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1
Introduction

1.1 The Exascale value

Some of the key challenges, faced not just by individual companies but by civilisation as a
whole, will be enabled by huge computing power. Exascale computing is the label we use
for the next 50- to 100-fold increase in speed over the fastest supercomputers in broad use
today, that is at least a billion billion operations per second1.

The benefits of Exascale computing could potentially impact every person [1]. For ex-
ample, computer models can be adopted to reduce pollution caused by burning fossil fuels,
increasing by 25-50% the efficiency of combustion systems in engines and gas turbines, and
lowering the emissions. The use of alternative energy sources — cost-effective solar energy,
more efficient wind turbines, improved management of the electric power grid — is another
challenge that benefits from computationally intensive optimization methods and fast com-
puters.

Computers play a crucial role in the research for new materials, created with complex
calculations that simulate their behaviour in nature, and using massive databases of known
compounds to identify good combinations. Deep learning techniques and classical simula-
tions are in use today in this field; Exascale computing can enable faster and more complex
design.

The advantages of Exascale computing will flow from classical simulations but also from
large-scale data analysis, deep machine learning, and often the integration of the three meth-
ods. Examples of the latter are healthcare (precision medicine) and biology. The understand-
ing of the molecular basis of key protein interactions and the automation of the analysis of
information from millions of patient records to determine optimal treatment strategies will
accelerate medicine research. Decision on the right treatments by modeling drug responses

1The prefix Exa- denotes a power 1018.
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2 Chapter 1. Introduction

requires the search of one trillion drug combinations.
Everyone is concerned about climate change and climate modeling. The computational

challenge for doing oceanic clouds, ice and topography are all tremendously important. To-
day we need at least two orders of magnitude improvement for weather prediction models to
foresee weather events such as hurricanes by using much higher spatial resolution, incorpo-
rating more physics, and assimilating more observational data.

Improved gathering and analysis of numerous types of data from databases, sensors and
simulation results, and conducting thousands of potential scenarios can mitigate health haz-
ards, reduce crime, and improve the quality of life in cities by optimizing infrastructure —
e.g. transportation, energy, housing.

In parallel to the aboved discussed implications for the society, fundamental scientific
questions in fields such as high-energy physics can be addressed, and can benefit of increased
computing — i.e. Lattice Quantum Chromo Dynamics simulation (LQCD), exploration of
dark-energy and dark-matter, coupled N-body/hydrodynamics/radiation transport codes for
structure formation in the early Universe and controlled fusion reactions.

1.2 The brain simulation challenge

There are several additional important applications that Exascale computing will advance,
but they will require even more computing power to be accomplished, such as the reverse
engineering of the human brain to understand complex neural systems.

The Human Brain Project (HBP) [2] Flagship was launched by the European Commis-
sion’s Future and Emerging Technologies (FET) scheme in October 2013, and is scheduled
to run for ten years. The HBP has the following main objectives: (i) create and operate a
European scientific Research Infrastructure for brain research, cognitive neuroscience, and
other brain-inspired sciences; (ii) gather, organise and disseminate data describing the brain
and its diseases; (iii) simulate the brain; (iv) build multi-scale scaffold theory and models for
the brain; (v) develop brain-inspired computing, data analytics and robotics.

Brain simulation can reduce the need for animal experiments, study diseases in unprece-
dented in-silico experiments, and improve the validation of data and experiments with com-
putational validation. Simulations allow to reconstruct and simulate detailed multi-level
models of the brain, displaying emergent structures and behaviours. Models can be sim-
ulated and reconstructed at different levels of description, from abstract to highly detailed
molecular and cellular models. Because of the incredible complexity of the human brain,
analyses and simulations of the brain require massive computational power, and hence in-
credibly powerful computers, as well as immense storage capacity. Key areas of research

2



1.3. General challenges for Exascale systems 3

include novel visualization methods, innovative approaches for dynamic resource manage-
ment on supercomputers and new methods for brain simulation, focusing in particular on
linking extreme scale data-processing challenges to the exploitation of scalable compute re-
sources and on using accelerator technologies to address computational challenges.

1.3 General challenges for Exascale systems

The emerging Exascale computing architecture will not be simply 1000x today’s petascale
architecture. All the proposed Exascale computer systems designs share some of the follow-
ing challenges [3]:

• System power is the primary constraint for the Exascale system: simply scaling up
from today’s requirements for a petaflop computer, the exaflop computer in 2020
would require 200 MW, which is untenable. The target is 20-40 MW in 2020 for
1 exaflop.

• Memory bandwidth and capacity are not keeping pace with the increase in flops: tech-
nology trends against a constant or increasing memory per core. Although the memory
per flop may be acceptable to applications, memory per processor will fall dramati-
cally, thus rendering some of the current scaling approaches useless.

• Clock frequencies are expected to decrease to conserve power; as a result, the number
of processing units on a single chip will have to increase – this means the Exascale
architecture will likely be high-concurrency – billion-way concurrency is expected.

• Cost of data movement (see Figure 1.1), both in energy consumed and in performance,
is not expected to improve as much as that of floating point operations, thus algorithms
need to minimize data movement, not flops.

• The I/O system at all levels – chip to memory, memory to I/O node, I/O node to disk
– will be much harder to manage, as I/O bandwidth is unlikely to keep pace with
machine speed.

• Reliability and resiliency will be critical at the scale of billion-way concurrency: “silent
errors”, caused by the failure of components and manufacturing variability, will more
drastically affect the results of computations on Exascale computers than today’s petas-
cale computers.

3



4 Chapter 1. Introduction

• Programming model will be necessary: heroic compilers will not be able to hide the
level of concurrency from applications — a hierarchical approach to parallelism is
needed.

Figure 1.1: Energy cost of data movement [4]

1.3.1 Focusing on interconnect and power-efficiency: a co-design ap-
proach

Considering the above presented list of challenges that the Exascale systems have to face
in the next future, a deeper attention will be given in this thesis to the interconnect and the
power consumption.

The data movement challenge involves the whole hierarchical organization of compo-
nents in HPC systems — i.e. registers, cache, memory, disks. Running scientific applications
needs to provide the most effective methods of data transport among the levels of hierarchy.
On current petaflop systems, memory access at all the levels is the limiting factor in almost
all applications. This drives the requirement for an interconnect achieving adequate rates of
data transfer, or throughput, and reducing time delays, or latency, between the levels [5].

Power consumption is identified as the largest hardware research challenge. The annual
power cost to operate the system would be above 2.5 B$ per year for an Exascale system
using current technology. The research for alternative power-efficient computing device is
mandatory for the procurement of the future HPC systems.

Finally, a preliminary approach will be offered to the critical process of co-design. Co-
desing is defined as the simultaneos design of both hardware and software, to implement a

4



1.4. HPC systems in the world 5

desired function. This process both integrates all components of the Exascale initiative and
illuminates the trade-offs that must be made within this complex undertaking.

1.4 HPC systems in the world

Building supercomputers capable to reach a peak-performance of the order of the exaflop, i.e.

1018 floating-point (FP) operations per second, is a clear priority worldwide (see Figure 1.2
and Figure 1.3), with programs in Europe [6], USA [7], China [8] and Japan [9].

The TOP500 [10] table shows the 500 most powerful commercially available computer
systems in the world ranked by their performance on the LINPACK [11] Benchmark —
a measure of a system’s floating point computing power obtained solving a dense n by n
system of linear equations Ax = b. At the moment of writing, China holds the top two spots
for fastest computers in the world, Switzerland (the only European peer in the top ten) holds
the third, Japan occupies the seventh and eigth positions with the U.S. in the fourth, fifth and
sixth spots. An overview of the main systems in the world according to this ranking allows
to sketch the state of the art — focused on computing and interconnect — and to understand
the role played by the major actors in the HPC scenario.

Figure 1.2: Continents system share. Figure 1.3: Countries system share

Sunway TaihuLight [12] at the National Supercomputing Center in Wuxi and Tianhe-2 [13]
at the National Super Computer Center in Guangzhou lead the chinese scene. The former
adopts a custom solution for both the computing system and the interconnect, a switched
fabric technology similar to the one by Infiniband [14]; the latter has developed a custom
network (ThExpress-2 [15]) with k-nominal or k-ary tree topology, but exploiting standard
Intel processors.

Piz Daint [16] at the Swiss National Supercomputing Centre (CSCS) in Europe is a mas-
sively parallel multiprocessor supercomputer based on Cray XC50 [17]. It consists of In-

5



6 Chapter 1. Introduction

tel Xeon processors coupled with NVIDIA Tesla P100 accelerators, connected together by
Cray’s proprietary Aries interconnect shaping a dragonfly topology [18].

Cray is the provider of two out of three major HPC systems from United States of Amer-
ica, Titan [19] at the Oak Ridge National Laboratory and Cori [20] at the Berkeley National
Energy Research Scientific Computer Center (NERSC). Titan employs AMD Opteron CPUs
in conjunction with NVIDIA Tesla K20x GPUs and the network is based on Cray’s Gem-
ini interconnect shaping a 3D-Torus topology. Cori is based on Cray XC40 consisting of
Intel Xeon PHI processors interconnected by Aries. The third american HPC system is Se-
quoia [21] at the Lawrence Livermore National Laboratory (LLNL) in California. Sequoia is
a petascale BlueGene/Q supercomputer constructed by IBM. Both the computing chip [22]
(Power BQC 16C) and network system [23] shaping a 5D-Torus topology are proprietary.

The Japan scene is led by two systems. The Oakforest-PACS system is located in the In-
formation Technology Center at the University of Tokyo’s Kashiwa Campus, but everything
is carried out jointly by the University of Tokyo and the University of Tsukuba. The system
is made up of computational nodes using Intel Xeon Phi high performance processors with
Knights Landing architecture that uses many-core processor technology. The nodes are con-
nected by Intel Omni-Path Architecture in a Full Bisectional bandwidth Fat Tree Topology.
Finally, the K computer [24] at the RIKEN Advanced Institute for Computational Science
(AICS) in Kobe, Japan. The processor is the Sparc64 by Fujitsu and the node are intercon-
nected by custom interconnect — Tofu [25] — in a 6D-Torus topology.

The description of the top eight HPC system of the top500 list reflects the general HPC
status for what regards processors — Intel totally dominates the scene as depicted in Fig-
ure 1.4 — and accelerators — NVIDIA is the leader and Intel is the major competitor, Fig-
ure 1.5.

Figure 1.4: Processors system share. Figure 1.5: Accelerators system share

On the contrary, the interconnect market is leaded by off-the-shelf components — i.e.

Ethernet and Infiniband, Figure 1.6 — but the design and implementation of proprietary and

6



1.5. What next in Exascale HPC? 7

custom networks seems to be a valuable solution to achieve the highest performance, as
showed in Figure 1.7.

Figure 1.6: Interconnects system share. Figure 1.7: Interconnects performance share

1.5 What next in Exascale HPC?

As stated before, one of the major issue in the race towards the Exascale is minimizing the
requirement of system power. Nowadays, a valuable solution is a hybrid CPU/GPU comput-
ing system. The green500 list, ranking computers from the TOP500 list of supercomputers
in terms of energy efficiency, is leaded by hybrid systems composed by Intel Xeon processor
and NVIDIA Tesla P100 GPU as accelerator.

Two competitors are trying to gain positions in the market exploiting their energy-efficiency
features: FPGA and ARM processor. A comparison of energy-efficiency in terms of float-
ing point operation per watt is listed in Figure 1.8. Altera and Xilinx FPGAs and the ARM
Mali GPU show a performance/watt ratio doubling the results achieved by the most power-
ful NVIDIA GPUs available in the market — the Pascal P100, not reported in the list, that
provides ∼ 35 Gflops/W.

