𝑯 �̃�𝒕𝟎

𝜎𝑛
2  where in 

eq. ( 4.9 ), 𝐵(𝑥, 𝑦) denotes the beta function, [50]. 
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{
  
 

  
 𝑃𝑥3 (

𝑥3
𝐻0
⁄ ) =  

1

𝐵(𝑁 − 2,1)

𝑥3(𝑁 − 2)
𝑁−2

(𝑁 − 2 + 𝑥3)
𝑁−1

𝑃𝑥3 (
𝑥3

𝐻1
⁄ ) = ∑

𝑒−
𝜏𝐺𝐿𝑅𝑇−3
2

2 (
𝜏𝐺𝐿𝑅𝑇−3
2

2
⁄ )

𝑘

𝑥3
𝑘(𝑁 − 2)𝑁−2

𝑘! 𝐵(𝑁 − 2, 𝑘 + 1)(𝑁 − 2 + 𝑥3)
𝑁−1+𝑘

∞

𝑘=0

 ( 4.9 ) 

4.2.2 Performance analysis  

This section focuses on the analytical characterization of the performance of the GLRT-based detectors in 

terms of probability of false alarm and probability of detection.  Specifically the analytical expressions of the 𝑃𝑓𝑎 

as function of the decision threshold and of the Pd  as function of the target signal-to-noise power ratio (SNR) are 

derived using the PDFs introduced in Section 4.2.1.  In  Chapter 3  the correctness of the theoretical expression of 

the CVD and CFAR-CVD detectors needed to be validated as all our analytical formulations are obtained by 

approximating the exact PDFs of the test statistics, under both Pfa and Pd conditions. The approximations of the 

PDFs were carefully selected in order to allow us to obtain analytical expressions for the detection performance 

(Pfa and Pd ). For this reason also a comparison of the histograms of the test statistics obtained through Monte 

Carlo simulations based on the exact PDF with the derived approximated PDF expressions was shown. 

Meanwhile for the GLRT-based detectors the analytical formulations of the Pfa and of the Pd derived from the 

exact expressions of the PDF are verified by comparing them to simulated results without investigating the 

agreement between the analytical expressions of the PDFs and the simulated PDFs. 

The test statistic of GLRT-1 and GLRT-2 detectors under hypothesis H0 have a Rayleigh distribution (see eq.   

( 4.3 ) and eq. ( 4.5 )) and as a consequence the Pfa is written as: 

𝑃𝑓𝑎|𝐺𝐿𝑅𝑇𝑖
= 𝑒−𝑇𝐺𝐿𝑅𝑇𝑖 ( 4.10 ) 

where i=1,2.  

Under hypothesis H1 the test statistics have a Rice distribution (see eq. ( 4.3 ) and eq. ( 4.5 )), therefore the Pd is 

expressed by the Marcum function, 𝑄𝑀(∙) :  

𝑃𝑑|𝐺𝐿𝑅𝑇𝑖 = 𝑄𝑀 (√2𝑆𝑁𝑅𝐺𝐿𝑅𝑇𝑖  , √2 𝑙𝑛 𝑃𝑓𝑎|𝐺𝐿𝑅𝑇𝑖

−1
) ( 4.11 ) 

where 𝑆𝑁𝑅𝐺𝐿𝑅𝑇𝑖 is the target signal-to-noise power ratio of GLRT-i respectively defined as: 

𝑆𝑁𝑅𝐺𝐿𝑅𝑇1 = 
|𝛽|2𝒔𝒕𝟎

𝑯 𝒔𝒕𝟎

 𝜎𝑛
2  ( 4.12 ) 

𝑆𝑁𝑅𝐺𝐿𝑅𝑇2 =  
|𝛽|2�̃�𝒕𝟎

𝐻 �̃�𝒕𝟎

𝜎𝑛
2  ( 4.13 ) 

Recall that 𝛽𝒔𝒕𝟎 represents the signal scattered by the target and β�̃�𝐭𝟎 represents the received target signal 

projected onto the subspace orthogonal to the direct component. 
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For the GLRT-3 detector the 𝑃𝑓𝑎 and the 𝑃𝑑  are obtained from the cumulative F-distribution and the cumulative 

non-central F-distribution respectively,[52]: 

𝑃𝑓𝑎|𝐺𝐿𝑅𝑇3
= [

1

1 + 𝑇𝐺𝐿𝑅𝑇3 (𝑁 − 2)⁄
]
𝑁−2

 ( 4.14 ) 

𝑃𝑑|𝐺𝐿𝑅𝑇3 =  1 −∑
(
𝜏𝐺𝐿𝑅𝑇−3
2

2
)
𝑗

𝑒−
𝜏𝐺𝐿𝑅𝑇−3
2

2

𝑗!

∞

𝑗=0

 
𝐵(1 − 𝑃

𝑓𝑎|𝐺𝐿𝑅𝑇3

1
𝑁−2⁄

, 1 + 𝑗, 𝑁 − 2)

𝐵(1 + 𝑗, 𝑁 − 2)
 ( 4.15 ) 

where 𝐵(𝑥, 𝑎, 𝑏) is the incomplete beta function, [50]. From ( 4.14 ) it is clear that no prior knowledge of any 

unknown parameters is required to set the decision threshold needed in order to achieve a given Pfa level thus 

assuring the achievement of the CFAR property. It is also noted that the non-central parameter 𝜏𝐺𝐿𝑅𝑇−3 depends 

on the 𝑆𝑁𝑅𝐺𝐿𝑅𝑇2 , 𝜏𝐺𝐿𝑅𝑇−3 = 2𝑆𝑁𝑅𝐺𝐿𝑅𝑇2.  

The theoretical performances of the three GLRT-based detectors are compared in the following to results from 

Monte-Carlo simulations. The simulated results are obtained by generating 107 (105) independent realizations of 

the received signal under hypothesis H0 (under hypothesis H1) in agreement with the model described in Section  

3.2 and by processing such samples according to the detection techniques reported above. The same reference 

scenarios of the Section 3.3 are taken as references in this analysis, namely: when the target is in the deep far 

field area, S=0.085 and when the target is approaching the transition between the near and the far field, S=0.76 

(see  Table 3.1 for the System and target parameters). For both scenarios we assume the target crosses the 

baseline perpendicularly in the middle.   

Figure 4.4 compares the theoretical expressions of the Pfa of the GLRT-1 and GLRT-2 detectors defined in the 

eq. ( 4.10 ) as function of the threshold, 𝑇𝐺𝐿𝑅𝑇𝑖 for i=1,2 with the simulated results for a long and a short 

observation time when the target in the deep far field area, S=0.085. Meanwhile Figure 4.5 resports similar 

results for a target getting close to the near field, S=0.76. 

  

(a) (b) 

Figure 4.4 Simulated and theoretical Pfa of GLRT-1 and GLRT-2 detectors as function of  𝑇𝐺𝐿𝑅𝑇𝑖 for i=1,2 when S=0.085 

and for (a) long observation time, 7L and (b) for a short observation time, 1/2ML. 



  GLRT-based detection techniques and performance analysis 

66 

  

(a) (b) 

Figure 4.5 Simulated and theoretical Pfa of  GLRT-1 and GLRT-2 detectors as function of  𝑇𝐺𝐿𝑅𝑇𝑖 for i=1,2 when S=0.76 

and for (a) long observation time, 7L and (b) for a short observation time, 1/2ML. 

It is apparent that for both scenarios the simulated results are in agreement with the theoretical expressions of 

the Pfa.  

Figure 4.6 compare the theoretical expression of the Pfa of the CFAR coherent detector (GLRT-3) with the 

simulated results for short and long observation time for both reference scenarios (i.e. S=0.085, sub-figure (a) and 

S=0.76 sub-figure (b)). 

  

(a) (b) 

Figure 4.6 Simulated and theoretical Pfa of GLRT-3detector as function of  𝑇𝐺𝐿𝑅𝑇3 (a) for  S=0.085, 7L and (b) for S=0.76. 

Once more a perfect agreement is achieved. Furthermore, as expected for a long integration time a lower 

fluctuation of on the variance estimation is experienced by the CFAR detector and therefore a smaller threshold is 

needed to guarantee the same Pfa.  

As the detection performance of the coherent detection techniques does not depend on the receiver bandwidth, 

B the probability of detection is evaluated as a function of the DNSR (Direct signal to Noise Spectral Density 
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ratio) defined in eq.  ( 3.5 ). The results of the Pd in the following are achieved having set a Pfa = 10
−5. In 

general the comparison of the performance of different detectors is carried out assessing the losses which are 

defined as the incremental 𝐷𝑁𝑆𝑅 necessary to achieve the same performance, in our case  𝑃𝑓𝑎 = 10
−5 and 

𝑃𝑑 = 0.9. 

Figure 4.7 shows the theoretical and simulated results of the Pd of the three GLRT detectors when the target is 

in the deep far field, S=0.085 for three observation times as defined in Table 3.1, i.e.  long observation time (7L, 

blue curve in Figure 3.4), only the main lobe (ML, red curve in Figure 3.4) and a small observation time (1/2ML, 

green curve in Figure 3.4). It is apparent that the simulated results are in perfect agreement with the results from 

the theoretical analysis.  

Likewise, Figure 4.8 compares the closed form expression of the Pd of the three GLRT detectors as function of 

the DNSR to the results of Monte Carlo simulations when the target is approaching the near field, S=0.76: again 

an excellent agreement is observed. 

  

(a) (b) 

 
(c) 

Figure 4.7 Theoretical and simulated 𝑃𝑑 for a 𝑃𝑓𝑎 = 10
−5 when S=0.085 (a) for a long observation time,7L , (b) only 

main lobe, ML and (b) for a short observation,1/2 ML. 
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(a) (b) 

 
(c) 

Figure 4.8 Theoretical and simulated 𝑃𝑑 for a 𝑃𝑓𝑎 = 10
−5 when S=0.76 (a) for a long observation time,7L , (b) only main 

lobe, ML and (b) for a short observation,1/2 ML 

It is noted that when the target is in the far field area (Figure 4.7) the performance of GLRT-2 with direct 

signal unknown and of GLRT-3 with a CFAR behavior are close to the optimal detector GLRT-1 even for small 

observation time (i.e. 1/2ML, Figure 4.7 (c)). This is because the target is in the deep far field area; namely the 

target is well separated from the direct component assumed constant even for short observation time due to fast 

variation of its Doppler signature, as it is shown in Figure 3.4 (b).   

Also, from Figure 4.8 we note that the GLRT-2 and GLRT-3 detectors present performance close to that of the 

optimal detector (GLRT-1) when a long integration time (i.e. 7L) is processed and losses in the order of 3dB for 

an integration time equal to the main lobe. In contrast, differently from the deep far field condition, they need a 

considerably higher DNSR (i.e. 7 dB) to obtain the same performance of the GLRT-1 when short integration time 

(i.e. 1/2ML) is involved. This can be easily explained by observing that the target signature shows less Doppler 

variation when the target is closer to the near field region (see Figure 3.5).While the optimum detector GLRT-1 

perfectly removes the direct signal without affecting the target contribution, GLRT-2 and GLRT-3 detectors for 
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small integration time intervals may delete the target signal as it is approximately constant and therefore similar 

to the direct signal. The results also demonstrate that the GLRT-3 detector that ensures the CFAR condition 

presents performance close to the GLRT-2 detector. 

4.3  Performance comparison with CVD and CFAR CVD 

In the previous Chapter we have provided analytical closed-form expressions for the detection performance of 

the CVD and CFAR CVD scheme. Despite this is widely used, [10],[8] and is considered to provide generally 

good detection performance, it is interesting to assess how far their performance are from the coherent strategies 

based on the GLRT approach previously developed. 

The theoretical Pd of the CVD defined in the eq. ( 3.35 ) is compared to the Pd achieved by means of the 

coherent detector GLRT-2 (see eq. ( 4.11 )) in Figure 4.9 for the same reference scenarios, i.e. for a target in the 

deep far field area, S=0.085, and for a target getting close to the near field, S=0.76. Both detectors GLRT-2 and 

CVD estimate the unknown direct signal in the acquisition window and remove its contribution through an 

orthogonal projector; the GLRT-2 through the projection of the received signal meanwhile the CVD through the 

projection of the signal at the output of the square law detector.  

It can be observed that for a target in the deep far field area (Figure 4.9 (a)) the CVD presents limited losses 

(i.e. around 3dB) with respect to the GLRT-2 even for a small integration time, 1/2ML (continuous black and red 

curves). This is because, as already explained above, the signature of a target in the deep far field shows a fast 

variation of its Doppler signature ( Figure 3.4 (b)) so that it is easy to separate it from the direct component, even 

by the CVD that only operates on the signal squared modulus. This corresponds to the use of a DC removal filter 

having a notch considerably narrower of the target Doppler bandwidth, thus successfully allowing the 

discrimination between the direct and the target signal. 

  

(a) (b) 

Figure 4.9 Theoretical Pd of the GLRT-2 detector and CVD detector for different observation times and for a Pfa=10-5 (a) 

when the target is in the deep far field area, S=0.085b and (b) when the target is getting close to the near field, S=0.76. 
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In contrast, when the target is getting close to the near field ( Figure 4.9 (b)), the CVD presents higher losses 

(in the order of 7 dB) with respect to the GLRT-2 detector for processing intervals greater than the main lobe. 

Moving to small observation intervals, the CVD approaches the GLRT-2 detector with limited losses (i.e. 

around 3 dB). This is because for long observation times the GLRT-2 can still separate the target component 

from the direct component even though less Doppler variation is appreciated with respect to the deep far field 

scenario (see Figure 3.5 (b)) whereas the squared modulus used by the CVD might strongly affect the target 

signature making the separation between the two components unfeasible.  

Meanwhile the GLRT-3 and CFAR CVD without secondary data detectors estimate and remove the unknown 

direct signal and the unknown noise power. As previously, the GLRT-3 detector removes the direct signal 

through the projection of the received signal and the CFAR CVD without secondary data through the projection 

of the signal at the output of the square law detector. Both detectors establish suitable noise variance estimators 

through two orthogonal projection in order to remove also the target signal contribution: the GLRT-3 detector 

through the projection of �̃� into the subspace orthogonal of the target signal and  the CFAR CVD without 

secondary data through the projection of the signal at the output of the DC removal filter into the subspace 

orthogonal to 𝜼 = 𝑷⊥𝒉 (i.e. the impulse response of the matched filter orthogonal projected onto the subspace of 

the DC component) as defined in Section 3.4.1. 

Figure 4.10 compares the theoretical Pd of the CFAR CVD without secondary data defined in Section 3.5.2 and 

the GLRT-3 detector for the same reference scenarios and the above considerations still apply.  

  

(a) (b) 

Figure 4.10 Theoretical Pd of the GLRT-3 detector and CFAR CVD without secondary data detector for different 

observation times and for a Pfa=10-5 (a) when the target is in the deep far field area, S=0.085b and (b) when the target is 

getting close to the near field, S=0.76. 
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4.4 GLRT-based detectors with secondary data and performance 

analysis 

As considerable losses are experienced from the sub-optimum GLRT detectors (i.e. GLRT-2 and GLRT-3) for 

short observation time, 1/2ML and when the target approaches the transition between far and near field, we 

extend them considering the possibility to have a set of secondary data assumed to be target free. The new 

detectors with secondary data are derived in Section 4.4.1 and the corresponding detection performance analyzed 

in Section 4.4.2. 

4.4.1  GLRT-detectors with secondary data  

The secondary data are assumed to contain direct signal and noise component, independent of and identically 

distributed as the primary data under H0: 

𝒓′ = 𝛼𝒔𝒅𝟎
′ + 𝒏′ ( 4.16 ) 

where 𝒓′ and 𝒏′ are 𝑀1 column vectors collecting the samples respectively of the secondary data and of the 

noise contribution in the secondary data meanwhile 𝒔𝒅𝟎
′  is M1 column vector with all elements set to unity. 

Under this assumption the PDF of the secondary data is the same of the primary data under the null-hypothesis, 

circular complex Gaussian distribution with mean vector equal to 𝛼𝒔𝒅𝟎
′  and variance 𝜎𝑛

2.  

The joint PDF of all the input data under the hypothesis H0 and H1 are given by the product as follows: 

𝑃𝒓 (
𝒓
𝐻0⁄ )𝑃𝒓′ (

𝒓′
𝐻0
⁄ ) =

1

𝜋𝑁+𝑀𝜎𝑛
2(𝑁+𝑀)

𝑒
−
1

𝜎𝑛
2 [‖𝒓−𝛼𝒔𝒅𝟎‖

2+‖𝒓′−𝛼𝒔𝒅𝟎
′ ‖

2
]
 ( 4.17 ) 

𝑃𝒓 (
𝒓
𝐻1⁄ )𝑃𝒓′ (

𝒓′
𝐻0
⁄ ) =

1

𝜋𝑁+𝑀𝜎𝑛
2(𝑁+𝑀)

𝑒
−
1

𝜎𝑛
2 [‖𝒓−𝛼𝒔𝒅𝟎−𝛽𝒔𝒕𝟎‖

2+‖𝒓′−𝛼𝒔𝒅𝟎
′ ‖

2
]
 ( 4.18 ) 

As previously, the GRLT in agreement with the eq. ( 4.17 ) and eq. ( 4.18 ) now is written as: 

𝑚𝑎𝑥
𝛺

{𝑃𝒓 (
𝒓
𝐻1⁄ )𝑃𝒓′ (

𝒓′
𝐻0
⁄ )}

𝑚𝑎𝑥
𝛺

{𝑃𝒓 (
𝒓
𝐻0⁄ ) 𝑃𝒓′ (

𝒓′
𝐻0
⁄ )}

𝐻1
≷
𝐻0

𝑇𝛬
′ ( 4.19 ) 

where, as before, 𝛺 = [𝛼 𝛽 ] for GLRT-2 detector and 𝛺 = [𝛼 𝛽 𝜎𝑛
2] for GLRT-3 detector, meanwhile 𝑇𝛬

′ is the 

threshold.  

4.4.1.1   GLRT-2 with secondary data 

The derivation of the test statistic obtained by substituting the Maximum Likelihood Estimation (MLE) of the 

unknown parameters under the two hypotheses in eq.( 4.17 ) and eq. ( 4.18 ) is reported in the Appendix D and is 

defined as: 
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𝑥2
′ =

|

|
𝒔𝒕𝟎
𝑯 [𝒓 −

𝒔𝒅𝟎 (𝒔𝒅𝟎
𝑯 𝒓 + 𝒔𝒅𝟎

′ 𝑯
𝒓′)

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2 ]

𝜎𝑛√(‖𝒔𝒕𝟎‖
2 −

|𝒔𝒅𝟎
𝑯 𝒔𝒕𝟎|

2

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2) 
|

| 𝐻1
≷
𝐻0

 √𝑙𝑛 𝑇𝛬
′ = 𝑇𝐺𝐿𝑅𝑇2

′  ( 4.20 ) 

It is clear from eq.( 4.20 ) that in absence of secondary data the test statistic in eq. ( 4.4 ) is obtained.  

 

Figure 4.11 GLRT-2 with secondary data block diagram. 

Aiming at a practical application of the proposed scheme, the secondary data are selected from the previous 

and successive temporal frames with respect to the frame under test (i.e. representative of the primary data, 𝒓 ) as 

shown in the Figure 4.11: in such secondary frames, 𝒓′ the target signal component is weak and therefore could 

be considered negligible. The direct signal is removed from the primary data after its estimation exploiting both 

the primary and the secondary data followed by a filter matched to the global target signature, 𝑠𝑡0(𝑡). 

Exploiting the proprieties of the Gaussian distribution it is easy to verify that the term inside the linear 

envelope detector in eq. ( 4.20 ) is a complex Gaussian variate with zero-mean value under hypothesis H0 and 

mean value equal to 
𝛽

 𝜎𝑛
√(‖𝒔𝒕𝟎‖

2 − |𝒔𝒅𝟎
𝑯 𝒔𝒕𝟎|

2
(‖𝒔𝒅𝟎‖

2 + ‖𝒔𝒅𝟎
′ ‖

2
)⁄ ) under hypothesis H1 and unit variance 

under both hypothesis. Therefore the test statistic 𝑥2
′  has a Rayleigh distribution under hypothesis H0 and a Rice 

distribution under hypothesis H1: 

{
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′
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′ 2
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′
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 𝐼0 (2𝑥2
′ |𝛽|

 𝜎𝑛
√‖𝒔𝒕𝟎‖

2 −
|𝒔𝒅𝟎
𝑯 𝒔𝒕𝟎|

2

‖𝒔𝒅𝟎‖
2+‖𝒔𝒅𝟎

′ ‖
2)

  ( 4.21) 

4.4.1.2  GLRT-3 with secondary data 

As above, the GLRT-3 with secondary data is derived by maximizing the likelihood function in eq. ( 4.19 ) 

with respect to the unknown parameters and by exploiting the definition of the non-central F distribution, [51] 

(see Appendix D): 
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𝑥3
′ =

𝑥2
′ 2 2⁄

𝑤
(2(N + M − 2))⁄

𝐻1
≷
𝐻0

(N + M − 2)(1 −
1

𝑇𝛬
′1 (𝑁+𝑀)⁄

) = 𝑇𝐺𝐿𝑅𝑇3
′  ( 4.22 ) 

where 𝑥2
′  is defined in eq. ( 4.22 ) and w is defined in eq. (D. 7) of the Appendix D.  

 

Figure 4.12 GLRT-3 with secondary data block diagram. 

As previously for the GLRT-2 detector, the secondary data, 𝒓′are selected from the previous and successive 

temporal frames with respect to the frame under test, representative of the primary data, 𝒓 and both are exploited  

for the estimation and the cancellation of the direct signal and after for the estimation of the noise variance, as 

shown in Figure 4.12. The test statistic, 𝑥3
′  under the null-hypothesis has central F-distribution with 2 and 

2(N+M-2) dof  and under the alternative hypothesis a non-central F-distribution  with the same dof and with a 

non-central parameter equal to 𝜏𝐺𝐿𝑅𝑇−3
′ =

2|𝛽|2

𝜎𝑛
2 (‖𝒔𝒕𝟎‖
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2

‖𝒔𝒅𝟎‖
2+‖𝒔𝒅𝟎

′ ‖
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𝑘=0

 ( 4.23 ) 

4.4.2  Performance analysis 

Firstly, the analytical characterization of the performance of the GLRT-based detectors with secondary data is 

provided and then its correctness is verified through comparison with Monte Carlo simulation. The achievable 

performance in terms of Pd is also compared with their corresponding GLRT–based detectors without secondary 

data. In accordance with the PDFs of 𝑥2
′  in eq. ( 4.21) the Pfa and the Pd are:  

𝑃𝑓𝑎|𝐺𝐿𝑅𝑇−𝑆𝐷 2
= 𝑒−𝑇𝐺𝐿𝑅𝑇2

′
 ( 4.24 ) 

𝑃𝑑|𝐺𝐿𝑅𝑇−𝑆𝐷 3 = 𝑄𝑀 (√
2|𝛽|2

𝜎𝑛
2 (‖𝒔𝒕𝟎‖
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|𝒔𝒅𝟎
𝑯 𝒔𝒕𝟎|

2

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2) , √2 𝑙𝑛 (

1

 𝑃𝑓𝑎|𝐺𝐿𝑅𝑇−𝑆𝐷 2

)) ( 4.25 ) 
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where 𝑇𝐺𝐿𝑅𝑇2
′  is defined in the previous section.  

For the GLRT-3 detector with secondary data the 𝑃𝑓𝑎 and the 𝑃𝑑  are obtained from the cumulative F-

distribution and the cumulative non-central F-distribution respectively, [52] as previously: 

𝑃𝑓𝑎|𝐺𝐿𝑅𝑇−𝑆𝐷 3
= [

1

1 + 𝑇𝐺𝐿𝑅𝑇3
′ (𝑁 +𝑀 − 2)⁄

]

𝑁+𝑀−2

 ( 4.26 ) 

 𝑃𝑑|𝐺𝐿𝑅𝑇−𝑆𝐷 3 =  1 −∑

(
𝜏𝐺𝐿𝑅𝑇−3
′ 2

2
)

𝑗

𝑒−
𝜏𝐺𝐿𝑅𝑇−3
′ 2

2

𝑗!

∞

𝑗=0

𝐵(1 − 𝑃
𝑓𝑎|𝐺𝐿𝑅𝑇−𝑆𝐷 3

1
𝑁+𝑀−2⁄

, 1 + 𝑗, 𝑁 + 𝑀 − 2)

𝐵(1 + 𝑗, 𝑁 + 𝑀 − 2)
 

( 4.27 ) 

where 𝜏𝐺𝐿𝑅𝑇−3
′  is the non-central parameter defined in the previous section. Again from eq. ( 4.26 ) it is clear that 

no priori knowledge of any unknown parameters is required to set the decision threshold needed in order to 

guarantee a given Pfa level, thus ensuring the CFAR condition. 

For the case when the target approaches the transition between far and near field, S=0.76 and for short 

observation time, 1/2ML Figure 4.13 shows the simulated and the theoretical Pfa of the GLRT-2 detector with 

secondary data as function of the decision threshold, 𝑇𝐺𝐿𝑅𝑇2
′  considering M=N (sub-figure (a)) and M=4N (sub-

figure (b)). We note a perfect agreement between the simulated and the theoretical expressions of the Pfa.  

Meanwhile the Figure 4.14 compare the simulated and the theoretical Pfa of the GLRT-3  detector with the 

secondary data for the same reference scenario of the Figure 4.13. Once more we note that by increasing the 

number of the secondary data for the estimation of the unknown direct signal and noise power a smaller threshold 

is needed to guarantee the same Pfa.   

  

(a) (b) 

Figure 4.13 Simulated and theoretical Pfa of GLRT-2 detector with secondary data as function of  𝑇𝐺𝐿𝑅𝑇2
′  for a target 

getting close to the near field, S=0.76 and small observation time, 1/2ML having set (a)M=N and (b)=M=4N. 
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Figure 4.14 Simulated and theoretical Pfa of GLRT-3detector with secondary data for M=N and M=4N as function of 

𝑇𝐺𝐿𝑅𝑇3
′  for a target getting close to the near field, S=0.76 and small observation time, 1/2ML. 

Figure 4.15 (a) and Figure 4.15 (b) show the theoretical and the simulated Pd of GLRT-2 and GLRT-3 with 

secondary data respectively, for different M values. In accordance with the consideration above increasing the 

size of the secondary data less fluctuation on the estimation of the unknown parameters is expected and 

consequently a smaller decision threshold is needed and a higher detection probability is obtained. Consistently, 

from Figure 4.15 we note that the Pd converges to the Pd of the optimum detector, GLRT-1, moving from M=N/2 

to M=4N where N is the dimension of the primary data. The small differences between the simulated and the 

theoretical results for M=N/2 are due to the presence of the target component in the secondary data differently 

from the theoretical assumption of target free as mentioned in Section 4.4.1.1 and in Section . 

  

(a) (b) 

Figure 4.15 Simulated and theoretical 𝑃𝑑 when S=0.76 and for small observation time, 1/2ML (a) of GLRT-2 detector 

with secondary compared to GLRT-1 and GLRT-2 detector and (b) of GLRT-3 detector with secondary data compared to 

GLRT-1 and GLRT-3 detector. 
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4.5  Signal to noise ratio analysis and design criteria for FSR system 

The aim of the developed techniques is to increase the output signal-to-noise ratio to improve detection. In 

particular, the Pd obtained from GLRT-1 detector with all parameters known and from GLRT-2 detector with 

direct component unknown is function only of the SNR if Pfa is fixed (see with SNR specified in eq. ( 4.12 ) and 

eq. ( 4.13 )). 

Therefore, this section focuses on the derivation of a closed form expression of 𝑆𝑁𝑅𝐺𝐿𝑅𝑇1 representing the 

optimal SNR achievable by means of a coherent technique and of 𝑆𝑁𝑅𝐺𝐿𝑅𝑇2 achievable from a non-optimum 

coherent technique (Section 4.5.1). Moreover exploiting the theoretical SNR aspects of radar system design are 

addressed in  Section 4.5.2.  

4.5.1 Theoretical closed form expression of SNR 

To simplify the analysis, the global target signature defined in Section 3.2 is approximated using Taylor series 

expansion. More precisely, the phase signature in eq. ( 3.2 ) is obtained by considering a Taylor expansion at 

second-order around the crossing-time instant: 

𝜙(𝑡) =
𝜋

𝜆
𝑣𝑥
2 [

1

(𝐿 − 𝑦0)
+
1

𝑦0
] 𝑡2 ( 4.28 ) 

Recall that by referring to the system geometry in Figure 3.1, 𝑦0 is the distance target-RX and 𝐿 − 𝑦0 is the 

distance target-TX when the target is on the baseline and 𝑣𝑥 is the cross-baseline velocity.  

It is clear from eq. ( 4.28 ) that the Doppler rate is given by: 

�̈� =
1

2𝜋

𝑑2𝜙(𝑡)

𝑑𝑡2
=
𝑣𝑥
2

𝜆
(

1

𝐿 − 𝑦0
+
1

𝑦0
) ( 4.29 ) 

and is function of the cross-baseline velocity, 𝑣𝑥 and of the baseline crossing point, 𝑦0.  

On the other hand for the pattern signature defined in eq. ( 3.1 ), is approximated using a Taylor expansion of 

order zero for the scale term and of the first-order for the argument of the sinc function: 

𝜎𝑓𝑠(𝑡) =
𝐿2

𝑦0(𝐿 − 𝑦0)

𝑣𝑥
𝑣
𝑠𝑖𝑛𝑐 [

𝑙ℎ
𝜆

𝑣𝑥
2

𝑣
(

1

𝐿 − 𝑦0
+
1

𝑦0
) 𝑡] ( 4.30 ) 

Lastly the global target signature is expressed as follows: 

𝑠𝑡0(𝑡) = 𝑠0
0𝑒𝑗𝜋�̈�𝑡

2
𝑠𝑖𝑛𝑐(�̈�𝜖𝑡) ( 4.31 ) 

where 𝑠0
0 =

𝐿2

𝑦0(𝐿−𝑦0)

𝑣𝑥

𝑣
 and 𝜖 =

𝑙ℎ

𝑣
. 

From eq. ( 4.31 ) we note that the main lobe width of the target signature that specifies the main contribution of 

the energy of the received target signal depends on the target electrical size and target motion parameters: 
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 𝜃 = �̈�𝜖 ( 4.32 ) 

The optimum SNR in eq. ( 4.12 ) obtained integrating coherently the received signal after the cancellation of 

the direct signal can be written as function of DNSR (see eq. ( 3.5 )) as in eq. ( 4.33 )where T is the integration 

time. 

𝑆𝑁𝑅𝐺𝐿𝑅𝑇1 = 𝐷𝑁𝑆𝑅 
|𝛽|2

|𝛼|2
∫ |𝑠𝑡0(𝑡)|

2𝑑𝑡

𝑇
2⁄

−𝑇 2⁄

 ( 4.33 ) 

Moreover from eq. ( 4.33 ) we note that the term that multiplies the DNSR is the target signal-to-direct signal 

power ratio, 𝑆𝐷𝑅𝐺𝐿𝑅𝑇1. The closed form expression of the 𝑆𝑁𝑅𝐺𝐿𝑅𝑇1 is derived by solving the integral in eq. ( 

4.33 ) as (see Appendix E):  

𝑆𝑁𝑅𝐺𝐿𝑅𝑇1 = 2𝐷𝑁𝑆𝑅
𝑙𝑣
2𝑙ℎ
2

𝜆2𝐿2
𝑠0
02

𝜋�̈�𝜐
[𝑆𝑖(𝜋�̈�𝜖𝑇) −

1

𝜋�̈�𝜐

𝑠𝑖𝑛2(𝜋�̈�𝜖 𝑇 2⁄ )

 𝑇 2⁄
] ( 4.34 ) 

where 𝑆𝑖(∙) and 𝐶𝑖(∙) are the Sine and the Cosine integral,[50]. Although we integrate coherently N 

measurements of the received signal the SNR is not improved by a factor of N due to the pattern signature.  

Likewise for the GLRT-2, starting from eq. ( 4.13 ) and exploiting the definition of the orthogonal projector 

onto the subspace of the direct component, 𝑷𝒔𝒅
⊥  in Section 4.2.1.2 we have: 

𝑆𝑁𝑅𝐺𝐿𝑅𝑇2 =   𝐷𝑁𝑆𝑅
|𝛽|2

|𝛼|2
{∫ |𝑠𝑡0(𝑡)|

2𝑑𝑡

𝑇
2⁄

−𝑇 2⁄

−
1

𝑇
|∫ 𝑠𝑡0(𝑡)

𝑇
2⁄

−𝑇 2⁄

𝑑𝑡|

2

} ( 4.35 ) 

As previously, the term that multiplies the DNSR in eq. ( 4.35 ) is the target signal-to-direct signal power ratio, 

𝑆𝐷𝑅𝐺𝐿𝑅𝑇2. After some approximations of the pattern signature detailed in Appendix E, the 𝑆𝑁𝑅𝐺𝐿𝑅𝑇2  is defined 

as in eq.( 4.36 ), where m = 1 …  P − 1 is the number of the side lobes of the pattern signature and C(∙) and S(∙) 

are the Fresnel Cosine and Fresnel Sine function respectively, , being 𝑋𝑖 for i=1,…,9 defined in eq. (E. 7) of 

Appendix E. 

𝑆𝑁𝑅𝐺𝐿𝑅𝑇2  = 𝑆𝑁𝑅𝐺𝐿𝑅𝑇1    − 𝐷𝑁𝑆𝑅
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( 4.36 ) 
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4.5.2 Design criteria for FSR system 

Taking advantage of the closed form expressions of the signal-to-noise ratio, aspects of system design are 

discussed. More precisely, it is noted that the SNR defined in eq.( 4.34 ) and in eq. ( 4.36 ) depends on the system 

parameters (baseline and integration time) and on the target parameters (namely size and motion described by 

velocity, baseline crossing point, 𝑦0 and baseline crossing angle, 𝜑 as we assume the target follows a linear 

trajectory). 

To better understand the effect of system and target parameters, a separate analysis is proposed. Particularly in 

the following the reported results refer to the DNSR needed to ensure an established performance in terms of Pfa 

and Pd. Specifically, in our case a 𝑃𝑓𝑎 = 10
−5 and a 𝑃𝑑 = 0.9 is considered corresponding to a SNR value equal 

to 12.54 dB, (see eq.( 4.11 )). 

4.5.2.1   SNR against system geometry parameters 

Firstly the DNSR as function of the baseline length is investigated. We consider the same carrier frequency and 

target size of the previous sections (see Target related parameters in Table I): the target moves with  𝑣 = 36 𝑚/𝑠 

and crosses the baseline perpendicularly in the middle. The integration time is set to T=2.3 sec. Obtained results 

are shown in Figure 4.16 with upper axis representing the far field condition parameter.  

 

Figure 4.16 DNSR necessary to ensure a 𝑃𝑓𝑎 = 10
−5 and a 𝑃𝑑 = 0.9 as function of the baseline. 

It is clear that for a long baseline the received target signal is weaker and a greater DNSR is necessary to 

achieve the same performance. In fact in our case study for a baseline equal to 𝐿 = 5 𝑘𝑚, 10 dB more are needed 

than for a baseline of 𝐿 = 0.5 𝑘𝑚 in order to obtain the same performance. In addition in agreement with results in 

Section 4.2.2 were the performance in terms of Pd of the different GLRT detectors were compared, for the long 

integration time involved both detectors GLRT-1 and GLRT-2 provide the same performance. 

Performance as a function of the integration (observation) time is investigated in Figure 4.17 showing the 

output SNR for different DNSR values for the case of L=5 km considering the same rectangular target with the 

same motion parameters defined in Table I. The interval of T values considered in , T=[0, 25] sec, corresponds to 
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an angular interval 𝛥𝛺 = [0°, 20°]. From the figure we again observe that for a long integration time both 

detectors give the same performance; in contrast for a short observation time GLRT-1 outperforms GLRT-2. 

Moreover it appears that for a fixed DNSR the SNR of both detectors exhibits an asymptotic trend maintaining 

an almost constant SNR when increasing the observation time (i.e. including more side lobes of the target 

pattern). This behavior can be easily explained by recalling that the main contribution from the target is specified 

by the main lobe of the pattern signature.  

 

Figure 4.17 SNR achievable from GLRT-1 and GLRT-2 detectors as function of the obsrvation time T for different values 

of DNSR. 

This asymptotic value is derived from the expression of the optimum SNR achievable from coherent detection 

techniques (i.e.  𝑆𝑁𝑅𝐺𝐿𝑅𝑇1) considering an infinite integration time ( 𝑇 → ∞ ). From eq. ( 4.34 ) recalling that for 

𝑇 → ∞, we have 𝑆𝑖(∞) = 𝜋 2⁄  and 𝑠𝑖𝑛𝑐2(∞) → 0, the asymptotic expression of the SNR is obtained as follows: 

𝑆𝑁𝑅∞
𝑜𝑝𝑡

= 𝑙𝑖𝑚
𝑇→∞

 𝑆𝑁𝑅𝐺𝐿𝑅𝑇1 = 𝐷𝑁𝑆𝑅
𝑙𝑣
2𝑙ℎ
𝜆𝑣

(
1

𝐿 − 𝑦0
+
1

𝑦0
) ( 4.37 ) 

The 𝑆𝑁𝑅∞
𝑜𝑝𝑡

 in eq. ( 4.37 ) highlights the dependency of the SNR on the carrier frequency, on the baseline 

length and on the DNSR. It also shows the higher sensitivity to the vertical dimension of the target with respect to 

the horizontal one, as shown in [8]. In addition we note the dependence on the velocity of the target and on the 

baseline crossing point, 𝑦0 but not on the baseline crossing angle, 𝜑. These aspects will be analyzed in detail in 

the following.  

4.5.2.2  SNR against target related parameters 

The impact of the target related parameters is now investigated, starting from the motion parameters.  

Figure 4.18 shows the DNSR as function of the baseline crossing point , 𝑦0  for the same case study of the 

Figure 4.17 (the target crosses the baseline perpendicularly) assuming a long integration time set to T = 15 sec. 

The interval of values of the baseline crossing point is selected to guarantee the fulfillment of the far field 

condition for both transmitter and receiver. As apparent a greater DNSR is necessary to obtain the same 
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performance when the target crosses the baseline in the middle. The asymptotic expression of the SNR in eq. ( 

4.37 ) leads at the same result since it is quite clear that the SNR∞
opt

 reaches the minimum when 𝑦0 = 𝐿 2⁄  

(𝑅𝑇 = 𝑅𝑅 = 𝐿 2)⁄ . 

 

Figure 4.18 DNSR necessary to ensure a 𝑃𝑓𝑎 = 10
−5 and a 𝑃𝑑 = 0.9 as function of the baseline crossing point. 

The impact on the performance of the baseline crossing angle is investigated in Figure 4.19 showing the DNSR 

of GLRT-1 and GLRT-2 detector needed to obtain a 𝑆𝑁𝑅 = 12.54 𝑑𝐵 as function of 𝜑 for a long, T = 15 sec 

(Figure 4.19 (a)), and a short, T = 1 sec (Figure 4.19  (b)), integration time for the same case study of Figure 

4.17. 

  

(a) (b) 

Figure 4.19 DNSR necessary to ensure a 𝑃𝑓𝑎 = 10
−5 and a 𝑃𝑑 = 0.9 as function of the baseline crossing angle (a) for a 

long integration time, T=15 sec and (b) for short integration time, T=1 sec. 

As previously observed from the asymptotic expression of the SNR in eq. ( 4.37 ) we note that for a long 

integration time, Figure 4.19 (a), for both detectors the DNSR needed to obtain the desired performance does not 

depend on the baseline crossing angle as limited losses (in the order of 0.1 dB) are experienced between the case 

of 𝜑 = 60 ° (−60°) and 𝜑 = 0 ° (i.e. target trajectory perpendicular to the baseline). 
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In contrast, for short integration time, Figure 4.19 (b), a greater DNSR is necessary in the case of non-

perpendicular crossing baseline for both detectors. For example when 𝜑 = 60 ° (−60°) around 5 dB more are 

necessary with respect to 𝜑 = 0 ° to maintain the same performance.  

This different behavior can be explained on the basis of the following observations: 

 the effective aperture of the target is the projection of the horizontal dimension along the axis normal to 

the baseline, 𝑙ℎ 𝑐𝑜𝑠 𝜑, thus resulting in a main lobe lower by a factor equal to 𝑐𝑜𝑠 𝜑 and wider by a factor 

1/𝑐𝑜𝑠 𝜑. 

 the effective cross-baseline velocity of the target, 𝑣𝑥 = 𝑣 𝑐𝑜𝑠 𝜑, results in a target with a lower 𝑣𝑥 

component when 𝜑 ≠ 0° thus further widening the mainlobe as a function of time by a factor 1/𝑐𝑜𝑠 𝜑. 

Both effects are clearly visible in Figure 4.20 showing the amplitude pattern for the cases 𝜑 = 0 ° and  𝜑 ≠

0 °.  

 

Figure 4.20 Pattern signature for baseline crossing angle 𝜑 = 0° and 𝜑 = 60° of a target size 2.5 x 1.5 m crossing the 

baseline at midpoint for different integration times. 

When a long integration time is exploited (blue curve in Figure 4.20) the loss on the peak value is compensated 

by the widening of the main lobe independently from the 𝜑  value thus providing the same performance ( Figure 

4.19 (a)). In contrast this compensation effect does not occur for a short integration time (green curve in Figure 

4.20) thus resulting in  a lower DNSR is needed for 𝜑 = 0° with respect to 𝜑 ≠ 0° to achieve the same 

performance.  

Concerning target velocity, it is apparent from the SNR in eq. ( 4.37 ) that better performance is obtained for a 

slowly mover as shown in the Figure 4.21 (a) again for the same case study of Figure 4.17 with T = 15 𝑠.  

An assessment with respect to the target dimensions is reported in Figure 4.21 (b) showing the DNSR of both 

detectors as function of the horizontal dimension,  𝑙ℎ (vertical dimension,  𝑙𝑣 ) for a fixed vertical dimension, 𝑙𝑣 =

2 𝑚 (horizontal dimension,  𝑙ℎ = 2 𝑚) being the other parameters as in Figure 4.17. 
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(a) (b) 

Figure 4.21 DNSR necessary to ensure a 𝑃𝑓𝑎 = 10
−5 and a 𝑃𝑑 = 0.9 (a) as function of the velocity for a perpendicular 

and midpoint crossing baseline and (b) as function of the target dimension. 

It is apparent that for the same target area, 𝐴 = 𝑙𝑣𝑙ℎ, for 𝑙ℎ = 2 𝑚 (see blue curve in Figure 4.21 (b)) and 

𝑙𝑣 > 𝑙ℎ a greater DNSR is needed to achieve the same performance with respect to the case of 𝑙𝑣 = 2 𝑚 (see 

green curve in Figure 4.21 (b)) and 𝑙ℎ > 𝑙𝑣 .Likewise it is noted that for 𝑙ℎ = 2 𝑚 and 𝑙𝑣 < 𝑙ℎ a lower DNSR is 

needed with respect to 𝑙𝑣 = 2 𝑚 and 𝑙ℎ < 𝑙𝑣 .Hence, the results demonstrates the higher sensitivity to the vertical 

dimension of the target with respect to its horizontal dimension, in agreement with the asymptotic expression 

𝑆𝑁𝑅∞
𝑜𝑝𝑡

 in eq. ( 4.37 ).  