FPGAs offer the combination of software-like flexibility and hardware-like performance,
providing hard real-time computations, parallelism, and high use of I/O pin count, and in-
cluding protocol independent high-speed serial links. All these features allow the FPGAs to
be connected to almost every application specific circuit. FPGAs provide IPs to be compliant
with many industrial standards — e.g. HBM, PCIe, DDR3, Ethernet — and DSP cells for
computing power, and they are gaining more and more attention in the research scenario as
demonstrated by the numbers of publication (2905) tagged with the keywords “FPGA” in the
2015 [27]. FPGAs are used in a great variety of application fields, among others: commu-
nication, networks, neuro-computing, processor design, and data acquisition. Finally, these
devices integrate processors in a single die — System On Chip (SoC) — providing higher
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8 Chapter 1. Introduction

Figure 1.8: An energy-efficiency comparison among CPUs, GPUs and FPGAs [26].

integration between the processor and the programmable logic of the FPGA.
The latest SoC-FPGA generations are equipped with 4÷8 ARM cores. ARM is a provider

of Hardware/Software Intellectual Properties, developing the architecture and licensing it to
other companies, who design their own products, for instance Android and Apple phones
and tablets, RaspberryPI, Arduino, set-top box and multimedia. ARM is the industry leader
in power-efficient processor design. ARM processors consume about 2 to 3 times less elec-
tric energy for a given amount of computation relative to Intel-based processors, and are
widely used in embedded consumer electronics, including smartphones and tablets. As a re-
sult, many research and industry programs perceive ARM-based microservers as a potential
successor of x86 and POWER-based servers in hyperscale datacenters and supercomput-
ers [28, 29, 30, 31]. Indeed, the premonition is that using low-power processors could pave
the way towards Exascale due to its tight power budget.

1.6 Structure of the thesis

In Chapter 2, the ExaNeSt project is described; the projects aims at providing a hierarchical
interconnect for the Exascale HPC infrastracture.

A set of a hierarchical performance models and simulators, as well as real applications,
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1.7. Personal contribution 9

have been developing, following the co-design approach for an effective system design. The
focus of this thesis is on cortical simulation, and a spiking neural network simulator devel-
oped in the framework of the Human Brain Project is described in Chapter 3.

A tuned version of the simulator can be used as mini-application benchmark to evaluate
and compare performances and energy-to-solution capabilities on low-power and traditional
computing architecture, as described in Chapter 4.

Finally, Chapter 5 describes the design and the implementation of a particular solution
obtained with a Network IP for HPC infrastracture, and the performance achieved.

1.7 Personal contribution

Most of the content of the thesis reflects the activities I have carried out during these years
as member of the APE Research Group [32] and as participant in the European projects
ExaNeSt and EuroExa. In particular:

• I have been in charge as Lead Editor of the “D3.2 Deliverable: Suitable Interconnects

Technologies & Multi-tiered Topologies”, for the task T3.2 “Design”, from April 2016
to August 2016, aiming at defining the hierarchical multi-tiered network of ExaNeSt.

• I presented an oral contribution [33] at the International Conference on Computing
on High-Energy and Nuclear Physics (CHEP 2016), mainly focused on the topics de-
scribed in Section 2.

• I am in charge as Task Leader of T6.2 “Hardware Software Integration and API’s” in
ExaNeSt (from April 2017 to May 2018). This activity aims at producing the definition
of the ExaNet platform and the design and implementation of the ExaNet Network IP,
with personal greater focusing on the APElink development, described in Section 5.

• I actively participate to the definition of the benchmarking approach described in Sec-
tion 4, and to the discussion of the results, although not direclty contributing to the
coding of the Distributed and Plastic Spiking Neural Network simulation engine de-
scribed in Section 3.

• I presented an oral contribution [34] at the International Conference on Parallel Com-
puting and HPC (ParCo 2017), focusing on the results reported in Section 3 and Sec-
tion 4.

9



10 Chapter 1. Introduction

Despite the fact that some topics related to the Human Brain Project have been addressed
in this thesis (in particular, concerning the development of the cortical simulator), no ethical
issues are involved. Indeed, my activity has been focused exclusively on computing, with no
direct access to clinical data, and thus no concerns about security issues are advanced.
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2.1 Introduction

With the relentless advances in microelectronics technologies and computer architecture,
the High Performance Computing (HPC) market has undergone a fundamental paradigm
shift. The adoption of low-cost, Linux-based clusters extended HPC’s reach from its roots
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12 Chapter 2. The ExaNeSt Project

in modeling and simulating of complex physical systems to a broader range of applications,
from cloud computing and deep learning to automotive and energy.

Today, low-energy-consumption microprocessors (the core element of a microserver)
dominate the embedded, smartphone and tablets markets, outnumbering x86 devices both
in volume and in growth rate. If these trends continue, we can expect to see microservers
benefiting from the same economies of scale that in the past favored personal computers over
mainframes and, more recently, commodity clusters over custom supercomputers.

The ExaNeSt project [35], started on December 2015 and funded in EU H2020 research
framework (call H2020-FETHPC-2014, n. 671553), is a European initiative aiming at devel-
oping the system-level interconnect, a fully-distributed NVM (Non-Volatile Memory) stor-
age and the cooling infrastructure for an ARM-based Exascale-class supercomputer. This
technological approach for a scalable and low-energy solution to computing is shared with
other projects, with the common goal to deliver a European HPC platform: (i) ExaNoDe [36],
that focuses on delivering low-power compute elements for HPC, and (ii) ECOSCALE [37],
that focuses on integrating FPGAs and providing them as accelerators in HPC systems.

Besides the power-efficiency of compute nodes, several additional challenges have to be
overcome in the road towards Exascale. Modern HPC technology promises “true-fidelity”
scientific simulation, enabled by the integration of huge sets of data coming from a variety of
sources. As a result, the problem of Big Data in HPC systems is rapidly growing, fueling a
shift towards data-centric HPC architectures, that are expected to work on massive amounts
of data, thus requiring low-latency access to fast storage. Current storage devices and in-
terconnection networks together provide latencies of the order of hundreds of microseconds,
which limit the scalability of data-hungry application models. ExaNeSt aims to address these
challenges by storing data in fast storage devices, which will reside close to the processing
elements.

2.2 ExaNeSt objectives

ExaNeSt will develop an in-node storage architecture, leveraging low-power NVM devices.
The distributed storage system will be accessed by a unified low-latency interconnect, en-
abling scalability of either storage and I/O bandwidth together with the compute capacity.
The unified RDMA-enhanced network will be designed and validated using a testbed based
on FPGAs and passive copper and/or active optical channels, allowing the exploration of
interconnection topologies, congestion-minimizing routing functions and support to system
resiliency. ExaNeSt also addresses packaging and liquid cooling, which are of strategic im-
portance for the design of realistic systems, and aims at an optimal integration which will be
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2.2. ExaNeSt objectives 13

dense, scalable and power efficient.
In an early stage of the project, an ExaNeSt system prototype, characterized by 500+

ARM cores, will be available acting as platform demonstrator and hardware emulator. A
set of relevant ambitious applications, including HPC codes for astrophysics, spiking neural
networks simulation, engineering, climate science, materials science and big data will sup-
port the co-design of the ExaNeSt system. These applications are fundamental to define the
requirements for the ExaNeSt architecture and to provide specifications during the design
phase. They will be ported accordingly to ultimately evaluate the final solution. The main
selection criterion is that the applications should be diverse, substantial, mature and relevant
to the Exascale. Thanks to the large variety of software identified (with different algorithms
and communication patterns) the interconnect and storage will be tuned over a complex set
of data.

2.2.1 Unified interconnects & In-node storage

Fast non-volatile memory (NVM), i.e. flash-based, is a key enabling technology for data-centric
HPC. Aiming at avoiding excessive latency and energy consumption, ExaNeSt will place
these storage devices close to the compute nodes, and make them accessible through fast
custom-made interconnects; for comparison, in traditional supercomputers, the storage de-
vices are located in a central location, i.e. behind a SAN 1/NAS 2 network. Placing fast
storage devices close to compute elements can significantly improve the latency and the en-
ergy efficiency, as data will frequently be available in the local NVMs. Additionally, with
this architecture, the capacity and the I/O bandwidth of the storage subsystem scale together
with the compute capacity, thus securing that the system maintains its balance scaling it out
to millions of nodes.

However, such a novel storage organization does not come without new challenges. To
keep the system within the power and cost constraints, a single unified interconnect will be
designed to handle both storage and application traffic. Storage flows are typically bursty,
responsible for backlogs and queuing delays inside the network, and thus they need to be
dealt with carefully in order for them not to saturate the interconnect. A well-designed
interconnect should segregate flows, through priority queues, or provide congestion control
in order to protect the latency-sensitive computation messages. Additionally, the network
should minimize the hops, while providing high bisection bandwidth.

Backplane interconnects can deliver high-bandwidth connectivity among the devices that

1Storage Area Network
2Network Attached Storage
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14 Chapter 2. The ExaNeSt Project

reside in the same chassis or rack. In ExaNeSt, this concept will be extended, exploit-
ing the opportunities offered by system packaging, to provide high-bandwidth connections
among “neighbours” across different levels of the hierarchy (computing nodes on the same
daughter-board, daughter-boards on the same blade, blades on the same chassis, etc.). Two
examples of such an interconnect are shown in Figure 2.1. One alternative is to have a di-
rect topology based on the inherent networking capacity of the daughter-boards. The second
alternative is to build an indirect topology based on off-the-shelf networking solutions; hy-
brid networks, with both direct and non-direct connections can be interesting for exascale
systems.

Figure 2.1: Networks that can be tested on the Exanest’s prototype: indirect topologies
use central switching nodes; direct topologies have direct channels between blades (outer
circles); inner circles denote computing daughter-boards within blades. A hybrid network
would have both direct and non-direct channels.

In order to reduce the latency of (fast storage or computation) flows, user-initiated Re-
mote Direct Memory Access (RDMA) virtualized mail-boxes are designed, giving appli-
cations the ability to use hardware resources directly in user space. The target is to mini-
mize the number of context switches and of data copies inside end-hosts, thus enabling fast
inter-process communication.

2.2.2 Rack-level shared memory

Another important feature, in order to improve the performance of many big-data and HPC
applications, is the provisioning of fast, extensible DRAM memory. In ExaNeSt, the mem-
ory attached to each compute node is of modest size — tens of GBytes per compute node. In
order to make large DRAM available to each compute node, remote memory sharing based
on UNIMEM is enabled, a technology first developed within EuroServer [30]. UNIMEM
offers the ability to access areas of memory located in remote nodes. To eliminate the com-
plexity and the costs of system-level coherence protocols [38], the UNIMEM architecture
defines that each physical memory page can be cached at only one location. In principle, the
node that caches a page can be the page owner (the node with direct access to the memory

14



2.2. ExaNeSt objectives 15

device) or any other remote node; however, in practice, it is preferred that remote nodes do
not cache pages.

In ExaNeSt, UNIMEM works on a large installation with real applications enabling a
virtual global address space, rather than a physical one. A global virtual memory page is not
necessarily bound upon a specific node or a particular physical memory page. This improves
security, allows page migration, and can also simplify multi-programming, just as virtual
memory did in the past for single node systems.

ExaNeSt ties computing devices, DRAM memories and SSD disks close together in
nodes, in order to reduce the energy consumption of data transfers; it packs many of these
nodes within the rack, and connects them using hybrid and hierarchical high-capacity inter-
connects.

2.2.3 Packaging & Cooling

ExaNeSt adopts the packaging and cooling technology of Iceotope. Iceotope is leader in
Totally Liquid Cooled (TLC) technology for computing infrastructures. Since the company’s
inception, it was recognized that liquid cooling is the future for datacenters, especially for the
growth in extreme scale and density. The drivers for Iceotope’s focus on TLC versus other
methods of cooling include benefits in terms of efficiency, density, total cost of ownership
(TCO), as well as the potential for increased performance of processors, an almost silent
operation, unless of a dependence on costly, traditional datacenter infrastructures.

The cabinet’s secondary coolant is a low cost, bespoke coolant, designed with high elec-
trical resistance and excellent thermal properties, with over twice the heat capacity of mineral
oil and half the viscosity. This coolant is circulated by fully-redundant, ultra-efficient pumps,
consuming only a fraction of a percent of the energy they move. Each chassis, which is a
metal enclosure connected into the rack cooling systems, can accommodate insertion of up
to 9 blades, as shown in Figure 2.2.

Each blade is a sealed, self-contained entity, immersed in a sophisticated, non-conductive,
engineered fluid: the primary coolant. This coolant and the interior of the blade are designed
to encourage a state of ultra-convection, known as a convective cell. This cell harnesses nat-
ural convection to rapidly moving the heat from the electronics to a secondary (rack level)
coolant. When a blade is inserted into its chassis, special valves access the cooling midplane
so that the secondary coolant has access to its hotplates to draw the heat away from the inner
sealed entity or chamber covering the electronics.