In addition, denoting with 𝜅 ∈ (0: 1) the baseline crossing parameter, hence 𝑦0 = 𝜅𝐿 and 𝐿 − 𝑦0 = (1 − 𝜅)𝐿, 

and with 𝜐 = 𝑙𝑣 𝑙ℎ⁄  the shape parameter of a rectangular target, eq. ( 4.37 ) can be rewritten as: 

𝑆𝑁𝑅∞
𝑜𝑝𝑡

= 𝐷𝑁𝑆𝑅
𝐴
3
2⁄ 𝜐

1
2⁄

𝜆𝑣
(

1

𝜅(1 − 𝜅)𝐿
) ( 4.38 ) 

From the above, target area compared to the baseline length expressed in km is defined as a function of the 

velocity compared to the carrier frequency expressed in GHz and of the baseline crossing point parameter and 

shape parameter as follows:  

√𝐴|
𝑚

𝐿|𝑘𝑚
= √

𝑆𝑁𝑅∞
𝑜𝑝𝑡
 

𝑎2
𝑁0
⁄ 𝑐

1

√𝜐
𝜅(1 − 𝜅)

3

  √
𝑣|𝑚 𝑠⁄

𝑓|𝐺𝐻𝑧

3

 ( 4.39 ) 

Figure 4.22 (a) and Figure 4.22 (b) show the minimum √𝐴|
𝑚
𝐿|𝑘𝑚⁄  required to achieve 𝑆𝑁𝑅∞

𝑜𝑝𝑡
= 12.54 𝑑𝐵 as 

function of 𝑣|𝑚 𝑠⁄ 𝑓|𝐺𝐻𝑧⁄  for different shape factors 𝜐 when 𝜅 = 0.5 and for different baseline crossing point 

parameters 𝜅 considering a target with 𝜐 = 1/2, respectively. In both analyses different values of 𝑎
2

𝑁0
⁄  have 

been considered.  
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(a) (b) 

Figure 4.22  
√𝐴|𝑚

𝐿|𝑘𝑚
 as function of 

𝑣|𝑚 𝑠⁄

𝑓|𝐺𝐻𝑧
 (a) for a target crossing the baseline in the middle for different value of shape 

parameter 𝜐 and (b) for a target with a shape parameter 𝜐 = 1/2 and different baseline crossing points, 𝜅. 

The following observations apply: (i) for a fixed baseline and target area if the target moves with a low speed a 

lower carrier frequency (i.e. a greater wavelength) must be considered in order to achieve the same performance 

and (ii) for a specific carrier frequency and target velocity if the target has larger dimensions we need a long 

baseline to guarantee the same performance.  

This implies that if we aim at detecting large targets moving with low speed (i.e. ship), for a fixed baseline a 

smaller carrier frequency must be chosen in order to obtain a desirable Pfa and Pd. Conversely if we are interested 

in the detection of small/medium targets moving with high speed (i.e. stealth aircraft) for a fixed baseline a 

greater carrier frequency has to be preferred. Similarly above results could be used to design the baseline length 

once the carrier frequency has been fixed. In addition, with reference to the shape factor and to the baseline 

crossing point apply the same considerations previously mentioned, namely better performance are obtained for 

greater shape parameter and when the target does not cross the baseline in the middle. 

Summary 

In this chapter we have derived new, fully adaptive GLRT schemes to perform CFAR target detection with 

FSR by starting from the I & Q baseband components. The new schemes are shown to provide detection 

performance improved with respect to the CVD and CFAR CVD presented in Chapter 3 by an amount ranging 

from a minimum of 3 dB when the target is in the deep far field area up to 10 dB when the target is getting close 

to the near field. Moreover,  a new set of GLRT schemes obtained by exploiting a set of secondary data assumed 

target free shows a non-negligible further improvement over the previous adaptive GLRT schemes (namely 

GLRT-2 and GLRT-3), when the operation conditions get close to the near field transition point.  

The analytical performance obtained for the GLRT schemes, also allowed to derive equivalent SNR 

expressions, appropriately simplified by approximations, that relate the detection performance to the main FSR 

parameters describing geometry, target size and target motion. This allowed us to investigate the effect of the 

individual parameters on the global detection performance.   
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T 

This chapter focuses on the use of a Forward Scatter Radar System for the estimation of the kinematic 

parameters of targets following a linear trajectory:  particularly both single baseline (one transmitter and one 

receiver) and dual baseline (one transmitter and two separate receivers) systems are considered. First, based on 

the Crystal Video scheme introduced in Chapter 3 a two-dimensional filter bank approach is proposed with the 

generic impulse response depending on the unknown target electrical size and target trajectory thus allowing the 

estimate of the following target signal parameters: Doppler rate, baseline crossing time and main lobe width of 

the pattern signature. Then taking advantage of the estimated signal parameters and exploiting some a priori 

knowledge, the cross-baseline velocity is estimated in the single baseline configuration. Meanwhile the dual 

baseline configuration ensures the possibility to estimate two parameters without a priori knowledge: the cross-

baseline velocity and the baseline crossing point. The performance of the proposed technique is investigated from 

a theoretical point of view in terms of accuracy. The achievable accuracy is also compared to the Cramer Rao 

Lower Bound (CRLB) that establishes the minimum achievable variance of any unbiased estimator. Finally 

simplified closed-form expressions of the CRLB, relating the accuracy to the main parameters describing the FSR 

geometry and the target, are derived.  

5.1  Introduction 

    he target signature extracted by the Crystal Video based scheme (see Chapter 3 ) it is useful not only to 

perform target detection but also for motion parameters estimation by investigating the Doppler signature 

carrying out the kinematic information. The forward scatter signal model considered is the same introduced in 

Section 3.2, referring to a rectangular target with size large with respect to the wavelength and moving in the far 

field area of both transmitter and receiver. 

In particular following, the line in [10] and [8] introduced in Section 2.6, we derive a two-dimensional bank of 

filters matched to the Doppler rate and to the main lobe width of the pattern signature. To support  practical 

applications, a two-step processing is proposed: in the first step a rough estimate of the Doppler rate is obtained 

by applying the Radon transform to the spectrogram of the acquired signal while in the second step the bank is 

exploited to refine the Doppler rate estimation provided by the previous step and also to provide an estimation of 

the baseline crossing instant and main lobe width of the target pattern signature. Obviously this greatly reduces 

 Chapter 5                                                   

Motion parameters estimation and 

performance analysis 
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the range of Doppler rate values to be investigated by the bank thus reducing the required computational load. To 

assess the performance on the estimation of the target parameters of the proposed technique the CRLB as a 

universally accepted tool is derived and used for comparison. The Cramer Rao Bound (CRB) provides the lower 

limit on the mean square error achievable by an unbiased estimator of the target signal parameters and, therefore, 

provides a fundamental performance bound on the system’s accuracy.  

To estimate the kinematic parameters of moving targets we take into account the dependence of these 

parameters on the target signal parameters estimated by the bank.  Especially for a single baseline configuration 

the extraction of the Doppler rate is exploited. Such information combined with a priori knowledge on the 

baseline crossing point allows to estimate the cross-baseline velocity. Moreover, we consider the possibility to 

estimate also the baseline crossing point  by means of a dual receive antenna without a priori knowledge on other 

target parameters. The latter is achieved by separately processing the signals acquired by the two receivers by 

means of two 2D matched filters and exploiting the extraction of the Doppler rate and of the baseline crossing 

instants.    

The performance of the kinematic parameters estimation for both FSR configurations taken under investigation 

is theoretically evaluated for different target trajectories and under different signal to noise conditions in terms of 

expected accuracy through Monte Carlo simulation. The latter is compared with the corresponding CRLB. 

Therefore we can summarize that this chapter addresses the issue of the motion parameters estimation of a 

moving target under the assumption that follows a linear trajectory and its corresponding signal is embedded in 

White Gaussian Noise through: (i) the development of a two-dimensional bank of filters based on the Crystal 

Video scheme for the target signature extraction and (ii) by providing a performance analysis in terms of the 

accuracy through Monte Carlo simulations and closed-from expressions of the CRLB for both single and dual 

baseline FSR configuration. 

5.2  Signal parameter estimation technique  

In Chapter 3 it was shown that the target time domain signature, in our case embedded in the noise component 

and the direct signal, may be extracted from a square-law detector followed by a DC removal filter (see Figure 

3.3). In particular in Section 3.3 we showed that the DC removal filter performed through a orthogonal projection 

of the square law signal, 𝑧(𝑡) (see eq. ( 3.10 )) onto the subspace orthogonal to the DC component perfectly 

removes the direct component: 𝒖 = 𝑷⊥𝒛. As the noise and the target-scattered signal are much smaller than the 

direct signal, the squared envelope of these two terms was neglected. Therefore, the surviving signal after the DC 

removal filter was approximated as the sum of two components: 𝒖 ≅ 𝒔𝒖 + 𝒔𝒏  representative of the new useful 

signal, 𝒔𝒖  given by the mixed term between the direct and the scattered target signal (see eq. ( 3.11 ) ) and of the 

new noise component, 𝒔𝒏 that is still zero mean white Gaussian noise. Moreover it was shown that the impulse 

response of the matched filter defined in eq. ( 3.13 ) depends on the FS pattern signature and the Doppler 

signature which in turn depend on the target electrical size and target trajectory that are a priori unknown. This 
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also means that targets with different dimension, different velocity and different baseline crossing angle and 

crossing point have different signatures.  

5.2.1 Two-dimensional filter bank approach 

To address this issue a two dimensional bank of matched filters is considered: aiming to simplify the analysis 

the global target signature, 𝑠𝑡0(𝑡) is approximated using Taylor series expansion as derived in Section 4.5.1. In 

particular it  is considered a Taylor series expansion of bistatic distance at second order around crossing-time 

instant for the approximation of the phase signature as in eq. ( 4.28 ) and a Taylor series expansion at zero order 

for the scale term of the pattern signature and at first order for the sinc function as in eq. ( 4.30 ). Some aspects 

related to the phase error approximation are discussed in the Section 5.3. 

Hence, by substituting eq. ( 4.28 ) and eq. ( 4.30 ) into eq. ( 3.13 ) and disregarding possible scale parameters it 

is clear that the impulse response of the matched filter in the CVD scheme is function of the Doppler rate defined 

in eq. ( 4.29 ) and of the main lobe width defined in eq.( 4.32 ): 

ℎ(𝑡) = 𝑠𝑖𝑛𝑐( 𝜃𝑡) 𝑠𝑖𝑛(𝜋�̈�𝑡2) ( 5.1 ) 

  Since both Doppler rate and main lobe width are a priori unknown a two-dimensional filter bank is designed: 

ℎ�̈�,𝜃(𝑡) = 𝜅𝑠𝑖𝑛𝑐( 𝜃𝑡) 𝑠𝑖𝑛(𝜋�̈�𝑡
2) ( 5.2 ) 

being 𝜅 = 1 √∫ ℎ
�̈�,𝜃
2 (𝑡)𝑑𝑡

𝑇 2⁄

−𝑇 2⁄
⁄ . The subscripts �̈�, 𝜃 are used to indicate that the impulse response is function 

of both Doppler rate and main lobe width. 

In order to limit the computational load required by the bank and to support practical applications a two-step 

processing is proposed (see Figure 5.1): (i) in the first step a preliminary rough estimation of the Doppler rate, �̃̈� 

is obtained through the Radon transform applied to the spectrogram and (ii) in the second step the bank is 

exploited to refine the estimation of the Doppler rate and to estimate the main lobe width and the baseline 

crossing instant.  

 

Figure 5.1 Two-dimensional filter bank block diagram. 
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Firstly, the signal at the output of the DC removal filter is analyzed for the estimation of the Doppler rate 

through a time-frequency analysis such as the Short Time Fourier Transform (STFT). The STFT approaches the 

problem of determining when a particular frequency occurs by partitioning the signal into short segments and 

then applying a weighting function to the signal within each segment, prior to evaluating the Fourier transform, 

and is given by: 

𝑆𝑢(𝑡, 𝑓) = ∫ 𝑤(𝜏 − 𝑡)𝑢(𝜏)
+∞

−∞

𝑒−𝑗2𝜋𝑓𝑐𝜏𝑑𝜏 ( 5.3 ) 

where 𝑤(𝜏) is the analysis window centered at time 𝑡 with duration 𝑇𝑤. With the STFT a linear phase term is 

compensated which should be sufficient for short enough time window. The  possibility to estimate the target 

velocity with the STFT for a target in FSR configuration, assuming a priori information on baseline crossing 

angle and baseline crossing point, has been shown in [21] and [34].  

Since the STFT is a complex-value in general, we used the so called spectrogram that is the squared magnitude 

of the short-time Fourier transform, |𝑆𝑢(𝑡, 𝑓)|
2. The Radon transform (RT), 𝑅𝑇𝑆𝑢(Θ𝑟 , x𝑟) is then applied to 

|𝑆𝑢(𝑡, 𝑓)|
2 and a preliminary rough estimate of the target Doppler rate �̃̈� is obtained from the absolute maximum 

observed on the Radon plane: 

�̃̈� = − cot(Θ𝑟𝑚𝑎𝑥)
Δ𝑓

Δ𝑡
 ( 5.4 ) 

where 𝛥𝑓, 𝛥𝑡 are the Doppler frequency spacing and time spacing, respectively.  

This greatly reduces the range of Doppler rate values to be investigated by the bank in the second step thus 

limiting the required computational load. The impulse response in eq. ( 5.2 ) is firstly defined by considering 

different values of the Doppler rate in the range: �̈� = [�̃̈�  − Δ�̈�𝑚𝑎𝑥1: 𝛿�̈�: �̃̈� + Δ�̈�𝑚𝑎𝑥2] where Δ�̈�𝑚𝑎𝑥1  and 

Δ�̈�𝑚𝑎𝑥2  are the maximum offsets from the estimated Doppler rate from RT and 𝛿�̈� is the Doppler rate step. As a 

rule of thumb the Doppler rate step may be chosen assuming π/4 as the maximum tolerable phase error.  

Then some a priori information on the expected ranges of the target velocity, 𝑣′and target size,( 𝑙ℎ
′ , 𝑙𝑣

′ ) taken 

under investigation (i.e. large target moving with low speed, as ship or small/medium targets moving with high 

speed, as stealth aircraft or UAVs etc.)  is needed to set the initial value of the main lobe width, �̃� = �̃̈�
𝑙ℎ
′

𝑣′
  in order 

to define the range values of the main lobe width to be investigated by the bank.   

As previously, let define with 𝜽 = [�̃� − Δ𝜃𝑚𝑎𝑥1: 𝛿𝜃: �̃� + Δ𝜃𝑚𝑎𝑥2] the range values of the main lobe width 

where Δ𝜃𝑚𝑎𝑥1 and Δ𝜃𝑚𝑎𝑥2 are the maximum offsets from the initial value, �̃�, and 𝛿𝜃 is the main lobe width step. 

In this work the step size of the main lobe width is set in order to guarantee that the energy loss is not more than 

10% .  

After the full construction of the impulse response in eq. ( 5.2 ) as shown in Figure 5.2 , the cross-correlation of 

the signal at the output of the DC removal filter with the impulse response of each filter is performed: 
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𝜒�̈�,𝜃(𝑡) = ∫ 𝑢(𝜏)ℎ�̈�,𝜃(𝑡 − 𝜏)𝑑𝜏
𝑇 2⁄

−𝑇 2⁄

 ( 5.5 ) 

 

 

Figure 5.2 Full construction of the impulse response. 

We define the cost function 𝛥(�̈�, 𝜃) = max𝑡 𝜒�̈�,𝜃(𝑡). Finally the estimated Doppler rate and main lobe width, 

(�̂̈�, 𝜃), corresponds to the matched filter providing the highest output and the baseline crossing instant �̂�0 is 

estimated as the instant in correspondence to the highest peak of the signal at the output of the matched filter with 

impulse response ℎ
�̂̈�,�̂�
(𝑡): 

{
(�̂̈�, 𝜃) = max

�̈�,𝜃
𝛥(�̈�, 𝜃)

�̂�0 = max
𝑡
𝜒
�̂̈�,�̂�

(𝑡)
 ( 5.6 ) 

5.2.2 Performance evaluations 

In this sub-section the performance of the proposed technique is assessed and discussed for different target 

trajectories. A reference scenario similar to that introduced in Section 3.3 with the target in the deep far field is 

here considered for an observation time of T=3.24 sec and four different cases characterized by different baseline 

crossing points e baseline crossing angles.  Table 5.1 summarize the main system and target parameters of the 

reference scenario.  

Table 5.1 System parameters and target related parameters of the reference scenario. 

System parameters  

Carrier frequency 𝑓𝑐 = 4.612𝐺𝐻𝑧 
(𝜆 = 6.5 𝑐𝑚) 

Baseline L=4500 m 

Observation time T=3.24 sec 

Target related parameters 

 

Target size 𝑙ℎ = 2.5 𝑚 (𝑙ℎ 𝜆⁄ ≈ 38) 
𝑙𝑣 = 1.5 𝑚 (𝑙𝑣 𝜆⁄ ≈ 23) 

Velocity 𝑣 = 36 𝑚/𝑠 
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Table 5.2 reports the main parameters of the different case studies showing that the fixed observation time 

corresponds to different angular intervals from which the target is viewed as depend on the baseline crossing 

angle, 𝛥𝛺 = 2𝑡𝑎𝑛−1(𝑣𝑥𝑇/𝐿). Moreover the fulfillment of the far field condition is guaranteed  for all the case 

studies and is evaluated considering the effective aperture of the rectangular target as 𝑆 = 2𝑙ℎ
2𝑐𝑜𝑠2𝜑 𝜆𝑅⁄   where 

𝑅 = 𝑚𝑖𝑛 {𝑦0, 𝐿 − 𝑦0}.   

Table 5.2 Case studies parameters. 

Case study Baseline 

crossing angle 

Baseline crossing 

point 

Far field parameter Observation angle 

(A) 𝜑 = 0° y0 = L 2⁄  S=0.085 𝛥𝛺 = 2.97° 
(B) 𝜑 = 45° y0 = L 2⁄  S=0.043 𝛥𝛺 = 2.10° 
(C) 𝜑 = 0° y0 = L 4⁄  S=0.17 𝛥𝛺 = 2.97° 
(D) 𝜑 = 45° y0 = L 4⁄  S=0.086 𝛥𝛺 = 2.10° 

Figure 5.3 shows the received signal after the DC removal filter for all the different target trajectories of Table 

5.1 in noise free condition. In all cases we assume the target crossing the baseline at time 𝑡0 = 0.  

 

Figure 5.3 Received signal after DC removal for different target trajectories as defined in Table 5.1. 

Focusing on the first step of the proposed approach, a Hamming window for the estimation of the STFT equal 

to 𝑇𝑤=0.5 s is considered. Figure 5.4 shows the spectrograms (normalized with respect to their maximum values) 

of the case study (A) and (B). Meanwhile Figure 5.5 shows their respective Radon transform. Figure 5.6 and 

Figure 5.7 report similar results, the spectrogram and the Radon transform respectively, for the case study (C) and 

(D). 
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(a) (b) 

Figure 5.4 Spectrogram normalized with respect to its maximum related to (a) case study (A) and (b) case study (B).  

  

(a) (b) 

Figure 5.5 Radon transform of the spectrograms related to (a) case study (A) and (b) case study (B).  

  

(a) (b) 

Figure 5.6 Spectrogram normalized with respect to its maximum related to (a) case study (C) and (b) case study (D).  
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(a) (b) 

Figure 5.7 Radon transform of the spectrograms related to (a) case study (C) and (b) case study (D). 

The two red straight lines superimposed to the spectrograms represent the instantaneous Doppler frequency 

that vary linearly with time, 𝑓𝑑(𝑡) = �̃̈�(𝑡 − 𝑡0) as reconstructed by means of the rough estimate of the chirp rate 

achieved from the Radon transform: it is noted that in all case studies a good initial Doppler rate estimation is 

provided. When the target does not cross the baseline perpendicularly or in the middle, the branches of the 

spectrogram are not symmetrical as it is observed for the case study (D) in Figure 5.6 (b) and two different values 

of the Doppler rate are estimated from the Radon transform. This is more noticeable if a long observation time is 

involved, as in Figure 5.8  showing the received signal after DC removal filter of the case study (D) for a long 

observation time, T=9 sec, and its respective spectrogram are reported.  

  

(a) (b) 

Figure 5.8 (a) Received signal after DC removal filter when the target crosses the baseline with an angle of 45° and at 

L/4 from the RX for a long observation time and (b) its spectrogram normalized with respect to its maximum value. 

In this case, the initial value of the Doppler rate, �̃̈�  may be set equal to the mean value of the estimated 

Doppler rates from the two branches of the spectrogram.  

By this time, after the preliminary estimation of the Doppler rate, 𝜙,̈̃  and considering that in this scenario we 

are interested in the detection of small targets, the impulse response in eq. ( 5.2 ) for each case study of Table 5.2 
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is constructed  considering (i) different values of the Doppler rate in the range �̈� = [�̃̈� − 0.9�̃̈�: 𝛿�̈�: �̃̈� + �̃̈�], and 

(ii) different values of the main lobe width in the range 𝜽 = [�̃�  − 0.9�̃�: 𝛿𝜃: �̃� + 3�̃�]  where �̃� = �̃̈�
𝑙ℎ
′

𝑣′
  with  𝑙ℎ

′  

and 𝑣′ relative to small targets as UAVs for example. In accordance with the consideration in the section 5.2.1 

the Doppler rate step is chosen in order that the maximum phase error is smaller than π/4 and the main lobe width 

step is chosen in order that the energy loss is not more than 10%. Therefore, the Doppler rate step is set 𝛿�̈� =

1 𝑇2 = 0.095⁄  being T=3.24 sec and  the main lobe width step is set 𝛿𝜃 = 0.1. Figure 5.9 and Figure 5.10 show 

the cost function Δ(�̈�, 𝜃) (normalized with respect to its maximum value) as a function of the normalized 

Doppler rate error and normalized main lobe width error. 

  

(a) (b) 

Figure 5.9 Contour plot of 𝛥(�̈�, 𝜃) as function of the normalized Doppler rate error and of the normalized main lobe 

width error (a) for a perpendicular and midpoint crossing baseline, (A) and (b) for a midpoint and non-perpendicular 

crossing baseline, (B). 

  

(a) (b) 

Figure 5.10 Contour plot of 𝛥(�̈�, 𝜃) as function of the normalized Doppler rate error and of the normalized main lobe 

width error (a) for a perpendicular and non-midpoint crossing baseline, (C) and (b) for a non-midpoint and non-

perpendicular crossing baseline, (D). 
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�̈�0 and 𝜃0 are the theoretical value of the Doppler rate and main lobe width respectively (different for the 

different target trajectories). 

In all cases the highest value of Δ(�̈�, 𝜃) occurs in (0,0): hence we can state that in all the case studies both the 

Doppler rate and the main lobe width are well estimated. 

The Δ(�̈�, 𝜃)  cut along Doppler rate axis and along the main lobe width axis are shown in Figure 5.11. As 

expected a peak in zero that corresponds to the Doppler rate and main lobe width of the target of interest is noted. 

In addition, we also note that the effect of pattern error is far less than that of Doppler rate error. This is 

consistent with the considerations in [10] and [8] (see Section 2.6) where it was shown that the cross-correlation 

of the signal at the output of the DC removal filter with a set of reference function for the estimation of the target 

motion parameters depends more on the phase signature presenting fast variation than on the envelope signature 

that varies more slowly. 

All the results reported in this section refers to a noise free condition. In the following the performance of the 

two-dimensional filter bank approach proposed will be investigated under different noise conditions. 

  

(a) (b) 

Figure 5.11 (a) 𝛥(�̈�, 𝜃)|
𝜃=�̂�

 cut along the Doppler rate axis and (b) 𝛥(�̈�, 𝜃)|
�̈�=�̂̈�

 cut along the main lobe width axis. 

5.3  Accuracy performance analysis 

In this section an accuracy analysis related to the estimation of the target parameters of interest is provided. 

Initially, we want to know the optimum achievable accuracy on the estimation of the target parameters that can 

be obtained by observing the samples of the signal 𝑢𝑖 for i=1,…, N at the output of the DC removal filter in CVD 

scheme for a specific target characterized by a certain signal-to-noise ratio. This leads us to the definition of the 

signal-to-noise ratio at the output of the Maximum Likelihood detector that coherently combines the N samples 

of the received signal namely the GLRT-1 detector derived in Section  4.2.1.1 but with the target signal phase 
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known. By deriving the log-likelihood function log {𝑃𝒓 (
𝒓
𝐻1⁄ ) 𝑃𝒓 (

𝒓
𝐻0⁄ )⁄ } being 𝑃𝒓 (

𝒓
𝐻1⁄ ) and 𝑃𝒓 (

𝒓
𝐻0⁄ ) 

defined in eq. ( 3.8 ), we obtain: 

𝑥𝑀𝐿 = ℜ

{
 

 
𝑒−∠𝛽𝒔𝒕𝟎

𝐻 (𝒓 − 𝛼𝒔𝒅𝟎)

√𝒔𝒕𝟎
𝐻 𝒔𝒕𝟎𝜎𝑛 }

 

 

 ( 5.7 ) 

It is clear from eq. ( 5.7 ) that the 𝑆𝑁𝑅𝑀𝐿 ≡ 𝑆𝑁𝑅 is: 

𝑆𝑁𝑅 = 2
|𝛽|2𝒔𝒕𝟎

𝑯 𝒔𝒕𝟎

𝜎𝑛
2  ( 5.8 ) 

Moreover, in accordance with the definition of the direct signal to noise ratio, DNR in eq. ( 3.6 ), the 𝑆𝑁𝑅 may be 

written as: 

𝑆𝑁𝑅 = 2𝐷𝑁𝑅
|𝛽|2

|𝛼|2
𝒔𝒕𝟎
𝑯 𝒔𝒕𝟎 ( 5.9 ) 

where all the parameters in eq. ( 5.9 ) are defined in Section 3.2. 

Finally, the CRLB is derived and the performance of the proposed technique is investigated via Monte Carlo 

simulations in terms of accuracy and compared with the derived CRLB. The same reference scenario of the Table 

5.1 and the same four case studies of the Table 5.2 are analyzed. 

5.3.1 Cramer Rao Lower Bound  

We derive first the joint probability density function of the signal 𝑢(𝑡). In agreement with the signal model at 

the output of the DC removal filter discussed in Section 3.3 the i-th sample 𝑢𝑖  can be approximated as a Gaussian 

variate with mean value 𝜇𝑢𝑖 and variance 𝜎𝑢𝑖
2 . The mean value of 𝑢𝑖 equal to the useful component, 𝑠𝑢𝑖 defined in 

eq. ( 3.11 ) after some simple manipulations that exploits the Taylor approximations in  eqs. ( 4.28 ) and ( 4.30 ) 

may be written as: 

𝜇𝑢𝑖 = −2𝑀𝑑𝑀𝑡sinc[𝜃(𝑡𝑖 − 𝑡0)] sin[𝜋�̈�(𝑡𝑖 − 𝑡0)
2] ( 5.10 ) 

where 𝑀𝑑 is the amplitude of the received direct signal and 𝑀𝑡 is the peak amplitude of the received target signal 

defined both in Section 3.2. By exploiting the eq.( 4.30 ) we have 𝑀𝑡 =
𝑙𝑣𝑙ℎ

𝜆

𝐿2

𝑦0(𝐿−𝑦0)

𝑣𝑥

𝑣
𝑀𝑑. In accordance with the 

consideration in Section 3.3 that the random component after DC removal filter is still white Gaussian noise, it is 

easy to obtain the variance of 𝑢𝑖 by substituting the eq. ( 4.28 ) and eq. ( 4.30 ): 

𝜎𝑢𝑖
2 = 2𝜎𝑛

2{𝑀𝑑
2 +𝑀𝑡

2sinc2[𝜃(𝑡𝑖 − 𝑡0)]} −  4𝜎𝑛
2𝑀𝑑𝑀𝑡  sinc[𝜃(𝑡𝑖 − 𝑡0)] sin[𝜋�̈�(𝑡𝑖 − 𝑡0)

2]  ( 5.11 ) 

As the target signal component is weak its square envelope in the eq. ( 5.11 ) gives a negligible contribution and  

the variance 𝜎𝑢𝑖
2  may be approximated as: 
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𝜎𝑢𝑖
2 ≅ 2𝜎𝑛

2{𝑀𝑑
2 − 2𝑀𝑑𝑀𝑡  sinc[𝜃(𝑡𝑖 − 𝑡0)] sin[𝜋�̈�(𝑡𝑖 − 𝑡0)

2]} ( 5.12 ) 

The primary signal parameters of interest to be estimated include the Doppler rate, the baseline crossing instant 

and the main lobe width of the pattern signature (𝝑𝑨 ≜ [ �̈� 𝑡0 𝜃] ). These parameters will allow us to estimate the 

target motion parameters which is addressed in Section 5.4. 

It is clear from the eq. ( 5.10 ) and eq. ( 5.12 ) that the mean value and the variance depends also on the 

amplitude of the direct and target signal and on the noise variance (𝝑𝑩 ≜ [𝑀𝑑  𝑀𝑡  𝜎𝑛 ]). In order to assess the 

impact of these parameters on the estimation of the primary parameters of interest we define the vector of the 

unknowns 𝝑 ≜ [𝝑𝑨 𝝑𝑩 ] = [ �̈� 𝑡0 𝜃 𝑀𝑑 𝑀𝑡  𝜎𝑛].  

In agreement with the Gaussian assumption the joint density probability function of  𝒖 parametrized by the 

unknown parameters vector 𝝑 is given by: 

𝑝 (𝒖|𝝑) =∏

[
 
 
 

1

√2𝜋𝜎𝑢𝑖
2

𝑒
− 
(𝑢𝑖−𝜇𝑢𝑖)

2

2𝜎𝑢𝑖
2

]
 
 
 𝑁

𝑖=1

 ( 5.13 ) 

Taking the logarithm and substituting the expressions of 𝜇𝑢𝑖  and 𝜎𝑢𝑖
2  defined in the eq. ( 5.10 ) and eq. ( 5.12 ) 

respectively we obtain the log-likelihood function:  

ln 𝑝 (𝒖|𝝑) = −𝑁 ln{𝜎𝑛} −
1

2
∑ ln{[𝑀𝑑

2 − 2𝑀𝑑𝑀𝑡  sinc[𝜃(𝑡𝑖 − 𝑡0)] sin[𝜋�̈� (𝑡𝑖 − 𝑡0)
𝟐]]}

𝑁

𝑛=1

−
1

4𝜎𝑛
2∑

{𝑢𝑖 + 2𝑀𝑑𝑀𝑡  sinc[𝜃(𝑡𝑖 − 𝑡0)] sin[𝜋�̈� (𝑡𝑖 − 𝑡0)
𝟐]}

2

𝑀𝑑
2 − 2𝑀𝑑𝑀𝑡  sinc[𝜃(𝑡𝑖 − 𝑡0)] sin[𝜋�̈� (𝑡𝑖 − 𝑡0)

𝟐]

𝑁

𝑛=1

+ 𝐶 

( 5.14 ) 

where C is a constant independent from the parameters collected in 𝝑. 

The CRLB states that given the vector parameter 𝝑 its unbiased estimate �̂� satisfies the following inequality: 

𝜎
�̂�𝑟

2 ≥ 𝐽𝑟,𝑟
−1(𝝑) ( 5.15 ) 

for r=1,…,6 in our case and where 𝐽(𝝑) is the Fisher Information Matrix (FIM) (66) given as: 

𝐽(𝝑) = 𝐸 {
𝜕

𝜕𝝑
ln 𝑝 (𝒖|𝝑) [

𝜕

𝜕𝝑
ln 𝑝 (𝒖|𝝑)]

𝑇

} ( 5.16 ) 

where 
𝜕

𝜕𝝑
{∙} denotes the partial derivative with respect to 𝝑. In order to simplify the analysis the FIM can be 

written in the compact form by partitioning it as follows: 

𝑱(𝝑) = [
𝑱𝑨 𝑱𝑨𝑩

𝑱𝑨𝑩 𝑱𝑩
] ( 5.17 ) 

where the upper left 𝑱𝑨 is a 3x3 matrix that denotes the FIM of the primary parameters of interest 𝝑𝑨, 𝑱𝑩 is a 3x3 

matrix that denotes the FIM of the parameters of secondary interest 𝝑𝑩 and 𝑱𝑨𝑩denotes a 3x3 matrix collecting the 
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off diagonal elements of  𝐽(𝝑) that measure how the parameters of secondary interest 𝝑𝑩 influence the estimation 

of the desired parameters in 𝝑𝑨. According to the partitioned matrix inverse lemma the inverse of the Fisher 

information matrix, 𝐶𝐶𝑅𝐿𝐵 of the primary parameters of interest is: 

𝐶𝐶𝑅𝐿𝐵 = (𝑱
𝑨 − 𝑱𝑨𝑩𝑱𝑩

−𝟏
𝑱𝑨𝑩)

−1
 ( 5.18 ) 

In particular, the variances of the estimation errors of the parameters of interest are the elements on the main 

diagonal of this matrix. By carrying out the derivatives and the expectations in eq. ( 5.15 ) even here not reported 

for the sake of compactness it can be shown that FIM can be approximated as a block diagonal matrix. 

Figure 5.12 (a) and Figure 5.12 (b) report the normalized elements of FIM,  𝐽𝑟,𝑘 (𝝑) = 𝐽𝑟,𝑘(𝝑) √𝐽𝑟,𝑟(𝝑)𝐽𝑘,𝑘(𝝑)⁄  

for four different values of SNR related to the case study (A) and (B) respectively. Figure 5.13 reports similar 

results for the case study (C) and (D). 

  

(a) (b) 

Figure 5.12 Normalized elements of 𝑱(𝝑) as function of SNR (a) of the case study (A) and (b) of the case study (B). 

  

(a) (b) 

Figure 5.13 Normalized elements of 𝑱(𝝑) as function of SNR (a) of the case study (C) and (b) of the case study (D). 

Some comments are in order:  
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(i) the elements of 𝑱𝑨𝑩 block matrix (see upper right and down left block matrix in Figure 5.12 and Figure 5.13) 

give a negligible contribution compared to the elements on the main diagonal of 𝑱𝑨 for all the SNR values. 𝐽3,5 =

𝐽5,3 is the element with the highest contribution in all case studies and this is expected as 𝑀𝑡 and 𝜃 are 

respectively the peak and the main lobe width of the pattern signature. 

(ii) the off diagonal elements of 𝑱𝑨 (upper left block matrix in Figure 5.12 and Figure 5.13) give a negligible 

contribution compared to the diagonal elements of 𝑱𝑨 for all the SNR value and for all the case studies. 

In accordance with (i) we first assume that the estimation of the desired parameters in 𝝑𝑨 is independent from 

the parameters in 𝝑𝑩.Therefore the FIM in the eq. ( 5.16 ) may be simplified as:  

𝑱(𝝑) ≅ [
𝑱𝑨 03,3

03,3 𝑱𝑩
] ( 5.19 ) 

having approximated 𝑱𝑨𝑩 ≈ 03,3 where 0𝑚,𝑚 is a m  m zero matrix. This simplify the computation of the CRLB 

of the primary parameters of interest, 𝐶𝐶𝑅𝐿𝐵
𝐴𝑝𝑝𝑟𝑜𝑥−1

= 𝑱𝑨
−𝟏

. Moreover in accordance with the observation (ii) we 

assume that the estimates of the Doppler rate, baseline crossing instant and main lobe width are decoupled. Thus 

the 33 matrix 𝑱𝑨 can be simplified as a diagonal matrix and  consequently the 

𝐶𝐶𝑅𝐿𝐵
𝐴𝑝𝑝𝑟𝑜𝑥−2

= diag {𝐽1,1
𝐴 −1

 𝐽2,2
𝐴 −1

 𝐽3,3
𝐴 −1

} . 

Focusing in the block matrix, 𝑱𝑨 and based on the log-likelihood function in the eq. ( 5.14 ) the element 𝑱𝒓,𝒓
𝑨  

after some approximation detailed in the Appendix F may be written as: 

𝐽𝑟,𝑟
𝐴 ≅ 𝓒𝝑𝒓𝜦 𝓒𝝑𝒓

𝑻 =∑ 𝜎𝑢𝑖
2 𝒞𝜗𝑟𝑖

2
𝑁

𝑖=1
 ( 5.20 ) 

where 𝜦 = diag{𝜎𝑢1
2 , 𝜎𝑢2

2 , …… , 𝜎𝑢𝑁
2  } and 𝓒𝝑𝒓 is a N1 column vector collecting the approximated coefficient of 

the partial derivatives with respect to 𝝑𝑟 defined in the eq. (F. 6) of the Appendix F. Finally, bounds on the error 

standard deviation of the Doppler rate, baseline crossing instant and main lobe width estimates are obtained from 

the above approximation, 𝐶𝐶𝑅𝐿𝐵
𝐴𝑝𝑝𝑟𝑜𝑥−3

= 𝑑𝑖𝑎𝑔{𝐽1,1
𝐴 −1

, 𝐽2,2
𝐴 −1

, 𝐽3,3
𝐴 −1

}, as follows: 

{
 
 
 
 

 
 
 
 
𝐶𝑅𝐿𝐵�̈� =

1

𝜋√2𝐷𝑁𝑅

𝑀𝑑
𝑀𝑡

{∑sinc2[𝜃(𝑡𝑖 − 𝑡0)] cos
2[𝜋�̈�(𝑡𝑖 − 𝑡0)

𝟐](𝑡𝑖 − 𝑡0)
4

𝑁

𝑖=1

}

−1 2⁄

𝐶𝑅𝐿𝐵𝑡0 =
1

2𝜋�̈�√2𝐷𝑁𝑅

𝑀𝑑
𝑀𝑡

{∑sinc2[𝜃(𝑡𝑖 − 𝑡0)] cos
2[𝜋�̈�(𝑡𝑖 − 𝑡0)

𝟐](𝑡𝑖 − 𝑡0)
2

𝑁

𝑖=1

}

−1 2⁄

𝐶𝑅𝐿𝐵𝜃 =
𝜃

√2𝐷𝑁𝑅

𝑀𝑑
𝑀𝑡

{∑sin2[𝜋�̈�(𝑡𝑖 − 𝑡0)
𝟐] cos2[𝜋𝜃(𝑡𝑖 − 𝑡0)]

𝑁

𝑖=1

}

−1/2

 ( 5.21 ) 

Figure 5.14 reports the theoretical and the approximated normalized error standard deviation of the three 

parameters of  interest as function of the SNR when the target crosses the baseline in the middle with an angle 

𝜑 = 0°, case (A) (Figure 5.14 (a)) and with an angle 𝜑 = 45°, case (B) (Figure 5.14 (b)). The normalized error 
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standard deviation of the Doppler rate and main lobe width are defined as the ratio of the error standard deviation 

obtained from the different approximation of the CRLB to their theoretical value, �̈�0 and 𝜃0 respectively. 

Meanwhile as we assume that the target crosses the baseline at time t=0 sec the normalized error standard 

deviation of the crossing time is defined as the ratio of the  error standard deviation obtained from the different 

approximation of the CRLB to the time step (inverse of the sampling frequency). For example for an SNR=30 dB 

and when the target crosses the baseline in the middle with an angle 𝜑 = 0° (see Figure 5.14 (a)) we can obtain 

an accuracy of the order of the time step for the crossing time having set the sampling frequency equal to 1000 

Hz. It is quite apparent that the approximated expressions of the CRLB in eq.( 5.21 ) provides an accurate fit to 

the theoretical expressions.  

  

(a) (b) 

Figure 5.14 Theoretical and approximated accuracy of the Doppler rate, crossing time and main lobe width against SNR 

(a) for the case study (A) and (b) for the case study (B). 

Figure 5.15 reports similar results for a target crossing the baseline at a distance L/4 from RX with an 

angle 𝜑 = 0°, case (C) (Figure 5.15 (a)) and with an angle 𝜑 = 45°, case (D) (Figure 5.15 (b)).  

  

(a) (b) 

Figure 5.15 Theoretical and approximated accuracy of the Doppler rate, crossing time and main lobe width against SNR 

for the case study (a)  (C) and (b) (D). 
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As previously, the approximated expressions of the CRLB provides an accurate fit to the theoretical 

expressions. 

It is worth mentioning here that in some cases for non-perpendicular and non-midpoint crossing baseline the 

approximation of the phase signature in eq. ( 4.28 ) provides a non-negligible phase error with respect to the 

effective phase variation in eq. ( 3.2 ) for long observation time and a Taylor expansion at third order or fourth 

order will be necessary. We chose 𝜋 4⁄  as the maximum tolerable phase error. For observation time that provides 

a phase error smaller than 𝜋 4⁄  the CRLB derived is valid. On the other hand observation times smaller than the 

main lobe width will not allow an accurate estimation of 𝜃.  

Figure 5.16 shows the phase error approximation (i.e. 𝜙(𝑡) in eq. ( 3.2 ) - 𝜙(𝑡) in eq. ( 4.28 )) as function of the 

observation time for all the case studies. We note that the case study (D) presents a greater phase error 

approximation with respect to the other case studies.  

 

Figure 5.16 Phase error approximation as function of the observation time, T for all the case studies. 

5.3.2 Performance comparison 

In this section the performance of the 2D filter bank technique is investigated via Monte Carlo simulations in 

terms of accuracy and compared with the CRLB derived in the previous section.  

We assume that the estimated parameters by the bank in eq. ( 5.6 ) suffers from errors: 

{

�̂̈� = �̈�0 + 𝛿�̈�

�̂�0 = 𝑡0
0 + 𝛿𝑡0

𝜃 = 𝜃0 + 𝛿𝜃

 ( 5.22 ) 

characterized by a mean value 𝜇�̈�, 𝜇𝑡0, 𝜇𝜃 and variances 𝜎�̈�
2, 𝜎𝑡0

2  and 𝜎𝜃
2 being �̈�0, 𝑡0

0 and 𝜃0 their theoretical 

value. The performance of this technique is investigated for the four different target trajectories defined in Table 

5.2 and the analysis proved the 2D filter bank approach to be unbiased, 𝜇�̈� = 𝜇𝑡0 = 𝜇𝜃 ≅ 0. For all the case 
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studies we have considered a 2D filter bank with Doppler rate in the range [�̈�0 − 5𝐶𝑅𝐿𝐵�̈�:
𝐶𝑅𝐿𝐵�̈�

10
: µ0 −

5𝐶𝑅𝐿𝐵�̈�] and main lobe width in the range [𝜃0 − 5𝐶𝑅𝐿𝐵𝜃:
𝐶𝑅𝐿𝐵𝜃

10
: 𝜃0 − 5𝐶𝑅𝐿𝐵𝜃] where 𝐶𝑅𝐿𝐵�̈�  and 𝐶𝑅𝐿𝐵𝜃 are 

defined in eq. ( 5.21 ).  

The normalized error standard deviation of the three parameters of interest as function of the SNR obtained 

from the Monte Carlo simulations with 1000 trials is compared with the approximated CRLB derived in Figure 

5.17 (a) and Figure 5.17(b) for the case study (A) and (B) for an observation time equal to T=3.24 sec. As 

apparent, for each parameter to be estimated, the accuracy achievable by means of the 2D filter bank technique 

(continuous curve) in the high SNR region approaches the corresponding approximated CRLB (dash-dotted 

curves). Some losses with respect to the CRLB are experienced for values of SNR below 25 dB for the Doppler 

rate and the main lobe width estimation. Meanwhile for values of the SNR below 25 dB the 2D filter bank gives 

poor  estimation accuracy of the crossing time instant and greater losses with respect to the corresponding CRLB 

are experienced. It is worth noting that such threshold value of SNR=25 dB corresponds to a DNR ≅ 20 dB that, 

in agreement with the results of the probability of detection of the CVD shown in Chapter 3 corresponds to a low 

probability of target detection. 