The current Iceotope technology is designed for 72 blades per rack, at 720 Watt per
blade, or 52 kW per rack, which allows for a floor density of up to 14 kW/m2. The roadmap
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16 Chapter 2. The ExaNeSt Project

Figure 2.2: Iceotope’s chassis with immersion liquid-cooling.

to exascale calls for a power density of 360 kW per rack. In ExaNeSt the cooling cell is
modified to be “hybrid”, taking advantage of both phase change and convective flow. This
important innovation will require the development of some early stage technology. A new
backplane is developed for power supply and signal I/O, and changes the power distribution
to 400V DC in order to be able to cope with the currents involved in such a small area.

2.2.4 Applications

The design of the ExaNeSt infrastructure will be driven and tested against scientific and in-
dustrial applications widely used in the HPC and big-data arena. The project partners have
therefore selected a set of representative and ambitious test applications. Astronomers con-
tribute with cosmological n-body and hydro-dynamical code(s) suited to perform large-scale,
high-resolution numerical simulations of cosmic structures formation and evolution [39, 40,
41, 42]. In the Engineering field, where extreme scaling would be of large benefit for sci-
entist and engineers, two applications have been identified: computational fluid dynamics
(CFD) [43] and radiation shielding [44]. One application in the area of material science
simulation [45], one in the area of weather and climate simulation [46] and the MonetDB
analytical DBMS [47] will be used. Finally, in the field of Brain Simulation [48], a natively
distributed application representative of plastic spiking neural network simulators, DPSNN,
has been selected. This application is deeply described in Chapter 3.
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To benefit from the ExaNeSt infrastructure, applications must be re-designed to take
advantage of the features that the project provides. A new generation of exascale-ready
applications will be developed during the project, and these will be used to make the final
tests of the prototype.

Applications are therefore playing three important roles:

• They identify a set of initial requirements to drive the development of exascale-class
platforms.

• They will be used to test and refine the ExaNeSt prototypes. Applications will also
be used as benchmarks from specific domains, to provide a real comparison against
competing solutions.

• Finally, applications will be used as proof of concept to inform the design and develop-
ment of systems software such as management, control, fault-tolerance, HPC libraries
and communication libraries.

2.3 Interconnects

Current HPC systems employ one or more ultra-fast interconnects dedicated to inter-processor
communication, and a separate, frequently commodity-based network for storage traffic. The
most advanced inter-processor interconnects, although customized to provide ultra-low la-
tencies, typically assume benign, synchronized processor traffic [49].

ExaNeSt, driven by strong power and cost incentives, focuses on a tight integration
of fast storage NVMs at the node level using UNIMEM to improve on data locality. To
fully exploit new NVMs with access latencies approaching a few tens of microseconds, we
have to connect them in a low-latency, system-wide interconnect with sub-microsecond la-
tency capabilities. In this project, we advocate the need for a unified, cross-layer optimized,
low-power, hierarchical interconnect that provides equidistant communication among com-
pute and storage devices merging inter-processor traffic with a major part of storage traffic.
This consolidation of networks is expected to bring significant cost and power benefits, as the
interconnect is responsible for 35% of the power budget in supercomputers, and consumes
power even when it idles [50].

ExaNeSt will address the different levels of the interconnect, examining suitable low-
power electrical and optical technologies and appropriate topologies. A network topology
matching the structure of the applications running on top of it enables maximum efficiency.
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18 Chapter 2. The ExaNeSt Project

In practice, interconnect topologies are severely constrained by system packaging. We ad-
dress system packaging and topology selection in tandem, aiming at multi-tier intercon-
nects [51], to address the disparate needs and requirements at separate building blocks inside
the rack. Furthermore, we will address inter-rack interconnects, which span the entire sys-
tem. This is considered separately because of the fundamentally disparate power and cost
constraints that reign outside the enclosure of a rack. Both commodity and proprietary, elec-
tronic and optical interconnects will be examined and “judged” based on their readiness and
power/performance trade offs.

The frequency and volume of checkpoint/resume traffic in exascale systems, as well
as the presence of storage inside the interconnect, mandates sophisticated congestion con-
trol [52] and trouble-shooting diagnostics. Therefore, the allocation of shared resources
such as interconnect links should be optimized for application requirements. ExaNeSt will
provide quality-of-service (QoS) inside the interconnect, using hints and directions from
higher layers. Small messages, such as synchronization and storage meta-data, will be pri-
oritized appropriately. Support for QoS is required in order to isolate flows with different
latency/throughput requirements and to prioritize latency-sensitive messages.

We plan to design a novel rate-based congestion control mechanism that will react to
critical events, such as filled queues or links experiencing high fan-in, and will slow down
or dynamically reroute the offensive flows at the sourcing host or RDMA engine. Small
“synchronization” messages will be exchanged using remote load and store commands, as
defined by the UNIMEM architecture, and in ExaNest these messages will be accelerated
appropriately by the network interfaces and the interconnect. For larger messages, we will
provide multi-channel RDMA engines, which can be shared among different threads, pro-
cesses, VM’s, or compute nodes. Our multi-channel RDMA will also provide performance
isolation to its users for improved privacy and QoS.

2.3.1 Multi-tiered, scalable interconnects for unified data and storage
traffic

The development of an interconnect technology suitable for exascale-class supercomputers is
one of the main goals of the project; we envision it as a hierarchical infrastructure of separate
network layers interacting through a suitable set of communication protocols. Topologies in
the lowest tiers are hardwired due to choices made in the prototype design phase. However,
design at the network level is configurable and will be the subject of study throughout the
next year. An overview of the foreseen interconnects is in Table 2.1.

The Unit (described in Section 2.3.2) of the system is the Xilinx Zynq UltraScale+ FPGA,
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Hierarchy Switching Fanout T1-T2 Bandwidth Latency
Tier 4 System Optical Ethernet < 200 rack
Tier 3 Rack Optical Ethernet APEnet 3÷ 10 chassis
Tier 2 Chassis Ethernet APEnet 36÷ 96 nodes

Tier 1 Mezzanine
Blade

APEnet 4÷ 16 nodes
T1 = 320 Gbps
T2 = 800 Gbps 400 ns

Tier 0 Node AXI Xbar APEnet 4 FPGAs
LVDS; 14.4 Gbps
HSS; 32 Gbps

50 ns
400 ns

FPGA Unit AXI Xbar 4 cores ∼ 25 Gbps 300 ns
A53 Core AXI Xbar

Table 2.1: The ExaNeSt multi-tiered network. Track-1 and Track-2 are indicated as T1 and
T2.

integrating four 64-bit ARMv8 Cortex-A53 hard-cores running at 1.5 GHz. This device
provides many features, the following being the most interesting: (i) a very low latency AXI
interface between ARM subsystem and programmable logic, (ii) cache-coherent accesses
from the programmable logic and from the remote unit and (iii) a memory management unit
(MMU) with two-stages translation and 40-bit physical addresses, allowing external devices
to use virtual addresses and thus enabling user-level initiation of UNIMEM communication.

The Node — described in Section 2.3.3 — is the Quad-FPGA Daughter-Board (QFDB)
containing four Zynq Ultrascale+ FPGAs, 64 GB of DRAM and 512 GB SSD storage con-
nected through the ExaNeSt Tier 0 network. The inter-FPGA communication bandwidth
and latency affect the overall performance of the system. As a consequence, at QFDB level,
ExaNeSt provides two different networks, one for low-latency exchanges based on LVDS
channels and AXI protocol, the other for high-throughput transmissions through High Speed
Serial links (HSS) based on the APEnet communication protocol described in Chapter 5.

For inter-node communication, the QFDB provides a connector with ten bidirectional
HSS links for a peak aggregated bandwidth of 20 GB/s. Four out of ten links connect neigh-
bouring QFDBs hosted on the Blade (also known as Blade) ( (Tier 1). The first Mezzanine
prototype (Track-1) — described in Section 2.3.4 — enables the mechanical housing of
4 QFDBs hardwired in a 2D cube topology (a square) with two HSS links (2× 16 Gb/s) per
edge and per direction. The remaining six HSS links, routed through SFP+ connectors, are
mainly used to interconnect mezzanines within the same Chassis (Tier 2). Furthermore, they
can also be exploited to modify the Intra-Mezzanine topology.

ExaNeSt will develop two liquid-cooled prototypes — Track-1 and Track-2. Track-1 will
be used to test the interconnects, storage and system software technologies developed in the
project. Track-2 will allow denser racks benefiting from the new liquid cooling that will be
developed by Iceotope.

Track-1 enables the safe mechanical housing of four QFDBs in a custom-made blade.
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Nine such blades will fit within an 11U (approximate height, the blade are hosted vertically)
chassis. Thus each chassis hosts 36 QFDBs, meaning 576 ARM cores and 2.3 TB of DDR4
memory — approximately 43 cores and 210 GB of memory per 1U of cabinet height. Finally
each Track-1 rack will host 3 chassis.

Track-2 will enable a mezzanine made of 16 QFDBs, with 6 blades fitting into a shorter
approximately 8U height half-depth chassis. Thus, a “full depth” system can host 12 blades
(6 blades on each side) or 192 QFDBs in 8U of cabinet height, — i.e. approximately
24 QFDBs, 384 cores and 1.5 TB per 1U of cabinet height. This translates to a compute
density of 384 cores plus 96 powerful FPGAs and 1.5 TB of DDR4 memory per 1U of
cabinet height. Table 2.2 summarizes the Track-1 and Track-2 set-up.

Track-1 Track-2
cores per blade 64 256
memory per blade [GB] 256 1024
FPGAs per blade 16 64
cores per chassis 576 1536
memory per chassis [GB] 2304 6144
FPGAs per blade 144 384
core per rack 1728 15360
memory per rack [GB] 6912 61440
FPGAs per blade 432 3840
core per equivalent 1u ∼43 384
memory per equivalent 1u [GB] ∼173 1536
FPGAs per equivalent 1u ∼11 96

Table 2.2: The ExaNeSt Track-1 and Track-2 overview

The Inter-Chassis (Tier 3) and Inter-Rack (Tier 4) interconnects round up the multi-tiered
network. In ExaNeSt the adoption of custom (photonics) solutions despite of COTS top-of-
the-rack router is under evaluation.

Optical interconnects

Photonic interconnects are envisaged to overcome the so-called communications bottleneck
of its electronic counterparts. An extensive research has been carried out regarding both
on-chip and rack-to-rack photonic interconnects in terms of power, bandwidth and latency.
Regarding board-to-board interconnects, it is expected that the bit rate per channel and the
number of wavelength division multiplexing (WDM) channels will continue to grow in com-
ing years, with the total capacity per link potentially reaching 1 Tb/s, using 40 channels ×
25 Gb/s per channel. ExaNeSt will explore the most suitable technology in terms of effi-
ciency and performance constraints so as to design an all-optical proof-of-concept switch.
The plan is to use 2×2 and 4×4 optical switches as the main building blocks. Based on
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this design, we will fabricate a small-scale prototype able to fulfill demanding speed data
transmission rates with low losses and low latency.

Resiliency

We target a unified monitoring scheme in the interconnect which, in collaboration with ap-
propriate agents located at different layers of the system stack, will timely overlay critical
events concerning the power consumption, the load and health of network links, and system
endpoints.

Network-level tolerance and recovery from soft or hard errors is an integral part of system
resiliency and a key technology in exascale systems [53, 54]. We plan to leverage RDMA
communication to enable dynamic routing and also to recover corrupted and undelivered
packets. As the RDMA’ed packets have guaranteed space at the receiving endpoint, we can
tolerate out-of-order delivery without being exposed to the danger of destination-induced
deadlocks.

An element of special importance is to ensure application level optimization (task place-
ment and scheduling) in order to minimize I/O and other communication overheads by
exploiting temporal and spatial locality. Finally, we plan to focus on HPC libraries (e.g.