  

(a) (b) 

Figure 5.17 Normalized error standard deviation of the Doppler rate, the crossing time and the main lobe width against 

integrated SNR (a) for the case study (A) and (b) for the case study (B). 

Figure 5.18 (a) and Figure 5.18 (b) reports similar results for the case study (C) and (D) for the same 

observation time, T=3.24 sec. The above considerations also applies for the cases when the target crosses the 

baseline perpendicularly at L/4 from RX, case (C).  

Meanwhile  for the case study (D) we note that the curves of the accuracy obtained from the 2D filter bank for 

high SNR value shows the same trend although some extra losses are experienced with respect to the CRLB in 

particular for the Doppler rate. In agreement with the consideration above in Section 5.3.1, for an observation 

time T=3.24 sec the case study (D) presents a phases error approximation greater than 𝜋 4⁄  (see Figure 5.16). 
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(a) (b) 

Figure 5.18 Normalized error standard deviation of the Doppler rate, the crossing time and the main lobe width against 

integrated SNR (a) for the case study (C) and (b) for the case study (D). 

For this reason in Figure 5.19 are compared the normalized error standard deviation of the three parameters of 

interest obtained from the Monte Carlo simulations to approximated CRLB derived for an observation time 

𝑇 ≈ 2.4 sec, time to span only the main lobe of the pattern signature that gives a  phase error smaller than 𝜋 4⁄  . 

Is apparent that the accuracy achievable from the 2D filter bank (continuous curve) in the high SNR region 

approaches the corresponding approximated CRLB (dash-dotted curves). 

 

Figure 5.19 Normalized error standard deviation of the Doppler rate, the crossing time and the main lobe width against 

integrated SNR for the case study (D) and for an observation time equal to the main lobe.  

Therefore, we can state that in all cases the Doppler rate, the crossing time and the main lobe width are 

accurately estimated thus proving the effectiveness of the proposed approach.  
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5.4 Target motion estimation and performance analysis 

The focus of this section is on the estimation of the motion parameters of moving targets following a linear 

trajectory firstly by means of a single baseline configuration and after by exploiting a dual receive antenna FSR 

configuration with small angular separation between the two baselines. From a single baseline configuration the 

cross-baseline velocity is estimated and its CRLB derived. Meanwhile the dual baseline ensures the possibility to 

estimate two parameters without a priori knowledge, the cross-baseline velocity and the baseline crossing point 

and also their CRLB is derived and analyzed.  

5.4.1 Single baseline configuration 

The coordinate system of the single baseline configuration is shown in Figure 3.1.  

Exploiting the extraction of the Doppler rate from the 2D filter bank approach previously introduced and under 

the assumption that the baseline crossing point is known it is possible to estimate the cross-baseline velocity as 

follows:  

�̂�𝑥 = √
(𝐿−𝑦0)𝑦0

𝐿
𝜆 √�̂̈�  ( 5.23 ) 

Now the CRLB of �̂�𝑥 is derived by considering firstly a Taylor expansion at first order around the estimated 

Doppler rate,  �̂̈� that provides a linearized equation: 

�̂�𝑥 = 𝑣𝑥
0 +

𝜕�̂�𝑥

𝜕�̂̈�
|

�̈�0

𝛿�̈� 
( 5.24 ) 

being 𝑣𝑥
0 = √

(𝐿−𝑦0)𝑦0

𝐿
𝜆 √�̈�0 the theoretical value of the cross-baseline velocity. Recall that the Doppler rate 

estimation, �̂̈� = �̈�0 + 𝛿�̈�, suffers from errors characterized by a mean null value, 𝜇�̈� ≅ 0 and a variance 𝜎�̈�
2. By 

carrying out the derivate with respect to the Doppler rate the eq. ( 5.24 ) become: 

�̂�𝑥 = 𝑣𝑥
0 +√

(𝐿−𝑦0)𝑦0

𝐿
𝜆

1

2√�̈�0
𝛿�̈�  

( 5.25 ) 

This mean the cross-baseline velocity estimation suffers from errors (�̂�𝑥 = 𝑣𝑥
0 + 𝛿𝑣𝑥  ) characterized by a zero 

mean value, 𝜇𝑣𝑥 = 0 and variance defined as follows: 

𝜎𝑣𝑥
2 =

(𝐿 − 𝑦0)𝑦0
𝐿

𝜆

4�̈�0
𝜎�̈�
2 ( 5.26 ) 

The expression in eq. ( 5.26 ) is valid independently from the technique used for the estimation of the Doppler 

rate.  
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Finally, substituting the approximated CRLB of the Doppler defined in eq. ( 5.21 ),the CRLB for the 

estimation of the cross-baseline velocity is: 

𝐶𝑅𝐿𝐵𝑣𝑥 = √
(𝐿−𝑦0)𝑦0

𝐿
𝜆

1

√�̈�0

1

2𝜋√2𝐷𝑁𝑅

𝑀𝑑

𝑀𝑡
{∑ sinc2[𝜃0(𝑡𝑖 − 𝑡0)] cos

2[𝜋�̈�0(𝑡𝑖 − 𝑡0)
𝟐](𝑡𝑖 − 𝑡0)

4𝑁
𝑖=1 }

−1 2⁄
  

( 5.27 ) 

Figure 5.20 compare the normalized error standard deviation of 𝑣𝑥 achieved through Monte Carlo simulations 

that exploits the Doppler rate extraction from the 2D filter bank with the CRLB previously derived (eq. ( 5.27 )) 

for the case study (A) with T=3.24 sec. It is noted that the accuracy achievable from the 2D filter bank technique 

(continuous curve) in the high SNR region (SNR greater than 30 dB) approaches the corresponding approximated 

CRLB (dash-dotted curves). As expected some losses are experienced for SNR lower than 30 dB.  

Despite this losses the overall performance can still be considered suitable for a practical application since an 

accuracy in the order of 1% is obtained for a SNR=20 dB thus proving the effectiveness of the proposed 

approach. 

 

Figure 5.20 Normalized error standard deviation of the cross-baseline velocity against integrated SNR of the case study (A).  

5.4.2 Dual baseline configuration 

The coordinate system of the dual baseline configuration with the x and y axis specifying the ground plane and 

the target moving perpendicularly to this ground plane is shown in Figure 5.21. The first receiver, RX1, is placed 

at the origin of the coordinate system (𝑥, 𝑦) and the second receiver, RX2 is placed along the x-axis at a distance 

𝑑 from RX1 meanwhile the transmitter, TX, is placed at (0, 𝐿1) along the y-axis. 𝐿1 and 𝐿2 indicate the first 

baseline (TX-RX1) and the second baseline (TX-RX2) respectively. We assume that the angular separation 

between the two baselines is small and therefore the target crosses the two baselines maintaining the same 

velocity. 

It is worth mentioning here that the target direction specified by the angle   with respect to the x-axis (see 

Section 3.2) implies that the target crosses the two baselines with different angles . Moreover we assume that the 
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target crosses the first baseline, L1 at t01=0 sec and the second baseline, L2 at time t02=(𝐿1 − 𝑦01)𝑑 (𝑣𝑥𝐿1 + 𝑣𝑦𝑑)⁄  

being 𝑦01 the baseline crossing point related to the first baseline.  

  

 (a) (b) 

Figure 5.21 (a) Dual-baseline FSR system geometry and (b) top view of the dual-baseline FSR configuration. 

Following the same approach in [53] 𝑣𝑥 and 𝑦0𝑖 for i=1,2 are here estimated by applying separately to the 

signals acquired by the two receivers, 𝑟1(𝑡) and 𝑟2(𝑡) the 2D filter bank technique being �̂�𝟏
𝑨
= [�̂̈�1, �̂�01, 𝜃1] and 

�̂�𝟐
𝑨
= [�̂̈�2, �̂�02, 𝜃2] the estimated target parameters related to the RX1 and RX2 respectively.  

In agreement with the assumption of the linear trajectory, the distance covered by the target in the x-between 

the two baselines in the elapsed time 𝛥𝑡 = t02 − t01, along the x-axis, is 𝛥𝑥 = 𝑣𝑥𝛥𝑡.  

In addition, drawing on this geometry (see Figure 5.21 (b)), the relation between the estimated time difference 

of arrival, 𝛥�̂� = �̂�02 − �̂�01, and the estimated �̂�𝑥 and �̂�0 can be written as: 

𝛥�̂� =
𝐿𝑖 − �̂�0𝑖
𝐿𝑖

𝑑

�̂�𝑥
 ( 5.28 ) 

When the target crosses the baseline perpendicularly (𝜑 = 0°) the effective 𝑦01 is estimated. While for non-

perpendicular baseline crossing angle, the estimated �̂�01 (see Figure 5.21 (b)) is not equal to the effective 𝑦01 and 

the estimation error will depend on the baseline and on the baseline crossing angle.  

By exploiting the Doppler rate and the crossing times extraction from the 2D filter bank the estimated cross 

baseline velocity and baseline crossing point are retrieved as follows: 

{
  
 

  
 �̂�𝑥 =

1

(1 +
1

𝐿𝑖𝜆�̂̈�𝑖

𝑑2

𝛥�̂�2
)

𝑑

𝛥�̂�

 �̂�0𝑖 =
1

(
1
𝐿𝑖
+ 𝜆�̂̈�𝑖

𝛥�̂�2

𝑑2
)

 ( 5.29 ) 

which is a nonlinear system of equations. By substituting in eq. ( 5.29 ) the baseline length, 𝐿𝑖 and the 

corresponding estimated Doppler rate, �̂̈�𝑖 for i=1,2 we should obtain the same value of the cross-baseline 

velocity, �̂�𝑥1 = �̂�𝑥2 = �̂�𝑥 .  For a long baseline the distance covered by the target between the two baselines can 
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be assumed  equal to the spacing between the two antennas, 𝑑 and the cross baseline velocity may be 

approximated as 𝑣𝑥 ≈ 𝑑  𝛥�̂�⁄ .  

The CRLB of �̂�𝑥 and �̂�0𝑖 is derived by considering firstly a Taylor expansion at first order around the estimated 

Doppler rate, �̂̈�𝑖 and estimated time delay, 𝛥�̂� that provides an equivalent linearized system: 

{
 
 

 
 �̂�𝑥 = 𝑣𝑥

0 +
𝜕�̂�𝑥

𝜕�̂̈�𝑖
|

(�̈�𝑖
0, 𝛥𝑡0)

 𝛿�̈�𝑖 +
𝜕�̂�𝑥

𝜕𝛥�̂�
|
(�̈�𝑎

0 , 𝛥𝑡0)
 𝛿𝛥𝑡

�̂�0𝑖 = 𝑦0𝑖
0 +

𝜕�̂�0𝑖

𝜕�̂̈�𝑖
|

(�̈�𝑖
0, 𝛥𝑡0)

 𝛿�̈�𝑖 +
𝜕�̂�0𝑖

𝜕𝛥�̂�
|
(�̈�𝑖

0, 𝛥𝑡0)
 𝛿𝛥𝑡

 ( 5.30 ) 

being 𝑣𝑥
0 =

1

(1+
1

𝐿𝑖𝜆�̈�𝑖
0
𝑑2

𝛥𝑡0
2)

𝑑

𝛥𝑡0
 , 𝑦0𝑖

0 =
1

(
1

𝐿𝑖
+𝜆�̈�𝑖

0𝛥𝑡
02

𝑑2
)

 the theoretical value of 𝑣𝑥 and 𝑦𝑜𝑖 respectively. 

Recall that the Doppler rate and the crossing time estimation, �̂̈� = �̈�0 + 𝛿�̈�, �̂�0 = 𝑡0
0 + 𝛿𝑡0  suffers from errors 

characterized by a mean null value, 𝜇�̈� = 𝜇𝑡0 ≅ 0 and variance 𝜎�̈�
2 and 𝜎𝑡0

2  respectively. Therefore the time delay 

estimation, 𝛥�̂� = �̂�02 − �̂�01 = 𝛥𝑡
0 + 𝛿𝛥𝑡 suffers from errors characterized by a mean null value and variance 

𝜎𝛥𝑡
2 = 2𝜎𝑡0

2 .  

By carrying out the derivatives and after some simple manipulations the eq. ( 5.30 ) become: 

{
 
 

 
 �̂�𝑥 = 𝑣𝑥

0 +
𝑑3𝐿𝑖𝜆𝛥𝑡

0

(𝐿𝑖𝜆�̈�𝑖
0𝛥𝑡0

2
+ 𝑑2)

2  𝛿�̈�𝑖 +
𝐿𝑖𝜆�̈�𝑖

0𝑑3 − 𝑑𝐿𝑖
2𝜆2�̈�𝑖

02𝛥𝑡0
2

(𝐿𝑖𝜆�̈�𝑖
0𝛥𝑡0

2
+ 𝑑2)

2  𝛿𝛥𝑡

�̂�0𝑖 = 𝑦0𝑖
0 −

𝐿𝑖
2𝑑2𝜆𝛥𝑡0

2

(𝜆𝐿𝑖�̈�𝑖
0𝛥𝑡0

2
+ 𝑑2)

2  𝛿�̈�𝑖 −
2𝐿𝑖

2𝑑2𝜆�̈�𝑖
0𝛥𝑡0

(𝜆𝐿𝑖�̈�𝑖
0𝛥𝑡0

2
+ 𝑑2)

2  𝛿𝛥𝑡

 ( 5.31 ) 

This means the cross-baseline velocity and the baseline crossing point estimation suffers from errors (�̂�𝑥 =

𝑣𝑥
0 + 𝛿𝑣𝑥  , �̂�0𝑖 = 𝑦0𝑖

0 + 𝛿𝑦0𝑖) characterized by a zero mean value, 𝜇𝑣𝑥 = 𝜇𝑦0𝑖 = 0 and variances defined as 

follows: 

{
  
 

  
 
𝜎𝑣𝑥
2 =

𝐿𝑖
2𝑑6𝜆2𝛥𝑡0

2

2(𝐿𝑖𝜆�̈�𝑖
0𝛥𝑡0

2
+ 𝑑2)

4 𝜎�̈�
2 +

2 [𝐿𝑖𝑑
3𝜆�̈�𝑖

0 − 𝐿𝑖
2𝑑𝜆2�̈�𝑖

02𝛥𝑡0
2
]
2

(𝐿𝑖𝜆�̈�𝑖
0𝛥𝑡0

2
+ 𝑑2)

4 𝜎𝑡0
2

𝜎𝑦0𝑖
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 ( 5.32 ) 

The expression in eq. ( 5.32 ) is valid for  a dual baseline configuration with small angular separation between the 

two baselines independently from the technique used for the estimation of the Doppler rate and of the time 

difference of arrival.  

Finally, substituting the approximated CRLB of the Doppler and crossing time instant defined in eq. ( 5.21 ) 

the CRLB for the estimation of the cross-baseline velocity and of the baseline crossing point are: 
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 ( 5.33 ) 

Figure 5.22 compare the normalized error standard deviation of 𝑣𝑥 and 𝑦01 achieved through Monte Carlo 

simulation to the CRLB previously derived (eq. ( 5.33 )) for the case study (A) with T=3.24 sec. It is noted that 

the accuracy achievable by means of the 2D filter bank technique (continuous curve) in the high SNR region 

(SNR greater than 30 dB) approaches the corresponding approximated CRLB (dash-dotted curves) for both cross-

baseline velocity and baseline crossing point. As previously some losses are experienced for SNR lower than 30 

dB. 

  

(a) (b) 

Figure 5.22 Normalized error standard deviation (a)of the cross-baseline velocity and (b) of the baseline crossing point 

against integrated SNR of the case study (A). 

Considering a multi-node FSR configuration the kinematic information extraction may be improved and all the 

target motion parameters may be estimated, [14] nevertheless using  a dual baseline configuration we observe 

that without a priori knowledge it is possible to unambiguously estimate two parameters  with high accuracy  

even in low SNR condition. 

Summary 

In this chapter we dealt with the problem of the target motion parameter estimation by exploiting both a single 

baseline and dual baseline configuration with a small angular separation between the two baselines. We proposed 

a two-dimensional filter bank based on the Crystal Video scheme for the estimation of the target signal 

parameters such as the Doppler rate, the crossing time and the main lobe width in order to retrieve than the 
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kinematic information. Firstly simplified closed-form expressions of the CRLB were derived for the estimation of 

the target signal parameters, that can be attained by observing the signal at the output of the DC removal filter in 

the Crystal Video scheme. Then the performance of the 2D filter bank was investigated and the analysis proved 

that unbiased estimates of the target parameters can be obtained approaching the derived CRLB in the high SNR 

region. Taking advantage of the estimated target signal parameters: in a single baseline configuration the cross-

baseline velocity component was estimated by assuming a priori knowledge of the baseline crossing point while 

in a dual baseline configuration also the baseline crossing point is estimated without requiring any a priori 

knowledge. The analysis proved that unbiased estimates of the target motion parameters can be obtained with 

high accuracy even for low SNR conditions.  

 

 

 

 

 



  Experimental data in Passive FSR configuration 

108 

This chapter presents results related to an experimental campaign exploiting FM transmission as signals of 

opportunity in a FSR configuration. The aim of the acquisition campaign is to detect aircrafts landing at 16L 

runway of “Leonardo Da Vinci” airport of Rome, Italy. The recorded signal data is used: (i) to assess the 

theoretical performance of the CVD derived in Chapter 3 in real environment and (ii) to assess the effectiveness 

of the two dimensional filter bank approach for the estimation of the target motion parameters through both 

single baseline and dual baseline configuration. 

6.1 Introduction 

Passive radar exploit existing transmitters as illuminators of opportunity to perform target detection and 

localization, while avoiding RF emissions with the following advantages: 

 low cost,  

 covert operation,  

 low vulnerability, 

 reduced impact on the environment.  

These emitters could be other radars, television signals, radio signals, cell phone signals; in general waveforms 

that are not tailored for radar applications. Due to their wide coverage, the generally high level of transmitted 

power, and the limited cost of the receivers, the commercial FM broadcast signals with a nominal frequency 

bandwidth of 200 kHz in the very high frequency (VHF) band, [88–108] MHz, are the most common signals used 

today for passive radars,[57],[60]. Specifically, with reference to air traffic control (ATC) applications, many 

experimental campaigns have demonstrated the effectiveness of FM-based PCL in detecting, localizing, and 

tracking aerial targets,[55]-[59].  

It is important to mention here that performance in this extreme configuration of bistatic radar,  FSR, does not 

depend on the particular PCL signal modulation scheme and, therefore will not influence FSR signal processing 

complexity, implying that any available transmitter of opportunity could be used, [39]. Moreover in the same 

paper, [39], the PCL operating in VHF/UHF bands was recommended for the detection of airborne targets in a 

Forward Scatter configuration, while for the surface targets practically all PCL sources could be used. 

 Chapter 6                                                

Experimental data in Passive FSR 

configuration 
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Based on the above considerations an experimental campaign exploiting FM transmissions as waveforms of 

opportunity was carried out in December 2016 at Fregene,  about 25 km West of Rome (Italy). The aim of the 

acquisition campaign was to detect aircrafts landing at “Leonardo Da Vinci” airport of Rome (Italy) that follow 

the 16L runway. The recorded signals are used to assess the theoretical performance of the CVD detector derived 

in Chapter 3 in a real environment and to assess the effectiveness of the technique proposed in Chapter 5  (two-

dimensional filter bank) for the motion parameters estimation exploiting both a single baseline and a dual 

baseline configuration. 

6.2 Acquisition campaign set-up 

As previously mentioned, the experiment took place near the “Leonardo Da Vinci” airport (Rome, Italy) with 

the aim to detect planes landing at the 16L runway. This runway was chosen because, differently from 16R, does 

not intersect the departing runway and is most commonly used. Among the different available transmitters in the 

surroundings of the airport, the one located at Monte Gennaro is selected as emitter of opportunity. By means of 

an accurate study of the International Approach Chart (IAC) provided by the local standard arrival procedure (see 

Figure 6.1), the aircraft path, altitude and also the velocity range that the pilots have to abide by during the 

landing procedure are known. 

 

Figure 6.1 16L-Instrumental approach chart. 
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This information, combined with the knowledge of transmitter position, allowed to determinate suitable 

positions of the receiving antennas in order to achieve the Forward Scatter geometry. Among the positions 

provided, the seaside resort “La Riviera” at 56 km (baseline) far from the transmitter was chosen as suitable 

location for the carrying out of the experimental campaign (see Figure 6.2). 

 

Figure 6.2 Experimental topology of the FSR system used for data collection: the blue and the red markers indicate the 

TX and RXs position respectively, the yellow lines are the baseline and the red line indicates the trajectory of the aircraft 

during the landing.  

Two directive FM antennas with beamwidth around 90°, at a distance d=11.95 m from each other were steered 

toward  the transmitter of Monte Gennaro. The antennas height is around 5 m, so a full visibility of the runway 

followed by the airplanes was achieved, as near the airport tall buildings are not allowed.  

Moreover it is possible to retrieve some information related to the baseline crossing angle  𝜑 and the baseline 

crossing point 𝑦0 since the trajectory of the target during the approach to the 16L runway is known, as previously 

mentioned (see Figure 6.1). At a first approximation, after projecting the positions of Tx, Rxs and aircraft (when 

approaching the 16L runway) onto a 2D coordinate system by dropping the altitude information, the baseline 

crossing angle is equal to 𝜑 ≈ 10° and the baseline crossing angle is 𝑦0 ≈ 4.95 km. As the distance d between 

the two antennas is small with respect to the baseline, the same 𝑦0 is retrieved for both antennas. The non-

cooperative targets have been monitored through a commercial ADS-B receiver which provides useful 

information to be used as ground-truth for the velocity estimation.  

The multi-channel receiver used has been developed at the Department of Information Engineering, Electronics 

and Telecommunications, Sapienza University of Rome ( see Figure 6.3), and is based on a direct Radio 

Frequency (RF) sampling approach. In the analogue section, the received signal from each receiving channel is 

passed firstly through a band-pass filter to reject out-of-band interferences. Proper variable attenuators and 

amplifiers are used to match the A/D converter dynamic range. The amplifiers have a fixed gain of 20 dB, for this 

reason the use of variable attenuators is necessary, to avoid exceeding the maximum dynamic range of the A/D 

(1.125 Vpp). The A/D converter dynamic range is adapted to receive all the power in the FM spectrum. The main 

features of the  A/D converter shown in Figure 6.4 are summarized in the Table 6.1.  
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(a) (b) 

Figure 6.3 (a)Multi channel receiver and (b)block diagram of the multi-channel receiver 

 

Figure 6.4 ICS-155 (GE Intelligence Platforms). 

Table 6.1 Main feature of ICS-155. 

ICS-155  

 4 Analog Channels (4 ADCs) 

 ADC resolution: 16 bits 

 Full scale input: 1.125 Vpp (about 5dBm) 

 Input Signal Bandwidth: 2÷300MHz 

 Sampling Rate: 1÷180MHz for 4 channels, simultaneous 

 Simultaneous down-conversion of up to 16 signal bands: on 

board decimation, software selectable  

 Output data can be in either real or complex format 

After digital down-conversion of the acquired signals, single FM channels of interest are extracted, in 

particular in our case FM channel 107.4 MHz (λ=2.85 m) is considered. 
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6.3 CVD detection performance  

The theoretical performance of the CVD detector in terms of both probability of false alarm and probability of 

detection, derived respectively in Section 3.4.1 and Section 3.4.2, are assessed by applying the processing scheme 

of the CVD detector to the recorded data acquired during the experimental campaign described above. The 

required impulse response of the matched filter is obtained from the recorded signal after DC removal stage by 

selecting a time window centred on the time instant when the target crosses the baseline.  

Figure 6.5 shows the signal 𝑢(𝑡) obtained from the received signal, after passing through the square law-

detector and the DC removal filter. Due to the high signal level, the noise is negligible and 𝑢(𝑡), which has unit 

[V2], represents the so-called target Doppler signature. It is worth mentioning here that the received signal with a 

sampling frequency of 200KHz, after the square-law detector is downsampled to the frequency of 390.25 Hz, 

suitable for non-ambiguous observation of the target Doppler signature. 

 

Figure 6.5 Received signal time signature after DC removal filter of an Airbus A320 (Test-1). 

Figure 6.6 shows the signature of an Airbus A320 with the target parameters reported in Table 6.2: from the 

figure it is observed the noticeable amplitude modulation due to the target crossing. 

Table 6.2 Main characteristic of the target-Test 1 

Target type Target size 

[length × height] 

Target photo 

Airbus A320 37.57m × 11.76 m 

 

To validate the proposed theoretical performance analysis, firstly the Pfa is obtained through Monte Carlo 

simulations by processing a frame of the received signal in absence of the target contribution signal (i.e. 

representative of the direct signal only) added with AWGN in order to achieve a given DNSR value (defined in 

eq. ). Figure 6.6 (a) compares the Pfa obtained from the real data through Monte Carlo simulation with 107 
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independent trials as function of the normalized threshold for three different value of the DNSR with the 

theoretical close-form expression defined in eq. :from the figure a very good agreement is noted. 

The Pd is obtained following a similar procedure by processing a frame of the received signal including also the 

target contribution added again with AWGN in order to obtain the desired DNSR. Figure 6.6 (b) compares the Pd 

obtained from real data through Monte Carlo simulation with 105 independent trials as function of the normalized 

threshold with the theoretical close-form expression defined in eq.: once more a good agreement is observed.  

Moreover as expected, for the same normalized threshold, a better probability of detection is achieved for higher 

DNSR. For example in Figure 6.6 (b) for a normalized threshold equal to zero a Pd=0.45 is obtained for a 

DNSR=10 dB (see blue curve) while the Pd approaches 1 for a DNSR=40 dB (see green curve). 

  

(a) (b) 

Figure 6.6 (a) Theoretical Pfa and Pfa in presence of real data as function of 𝑇 (𝜎𝑛
2𝜀)⁄  for different value of DNSR and (b) 

theoretical Pd and Pd in presence of real data as function of 𝑇 (𝜎𝑛
2𝜀)⁄  for three different value of DNSR. 

It is to be remarked that FM signals of opportunity are very different from the constant–amplitude, single tone 

waveform used in this thesis (see FSR signal model in Section 3.2). Other than the intrinsic continuous frequency 

variation of a FM modulated waveform, this includes both the amplitude modulation due to multipath and 

transmit filtering, as well as potential temporary changes of the carrier frequency. By extracting the target 

signature from the data, we have intrinsically compensated their effect only on the final filter, which is clearly 

matched to the received target signal. However, their effect on the direct signal has not been removed. Despite 

the non-ideal direct signal characteristics, the presented performance comparison shows that the CVD remains 

effective in the removal of the direct signal, and our theoretical performance prediction still matches the detection 

results.  

The complete agreement between experimental and theoretical results show that the presented theoretical 

performance of the CVD appears to be robust to the specific waveform characteristics. This means that the 

presented detection performance still apply, provided that the target signature used in the matched filter includes 

the changes applied by the channel on the received target signature, despite all the other non-idealities. 
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6.4  Motion parameters estimation 

The effectiveness of the two-dimensional filter bank approach for the estimation of the target motion 

parameters proposed in Chapter 5  was assessed by exploiting the acquired FM signals from single baseline and 

dual baseline configuration, addressed respectively in Section 0 and Section 0. 

6.4.1 Single baseline configuration 

Following the processing scheme introduced in Section 5.2.1, the signal received from the RX1 after the square 

law detector is decimated by a factor 83, so that the acquired signal is down-sampled to 390.625 Hz. In Figure 6.7 

is reported the time domain signature of the received signal after the square law detector of an Airbus A319 with 

the target parameters reported in Table 6.3.  

 

Figure 6.7 Received signal after square law detector and decimation of an Airbus A319 (Test-2). 

As it can be observed, the amplitude modulation due to the target movement is clearly noticeable. 

Table 6.3 Main characteristic of the target-Test 2 

Target type Target size 

[length × height] 

Target photo 

Airbus A319 33.84m × 11.76 m 

 

Firstly, the signal at the output of the DC removal filter is analyzed for the estimation of the Doppler rate 

through the STFT and the Radon transform. Figure 6.8 (a) shows the spectrogram (normalized with respect to its 

maximum value) of the signal in Figure 6.7. The Hamming window for the estimation of the STFT is set equal to 

2.56 sec. It is clear the correspondence between the spectrogram and the corresponding time Doppler signature in 

terms of crossing instant located at 52 sec. 
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(a) (b) 

Figure 6.8 (a) Spectrogram of the signal received from RX1 and (b) its corresponding Radon transform (Test-2). 

As the target in this case does not cross the baseline in the middle and perpendicularly, the two branches of the 

spectrogram are not completely symmetrical. The Radon transform is performed to the spectrogram (see Figure 

6.8 (b)) and two different Doppler rates are well estimated with value equal to �̃̈� =  0.4666 and �̃̈� = −0.3731. 

The strong peak in the Radon plane for Θ𝑟 = 90° is because a part of continuous component after DC removal 

filter still remains.  

Then, the 2D filter bank is performed with the impulse response (eq. ( 5.2 )) constructed for an integration time 

T=8 sec and considering: (i) different values of the Doppler rate in the range �̈� = [�̃̈�𝑎 − 3�̃̈�𝑎 ∶ 𝛿�̈�: �̃̈�𝑎 + 3�̃̈�𝑎] 

and (ii) different values of the main lobe width in the range  𝜽 = [�̃� − 0.9�̃�: 𝛿𝜃: �̃� + 4�̃�].  In accordance with the 

considerations in Section 5.2.1 and Section 5.2.2, �̃̈�𝑎 is set equal to the mean value of the Doppler rates extracted 

from the Radon transform and �̃� = �̃̈�𝑎
𝑙ℎ
′

𝑣′
, where 

𝑙ℎ
′

𝑣′
= 0.5 as we are interested in the detection of aircrafts with 𝑙ℎ

′  

in the range 25-35 m and that are close to the landing, so with 𝑣′ in the range 65-75 m/s . The Doppler rate step is 

set 𝛿�̈� = 1 𝑇2 =⁄ 0.0156 and the main lobe width step is set 𝛿𝜃 = 0.05 .  

Figure 6.9 shows the contour plots related to Δ(�̈�, 𝜃) (normalized with respect to its maximum value) as a 

function of the Doppler rate and of the main lobe width: it is clear the presence of a peak in correspondence of 

(�̂̈� = 0.4883, θ̂ = 0.2210), as it is also shown in Figure 6.10.  

Figure 6.11 compares a part of the measured signal where the target signature is present, having the same 

duration of the impulse responses of the bank of filters (T=8 sec), with the impulse response from the matched 

filter, h
ϕ̂̈,θ̂
(t) : visual waveform analysis confirms the agreement between experimental data and the impulse 

response with the same number of phase cycles due to the Doppler component.  
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Figure 6.9  Contour plot of  Δ(�̈�, 𝜃) as function of the Doppler rate and of the main lobe width. 

  

(a) (b) 

Figure 6.10 (a) 𝛥(�̈�, 𝜃)  cut along Doppler rate axis and (b) 𝛥(�̈�, 𝜃)  cut along the main lobe width axis. 

  

(a) (b) 

 

Figure 6.11 Comparison of (a) the measured signal with (b) the impulse response of the matched filter,  ℎ
�̂̈�,�̂�
(𝑡). 
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In accordance with the geometry introduced in Section 6.2, as the baseline crossing point is known it is 

possible to estimate the cross baseline velocity in agreement with eq.( 5.23 ), �̂�𝑥 = 79.58 m/s . The velocity 

provided by the ADS-B is equal to 𝑣 = 72.07 𝑚/𝑠 and, as the baseline crossing angle is 10° (i.e. the velocity 

cross-baseline is 𝑣𝑥 = 𝑣 cos𝜑 = 71.07 m/s) a good estimation of 𝑣𝑥 from 2D filter bank is achieved with 10.4% 

relative error. This shows the practical effectiveness of the 2D filter bank technique and validates the proposed 

approach.  

6.4.2 Dual baseline configuration 

Taking advantage of the dual baseline configuration, the cross-baseline velocity and the baseline crossing point 

are estimated by performing the 2D filter bank to each signal received from the two separated antennas.  

Figure 6.12 reports the signal received at both antennas, related to a Boeing 737-800 with the target parameters 

reported in Table 6.4: the amplitude modulation due to the target movement is clearly visible.  

Table 6.4 Main characteristic of the target-Test 3. 

Target type Target size 

[length × height] 

Target photo 

Boeing 737-800 33.40m × 11.13 m 

 

  

(a) (b) 

Figure 6.12 Received signal after square law detector and decimation of a Boeing 737-800 (Test-3): (a) RX1 and (b) RX2.   

It is worth mentioning that the gain of the two receiving chains is different, based on the disturbance received 

from each antenna. For this reason there is a difference in the signal level 𝑧(𝑡) received from RX1 and RX2. The 

signal at the output of the DC removal filter is analyzed through STFT using a Hamming window with dimension 

equal to 𝑇𝑤=2.56 sec for the estimation of the Doppler rate, �̈�. Figure 6.13(a) and Figure 6.13(b) show the 

spectrogram of the signal received from the first antenna, RX1, and the second antenna, RX2, respectively, 

normalized with respect to their maximum values. As for the Test-2 in Section 0, the target does not cross the 
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baseline in the middle and perpendicularly so the two branches of the spectrograms are not completely 

symmetrical and two different Doppler rates are extracted from the Radon transform (see Figure 6.14): ϕ̃̈ =

 0.4533 and ϕ̃̈ = −0.33998. The same Doppler rate values are obtained from both antennas, RX1 and RX2 .  

  

(a) (b) 

Figure 6.13 (a) Spectrogram of the signal received from RX1 and (b) spectrogram of the signal received from RX2. 

  

(a) (b) 

Figure 6.14 Radon transform of the spectrogram related to (a) the signal received from RX1 and (b) to the signal received 

from RX2.  

As for the single baseline configuration, the 2D filter bank then is performed to each signal received from the 

two separated antennas with the impulse response (eq. ( 5.2 )) constructed for an integration time of T=8 sec and 

considering: (i) different values of the Doppler rate in the range �̈� = [�̃̈�𝑎 − 3�̃̈�𝑎 ∶ 𝛿�̈�: �̃̈�𝑎 + 3�̃̈�𝑎] and (ii) 

different values of the main lobe width in the range  𝜽 = [�̃� − 0.9�̃�: 𝛿𝜃: �̃� + 4�̃�]. Once more, �̃̈�𝑎 is set equal to 

the mean value of the Doppler rates extracted from the Radon transform, �̃� = �̃̈�𝑎
𝑙ℎ
′

𝑣′
, where 

𝑙ℎ
′

𝑣′
= 0.5, the Doppler 

rate step is set 𝛿�̈� = 1 𝑇2 =⁄ 0.0156 and the main lobe width step is 𝛿𝜃 = 0.05 .  
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Figure 6.15 (a) and Figure 6.15 (b)  show the contour plots of the cost function Δ(�̈�, 𝜃)  (normalized with 

respect to their maximum values) as a function of the Doppler rate and of the main lobe width related to the first 

receiver and the second receiver, respectively. In both cases it is clear the presence of a peak in correspondence 

of (�̂̈� = 0.4907, θ̂ = 0.2213) as it is also shown in Figure 6.16 that reports the cut of the cost function along the 

Doppler rate and main lobe width. The same Doppler rate values are obtained from both antennas, RX1 and RX2 .  

  

(a) (b) 

Figure 6.15 Contour plot of  Δ(�̈�, 𝜃) as function of the Doppler rate and of the main lobe width related to (a) RX1 and (b) 

RX2. 

  

(a) (b) 

Figure 6.16 (a) 𝛥(�̈�, 𝜃)  cut along Doppler rate axis and (b) 𝛥(�̈�, 𝜃)  cut along the main lobe width axis. 

Figure 6.17 compares a part of the received signal  from RX1 where the target signature is present, having the 

same duration of the impulse responses of the bank of filters (T=8 sec), with the impulse response from the 

matched filter, h
ϕ̂̈,θ̂
(t), which provides the highest peak in the cost function, max�̈�,𝜃 𝛥(�̈�, 𝜃) : visual waveform 

analysis confirm the agreement between experimental data and the impulse response with the same number of the 

phase cycles due to the Doppler component. Figure 6.18 reports similar results for the signal received from RX2 

and the above consideration still apply.  
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(a) (b) 

Figure 6.17 Comparison of (a) the received signal from RX1 with the (b) impulse response of the matched filter,  ℎ
�̂̈�,�̂�
(𝑡). 

  

(a) (b) 

Figure 6.18 Comparison of (a) the received signal from RX2 with the (b) impulse response of the matched filter,  ℎ
�̂̈�,�̂�
(𝑡). 

After the estimation of the Doppler rate and main lobe width, the baseline crossing instant �̂�0 is estimated (see 

eq. ( 5.6 )) as the time coordinate of the peak amplitude of the signal at the output of the matched filter with 

impulse response ℎ
�̂̈�,�̂�
(𝑡). Figure 6.19 reports a part of the signal at the output of the matched filter with impulse 

response ℎ
�̂̈�,�̂�
(𝑡) and it is clear that the peak is located in correspondence of a different time coordinate. A time 

delay equal to  Δt = 0.1254  sec is estimated.   

Exploiting the relation in eq.( 5.29 ) ,the cross-baseline velocity and the baseline crossing point are estimated, 

respectively as �̂�𝑥 = 85.03  m/s and �̂�0 = 5.9 km. The cross baseline velocity obtained by considering the 

velocity provided by the ADS-B and the baseline crossing angle is 𝑣𝑥 = 78.61 m/s.  Finally, we can conclude 

that a good estimation of 𝑣𝑥 and 𝑦0 is achieved with 8.17% and 19.19 % relative error, respectively. This shows 

the practical effectiveness of the technique and validates the proposed approach. 
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Figure 6.19 Part of the signal at the output of the matched filter with impulse ℎ
�̂̈�,�̂�
(𝑡)  related to the first and second 

receivers. 

Summary 

This chapter has presented an overview of a Passive-based FSR experimental campaign carried out on 

December 2016, where FM waveforms have been exploited as signals of opportunity in a dual baseline 

configuration.  Several tests performed during the acquisition campaign have been reported and discussed to 

assess the validation of the theoretical performance analysis of the Crystal Video Detector in a real environment, 

and to assess the effectiveness of the developed technique for the target motion parameters estimation described 

in the previous chapters.  
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To close this thesis a set of definite conclusions are drawn from the novel research described in the previous 

chapters. The section closes with the identifications of a series of areas for further investigations.  

The principal contribution of this research presented in Chapter 3 to Chapter 5 was described in Section 1.3 and 

in the summaries at the end of each chapter. From these contribution it is possible to draw several conclusions for 

the two broad areas taken under investigation: target detection and motion parameters estimation.  

With regard to the first area the issue of moving target detection that follows a linear trajectory in a single node 

FSR configuration against Additive White Gaussian Noise was addressed: (i) by a theoretical point of view 

through the derivation of closed form expressions of the detection performance and (ii) by developing new 

detection schemes. Aiming to give a thorough analysis two different geometrical scenarios was considered, 

particularly: (a) when the target is in the deep far field area and (b) when the target is approaching the near field 

condition for different integration times. The obtained results led to the following concluding remarks: 

 CVD , a widely used scheme based on the square law detector, followed by mean level cancellation and 

matched filter: In order to theoretically set the detection threshold required to obtain an assigned probability 

of false alarm, a moment-based approximation of the density probability function of the decision statistic as a 

combination of two gamma PDFs was derived. The results demonstrated that the Pfa always provide an 

accurate fit with the Monte Carlo simulations based on the exact PDF for both reference scenarios. For high 

value of the DNSR and for a Pfa up to 10-3, a simplified asymptotic expression of the Pfa, based on the 

Gaussian approximation of the PDF, may be used to set the threshold in order to guarantee a desired Pfa. This 

was followed by a closed form expression of the Pd that in all cases provides an accurate fit to the Monte 

Carlo simulations. Also approximated simplified expression of the Pd were derived that showed small 

differences with respect to the closed form expression. Even though the approximated expression of the Pd 

can be used as a tool for analytical FSR performance prediction. The theoretical performance were shown to 

be robust to the specific characteristics of the waveform. This was shown by the complete agreement between 

experimental data and theoretical Pfa and Pd. The experimental data were acquired by a passive FSR systems 

that exploits FM signals as waveform of opportunity. Therefore, the presented detection performance still 

apply, provided that the target signature used in the matched filter includes the changes applied by the 

channel on the received target signature, despite all non-idealities.  

 CFAR-CVD detectors derived with the aim to remove the need to operate with a fixed detection threshold: 

Modified version of the CVD scheme that maintains a constant false alarm rate (CFAR) independent on the 

values of 𝜎𝑛
2 and DNR were derived under two different assumption: availability of secondary data and 

Conclusions and Future work 
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absence of secondary data. Their performance were fully characterized with both analytical and simulated 

analysis for both detection and false alarm probability. The obtained results demonstrated the desired CFAR 

propriety. The comparison of their detection performance showed limited losses of the CFAR detectors with 

respect to the fixed threshold CVD. For the CFAR-CVD with secondary data, deliberately was used a small 

set of secondary data to show how this scheme was dependent on the number of samples averaged. For this 

reason the CFAR-CVD with secondary data experienced losses in the order of 3 dB to achieve the same 

detection performance of the CVD with fixed threshold and CFAR-CVD without secondary data.  

 GLRT-based schemes that exploits the I&Q baseband components: Optimized detection schemes in order to 

operate effectively under all conditions were derived and analytically characterized. The results showed the 

new schemes provided detection performance improved with respect to the CVD by an amount ranging from 

a minimum of 3 dB up to 10 dB. The 3dB improvement when the target is in the deep far field area was 

always present and was due to the use of the individual I&Q components instead of the detected power. 

Meanwhile the larger improvement was noticed when the target moves towards the limits of the far field 

conditions. In fact, getting close to the near-field transition point, the number of phase cycles present in the 

target signature largely reduces and the crystal video operation get towards its limits of validity. By 

comparing the fully adaptive versions of the GLRT (namely GLRT-2 that knows only the noise power and 

GLRT-3 that ensures the CFAR condition) to the more ideal version (GLRT-1) that assumes the knowledge 

of the direct signal amplitude and phase, it was noted that the limited loss present under far field conditions 

was replaced by a major loss, when getting toward the transition between far field and near field.  

 GLRT-based schemes with secondary data derived with the aim to improve the detection performance of the 

GLRT when operating in a condition that is not too far from the near-field: The new set of GLRT schemes , 

that include the use of target-free secondary data, together with the primary data, showed a non-negligible 

further improvement over the previous GLRT schemes, when the operation conditions get close to the near 

field transition point. 