MPI collectives) and storage (e.g. metadata) traffic acceleration, using a software/hardware
co-design approach. All-to-all and scatter-gather collective communications are commonly
found in many HPC applications [55, 56] and become more demanding as the scale and
the parallelism of the applications increase. We will study possible optimizations for HPC-
relevant traffic patterns and also extend them to accelerate storage [57]. Equipping the inter-
connect with hardware multicast emerges as an interesting communications accelerator.

2.3.2 The ExaNeSt Unit

Field-Programmable Gate-Arrays (FPGA’s) that integrate ARMv8 hard macros form an ex-
cellent and very convenient platform for the R&D because they offer, at the same time, (i)
high-performance UNIMEM-compatible cache coherent interfaces; (ii) reconfigurable logic
that enables experimentation with novel interconnect and storage protocols; and (iii) arith-
metic hard-macros and SRAM blocks embedded in reconfigurable logic, that can provide
novel and high-performance FP and other dedicated accelerators.

ExaNeSt will use the ZU9EG model of Xilinx Zynq UltraScale+ FPGA. A block diagram
of this FPGA is shown in Figure 2.3. This is the first and only model of Zynq UltraScale+
available in 2016. In particular, for compactness, we will use the small package, with 900
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soldering balls. The main features of this FPGA that make it appropriate for ExaNeSt and
the three related projects are the following:

• Four 64-bit ARM Cortex-A53 cores running at 1.5 GHz.

• DRAM controller for high-throughput external DDR4 main memory.

• ACE port: cache-coherent accesses from the programmable logic and from remote
nodes, as required by the UNIMEM architecture.

• AXI ports: very low latency external interfaces, directly in the native system protocol.

• MMU500: System (I/O) MMU with two stage translation and 40-bit physical ad-
dresses (maximum foreseen in current ARMv8 implementations, suffices for 1 TB
window into the global address space); also allows external devices to use virtual ad-
dresses, thus enabling user-level initiation of UNIMEM communication.

• High throughput communication: multiple, wide on-chip interfaces; we use 16 (out
of the 24 available on the FPGA) high-speed-serial (HSS) external links — i.e. 6
intra-QFDB, 4 intra-Mezzanine and 6 inter-Mezzanine. The large number of links
and reconfigurable resources inside these FPGAs will be used to implement high-
performance interconnection network routers.

• High capacity for floating-point (FP) arithmetic acceleration: besides the (restricted)
capabilities of the Mali-400 GPGPU that this FPGA offers inside its processing sys-
tem, the FPGA reconfigurable logic includes 2.5 thousand Digital Signal Processing
(DSP) slices, where each slice is a 32-bit add-multiply unit and can operate at 300
to 400 MHz; this amounts to an aggregate peak capacity around one Tera fixed-point
multiply-accumulate operations per second.

2.3.3 The ExaNeSt Node: QFDB

Each QFDB (Quad FPGA Daughterboard) features 4 Zynq Ultrascale+ FPGAs. One of
those is named “Network” FPGA and is responsible for routing external traffic providing
connectivity to the external world through ten 16 Gbps High Speed Serial Links. The bottom
right FPGA, named the Storage FPGA, provides connectivity to the NVMe memory — i.e.

the M.2 SSD device of capacity half to one TeraBytes — through PS-GTR transceivers
implementing a 4xPCIe Gen 2.0 channel. With four 64-bit ARM cores per FPGA, we get
16 cores per QFDB. Whereas these ARM cores provide a modest computing power (24
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Figure 2.3: The ExaNeSt unit.

GFLOPS in total), the programmable-logic fabric of ZU9EG provides many-thousand DSP
slices, with an aggregate peak capacity around 1 to 4 TeraFLOPS per QFDB, depending on
the operation and its (single or double) precision. The two FPGAs of each pair on the QFDB
are connected together through both 16 LVDS pairs overall (i.e. 8 in each direction) and two
16 Gbps High Speed Serial Links (or GTH channels) provide a low-latency communication
channel and a high-bandwidth communication channel, respectively. The LVDS pairs offer
a total bandwidth of up to 12.8 Gbps in each direction between each FPGA pair, while two
GTH transceivers offer a total bandwidth of up to 32 Gbps. A 16 GByte DDR4 memory
module is connected to the Processing System of each FPGA. The power consumption of
the first version of the QFDB is expected to be ∼ 120 Watts. Finally, each FPGA can boot
either from 2 QSPI non-volatile memories, or from a Micro SD card. In Figure 2.4 and 2.5,
the QFDB and its block diagram are shown.

2.3.4 The ExaNeSt blade

The topology of the mezzanine is hardwired and almost fixed in Track-1. Each Mezzanine
will feature 8 connectors to host Daughterboards, 32x SFP+ connectors for communica-
tion with remote QFDBs (residing on different mezzanines) and 6x RJ45 connectors for
GbE connections for management. The project budget limits the total number of FPGAs to
be acquired (the most costly component). The willingness to experiment anyway cooling
and engineering solutions at a largest scale, and the desire to prove ExaNeSt solutions also
on previous generation components led to a compromise where each Mezzanine hosts four
QFDBs, two KALEAO Gen0 boards and two thermal-only mock-up boards (see Figure 2.6
and Figure 2.7).
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Figure 2.4: The ExaNeSt node: the
QFDB

Figure 2.5: The node block diagram

The QFDBs provides a connector hosting the transceiver for 10 HSS links (or channels),
6 of which are connected to external link cages (SFP+) for an aggregate bandwidth of 96
Gbps and the remaining 4 are used to connect to neighbouring (same-mezzanine) QFDBs.
The QFDBs are hardwired in a 2D-cube topology with two HSS links (2×16 Gb/s) per edge
and per direction. External connection could be exploited at Tier 1 to implement an all-to-all
topology by means of the diagonals to optimize latency following application requirements.

The 2 slots dedicated to KALEAO Gen0 boards are connected to each other using two
channels (2 HSS links per direction), thus providing a bandwidth of 2×16 Gb/s per direction;
4 additional channels from each KALEAO Gen0 slot are used to connect to SFP+ cages,
providing a bandwidth of 4 × 16 Gb/s to the external world. Four transceivers from each
connector are left unconnected on each of these slots. Finally, the thermal-only mock-up
slots have all their transceivers unconnected.

In Track-2, the plan is to double the number of slots (and thus the computing power)
per blade, using a double-sided mezzanine board. Thus, in stage 2, there will be 16 slots
available for daughterboards (DB). On each DB connector, there will be again a total of
10 transceivers, 4 of which will be routed to the backplane, and from there to the switch-
ing blades; this leaves us with 6 transceivers available for channels of the intra-mezzanine
interconnect.

The optimal blade-internal topology for Track-2 is currently under analysis and it will
be selected soon. As an example, a preliminary possible configuration is a Manhattan-street
network (it can also be viewed as an irregular 3-D mesh): it consists of two parallel ladders,
one for each face (i.e. side) of the mezzanine. The 4 nodes belonging to the same ladder floor
(2 from each face) create a square, and are interconnected with all-to-all links. The diagonal
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Figure 2.6: Rendering of the ExaNeSt
mezzanine for Track-1

Figure 2.7: Block Diagram of the ExaN-
eSt mezzanine

links within each square do not necessarily cross, as they can traverse separate PCBs. Top
and bottom floors have two channels for the (non-diagonal) connections of the square and
one channel for their up and down connections. Middle floors have two channels for up and
down connections and one channel for square connections — i.e. getting to the other side of
the mezzanine. All diagonal connections consist of a single channel.

2.4 Topologies

ExaNeSt explores both direct blade-to-blade and indirect blade-switch-blade networks. The
former type, with direct links (Inter-Mezzanine) between blades, is frequently called “switch-
less” and has been employed in many HPC installations. These interconnects distribute the
switching and routing functions to units that are integrated close to computing elements. The
latter will be tested connecting the blades to commercially available components, based on
ASICs or FPGAs.
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2.4.1 Track-1

Each mezzanine provides 24 SFP+ connectors to communicate with other mezzanines within
the same chassis. So many independent channels allow for a high level of flexibility to exper-
iments with several direct network topologies. A first scenario is shown in Figure 2.8 where
2D torus topology is chosen to interconnect the QFDBs of the 9 blades of a chassis. The
solid and dotted lines are the intra-Mezzanine and inter-Mezzanine I/O interfaces respec-
tively. Since local (within the mezzanine) and remote (neighbouring mezzanine) QFDBs are
in the same network hierarchy, 2 HSS links per direction for remote channels are used to bal-
ance the network capability. A 6× 6 Torus topology is the resulting configuration, where the
longest path consists of 6 hops implementing a Dimension-Order Routing (DOR) algorithm.

An additional design option would use the “diagonal” links to interconnect the QFDBs
in a mezzanine resulting in a all-to-all topology. With this simple modification — which also
requires the implementation of a more complex routing algorithm — two hops are saved on
average, as sketched in Figure 2.9; the estimation for single hop latency is about 400 ns (see
Section 5.3.4).

Figure 2.8: QFDBs within the chassis
shape a 2D Torus topology (Tier 1/2).

Figure 2.9: Performance boost due to the
intra-Mezzanine (Tier 1) all-to-all topol-
ogy.

A further latency reduction (3 hops for the longest path as depicted in Figure 2.10) is
gained by connecting each QFDB of a Mezzanine with their counterparts on neighbouring
Mezzanines, shaping four 3 × 3 2D torus networks (Figure 2.11). Moreover, counterparts
QFDBs residing on Mezzanine in neighboring chassis (Tier 3) can be arranged in a 3D torus;
in this way we exploit two additional external inter-Mezzanine channels eliminating the di-
agonal links on the QFDB. Each set of QFDBs is a 3D torus interconnect 3 × 3 × C where
C is the number of chassis.
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Figure 2.10: An alternative topology to
the simple torus network.

Figure 2.11: Four 2D torus networks in-
terconnecting the mezzanines.

Another scenario foresees a Dragonfly [18] network implementation as in Figure 2.12.
Each blade corresponds to a supernode (Figure 2.13) connected to the neighbouring nodes
with just one inter-Mezzanine channel.

Figure 2.12: Dragonfly topology in-
terconnecting Mezzanine Supernodes
(Tier 2).

Figure 2.13: Each QFDB exploits only
one SFP+ cable for inter-Mezzanine net-
work.

Referring to Figure 2.14, the Xilinx FPGA Systems on Chip (SOCs) are the 4(p) termi-
nals connected to each router. The 4(a) network FPGAs are the routers of the Group. The
Group is the ExaNeSt Mezzanine/Blade corresponding to the supernode of the system. The
Routers within the Group are connected through the local channels (Intra-Mezzanine chan-
nels) with a 2D-Cube (or all-to-all topology) in Track-1. Groups are connected with 1(h)
global channel (Inter-Mezzanine channel), hence the radix of the Router within the Network
FPGA is k = p+a+h−1 = 8. The mezzanine is instead connected with a×p = 16 connec-
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tions to terminals and a × h = 4 connections to global channels, while all network FPGAs
in a mezzanine act as a virtual router with radix K = a(p + h) = 20. Finally, mezzanines
can be connected in all-to-all topology exploiting SFP+ cables. In this topology, every blade
corresponds to a supernode. The supernodes are connected in an all-to-all fashion using
SFP+ cables. Thus, this topology requires 8 SFP+ links per blade, in order to connect each
blade to its eight peers. Within each blade, an all-to-all topology among the local QFDBs
is assumed. To achieve this, we can dedicate 2 SFP+ per QFDB (per direction) in order to
implement the diagonal links that are missing from the passive on-mezzanine interconnect.
Each QFDB is connected to six SFP+ (bidirectional) links. Thus, with two of them dedicated
for the missing diagonals, we are left with four bidirectional links. We can use two of them
to connect to remote supernodes.

Figure 2.14: Dragonfly overview

2.4.2 Track-2

In Track-2, the ExaNeSt prototype will be radically reformed. The new cooling technology
that will be developed within the project will allow a higher density of computing elements.
ExaNeSt will demonstrate the new technology via a new chassis prototype, equipped with
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mid-chassis switch blades, connected to computing blades through backplane HSS channels
In order to interconnect computing with switch blades, each computing mezzanine will

route four bidirectional HSS links from every local computing element (QFDB) to an edge
backplane connector. The backplane will in turn route these HSS links to the two switch-
ing blades (two bidirectional HSS links from each QFDB to each switching blade). Each
switching blade will implement a central router for 6 (blades) ×16 (QFDBs per blade) ×2
(bidirectional HSS links per QFDB) = 192 bidirectional ports. Additional ports will be
provided for uplinks, which will connect the chassis to its outside world.