 Design criteria for FSR systems: The analytical performance obtained for the GLRT schemes, also allowed 

to derive equivalent SNR expressions, that relate the detection performance to the main FSR parameters 

describing geometry, target size and target motion. This allowed to investigate the effect of the individual 

parameters on the global detection performance. The main results can be summarized as follows: (i) the SNR 

was shown to exhibits an asymptotic trend when increasing the observation time; this is because the main 

contribution from the target is specified by the main lobe of the pattern signature, (ii) a greater DNSR was 

necessary to obtain the same performance when the target crosses the baseline in the middle for the same 

target size that moves with the same velocity and crosses the baseline with the same angle, (iii) for a long 

integration time the performance did not depend on the baseline crossing angle, (iv) better performance were 

obtained for slow moving target and (v) the performance presented a higher sensitivity to the vertical 

dimension of the target with respect to its horizontal dimension. 
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With regard to the second area the issue of motion parameters estimation of moving target that follows a linear 

trajectory embedded in the direct signal and AWGN was addressed (i) by developing a two dimension filter bank 

based on the Crystal Video scheme to extract the target signal parameters and (ii) by investigating the accuracy of 

the proposed approach from a theoretical point of view through the derivation of closed form expressions of the 

Cramer Rao Lower Bound. Aiming to give a thorough analysis two different FSR configuration were considered: 

(a) single baseline configuration and (b) dual baseline configuration with small angular separation between the 

two baselines. The obtained results led to the following concluding remarks:  

 Two dimensional filter bank, a technique useful for the estimation of the main unknown target parameters : 

The two-dimensional filter bank derived with the generic impulse response depending on the unknown target 

electrical size and target trajectory allowed the estimate the following target signal parameters: Doppler rate, 

baseline crossing time and main lobe width of the pattern signature. In particular, the impulse response was 

defined by considering different values of the Doppler rate and of the main lobe width of the pattern 

signature. In order to support practical applications to limit the computational load required by the bank a 

two-step processing and some design criteria related to the Doppler rate and main lobe width steps were 

proposed. The obtained results showed that for different target trajectories the Doppler rate and the main lobe 

width were well estimated. Then, closed form expressions of the CRLB that represents the optimum 

achievable accuracy on the estimation of the target signal parameters that can be obtained by observing the 

samples of the signal at the output of the DC removal filter in CVD scheme for a specific target characterized 

by a certain signal-to-noise ratio were derived. The obtained results showed that the target signal parameters 

of interest were independent from the other parameters: amplitude of the direct and target signal and noise 

variance. Also was proved that the estimates of the Doppler rate, baseline crossing instant and main lobe width 

are decoupled. The performance of the 2D filter bank was investigated and the analysis showed that for 

different target trajectories unbiased estimates of the target parameters were obtained that appraoches the 

derived CRLB in the high SNR region. 

 Motion parameters estimation in a single baseline and dual baseline FSR configuration: Exploiting the 

extraction of the Doppler rate from the 2D filter bank and under the assumption that the baseline crossing 

point is known it was possible to estimate the cross-baseline velocity from a single baseline configuration. 

Meanwhile from a dual baseline configuration with one transmitter and two separated receives by exploiting 

the Doppler rate and the crossing times extraction from the 2D filter bank the cross baseline velocity and 

baseline crossing point were retrieved without a priori knowledge on the other target motion parameters. The 

analysis demonstrated that the accuracy achievable from the 2D filter bank technique in the high SNR region 

approached the corresponding approximated CRLB. The overall performance of the proposed approach was 

shown to be suitable for a practical application as accuracy in the order of 1% is obtained for a SNR=20 dB. 

The effectiveness was proved also through experimental data acquired by a passive FSR systems that exploits 

FM signals as waveform of opportunity. 

The investigation reported in this thesis suggest further work that could be performed in the same field.  
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One of the main research interest in the field of target detection in FSR configuration regards the analysis of 

the detection performance of the considered detectors, based on the CVD and on the GLRT approach, when 

different waveforms from the constant-amplitude single tone waveform here considered, may be used. In the 

Chapter 6 the processing of live data acquired from a passive FSR prototype by exploiting FM signals as 

waveforms of opportunity showed the robustness to the specific waveform characteristics of the theoretical 

performance of the CVD. It is to be remarked that FM signals of opportunity are very different from the 

constant–amplitude single tone waveform, used in this work for the derivation of the theoretical performance. 

Other than the intrinsic continuous frequency variation of a FM modulated waveform, this includes both the 

amplitude modulation due to multipath and transmit filtering, as well as potential temporary changes of the 

carrier frequency. By extracting the target signature from the data, we have intrinsically compensated their effect 

only on the final filter, which is clearly matched to the received target signal. However, their effect on the direct 

signal has not been removed. Despite the non-ideal direct signal characteristics, the presented performance 

comparison shows that the CVD remains effective in the removal of the direct signal, and our theoretical 

performance prediction still matches the detection results. It is worth mentioning that when using a theoretical 

target signature to create the matched filter, all non-idealities mentioned above provide a mismatch between the 

received target signature and the one used in the filter. This mismatch of the filter, which was intrinsically 

avoided in this work, is expected to provide a global performance degradation for the CVD. Therefore the 

analysis of the detection performance and of the robustness not only of the CVD scheme but also of the GLRT-

based detectors under the above-mentioned conditions will be of great interest.  

The purpose of this work was to assess the detection performance achievable from the CVD and the 

GLRT-based detectors when the filter matched to the actual target parameters was used: in this respect 

knowledge of the two signatures, Doppler and pattern signature, was assumed. In practical cases, as shown 

in Chapter 5 where a target with unknown size and velocity is searched for, a bank of matched filters may be 

used. Therefore the performance analyzed here represents the performance provided by the branch of the 

bank matched to the specific condition. The design of such bank of filters, in particular for the GLRT-based 

detectors, here not addressed and the analysis of the overall performance will allow to move to a more 

realistic environment. 

With regard to the motion parameters estimations would be of large interest to investigate the estimation of all 

kinematic parameters for a target that follows a linear trajectory from a single baseline configuration by 

exploiting a Taylor expansion of the phase variation at third or fourth order. To estimate all the kinematic 

parameters of moving targets we can take into account the dependence of these parameters on the extracted third 

and fourth order parameters other than the Doppler rate.  

In addition, in this work it has been discussed the importance of a dual baseline configuration that ensures the 

possibility to estimate two parameters without requiring a priori knowledge on the other target kinematic 

parameters. In this work the dual baseline configuration exploited was assumed to have a small angular 

separation between the two baselines, therefore the target crosses the two baselines maintaining the same 
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velocity. Therefore would be interesting to analyze the possibility to estimate the motion parameters from a dual 

baseline configuration with large angular separation (one transmitter and two separated receivers or two separated 

transmitters and only one receiver) where the assumption that the target crosses the two baselines with the same 

velocity will not be valid.  

Moreover, future radar systems are likely to be distributed an multistatic offering greater flexibility and greater 

robustness. Hence, would be of great interest to estimate all the kinematic parameters and analyze the 

performance in terms of the accuracy from a multi-node FSR configuration by applying the 2D filter bank of 

developed in Section 5.2.1 to the signals received from each receiver.  

The research activities proposed, as an extension of the work done for this thesis project represents a 

challenging opportunity for future investigations.  
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Appendix A Moments of the CVD 

As shown in [48] the s-th cumulant of  the generic quadratic form 𝒙𝑻𝑨𝒙, where the (N1) real random vector 

𝒙 has mean vector 𝝃 and covariance matrix 𝚺, is given by: 

𝑘(𝑠) = 2𝑠−1𝑠! [𝑡𝑟(𝐀𝚺)𝑠 𝑠⁄ +  𝝃𝑇(𝐀𝚺)𝑠−1𝑨𝝃] (A. 1) 

where 𝑡𝑟(𝑸) is the trace of matrix 𝑸. To represent the quadratic form 𝑞𝑚 defined in eq. ( 3.17 ) for m=0,1,2 of 

the complex Gaussian random vector r (Nx1), we can still benefit of eq. (A. 1) using 2N real components (real 

and imaginary parts), 𝑞𝑚 = ∑ 𝜃𝑛(𝑞𝑚)
𝑁
𝑛=1 (𝑟𝑛𝑅

2 + 𝑟𝑛𝐼
2 ). Therefore, in our case of interest: 

- 𝑨is a diagonal matrix with size 2N, with the first N diagonal elements equal to 𝜃𝑛(𝑞𝑚) defined in eq.( 3.18 ), 

n=1, …,N followed by other N diagonal elements again equal to 𝜃𝑛(𝑞𝑚), n=1, …, N. 

-𝚺 = 𝜎𝑛
2/2
𝐼2𝑁being 2N the identity matrix of size 2N. 

- vector 𝝃is a (2N1) vector with the first N elements equal to the real part of the mean value of vector 𝒓 and 

the following N elements equal to the imaginary part of the mean value of vector 𝒓.  

Thus, the s-th cumulant is 𝑘𝑞𝑚(𝑠), of 𝑞𝑚 for m=0,1,2, and  is given by: 

𝑘𝑞𝑚(𝑠) = (𝑠 − 1)! 𝜎𝑛
2(𝑠−1)

(𝜎𝑛
2∑ 𝜃𝑘

𝑠
𝑁

𝑘=1
(𝑞𝑚) + 𝑠∑ 𝜃𝑘

𝑠(𝑞𝑚)|𝜒𝑘|
2

𝑁

𝑘=1
) (A. 2) 

being 𝜒𝑘 = 𝛼 + 𝛽𝑠𝑡0𝑘 in the presence of the target signal. Therefore, under hypothesis H1 it yields: 

𝑘𝑞𝑚(𝑠) = (𝑠 − 1)! 𝜎𝑛
2(𝑠−1)

[(𝜎𝑛
2 + 𝑠|𝛼|2)∑ 𝜃𝑘

𝑠(𝑞𝑚)
𝑁

𝑘=1
+ 𝑠|𝛽|2∑ 𝜃𝑘

𝑠(𝑞𝑚)|𝜒𝑘|
2

𝑁

𝑘=1

+ 2𝑠|𝛼||𝛽|∑ 𝜃𝑘
𝑠(𝑞𝑚)

𝑁

𝑘=1
ℎ𝑘] 

(A. 3) 

and, under hypothesis H0, simplifies to: 

𝑘𝑞𝑚(𝑠) = (𝑠 − 1)! 𝜎𝑛
2(𝑠−1)(𝜎𝑛

2 + 𝑠|𝛼|2)∑ 𝜃𝑘
𝑠(𝑞𝑚)

𝑁

𝑘=1
 (A. 4) 

By recalling that the moments can be obtained from the cumulants using the well-known recursive relationship: 
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𝜇𝑞𝑚(𝑠) =∑
(𝑠 − 1)!

(𝑠 − 1 − 𝑖)! 𝑖!
𝑘𝑞𝑚(𝑠 − 𝑖)

𝑠−1

𝑖=0
𝜇𝑞𝑚(𝑖) (A. 5) 

which under hypothesis H1 yields: 

𝜇𝑞𝑚(𝑠) =

∑
(𝑠−1)!

𝑖!

𝑠−1
𝑖=0 𝜎𝑛

2(𝑠−1)
𝜇𝑞𝑚(𝑖)[(𝜎𝑛

2 + (𝑠 − 1)|𝛼|2)∑ 𝜃𝑘
𝑠−𝑖(𝑞𝑚)

𝑁
𝑘=1 +

(𝑠 − 𝑖)|𝛽|2∑ 𝜃𝑘
𝑠−𝑖(𝑞𝑚)|𝑠𝑡0𝑘|

2𝑁
𝑘=1 + 2(𝑠 − 𝑖)|𝛼||𝛽|∑ 𝜃𝑘

𝑠−𝑖(𝑞𝑚)
𝑁
𝑘=1 ℎ𝑘]  

(A. 6) 

Under hypothesis H0, the generic moment of 𝑞𝑚for m=0,1,2 is given by the simplified recursive expression: 

𝜇𝑞𝑚(𝑠) =∑
(𝑠 − 1)!

𝑖!

𝑠−1

𝑖=0
𝜎𝑛
2(𝑠−1)

𝜇𝑞𝑚(𝑖)(𝜎𝑛
2 + (𝑠 − 1)|𝛼|2)∑ 𝜃𝑘

𝑠−𝑖(𝑞𝑚)
𝑁

𝑘=1
 (A. 7) 

Appendix B Evaluation of the Pfa of the CVD 

As the test statistic is given by the difference 𝑞0 = 𝑞1 − 𝑞2, its PDF is given by the correlation between the 

gamma PDFs of 𝑞1 and 𝑞2 defined in eq. ( 3.21 ):  

𝑝𝑞0(𝑞0) =

{
 
 

 
 
∫
(𝑞0 + 𝑦)

𝜈𝑞1−1

𝜇𝑞1
′ 𝜈𝑞1Γ(𝜈𝑞1)

𝑒
− 
𝑞0+𝑦

𝜇𝑞1
′ 𝑦𝜈𝑞2−1

𝜇𝑞2
′ 𝜈𝑞2Γ(𝜈𝑞2)

𝑒
− 

𝑦

𝜇𝑞2
′
𝑑𝑦 ,       𝑞0 < 0

∞

−𝑞0

∫
(𝑞0 + 𝑦)

𝜈𝑞1−1

𝜇𝑞1
′ 𝜈𝑞1Γ(𝜈𝑞1)

𝑒
− 
𝑞0+𝑦

𝜇𝑞1
′ 𝑦𝜈𝑞2−1

𝜇𝑞2
′ 𝜈𝑞2Γ(𝜈𝑞2)

𝑒
− 

𝑦

𝜇𝑞2
′
𝑑𝑦 ,       𝑞0 ≥ 0

∞

0

 (B. 1) 

Since 𝑞0 has a zero mean under hypothesis H0, to provide Pfa values smaller than 0.5, the detection threshold 

𝑇𝐶𝑉𝐷 must have a positive value. Therefore, we are only interested in the PDF of 𝑞0  for positive values. In order 

to simplify the expression of the PDF, as well as the resulting Pfa, we restrict to integer values of 𝑛𝑞1 =

𝑟𝑜𝑢𝑛𝑑(𝜈𝑞1).. By evaluating the integration, we obtain: 

𝑝𝑞0(𝑞0)

= (
𝜇𝑞1
′

𝜇𝑞1
′ + 𝜇𝑞2

′ )

𝜈𝑞2

∑
Γ(𝑛𝑞1 − 1 + 𝜈𝑞2 − 𝑝)

Γ(𝜈𝑞2)(𝑛𝑞1 − 1 − 𝑝)!
(

𝜇𝑞2
′

𝜇𝑞1
′ + 𝜇𝑞2

′ )

𝑛𝑞1−1−𝑝 1

𝑝!

1

𝜇𝑞1
′ (

𝑞

𝜇𝑞1
′ )

𝑝
𝑛𝑞1−1

𝑝=0

𝑒
− 

𝑞

𝜇𝑞1
′

 
(B. 2) 

To obtain a closed form expression for the Pfa, the PDF above is integrated from the threshold 𝑇𝐶𝑉𝐷 to infinity: 

𝑃𝑓𝑎 = ∫ 𝑝𝑞0(𝑞0)
∞

𝑇𝐶𝑉𝐷

𝑑𝑞0

= 𝑒
− 
𝑇𝐶𝑉𝐷
𝜇𝑞1
′
(

𝜇𝑞1
′

𝜇𝑞1
′ + 𝜇𝑞2

′ )

𝜈𝑞2

∑
1

𝑚!

𝑛𝑞1−1

𝑚=0

(
𝑇𝐶𝑉𝐷
𝜇𝑞1
′ )

𝑚

∑
Γ(𝑟 + 𝜈𝑞2)

Γ(𝜈𝑞2)𝑟!

𝑛𝑞1−1−𝑚

𝑟=0

(
𝜇𝑞2
′

𝜇𝑞1
′ + 𝜇𝑞2

′ )

𝑟

 

(B. 3) 

By recalling the expressions in eq.( 3.24) and observing that: 
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{
 
 

 
 

𝜇𝑞1
′

𝜇𝑞1
′ + 𝜇𝑞2

′ =
1 + 𝛿

2

𝜇𝑞2
′

𝜇𝑞1
′ + 𝜇𝑞2

′ =
1 − 𝛿

2

 (B. 4) 

it yields:  

𝑃𝑓𝑎 = 𝑒
−

𝑇𝐶𝑉𝐷 (𝜎𝑛
2𝜀)⁄

𝜌(𝐷𝑁𝑅)/𝜔(1+𝛿)(1 + 𝛿)𝜈𝑞2 ∑
1

𝑚!
(

𝑇𝐶𝑉𝐷 (𝜎𝑛
2𝜀)⁄

𝜌(𝐷𝑁𝑅) 𝜔(1+𝛿)⁄
)
𝑚

∑
Γ(𝑟+𝜈𝑞2)

2𝜈𝑞2+𝑟Γ(𝜈𝑞2)
(1 − 𝛿)𝑟

𝑛𝑞1−1−𝑚

𝑟=0

𝑛𝑞1−1

𝑚=0   (B. 5) 

Appendix C Derivation of GLRT-based detectors 

In this appendix the derivation of the decision statistic of the GLRT-based detectors is reported. The MLE of 

the unknown parameters which maximize the joint PDF (see eq. ( 3.8 )) is obtained by nulling the derivatives of 

the logarithm of the joint PDF under hypothesis H0 and under hypothesis H1: 

𝑙𝑛 {𝑃𝒓 (
𝒓
𝐻0⁄ )} = −𝑁 ln 𝜋 − 𝑁 ln 𝜎𝑛

2 −
1

𝜎𝑛
2 ‖𝒓 − 𝛼𝒔𝒅𝟎‖

2   (C. 1) 

𝑙𝑛 {𝑃𝒓 (
𝒓
𝐻1⁄ )} = −𝑁 ln 𝜋 − 𝑁 ln 𝜎𝑛

2 −
1

𝜎𝑛
2 ‖𝒓 − 𝛼𝒔𝒅𝟎 − 𝛽𝒔𝒕𝟎‖

2   (C. 2) 

For the GLRT-1 the MLE of the phase of β parameter is obtained as:  

𝑚𝑎𝑥
∠𝛽

{𝑙𝑛 𝑃𝒓 (
𝒓
𝐻1⁄ )} = −

1

𝜎𝑛
2
𝑚𝑖𝑛
∠𝛽

{{‖𝛽𝒔𝒕𝟎‖
2 − 2𝑅𝑒[(𝒓 − 𝛼𝒔𝒅𝟎)

𝐻𝛽𝒔𝒕𝟎]}}   (C. 3) 

which yields: 

∠�̂� = −∠{(𝒓 − 𝛼𝒔𝒅𝟎)
𝐻𝒔𝒕𝟎} (C. 4) 

By substituting eq. (C. 4) into eq. ( 4.1 ) and after some simple algebraic transformations the test statistic of the 

GLRT-1 detector in eq. ( 4.2 ) is obtained.  

Concerning the GLRT-2 detector, the MLE of the complex amplitudes of the direct and target signal is 

obtained by nulling the derivative of eq. (C. 1) and eq. (C. 2) with respect to 𝛼 and 𝛽 yielding: 

�̂�|𝐻0 =
𝒔𝒅𝟎
𝐻 𝒓

‖𝒔𝒅𝟎‖
2
 , �̂�|𝐻1 =

𝒔𝒅𝟎
𝐻 (𝒓 − 𝛽𝒔𝒕𝟎)

‖𝒔𝒅𝟎‖
2

 (C. 5) 

�̂� =
�̃�𝒕𝟎
𝐻 �̃�

‖�̃�𝒕𝟎‖
2
 (C. 6) 

where �̃� = 𝑷𝒔𝒅
⊥ 𝒓 , �̃�𝒕𝟎 = 𝑷𝒔𝒅

⊥ 𝒔𝒕𝟎 and 𝑷𝒔𝒅
⊥  are defined in the Section 4.2.1.2  Substituting jointly the eq. (C. 5) 

under both hypothesis and eq. (C. 6) under hypothesis H1 into eq. ( 3.8 ) and after some simple manipulations the 

test statistic in eq. ( 4.4 ) is obtained.  

The test statistic of the GLRT-3 detector with all parameters unknown is obtained from results concerning 

GLRT-2 by nulling also the derivative of  eq. (C. 1) and eq. (C. 2) with respect to 𝜎𝑛
2 which yields: 
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�̂�𝑛
2|𝐻0 =

‖�̃�‖2

𝑁
 , �̂�𝑛

2|𝐻0 =
‖�̃�−𝑷�̃�𝒕𝟎 �̃�‖

2

𝑁
  (C. 7) 

where 𝐏�̃�𝐭𝟎 is defined in Section 4.2.1.3  

Substituting jointly in eq. ( 3.8 ) the MLE of 𝛼 and 𝜎𝑛
2  under both hypothesis defined in eq. (C. 5) and eq. (C. 

7) respectively and the MLE of 𝛽 defined in eq. (C. 6) under hypothesis H1 we have:  

[
‖𝑷�̃�𝒕𝟎�̃�‖

2
+ ‖𝑷�̃�𝒕𝟎

⊥ �̃�‖
2

‖𝑷�̃�𝒕𝟎
⊥ �̃�‖

2 ]

𝑁
𝐻1
≷
𝐻0

𝑇𝛬 (C. 8) 

where 𝐏�̃�𝐭𝟎
⊥  is defined in Section4.2.1.3. After simple manipulations the test statistic in eq. ( 4.7 ) is obtained. The 

PDF of 𝑥3  in eq. ( 4.7 ) can be derived by observing that the received signal model in defined in eq.  ( 3.7 ) and 

the properties of the orthogonal projectors imply that 𝑷�̃�𝒕𝟎
⊥ �̃� = 𝑷�̃�𝒕𝟎

⊥ 𝒏 belong to a subspace of dimension N-2. 