Track-2 prototype will not provide the flexibility of Track-1, in terms of computing
topologies that can be tested on top of it. Instead, the target for Track-2 is to develop the
first version of a commercially viable system that will demonstrate the cooling technology
that can support the extreme-density required for exascale-class supercomputers and data
centers. In Track-2 chassis, the SFP+ cables are replaced by backplane HSS wiring, thus al-
leviating the cost and area overheads of cables, and at the same time increasing connectivity.
The two mid-chassis switch blades will aggregate the traffic from the computing blades, and
will also provide uplinks to other chassis or top-of-the-rack routers. This design with two
discrete switching nodes is fault tolerant and can provide the resiliency properties expected
of real products.
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3.1 Introduction

The main focus of several neural network simulation projects is the search for a) biological
correctness; b) flexibility in biological modelling; c) scalability using commodity technol-
ogy — e.g. NEST [58, 59], NEURON [60], GENESIS [61]. A second research line focuses
more explicitly on computational challenges when running on commodity systems, with
varying degrees of association to specific platform ecosystems [62, 63, 64, 65]. An alterna-
tive research pathway is the development of specialized hardware, with varying degrees of
flexibility allowed — i.e. SpiNNaker [66], BrainScaleS [67].

The DPSNN simulation engine focuses along two lines: (i) having a quantitative bench-
marking tool for the evaluation of requirements for future embedded and HPC systems —
e.g. in the framework of the EuroExa, ExaNeSt [35] and EURETILE [48] projects — and
(ii) the acceleration of the simulation of specific models in computational neuroscience —
e.g. to study slow waves in large scale cortical fields [68, 69] in the framework of the COR-
TICONIC [70] and HBP [2] projects.

We present the impact of the range of lateral connectivity on the scaling of distributed
point-like spiking neural network simulation when run on up to 1024 software processes (and
hardware cores) for cortical models including tens of billions of synapses. It is worth noting
that a simulation including a few tens of synapses is what is required to simulate the activity
of one cm2 of cortex at biological resolution (e.g. 54k neuron/mm2 and about 5k synapses
per neuron in the mouse visual cortical area [71]). The capability to scale a problem up to
such a size allows simulating an entire cortical area.

Recent studies point out that lateral connectivity plays a central role in many different
cerebral areas, from cat primary visual cortex [72], to rat neocortex [71, 73], just as ex-
amples. For instance, in rat neocortex, the impact of lateral connectivity on the pyramidal
cells in layer 2/3 and layer 6A, results in ∼ 75% of incoming remote synapses to neurons
of these layers. Novel models should include exponential decay of connectivity to describe
the longer-range distance dependent intra-areal non-local connection probability (exp(−r

λ
)).

Decay constants in the range of several hundred microns have been proposed as match-
ing the experimental results. This kind of intra-areal long-range lateral connectivity poses
novel simulation requirements in comparison to previous studies that considered intra-areal
synaptic connections dominated by local connectivity: local connections have been esti-
mated as counting for at least 55% of total synapses, reaching also a ratio of 75% [74]. In
previous studies, lateral connectivity has been often described with a shorter-range Gaussian
model [75](exp(−r

2

2σ2 )).
Here we present measures about the scaling of simulations of cortical area patches of
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different sizes represented by two-dimensional grids of “cortical modules”. Each cortical
module includes 1240 single-compartment, point-like neurons (no dendritic tree is repre-
sented) each one receiving up to ∼ 2050 recurrent synapses (instantaneous membrane po-
tential charging) plus those bringing external stimuli. Assuming a 100 µm reticular spacing
between neighbouring columns, the larger simulated problem size corresponds to the simu-
lation of a cerebral cortex tile, represented by 11.4 M neurons and 29.6G recurrent synapses.

The increment in the range of remote connection is expected to have an impact on the
performances of neural network simulators. Exponentially decaying lateral connectivity
(longer-range) are compared to a Gaussian connectivity decay (shorter-range), mainly an-
alyzing the scaling behaviour and the memory occupation of our Distributed and Plastic
Spiking Neural Network simulation engine (DPSNN in the following) when used with the
two connectivity distributions.

On the DPSNN simulator, the selection of the connectomic model is crucial, due to the
fact that the synaptic messages exchanged between neurons correspond to communication
tasks among MPI processes: the higher the number of lateral synaptic connections and the
longer the distance is, the more intensive the communication task among processes become.

The article is structured as follows: in Section 3.2 we describe the main features of DP-
SNN and the parallel and distributed approach used for its implementation; the model used
for the measurements of this paper is summarized in Section 3.3, with a specific description
of the two different schemes adopted for the lateral intra-area connectivity used to test DP-
SNN scaling capabilities; subsequent sections report the Results of this work (Section 3.4)
and the Discussion (Section 3.5).

3.2 Description of the Spiking Neural Network simulator

The Distributed and Plastic Spiking Neural Network is a mixed time- and event-driven spik-
ing neural network simulation engine implementing synaptic spike-timing dependent plas-
ticity. It has been designed from the ground up to be natively distributed and parallel, and
should not pose obstacles against distribution and parallelization on several competing plat-
forms. Coded as a network of C++ processes, it is designed to be easily interfaced to both
MPI and other (custom) Software/Hardware Communication Interfaces.

In DPSNN, the neural network is described as a two-dimensional grid of cortical mod-
ules made up of single-compartment, point-like neurons spatially interconnected by a set of
incoming synapses. Cortical modules are composed by several populations of exhitatory and
inhibitory neurons. Cortical layers can be modelled by a subset of those populations. Each
synapse is characterized by a specific synaptic weight and transmission delay, accounting
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for the axonal arborization. The two-dimensional neural network is mapped on a set of C++
processes interconnected with a message passing interface. Each C++ process simulates the
activity of a cluster of neurons. The spikes generated during the neural activity of each neu-
ron are delivered to the target synapses belonging to the same or to other processes. The
“axonal spikes”, that carry the information about the identity of the spiking neuron and the
original emission time of each spike, constitute the payload of the messages travelling across
processes. Axonal spikes are sent only toward those C++ processes where a target synapse
exists.

The knowledge of the original emission time of each spike and the transmission delay
introduced by each synapse allows for the management of synaptic Spike Timing Dependent
Plasticity [76], which produces effects of Long Term Potentiation/Depression (LTP/LTD) on
the synapses.

3.2.1 Execution flow: a mixed time and event-driven approach

Two main phases characterize a DPSNN simulation: 1) the creation and initialization of the
network of neurons and of the axonal arborization of synapses interconnecting the system;
2) the simulation of the network dynamic (neurons and synapses).

For the simulation phase, a combined event-driven and time-driven approach has been
adopted, inspired by [77]: the dynamic of neurons and synapses is simulated when the event
arises, while the message passing conveying the axonal spikes among processes, as well as
the application of Long Term Plasticity (when activated) is performed at regular time steps.

The phase of simulation of the network dynamic can be further decomposed into the fol-
lowing steps: 2.1) neurons, that produced spikes during the previous time-driven simulation
step, are identified and the corresponding contribution to STDP is calculated; 2.2) spikes are
sent through axonal arborizations to the cluster of neurons where target synapses exist; 2.3)
delivered axonal spikes are queued into a list for each process, for usage during the appro-
priate time-step according to the corresponding synaptic delay; 2.4) synapses inject currents
into target neurons and the corresponding contribution to STDP is calculated; 2.5) neurons
sort input currents coming from recurrent and external synapses; 2.6) neurons integrate their
dynamic equation for each input current in the queue, using an event-driven solver.

At a slower timescale, every second in the current implementation, all STDP contribution
are integrated in the Long Term Plasticity and applied to each single synapse.
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3.2.2 Distributed generation of synaptic connections

The DPSNN simulation engine exploits its full parallelism also during the creation and ini-
tialization phase of the network. In a given process, each neuron i = 1, .., N projects its set
of recurrent synapses j = 1, ..,M , characterized by individual delays Di,j , plastic weights
W i,j and target neurons Ki,j . Synaptic efficacies are randomly chosen from a Gaussian
distribution with a given mean and variance, while synaptic delays can be generated ac-
cording to exponential or uniform distribution. The moments of the distributions depend
on the source and target populations that synapses interconnect. In addition to the recurrent
synapses, the system simulates also a number of external synapses: they represent afferent
(thalamo-)cortical currents coming from outside the simulated network.

3.2.3 Representation of spiking messages

Spike messages are defined using an Address Event Representation (AER), in which each
spike is represented by two numbers: the identifier of the spiking neuron and the exact time
of spiking. During simulation, spikes travel from the source to the target neuron. Spikes,
whose target neurons belong to the same process, are packed in the axonal spike message.

The arborization of this message is carried out directly by the target process. Deferring
as much as possible the arborization of the “axon” reduces the load on the communication
network and unnecessary wait barrier.

To this purpose, preparatory actions are performed during the network initialization phase
(performed once at the beginning of the simulation), to reduce the number of active commu-
nication channels during the iterative simulation phase.

3.2.4 Initial construction of the connectivity infrastructure

During the initialization phase, each process contributes to create the awareness about the
subset of processes that should be listened to, during next simulation iterations, based on the
information contained in the synaptic matrix interconnecting the cluster of neurons of the
network. At the end of this construction phase, each “target” process should know about the
subset of “source” processes that need to communicate with it, and should have created its
database of locally incoming axons and synapses.

A simple implementation of the construction phase can be realized using two steps. Dur-
ing the first step, each source process informs other processes about the existence of in-
coming axons and about the number of incoming synapses. A single word, the synapse
counter, is communicated among pairs of processes. Under MPI, this can be achieved by an
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MPI Alltoall(). This is performed once, and with a single word payload.
The second construction step transfers the identities of synapses to be created onto each

target process. Under MPI, the payload — a list of synapses specific for each pair in the sub-
set of processes to be connected — can be transferred using a call to the MPI Alltoallv()

library function. The number of messages depends on the lateral connectivity range and on
the distribution of cortical modules among processes, while the cumulative load is always
proportional to the total number of synapses in the system.

The knowledge about the existence of a connection between a pair of processes can be
reused to reduce the cost of spiking transmission during the simulation iterations.

3.2.5 Delivery of spiking messages during the simulation phase

After initialization, the simulator enters the iterative simulation phase. At each iteration,
spikes are exchanged between pairs of process connected by the synaptic matrix. The de-
livery of spiking messages can be split in two steps, with communications directed toward
subsets of decreasing size.

During the first step, single word messages (spike counters) are sent to the subset of
potentially connected target processes. On each pair of source-target process subset, the
individual spike counter informs about the actual payload — i.e. axonal spikes — that will
have to be delivered, or about the absence of spikes to be transmitted between the pair. The
knowledge of the subset was created during the first step of the initialization phase, described
in Section 3.2.4.

The second step uses the spiking counter info to establish a communication channel only
between pairs of processes that actually need to transfer an axonal spikes payload during
the current simulation time iteration. On MPI, both steps can be implemented using calls to
the MPI Alltoallv() library function. However, the two calls establish actual channels
among sets of processes of decreasing size, as described just above.

For the simple two-dimensional grid of neural columns and for the mapping on processes
used in this experiment, this implementation proved to be quite efficient, as reported by the
measures presented in the Section 3.4, further refined in the Section 3.5. However, we expect
that the delivery of spiking messages will be one of the key point still to be optimized when
white area “connectome” is introduced, describing the communication channels among a
multiplicity of remote cortical areas.
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3.3 Neural Network Configuration

In this study the simulated model has been configured as in the following subsections.

3.3.1 Spiking Neuron Model and Synapses

The single-compartment, point-like neurons used in the measures reported in this paper are
based on the Leaky Integrate and Fire (LIF) neuron model with spike-frequency adaptation
(SFA) due to calcium- and sodium-dependent after-hyperpolarization (AHP) currents [78,
79]. The dynamic of the neuron is described by the following equations:

dV

dt
=
V − E
τm

− gc
c

Cm
+
∑

Jiδ(t− ti)

dc

dt
= − c

τc

where V (t) represent the membrane potential and c(t) the fatigue variable used to model
the SFA as an activity-dependent inhibitory current. τm is the membrane characteristic time,
Cm the membrane capacitance andE the resting potential. In the inhibitory neurons, the SFA
term is equal to zero. When the membrane potential exceeds a threshold Vθ, a spike occurs.
Thereafter, the membrane potential is reset to Vr for a refractory period τarp, whereas the
variable c is increased by the constant amount αc.

During the construction phase of the network, recurrent synapses are established between
pre- and post-synaptic neurons, according to given probabilistic distance dependent connec-
tivity law (see Section 3.3.2). Synaptic efficacies and delays are randomly chosen from a
probabilistic distribution as already described in Section 3.2.2.

In addition to the recurrent synapses, the system simulates also a number of external
synapses: they represent afferent (thalamo-)cortical currents coming from outside the sim-
ulated network, collectively modeled as a Poisson process with a given average spike fre-
quency. The recurrent synapses plus the external synapses yield the number of total synapses
afferent to the neuron, referred to as “total equivalent” synapses in the following.

For all the measurements in this work, synaptic plasicity for all the neurons has been
disabled.

3.3.2 Cortical Columns and their connectivity

The neurons are organized in cortical modules (mimicking columns), each one composed of
80% excitatory and 20% inhibitory neurons. The modules are assembled in two-dimensional
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grids, representing a cortical area slab, with a grid step α ∼ 100 µm (inter-columnar spac-
ing).

The number of neurons in each cortical module was fixed to 1240, while the number of
synapses projected by each neuron depends on the implemented connectivity.

The neural network connectivity is set by the user defining the probabilistic connection
law between neural populations, spatially located in the two-dimensional grid of cortical
modules. Connectivity can be varied according to the simulation needs, leading to configu-
rations with different numbers of synapses per neuron. In order to study the scalability of the
DPSNN simulator on large configurations, and to evaluate the impact of different connectiv-
ity loads, two neural systems have been considered in terms of connectivity rules.

The number of synapses projected to the same column (local connections) is kept fixed at
990, while the difference is in the remote connectivity: ∼ 250 synapses for the shorter range
case and∼ 1240 synapses for the longer one. In particular, the following lateral connectivity
rules are adopted:

• Gaussian connectivity — shorter range and lower number of remote synapses: consid-
ering preeminent local connectivity with respect to lateral, the rule used to calculate
remote connectivity has been set proportional to A · exp(−r2

2σ2 ), with A = 0.05 and
σ = 100µm being the lateral spread of the connection probability. The remote con-
nectivity function is similar to that adopted by [75], although with different A and σ
parameters. In this case only ∼ 21% of the synapses are remotely projected and reach
modules placed within a short distance, spanning a few steps in the two-dimensional
grid of cortical modules. The majority of connections (∼ 79%) is local to the module.

• Exponential decay connectivity — longer range and higher number of remote synapses:
the connectivity rule for remote synapses calculation is proportional to A · exp(−r

λ
),

with A = 0.03 and λ = 290µm (the exponential decay constant). This turns out into
an increased number of remote connections (52%).

In summary, in case of Gaussian connectivity, the average number of projected synapses
per neuron is about 1240, while in case of exponential connectivity this number rises up to
∼ 2050.

In both systems, a cut-off has been set in the synapses generation, limiting the projection
to the subset of modules with connection probability greater than 1/1000. This turns out into
a centered stencil of connected modules of size 7× 7 in the first case (Gaussian) and 21× 21

in the second case (exponential decay).
For each connectivity scheme, measurements were taken on different problem sizes ob-
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tained varying the dimension of the grid of modules and, once fixed the problem size, dis-
tributing it over a span of MPI processes to evaluate the scaling behaviour.

We selected three grid dimensions, which, e.g. for a columnar spacing of 100 µm, can
be already considered representative of interesting biological cortical slab dimensions. Each
problem size has been distributed over a different span of MPI processes. Table 3.1 summa-
rizes the set of problem sizes used in our scaling measures. The number of processes over
which each network size is distributed varied from a minimum, bounded by memory, and a
maximum, bounded by communication (or HPC platform constraints).

Using the Gaussian shorter-range connectivity, an extensive campaign of measures has
been conducted, spanning over the three configurations described above. On the contrary,
just a preliminary set of measures were taken in the configuration with the longer range expo-
nential connectivity: only a few trials on 24×24 and on 48×48 configuration networks have
been performed, in order to compare the DPSNN simulator performances in the different
configurations.

3.3.3 Normalized simulation Cost per Synaptic Event

Different network sizes and connectivity models have been used in this scaling analysis. This
results in heterogeneous measures of the elapsed time due to different numbers of projected
synapses and to the different firing rates of resulting models. For example, the observed fir-
ing rate is ∼ 7.5 Hz for the shorter range connectivity scheme, and in the range between 32
and 38 Hz for the longer range one (all other parameters being kept constant). However, a
direct comparison is possible converting the execution time into a simulation cost per synap-
tic event. This normalized cost is computed dividing the elapsed time per simulated second
of activity by the number of synapses and by their mean firing rate. This way, a simple com-
parison among different simulated configurations is possible: measures from different sim-
ulations can be compared on the same plot. Our simulations include two kind of synapses:
recurrent — i.e. projected by simulated neurons — and synapses bringing an external stim-
ulus. Summing the number of events generated by recurrent and external synapses, in the
following we can normalize the cost to the total number of equivalent synaptic events.

3.3.4 Hardware Platform

The server platform used to run the simulations herein described is GALILEO, a cluster of
516 IBM nodes provided by the CINECA [80] consortium. Each 16-core computational node
contains two Intel Xeon Haswell 8-core E5-2630 v3 processors, with a clock of 2.40 GHz.
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All the nodes are interconnected through an InfiniBand network. Due to the specific config-
uration of the server platform, no hyper-threading is allowed. Therefore, in all the following
measures, the number of cores corresponds exactly to the number of MPI processes launched
at each execution.

3.4 Results

3.4.1 Scaling for shorter range Gaussian connectivity

We collected a set of elapsed times simulating the different problem sizes detailed in Ta-
ble 3.1, spanning the range from 1 to 1024 MPI processes (or, equivalently, hardware cores).

Grid Columns Neurons Number of Synapses
Gaussian Connectivity Exponential Connectivity
Recurrent Total Recurrent Total

24× 24 576 0.7 M 0.9 G 1.2 G 1.5 G 1.8 G
48× 48 2304 2.9 M 3.5 G 5.0 G 5.9 G 7.4 G
96× 96 9216 11.4 M 14.2 G 20.4 G 23.4 G 29.6 G

Table 3.1: Problem sizes for the comparison of simulator performances applied to exponen-
tial (longer-range) and Gaussian (shorter-range) connectivity

The values plotted in Figure 3.1 show how the execution time per synaptic event changes
when the number of cores assigned to the problem is varied. In the ideal case (black dot line
in the picture), doubling the used resources, execution time should halve. In our measures,
the time needed to simulate the 24 × 24 grid (with 0.9 G recurrent synapses and 1.2 G total
equivalent synapses) scales down from 2.75 · 10−7 seconds per synaptic event, using a single
core, to 4.09 · 10−9 seconds per event using 96 cores. The actual speed-up is 67.3, loosing
30% compared to the ideal speed-up that in this case would be 96. The speed-up for the
48×48 grid (3.5 G recurrent, 5 G equivalent synapses) is 54.2, while the hardware resources
increase by a factor 96. For the 96× 96 grid (14.2 G recurrent/ 20.4 G equivalent synapses)
the speed-up is 10.8 (16 would be the ideal).

Figure 3.2 represents the weak scaling: the problem size assigned to each core is kept
constant and the total problem size is increased proportionally to the number of hardware
cores. If normalized by the load per core, the lines corresponding to different loads/core
should overlap.
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Figure 3.1: Strong scaling for Gaussian connectivity model: the measures are expressed in
elapsed time per equivalent synaptic event.

Figure 3.2: Weak scaling for Gaussian connectivity model.

3.4.2 Impact of longer range exponential decay connectivity

Figure 3.3 compares the impact of shorter and longer lateral connectivities on the strong
scaling behaviour. Circles represent measurements for the Gaussian decay while squares
involve the longer range exponential one.

The introduction of longer range connectivity increases the simulation cost per synaptic
event (a 1.9÷ 2.3 slow-down, see Figure 3.4). The actual elapsed simulation time increased
up to 16.6 times for the exponential longer-range connectivity due to the combined effect
produced by: (i) the number of synapses projected by each neuron is higher (by a factor
1.65), (ii) the firing rates expressed by the model is between 4.3 and 5.0 times higher and (iii)
the higher cost of longer range communication and demultiplexing neural spiking messages.
Point (iii) should be well estimated by the slow-down of the normalized simulation cost per
synaptic event.
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Figure 3.3: Impact of connectivity on DPSNN performances: the graph compares the execu-
tion time per synaptic event for the configurations with Gaussian connectivity (shorter range,
lower number of synapses — circles) and the one with exponential connectivity (longer
range, higher number — squares).

Figure 3.4: Time per simulated synaptic event increased between 1.9 and 2.3 times changing
the decay of connection probability from the shorter range Gaussian scheme to the longer
range exponential one.

The execution of longer range exponential connectivity on 96 cores, reached about 83%
for the 48× 48 (5.9 G recurrent synapses) and 79% of the ideal scaling for the 24× 24 case
(1.5 G recurrent synapses).

3.4.3 Memory cost per synapse

We measured the total amount of memory allocated by the simulator and divided it by the
number of synapses to be represented. With no plasticity, each synapse should cost 12 Byte.
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Peak memory usage is observed at the end of network initialization, when each synapse is
represented at both the source and target process. Afterwards, memory is released on the
source process. The forecast of minimum peak cost is therefore 24 Byte/synapse for static
synapses. Figure 3.5) shows the maximum memory footprint for different networks sizes
and projection ranges, distributed over different numbers of MPI processes. The values are
in the range between 26 and 34 B per synapse. We observed that the growing cost for higher
number of MPI processes is mainly due to the memory allocated by the MPI libraries.

Figure 3.5: Memory occupation in byte per synapse for different configurations in the two
connectivity systems

3.5 Discussion

Recent experimental results suggest the need of supporting long range lateral connectivity
in neural simulation of cortical areas — e.g. modeled by simple exponential decay of the
connection probability — with layer to layer specific decay constants, in the order of several
hundreds microns. The distributed spiking neural net simulator DPSNN has been applied to
two-dimensional grids of neural columns spaced at 100 µm connected using two schemes.

The longer-range connectivity model corresponds to an exponential connectivity decay
(λ = 290µm) and to the projection of approximately ∼2050 synapses per neuron. The scal-
ing measures are compared to those obtained with a shorter range Gaussian decay of the
connectivity, with a decay constant of the order of the columnar spacing and a lower number
of synapses per neuron (∼1240). The impact of exponentially decaying connectivity is in-
deed observable, as expected, and increases the simulation cost per synaptic event between
1.9 and 2.3 times compared to the shorter range Gaussian connectivity law. Notwithstanding
this increase, the strong scaling behaviour is satisfactory.
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However, we note that a more realistic biological simulation of cortical areas could re-
quire a further extension of the connection stencil dimension, with the goal of projecting
about ten thousand synapses per neuron. A further element to be considered in whole brain
simulation will be the support of white matter connectome, which brings sparse connections
at system scale. We demonstrated the DPSNN ability to efficiently simulate grids of neu-
ral columns, containing a total of 11.4 M LIF neurons with spike-frequency adaptation, and
representing 20.4 G equivalent synapses (for both shorter and longer range connections) on
a 1024 core execution platform, with a memory occupation always below 35 byte/syn.
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DPSNN on ARM-based platforms
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4.1 Introduction

The scaling of the performance of modern HPC systems and applications is strongly limited
by the energy consumption. Electricity is the main contributor to the total cost of running
applications, and energy-efficiency is becoming the principal requirement for computing
devices. In this context, the performance assessment of processors with a high ratio of per-
formance per watt is necessary to understand how to realize energy-efficient computing sys-
tems for scientific applications. Processors based on the ARM architecture lead the market
of low-power and battery powered devices, such as tablets and smartphones. Several scien-
tific communities are exploring non-traditional many-core processors architectures coming
from the embedded market, from the Graphics Processing Unit (GPU) to the System-on-Chip
(SoC), looking for a better tradeoff between time-to-solution and energy-to-solution. A num-
ber of research projects are active in trying to design an actual platform along this direction.
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The Mont-Blanc project [81, 82], coordinated by the Barcelona Supercomputing Center, has
deployed two generations of HPC clusters based on ARM processors, developing also the
corresponding ecosystem of HPC tools targeted to this architecture. Another example is the
EU-FP7 EUROSERVER [83] project, coordinated by CEA, which aims to design and pro-
totype technology, architecture, and systems software for the next generation of datacenter
“microservers”, exploiting 64-bit ARM cores.