Thus, using also the definition of 𝑷�̃�𝒕𝟎 the test in  eq. (C. 8) can be written as: 

‖𝑷�̃�𝒕𝟎�̃�‖
2

‖𝑷�̃�𝒕𝟎
⊥ �̃�‖

2 =
|�̃�𝒕𝟎
𝐻 �̃�|

2
‖�̃�𝒕𝟎‖

2⁄

∑ |�̃�𝑘|
2𝑁−2

𝑘=1

𝐻1
≷
𝐻0

 𝑇𝛬
1/𝑁

− 1 (C. 9) 

𝑥3 =
𝑥2
2

∑
|�̃�𝑘|

2

𝜎𝑛
2

𝑁−2
𝑘=1

  

𝐻1
≷
𝐻0

 𝑇𝛬
1/𝑁

− 1 
(C. 10) 

where 𝑥2 is defined in eq. ( 4.4 ) and �̃�𝑘 with k=1,…, N-2 are i.i.d complex zero mean Gaussian random variables 

with variance 𝜎𝑛
2. The numerator of the test statistic in eq. (C. 10) under the null-hypothesis is a Chi square 

distribution with 2 degree of freedom and with the variance of the constituent Gaussian variates equal to ½ and 

under the alternative hypothesis is a non-central Chi square distribution with the same dof and the same variances 

of the constituent Gaussian variate and non-central parameter equal to 
2|𝛽|2�̃�𝒕𝟎

𝐻 �̃�𝒕𝟎

𝜎𝑛
2 . Meanwhile the denominator 

under both hypotheses is a Chi square distribution with 2(N-2) dof and variances of the constituent Gaussian 

variate equal to ½, [51].  Therefore, the F-distribution is obtained for the test statistic of the GLRT-3 detector 

under H0 and the non-central F-distribution under H1, [51]. 

Appendix D Derivation of GLRT-based detectors with secondary 

data 

Likewise, for the GLRT detectors with secondary data the MLE of the unknown parameters is obtained by 

nulling the derivatives of the logarithm of the joint PDF under hypothesis H0 and under hypothesis H1: 

𝑙𝑛 {𝑃𝒓 (
𝒓
𝐻0⁄ ) 𝑃𝒓′ (

𝒓′
𝐻0
⁄ )} = −(𝑁 +𝑀) ln 𝜋 − (𝑁 +𝑀) ln 𝜎𝑛

2 −
1

𝜎𝑛
2  [‖𝑟 − 𝛼𝑠𝑑0‖

2 +

∑ ‖𝑟𝑚
′ − 𝛼𝑠𝑑0

′ ‖2𝑀
𝑚=1 ]  

(D. 1) 
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𝑙𝑛 {𝑃𝒓 (
𝒓
𝐻1⁄ ) 𝑃𝒓′ (

𝒓′
𝐻0
⁄ )} = −(𝑁 +𝑀) ln 𝜋 − (𝑁 +𝑀) ln 𝜎𝑛

2 −
1

𝜎𝑛
2  [‖𝑟 − 𝛽𝑠𝑡0 − 𝛼𝑠𝑑0‖

2 +

∑ ‖𝑟𝑚
′ − 𝛼𝑠𝑑0

′ ‖2𝑀
𝑚=1 ]  

(D. 2) 

Concerning the GLRT-2, the MLE of the direct and target signal complex amplitudes derived by nulling the 

corresponding derivatives of eq. (D. 1)and eq. (D. 2) are: 

�̂�|𝐻0 =
𝒔𝒅𝟎
𝐻 𝒓 + 𝒔𝒅𝟎

′ 𝐻
𝒓′

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2  , �̂�|𝐻1 =

𝒔𝒅𝟎
𝐻 (𝒓 − 𝛽𝒔𝒕𝟎) + 𝒔𝒅𝟎

′ 𝐻
𝒓′

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2  (D. 3) 

�̂� =

𝒔𝒕𝟎
𝐻 (𝑟 −

𝒔𝒅𝟎𝒔𝒅𝟎
𝐻 𝒓 + 𝒔𝒅𝟎𝒔𝒅𝟎

′ 𝐻
𝒓′

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2 )

(‖𝒔𝒕𝟎‖
2 −

|𝒔𝒅𝟎
𝑯 𝒔𝒕𝟎|

2

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2)

 (D. 4) 

Substituting jointly �̂�|𝐻0 and �̂�|𝐻1 and �̂� into eq. ( 4.19 ) and after some simple manipulations the test statistic in 

eq. ( 4.20 ) is obtained. 

Whereas for the GLRT-3 firstly the MLE of 𝜎𝑛
2 is derived: 

�̂�𝑛
2|𝐻1 =

‖𝒓‖2 + ‖𝒓′‖2 −
|𝒔𝒅𝟎
𝐻 𝒓 + 𝒔𝒅𝟎

′ 𝐻
𝒓′|

2

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2

(𝑁 +𝑀)
 

�̂�𝑛
2|𝐻1 =

‖𝒓 − 𝛽𝒔𝒕𝟎‖
2 + ‖𝒓′‖2 −

|𝒔𝒅𝟎
𝐻 (𝒓 − 𝛽𝒔𝒕𝟎) + 𝒔𝒅𝟎

′ 𝐻
𝒓′|

2

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2

(𝑁 +𝑀)
 

(D. 5) 

By substituting jointly the MLE of 𝛼 and 𝜎𝑛
2 defined in eq. (D. 3) and (D. 5) respectively under both hypothesis 

and the MLE of 𝛽 parameter defined in eq. (D. 4) under hypothesis H1 into ( 4.19 ) the likelihood function may 

be written as follows: 

[
 
 
 
 
 
 
‖𝒓‖2 + ‖𝒓′‖2 −

|𝒔𝒅𝟎
𝑯 𝒓 + 𝒔𝒅𝟎

′ 𝑯
𝒓′|

2

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2

𝑤

]
 
 
 
 
 
 
𝑁+𝑀

𝐻1
≷
𝐻0

𝑇𝛬
′ (D. 6) 

where the denominator w is : 

𝑤 =

‖𝒓‖2 + ‖𝒓′‖2 −
|𝒔𝒅𝟎
𝑯 𝒓 + 𝒔𝒅𝟎

′ 𝑯
𝒓′|

2

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2 −

|𝒔𝒕𝟎
𝐻 (𝒓 −

𝒔𝒅𝟎𝒔𝒅𝟎
𝐻 𝒓 + 𝒔𝒅𝟎𝒔𝒅𝟎

′ 𝑯
𝒓′

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2 )|

2

(‖𝒔𝒕𝟎‖
2 −

|𝒔𝒅𝟎
𝑯 𝒔𝒕𝟎|

2

‖𝒔𝒅𝟎‖
2 + ‖𝒔𝒅𝟎

′ ‖
2)

𝜎𝑛
2  

(D. 7) 
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After some simple manipulations the test statistic of the GLRT-3 with secondary data in eq. ( 4.22 ) is obtained. 

It is easy to verify that in eq. ( 4.24 ) the numerator 𝑥2
′ 2 is a Chi square variate with 2 degree of freedom and 

with variance of the constituent Gaussian variates equal to 1/2 under the  null-hypothesis meanwhile under the 

hypothesis H1 has a non-central Chi square distribution with the same dof and the same variances of the 

constituent Gaussian variates as in the H0 and non-central parameter equal to 
2|𝛽|2

𝜎𝑛
2 (‖𝒔𝒕𝟎‖

2 −
|𝒔𝒅𝟎
𝑯 𝒔𝒕𝟎|

2

‖𝒔𝒅𝟎‖
2+‖𝒔𝒅𝟎

′ ‖
2). 

Meanwhile the denominator 𝑤 in eq. (D. 7) is the sum of non-central Chi-squared variates with dof and non-

central parameter being the sum of the corresponding parameters of the individual distributions. Finally, we can 

state that 𝑤 has a Chi square distribution with 2(N+M-2) dof and with variances of the constituent Gaussian 

variate equal to ½. On this basis the non-central F distribution is obtained for 𝑥3
′  under H1 and the F-distribution 

under H0. 

Appendix E Evaluation of the SNR of GLRT-1 and GLRT-2 detector 

This appendix reports the derivation of the SNR of GLRT-1 and GLRT-2 detectors.  

The closed-form expression of 𝑆𝑁𝑅𝐺𝐿𝑅𝑇1 in eq. ( 4.34 ) is obtained by solving the integral in eq. ( 4.33 ) as 

follows:  

∫ |𝑠𝑡0(𝑡)|
2𝑑𝑡

𝑇
2⁄

−𝑇 2⁄

= 𝑠0
02∫ 𝑠𝑖𝑛𝑐2(�̈�𝜖𝑡)𝑑𝑡

𝑇
2⁄

−𝑇
2⁄

 (E. 1) 

∫ |𝑠𝑡0(𝑡)|
2𝑑𝑡

𝑇
2⁄

−𝑇 2⁄

= (
𝑠0
0

𝜋�̈�𝜖
)

2

∫ 𝑠𝑖𝑛2(�̈�𝜖𝑡)𝑑 (
1

𝑡
)

𝑇
2⁄

−𝑇
2⁄

 (E. 2) 

Through the integration by parts of  eq. (E. 2) we have: 

∫ |𝑠𝑡0(𝑡)|
2𝑑𝑡

𝑇
2⁄

−𝑇 2⁄

= 2
𝑠0
02

𝜋�̈�𝜖
[𝑆𝑖(𝜋�̈�𝜖𝑇) −

1

𝜋𝜇𝜂

𝑠𝑖𝑛2(𝜋�̈�𝜖 𝑇 2⁄ )

 𝑇 2⁄
] (E. 3) 

Exploiting the definitions of α and β introduced in Section 3.2, it is simple to obtain the closed form expression 

of the GLRT-1 detector in eq. ( 4.34 ). 

Concerning GLRT-2, the closed-form expression in eq. ( 4.36 ) is obtained by substituting eq. (E. 3)  into eq. ( 

4.35 ) and solving the integral. The last is derived by approximating the 𝑠𝑖𝑛𝑐(�̈�𝜖𝑡) in eq. ( 4.31 ) as follows: 

     𝑠𝑖𝑛𝑐[𝜋𝑥] ≅ {
𝑐𝑜𝑠 (𝜋

𝑥

2
) + 𝑘 𝑠𝑖𝑛(𝜋𝑥)           0 ≤ 𝑥 ≤ 1

𝑝 𝑠𝑖𝑛(𝜋𝑥)           𝑚 ≤ 𝑥 ≤ 𝑚 + 1,𝑚 ≥ 1
 (E. 4) 

where  
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 𝑘 =
4

𝜋
−
1

√2
(1 +

𝜋

4
) 

𝑝 =
4

𝜋(1 + 2𝑚)
 

(E. 5) 

Hence we have: 

∫ 𝑠0
0𝑒𝑗𝜋𝜇𝑡

2
𝑠𝑖𝑛𝑐(�̈�𝜖𝑡)𝑑𝑡

𝑇
2⁄

−𝑇 2⁄

= 𝑠0
0∫ 𝑒𝑗𝜋𝜙𝑡

2
𝑐𝑜𝑠 (𝜋

�̈�𝜖𝑡

2
)𝑑𝑡

𝑇
2⁄

−𝑇 2⁄

+ 𝑠0
0𝑘∫ 𝑒𝑗𝜋𝜙𝑡

2
𝑠𝑖𝑛(𝜋�̈�𝜖𝑡) 𝑑𝑡

𝑇
2⁄

−𝑇 2⁄

+ 𝑠0
0 ∑ ∫ 𝑝𝑒𝑗𝜋𝜙𝑡

2
𝑠𝑖𝑛(𝜋�̈�𝜖𝑡)𝑑𝑡

𝑚+1

𝑚

𝑃−1

𝑚=1

 

(E. 6) 

where P-1 is the number of integrated side lobes of the pattern signature. The integrals in eq. (E. 6) are obtained 

by recalling the Euler’s identity and the Fresnel Cosine and Fresnel Sine function in [50], which yields to the 

expression reported in where the arguments of the Fresnel Cosine and Sine functions are: 

X1 (X2) = √2τ (
T

2
±
𝜖

4
)    X3 (X4) = √2τ (

T

2
±
𝜖

2
) 

X5 = √2τ
𝜖

2
 

X6 = √2τ (
m + 1

𝜖τ
+
𝜖

2
)    X7 = √2τ (

m

𝜖τ
+
𝜖

2
) 

X8 = √2τ (
m + 1

𝜖τ
−
𝜖

2
)    X9 = √2τ (

m

𝜖τ
−
𝜖

2
) 

(E. 7) 

Appendix F Cramer Rao Lower Bound derivation of the 2D filter 

bank approach 

 This appendix reports the derivation of the Cramer Rao Lower Bound of the main target parameters 

estimated from the 2D filter bankd. In accordance with the definition of the log-likelihood function, ln 𝑝 (𝒖|𝝑) in 

eq. ( 5.14 ) each diagonal element of FIM define in eq. ( 5.16 ) is: 

𝐽1,1 = 𝐸 {[
𝜕

𝜕�̈�
ln 𝑝 (𝒖|𝝑)]

2
}, 𝐽2,2 = 𝐸 {[

𝜕

𝜕𝑡0 
ln 𝑝 (𝒖|𝝑)]

2
}, 𝐽3,3 = 𝐸 {[

𝜕

𝜕𝜃 
ln 𝑝 (𝒖|𝝑)]

2
} 

𝐽4,4 = 𝐸 {[
𝜕

𝜕𝑀𝑑
ln 𝑝 (𝒖|𝝑)]

2
}, 𝐽5,5 = 𝐸 {[

𝜕

𝜕𝑀𝑡
ln 𝑝 (𝒖|𝝑)]

2
}, 𝐽6,6 = 𝐸 {[

𝜕

𝜕𝜎𝑛
ln 𝑝 (𝒖|𝝑)]

2
} 

(F. 1) 

 

Meanwhile the off-diagonal elements of FIM are: 

𝐽1,2 = 𝐽2,1 = 𝐸 {[
𝜕

𝜕�̈�
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝑡0
[ln 𝑝 (𝒖|𝝑)]} , 𝐽1,3 = 𝐽3,1 = 𝐸 {[

𝜕

𝜕�̈�
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝜃
[ln 𝑝 (𝒖|𝝑)]}, (F. 2) 
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 𝐽1,4 = 𝐽4,1 = 𝐸 {[
𝜕

𝜕�̈�
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝑀𝑑
[ln 𝑝 (𝒖|𝝑)]} , 𝐽1,5 = 𝐽5,1 = 𝐸 {[

𝜕

𝜕�̈�
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝑀𝑡
[ln 𝑝 (𝒖|𝝑)]}, , 

𝐽1,6 = 𝐽6,1 = 𝐸 {[
𝜕

𝜕�̈�
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝜎𝑛
[ln 𝑝 (𝒖|𝝑)]}, 𝐽2,3 = 𝐽3,2 = 𝐸 {[

𝜕

𝜕𝑡0
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝜃
[ln 𝑝 (𝒖|𝝑)]},  

𝐽2,4 = 𝐽4,2 = 𝐸 {[
𝜕

𝜕𝑡0
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝑀𝑑
[ln 𝑝 (𝒖|𝝑)]}, 𝐽2,5 = 𝐽5,2 = 𝐸 {[

𝜕

𝜕𝑡0
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝑀𝑡
[ln 𝑝 (𝒖|𝝑)]},  

𝐽2,6 = 𝐽6,2 = 𝐸 {[
𝜕

𝜕𝑡0
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝜎𝑛
[ln 𝑝 (𝒖|𝝑)]}, 𝐽3,4 = 𝐽4,3 = 𝐸 {[

𝜕

𝜕𝜃
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝑀𝑑
[ln 𝑝 (𝒖|𝝑)]}, 

𝐽3,5 = 𝐽5,3 = 𝐸 {[
𝜕

𝜕𝜃
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝑀𝑡
[ln 𝑝 (𝒖|𝝑)]}, 𝐽3,6 = 𝐽6,3 = 𝐸 {[

𝜕

𝜕𝜃
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝜎𝑛
[ln 𝑝 (𝒖|𝝑)]}, 

𝐽4,5 = 𝐽5,4 = 𝐸 {[
𝜕

𝜕𝑀𝑑
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝑀𝑡
[ln 𝑝 (𝒖|𝝑)]}, 𝐽4,6 = 𝐽6,4 = 𝐸 {[

𝜕

𝜕𝑀𝑑
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝜎𝑛
[ln 𝑝 (𝒖|𝝑)]}, 

𝐽5,6 = 𝐽6,5 = 𝐸 {[
𝜕

𝜕𝑀𝑡
ln 𝑝 (𝒖|𝝑)]

𝜕

𝜕𝜎𝑛
[ln 𝑝 (𝒖|𝝑)]} 

 

The derivative with respect to 𝜗𝑟 (for r=1,..,6) needed to evaluate the FIM may be written in a compact form as 

follows: 

𝜕

𝜕𝜗𝑟
[ln 𝑝 (𝒖|𝝑)] =∑𝑢𝑖

2

𝑁

𝑖=1

𝒞𝜗𝑟𝑖
1 +∑𝑢𝑖

𝑁

𝑖=1

𝒞𝜗𝑟𝑖
2 +∑𝒞𝜗𝑟𝑖

3

𝑁

𝑖=1

 
(F. 3) 

 

where  𝒞𝜗𝑟𝑖
1 , 𝒞𝜗𝑟𝑖

2  and 𝒞𝜗𝑟𝑖
3  are the coefficient of the derivatives with respect to ϑr for i=1,..,N. We showed firstly 

in Section 5.3.1 that the FIM matrix is a block diagonal matrix and after that the matrix of the parameters of 

interest, 𝑱𝑨 is a diagonal matrix. Focusing on the latter, by substituting eq. (F. 3) into eq. (F. 2) each diagonal 

element of  𝑱𝑨 may be written in the compact form as follows: 

𝐽𝑟,𝑟
𝐴 =∑𝐸{𝑢𝑖

4}

𝑁

𝑖=1

𝒞𝜗𝑟𝑖
1 2

+∑ ∑ 𝐸{𝑢𝑖
2}𝐸{𝑢𝑗

2}

𝑁

𝑗=1 (𝑖≠𝑗)

𝑁

𝑖=1

𝒞𝜗𝑟𝑖
1 𝒞𝜗𝑟𝑗

1 + 2∑𝐸{𝑢𝑖
3}

𝑁

𝑖=1

𝒞𝜗𝑟𝑖
1 𝒞𝜗𝑟𝑖

2

+ 2∑ ∑ 𝐸{𝑢𝑖
2}𝐸{𝑢𝑗

2}

𝑁

𝑗=1 (𝑖≠𝑗)

𝑁

𝑖=1

𝒞𝜗𝑟𝑖
1 𝒞𝜗𝑟𝑗

2 + 2∑𝒞𝜗𝑟𝑖
3

𝑁

𝑖=1

∑𝐸{𝑢𝑖
2}

𝑁

𝑖=1

𝒞𝜗𝑟𝑖
1 +∑𝐸{𝑢𝑖

2}

𝑁

𝑖=1

𝒞𝜗𝑟𝑖
2 2

+∑ ∑ 𝐸{𝑢𝑖}𝐸{𝑢𝑗}

𝑁

𝑗=1 (𝑖≠𝑗)

𝑁

𝑖=1

𝒞𝜗𝑟𝑖
2 𝒞𝜗𝑟𝑗

2 + 2∑𝒞𝜗𝑟𝑖
3

𝑁

𝑖=1

∑𝐸{𝑢𝑖}

𝑁

𝑖=1

𝒞𝜗𝑟𝑖
2 + [∑𝒞𝜗𝑟𝑖

3

𝑁

𝑖=1

]
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(F. 4) 

 

It can be shown that all the terms in eq. (F. 4) that depends on the fourth and third moments, also the cross-terms  

give a negligible contribution. Furthermore, the term that depend on 𝒞ϑri
3  can be neglected. Therefore, the eq. (F. 

4) ca be approximated as: 

𝐽𝑟,𝑟
𝐴 =∑𝐸{𝑢𝑖

2}

𝑁

𝑖=1

𝒞𝜗𝑟𝑖
2 2

 
(F. 5) 

 

Indicating with 𝒞𝜗𝑟𝑖 = 𝒞𝜗𝑟𝑖
2  the eq.( 5.20 ) is obtained. The 𝒞𝜗𝑟𝑖are: 
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𝒞�̈�𝑖 = −
2𝑀𝑑𝑀𝑡sinc[𝜃(𝑡𝑖 − 𝑡0)] cos[𝜋�̈�(𝑡𝑖 − 𝑡0)

2](𝑡𝑖 − 𝑡0)
2

2𝜎𝑛
2{𝑀𝑑

2 − 2𝑀𝑑𝑀𝑡sinc[𝜃(𝑡𝑖 − 𝑡0)] sin[𝜋�̈�(𝑡𝑖 − 𝑡0)
2]}

 

𝒞𝑡0𝑖 =
𝑀𝑑
3𝑀𝑡2𝜋�̈�(𝑡𝑖 − 𝑡0)sinc[𝜃(𝑡𝑖 − 𝑡0)] cos[𝜋�̈�(𝑡𝑖 − 𝑡0)

2]

𝜎𝑛
2{𝑀𝑑

2 − 2𝑀𝑑𝑀𝑡sinc[𝜃(𝑡𝑖 − 𝑡0)] sin[𝜋�̈�(𝑡𝑖 − 𝑡0)
2]}2

 

𝒞𝜃𝑖 = −
𝑀𝑑
3𝑀𝑡 sin[𝜋�̈�(𝑡𝑖 − 𝑡0)

2] [
cos[𝜋𝜃(𝑡𝑖 − 𝑡0)]

𝜃
−
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𝜃2𝜋(𝑡𝑖 − 𝑡0)

]
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2 − 2𝑀𝑑𝑀𝑡𝑠𝑖𝑛𝑐[𝜃(𝑡𝑖 − 𝑡0)] sin[𝜋�̈�(𝑡𝑖 − 𝑡0)
2]}2

 

 

(F. 6) 

 

After substituting eq. (F. 6) and the approximated variance of each sample,𝑢𝑖 defined in eq. ( 5.12 ) into eq. (F. 5) 

the diagonal elements of   𝑱𝑨 are written as follows: 

𝐽1,1
𝐴 = 2∑

𝑀𝑑𝑀𝑡
2𝜋2(𝑡𝑖 − 𝑡0)
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𝑁
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𝜎𝑛
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(F. 7) 

 

After some approximation the closed form expressions of the CRLB derived in eq. ( 5.21 ) are obtained. 
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