Fast simulations of spiking neural network models play a dual role: (i) they contributes
to the solution of a scientific grand challenge — i.e. the comprehension of brain activ-
ity — and, (ii) by including them into embedded systems, they can enhance applications
like autonomous navigation, surveillance and robotics. Therefore, these simulations as-
sume a driving role in shaping the architecture of either specialized and general-purpose
multi-core/many-core systems to come, standing at the crossroads between embedded and
High Performance Computing. See, for example, [84], describing the TrueNorth low-power
specialized hardware architecture dedicated to embedded applications, and [85], discussing
the power consumption of the SpiNNaker hardware architecture, based on embedded multi-
cores, dedicated to brain simulation. Worthy of mention are also [58, 65] as examples of
approaches based on standard HPC platforms and general-purpose simulators.

The APE Research Group at INFN has developed a distributed neural network simu-
lator [86] as a mini-application and benchmark in the framework of the EURETILE FP7
project [48]. Indeed, the Distributed and Plastic Spiking Neural Network with synaptic
Spike-Timing Dependent Plasticity mini-application was developed with two main purposes
in mind: as a quantitative benchmarking tool for the evaluation of requirements for future
embedded and HPC systems, and as an efficient simulation tool addressing specific sci-
entific problems in computational neuroscience. As regards the former goal, the ExaNeSt
project [35] includes DPSNN in the set of benchmarks used to specify and validate the re-
quirements of future interconnects and storage systems; as an example of the latter, the dis-
tributed simulation technology is employed in the study of slow waves in large scale cortical
fields [68, 69] in the framework of HBP project.

This section describes the porting of DPSNN onto different ARM-based platforms and
how running it on low-power CPUs, comparing the resulting computing and energy per-
formances with traditional systems mainly based on x86 multicores. The characterization
of DPSNN-generated data traffic is described, highlighting the limitations faced when the
application is run on off-the-shelf networking components. The code organization and its
compactness give to DPSNN a high degree of tunability, offering the opportunity to test dif-
ferent areas of the platform. The networking compartment is the most stressed when the
simulated neural net — composed by a relatively low number of neurons, each one project-
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ing thousands of synapses — is distributed over a large number of hardware cores. When
the number of neurons per core grows, the impact of both computing and memory increases.
For this reason, we employ DPSNN as a general benchmarking tool for HPC systems.

4.2 Porting DPSNN kernels on low-power test-bed

A couple of minor quirks are required to make either MPICH and OpenMPI work on an ARM
boards cluster in order to directly port the DPSNN application to the ARM platform. The
DPSNN is tested with the ARM Debian OS which made available MPICH 3.2 in packetized
form while the available packetized OpenMPI is in version 2.0.2. As regards the software
dependencies, the application leans on nothing else than an MPI-compliant compiler and
library. Due to the limited resources of the testbed, the data-set must be sized accordingly
to fit the available memory — i.e. a more constrained set of memory allocations in the
initialization phase.

4.2.1 The trenz-based testbed: description and results

The trenz-based prototype is currently composed by four nodes. Each node consists of a
TEBF0808 Trenz board which is equipped with a Trenz TE0808 UltraSOM+ module. The
Trenz UltraSOM+ consists of a Xilinx Zynq UltraScale+ xczu9eg-ffvc900-1-e-es1 MPSoC
and 2 Gbytes of DDR4 memory. The Zynq UltraScale+ MPSoC incorporates both a process-
ing system and the programmable logic — not used to test the porting. The main character-
istics of the processing system are the following:

• Quad-core ARM Cortex-A53 with frequency up to 1.2 GHz;

• Dual-core ARM Cortex-R5 with frequency up to 600 MHz (used mainly for RT net-
work processing;

• 32 kbytes of instruction cache (per core);

• 32 kbytes of data cache (per core);

• 1 MByte of L2 cache.

All four nodes are connected together through a 1 Gbps Ethernet-based network. In
this regard, some reshuffling of allocations relieving the pressure the application put on the
memory subsystem of the Trenz boards was necessary in order to make it run.
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# Nodes ÷ # Cores Time (ARM) Time (Intel)
1 ÷ 1 3656.5s 632.9s
1 ÷ 2 1964.6s 336.0s
1 ÷ 4 1151.8s 181.6s
2 ÷ 8 600.5s 83.2s

4 ÷ 16 317.1s 40.7s

Table 4.1: DPSNN runtimes.

Table 4.1 reports the simulation run-times of a reference configuration (5000 simulated
milliseconds of an 8×8 grid of cortical columns, 1250 neurons per column) for different lay-
outs of cores and cluster nodes, compared against those of a standard HPC platform (nodes
are dual-socket servers populated with Intel CPUs — Xeon E5-2630 v2 clocked at 2.6 GHz)
interconnected with an InfiniBand network interface. The speedup plot is depicted in Fig-
ure 4.1.

Figure 4.1: A comparison of DPSNN scaling on Intel- and Arm-based system.

4.3 Mini-application benchmarking tool

Evaluation of HPC hardware is a key element especially in the first stages of a project — i.e.

definition of specification and design — and during the development and implementation.
Features impacting performance should be identified in the analysis and design of new ar-
chitectures. In the early stages of the development, full applications are too complex to run
on the hardware prototype. In usual practice, hardware is tested with very simple kernels and
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benchmarking tools which often reveal their inadequacy as soon as they are compared with
real applications running on the final platform, showing a huge performance gap.

In the last years, a new category of compact, self-contained proxies for real applications
called mini-apps has appeared. Although a full application is usually composed by a huge
amount of code, the overall behaviour is driven by a relatively small subset. Mini-apps are
composed by these core operations providing a tool to study different subjects: (i) analysis
of the computing device — i.e. the node of the system; (ii) evaluation of scaling capabilities,
configuring the mini-apps to run on different number of nodes, and (iii) study of the memory
usage and the effective throughput towards the memory.

This effort is led by the Mantevo project [87], that provides application performance
proxies since 2009. Furthermore, the main research computing centers provide sets of
mini-applications, adopted when procuring the systems, as in the case of the NERSC-8/Trinity
Benchmarks [88], used to assess the performance of the Cray XC30 architecture, or the Fiber
Miniapp Suite [89], developed by RIKEN Advanced Institute for Computational Science
(RIKEN AICS) and the Tokyo Institute of Technology.

4.3.1 miniDPSNN

The miniDPSNN benchmarking tool leverages the Hardware-Software Co-design approach
that starts from the collection of application requirements for the initial development of the
infrastracture and then pursues the testing of the adopted solution during the implementation.
Thus, the application drives the research about the main components of a HPC system from
its roots, by optimizing modeling and simulation of a complex physical system.

The analysis is based on the behaviour of a strong scaling test. Neurons are arranged into
“columns”, each one composed by about one thousand neurons; columns are then arranged
into a bidimensional grid. Each excitatory neuron projects 80% of its synapses towards
neurons residing in its own column, while the rest reache out to those in the neighbouring
columns, according to the chosen remote connectivity, i.e. gaussian or exponential, as ex-
plained in Section 3.3.1. Instead, synapses of inhibitory neurons are projected only towards
excitatory ones residing in their same column. When DPSNN runs, each process can either
host a fraction of a column, a whole single column, or an integer number of columns.

Each core of the computing system hosts only one process optimizing the performance.
Thus, the varying of the columns-per-process ratio — i.e. ratio of columns per core of the
computing devices — throttles the application into different regimes, allowing to stress and
test several elements of the platform. Be noted that in general, the hardware connection
topology bears no resemblance whatsoever with the lateral connectivity of columns and neu-
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rons, the exception being when running only one process per node, so that all outwards
connectivity of a column impinges upon the network system of the node (see Figure 4.2).

Figure 4.2: Columns/Process Distribution.

Here is a rundown of the application tasks that miniDPSNN performs and that allow to
gauge the components of the architecture under test:

• Computation: processing of the time step in the dynamical evolution of the neuron.

• Memory Management: management of either axonal spikes organized in time delay
queues and lists of synaptic spikes, both stored in memory.

• Communication: transmission along the interconnect system of the axonal spikes to
the subset of processes where target neurons exist.

• Synchronization: at each time step, the processes deliver the spikes produced by
the dynamics according to the internal connectivity supported by the synaptic con-
figuration. This global exchange is currently implemented by means of synchronous
MPI collectives; any offset in time when different processes reach these waypoints —
whether it be by fluctuations in load or network congestion — causes idling cores and
diminished parallelization.

50



4.3. Mini-application benchmarking tool 51

Table 4.2 displays results obtained running on a standard HPC cluster based on Intel Xeon
processors communicating over an InfiniBand interconnect, as a function of the configuration
of the testbed — i.e. grid size, simulated seconds, allocated cores. The distribution of tasks
is strongly dependent on the columns-per-core ratio. As already stated, the computation
task becomes more demanding when increasing the number of columns per node — which
means increasing the total number of neurons. Instead, reducing the columns-per-core ratio
generates relatively more communication among processes, moving the focus of the test to
the interconnect.

12× 12 24× 24 48× 48
Grid 0.18 M 0.71 M 2.86 M
Synapses 0.20 G 0.80 G 3.20 G
Columns 144 192 192
Columns/Core 1 3 12
Simulated Seconds 30 12 18
Wall-clock Seconds 1484 2148 15182
Computation 21.3% 34.2% 45.1%
Memory Management 17.1% 16.7% 16.9%
Communication 35.2% 10.7% 0.9%
Synchronization 22.9% 36.3% 36.2%

Table 4.2: miniDPSNN tasks overview.

4.3.2 miniDPSNN analysis of low-power and standard computing ar-
chitectures in the real-time domain

In this domain, being “real-time” signifies a miniDPSNN workpoint such that the execution
time — i.e. wall-clock time of the running application — is not greater than the simulated
time. Accomplishment of this workpoint is obtained through an accurate configuration of
parameters. Prelimary trials of DPSNN keeping pace with this real-time requirement are
reported in this section. This working condition could be useful in the robotics application
field.

The testbed is a standard strong scaling test of a 4 × 4 columns grid. Figure 4.3 shows
the results of the test obtained simulating 10 s on the Intel-based platform.

Up to 8 ÷ 16 cores, the architecture scales well, decreasing the execution time down to
∼ 12 seconds. The execution time increases unexpectedly (∼ 16 seconds) when distributing
the problem over 32 cores, thus preventing the achievement of the target workpoint.

Singling out the times of the various tasks as reported in Figure 4.4 sheds some light
on this behaviour. The communication quickly becomes more demanding when the prob-
lem is split over more than 16 processes, dominating the behaviour of the application. As
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Figure 4.3: Strong scaling of a 4 × 4 col-
umn grid simulated on an Intel-based plat-
form equipped with IB interconnect.

Figure 4.4: miniDPSNN analysis of the
Intel-based platform.

mentioned before, the application stresses the interconnect when the column-per-core ratio
decreases — a whole column or portions of column are managed by each core in the tested
configuration. More than 80% of synapses remain within the column their projecting neu-
ron belongs to. Communication between processes increases when the columns are split
among them, clogging the network with an ever increasing number of small packets. The
miniDPSNN highligths this “latency” limitation of the IB interconnect provided by the clus-
ter. In general, COTS interconnects offer adequate throughput when moving large amounts
of data, but tipically trudge when the communication is latency-dominated. This issue with
communication — manifesting here with a number of computing cores which is, by today’s
standards, not large — is similar to that encountered by the parallel cortical simulator C2 [90]
— targeting a scale in excess of that of the cat cortex — on the Dawn Blue Gene/P supercom-
puter at LLNL, with 147456 CPUs and 144 TB of main memory. The capability to replicate
the behaviour of a supercomputer with a mini-app running on a limited number of 1U servers
could be considered the proof of its effectiveness.

Similar results are obtained performing the same test on an ARM-based platform as
showed in Figure 4.5 and Figure 4.6, although the analysis is limited by the available num-
ber of cores (16). All four nodes are connected together through a 1 Gbps Ethernet-based
network.

The number of transmitted packets increases distributing the same problem over an in-
creasing number of processes (core) as shown in Figure 4.7 while the payload generated by
each process does not vary as shown in Figure 4.8 and the communication becomes more
demanding.

Furthermore, the size of packets decreases (see Figure 4.9); the mean packet size is
∼ 40 bytes when each core simulates the dynamics of a single column, as depicted in Fig-
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Figure 4.5: Strong scaling of a 4×4 column
grid simulated on an ARM-based platform
equipped with GbE interconnect.

Figure 4.6: miniDPSNN analysis of the
ARM-based platform.

Figure 4.7: Packets generated during the
simulation.

Figure 4.8: Payload generated by each pro-
cess.

ure 4.10.

Figure 4.9: Maximum packet size produced
the DPSNN simulation.

Figure 4.10: Mean packet size produced the
DPSNN simulation.

The characterization of the traffic generated by the DPSNN over several off-the-shelf
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interconnects allows to identify the main requirement for a network device of future exas-
cale computing system simulating spiking neural network simulation: the network system
should be optimized for the trasmission of small packets. In particular, performances are
strongly influenced by (i) the design and implementation of a low-latency interconnect ar-
chitecture, and (ii) the definition of a light and reliable communication protocol guaranteeing
high throughput and optimizing the transfers of data packets with payload < 512 Bytes.

Finally a planned re-engineering of the DPSNN foresees a two-level hierarchy enforced
via MPI communicators: one auxiliary process (called “broker”) is added per node and com-
munications are segregated to be only among processes belonging o the same node – i.e. ex-
changes that go only through intra-node, shared-memory channels – or among brokers – i.e.

exchanges that only go through inter-node, remote interfaces. In this way, “local” exchanges
among neighbouring neural columns (which, given the biologically plausible topology for
the synaptic connectivity, make up the exchange bulk) can be contained to the fastest and
possibly less congested intra-node channel while “distal” exchanges are gathered to the bro-
ker process of the node, then scattered to brokers of other nodes that take care of scattering
them to the appropriate recipients.

4.3.3 Energy-to-Solution analysis

Instantaneous power, total energy consumption, execution time and energetic cost per synap-
tic event of a spiking neural network simulator distributed on MPI processes are compared
when executed on different generations of low-power and traditional computing architecture
to have a (limited) estimate of the trend.

The power and energy consumption reported were obtained simulating 3 s of activity of a
network made of 18 M equivalent (internal + external) synapses: the network includes 10 K
neurons (Leaky Integrate-and-Fire with Calcium-mediated spike-frequency adaptation), each
one projecting an average of 1195 internal synapses and receiving an “external” stimulus,
corresponding to 594 equivalent external synapses/neuron. A Poissonian spike train targets
external synapses with an average rate of 3 Hz; synaptic plasticity is disabled. In response,
the neurons fire trains of spikes at a mean rate of 5.1 Hz.

The power measurement equipment consists of a DC power supply, a high-precision
Tektronix DMM4050 digital multimeter for DC current measurements connected to National
Instruments data logging software and a high-precision AC power meter. The AC power of
the high-end server node is measured by a Voltech PM300 Power Analyzer upstream of
the main server power supply (measuring on the AC cable). For the SoCs, the DC current
was instead sampled downstream of the power supply. Such difference should not affect
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significantly the results, given the closeness to one of the cosϕ factor of the server power
supply.

First Generation Comparison

The traditional computing system — i.e. “server platform” — is based on a SuperMicro
X8DTG-D 1U dual-socket server housing 8 computing cores residing on quad-core Intel
Xeon CPUs (Westmere E5620@2.4 GHz in 32 nm CMOS technology). TThis “server
platform” is juxtaposed to the “embedded platform”: two NVIDIA Jetson TK1 boards,
connected by an Ethernet 100 Mb mini-switch to emulate a dual-socket node, each board
equipped with a NVIDIA Tegra K1 chip, i.e. a quad-core ARM Cortex-A15@2.3 GHz in
28 nm CMOS technology.

The “server platform” has 48 GB of DDR3 memory on-board, operating at 1333 MHz
— 6 GB per core — while the “embedded platform” only has 2 GB running at 933 MHz —
0.5 GB per core. This makes for a considerable difference in terms of memory bandwidth
— 14.9 GB/s for the ARM-based system against the 25.6 GB/s of the Intel-based one —
which has an impact on DPSNN and its intensive memory usage, e.g. for delivering spikes
to post-synaptic neuron queues.

Partitioning the neural grid onto 8 MPI processes, the simulation of 3 s of activity re-
quired 9.1 s on the “server platform” and 30 s on the “embedded platform”, as shown in
Figure 4.11.

Figure 4.11: First generation time-to-
solution result.

Figure 4.12: Second generation time-to-
solution result. Note that the number of
cores used in the first generation was the
double of that used in this case.

Observed currents were Is = 1.15 A (“server”) and Ie = 80 mA (“embedded”), with
5 mA measure error. Therefore, the energies required to complete the same task on the two
architectures were Es = 2.3 KJ and Ee = 528 J (see Figure 4.15), while the observed instan-
taneous power consumptions were Ps = 253 W and Pe = 17.6 W (see Figure 4.13). Note
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that we did not subtract any “base-line” power — e.g. power consumption after bootstrap,
so the estimate is “pessimistic” in the sense that it includes the load of the complete system
runnning.

Figure 4.13: First generation power-to-
solution result.

Figure 4.14: Second generation power-to-
solution result. Note that the number of
cores used in the first generation was the
double of that used in this case.

The simulation produced a total of 235 M synaptic events: the total energetic cost of
simulation can be estimated in 2.2 µJ/synaptic event on the “embedded platform” node and
9.8 µJ/synaptic event for the “server platform”. The “server platform” dual-socket node is
faster, spending 3.3 times less time than the “embedded platform” node. However, the “em-
bedded platform” node consumes a total energy 4.4 times lower to complete the simulation
task, with an instantaneous power consumption 14.4 times lower than the “server platform”
node.

The energetic cost of the optimized Compass simulator of the TrueNorth ASIC-based
platform, run on an Intel Core i7 CPU 950@3.07 GHz (45 nm CMOS process) with 4 cores
and 8 threads, is 5.7 µJ/synaptic event, but excludes a significant base-line power consump-
tion. Applying the same normalization, the results of the “embedded platform” are reduced
of a factor 2 ÷ 4 for the “server platform”.

Second Generation Comparison

The performances are measured in executing the DPSNN code along with those of a coeval
mainstream Intel processor architecture using a hardware/software configuration suitable to
extrapolate a direct comparison of time-to-solution and energy-to-solution at the level of the
single core. The measures are extended to the new generation NVIDIA Jetson TX1 SoC
based on the ARMv8 architecture. The Jetson TX1 includes four ARM Cortex-A57 cores
plus four ARM Cortex-A53 cores in big.LITTLE configuration.
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Figure 4.15: First generation energy-to-
solution

Figure 4.16: Second generation energy-to-
solution result.

The “server platform” is a Supermicro SuperServer 7048GR-TR with two hexa-core Intel
Haswell E5-2620 v3 @2.40 GHz. Four MPI processes are run on either platform, simulat-
ing 3 s of the dynamics of a network made of 104 Leaky Integrate-and-Fire with Calcium
Adaptation (LIFCA) neurons connected via 18 × 106 synapses. Results are shown in Fig-
ure 4.12, Figure 4.14 and Figure 4.16 and can be summarized as follows: Although the x86
architecture is about 5× faster than the ARM Cortex-A57 core in executing the simulation,
the energy it consumes in doing so is ∼ 3× higher [91].
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5.1 Introduction

The Array Processor Experiment (APE) is a custom design for HPC, started by the Isti-
tuto Nazionale di Fisica Nucleare (INFN) and partnered by a number of physics institutions
all over the world; since its start in 1984, it has developed four generations of custom ma-
chines (APE [92], ape100 [93], APEmille [94] and apeNEXT [95]). Leveraging the ac-
quired know-how in networking and re-employing the gained insights, a spin-off project
called APEnet developed an interconnect board based on FPGA that allows to assemble a
PC cluster à la APE with off-the-shelf components.
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The design of APEnet interconnect is easily portable and can be configured for different
environments: (i) the APEnet [96] was the first point-to-point, low-latency, high-throughput
network interface card for LQCD dedicated clusters; (ii) the Distributed Network Proces-
sor [97] (DNP) was one of the key elements of RDT (Risc+DSP+DNP) chip for the imple-
mentation of a tiled architecture in the framework of the EU FP6 SHAPES project [98]; (iii)
the APEnet Network Interface Card, based on an Altera Stratix IV FPGA, was used in a hy-
brid, GPU-accelerated x86 64 cluster QUonG [99] with a 3D toroidal mesh topology, able to
scale up to 104 ÷ 105 nodes in the framework of the EU FP7 EURETILE project. APEnet+
was the first device to directly access the memory of the NVIDIA GPU providing GPUDirect
RDMA capabilities and experiencing a boost in GPU to GPU latency test; (iv) the APEnet
network IP — i.e. routing logic and link controller — is responsible for data transmision at
Tier 0/1/2 in the framework of H2020 ExaNeSt project, as shown in Chapter 2.

Table 5.1 summarizes the APEnet families comparing the main features.

APEnet DNP APEnet+ APEnet+ V5 ExaNet
Year 2003 2007 2012 2014 2017

FPGA Altera Stratix III ASIC Altera Stratix IV Altera Stratix V Xilinx Ultrascale+
BUS PCI-X AMBA-AHB PCIe gen2 PCIe gen3 AXI

Computing Intel CPU RISC+DSP NVIDIA GPU NVIDIA GPU ARM+FPGA
Bandwidth 6.4 Gbps 34 Gbps 45 Gbps 32 Gbps

Latency 6.5µs 4µs 5µs 1.1µs

Table 5.1: The APEnet roadmap to Exascale

In Section 5.2, the main elements of the APEnet interconnect architecture are described.
The last generation is presented in Section 5.3 and the testbed and performance achieved are
shown in Section 5.3.

5.2 APEnet Interconnect architecture

The APEnet interconnect has at its core the DNP acting as an offloading network engine
for the computing node, performing internode data transfers; the DNP has been developed
as a parametric Intellectual Property library; there is a degree of freedom in choosing some
fundamental architectural features, while others can be customized at design-time and new
ones can be easily added. The APEnet architecture is based on a layer models, as shown in
Figure 5.1, including physical, data-link, network, and transport layers of the OSI model.

The physical layer — APEphy — defines the data encoding scheme for the serial-
ization of the messages over the cable and shapes the network topology. APEphy pro-
vides point-to-point bidirectional, full-duplex communication channels of each node with its
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neighbours along the available directions (i.e. the connectors composing the IO interface).
APEphy is strictly dependent on the embedded transceiver system provided by the available
FPGA. It is normally based on a customization of tools provided by the FPGA vendor —
i.e. DC-balance encoding scheme, deskewing, alignment mechanism, byte ordering, equal-
ization, channel bonding. In APEnet+ and APEnet+ V5, four bidirectional lanes, bonded
into a single channel with usual 8b10b encoding, DC-balancing at transmitter side and byte
ordering mechanisms at receiver side, allow to achieve the target bandwidth (34 Gbps [100]
and 45 Gbps [101] respectively).

The data-link layer — APElink — establishes the logical link between nodes and guar-
antees reliable communication, performing error detections and corrections. APElink [102]
is the INFN proprietary high-throughput, low-latency data transmission protocol for direct
network interconnect based on word-stuffing technique, meaning that the data transmission
needs submission of a magic word every time a control frame is dispatched to distinguish it
from data frames. The APElink manages the frame flow by encapsulating the packets into a
light, low-level protocol. Further, it manages the flow of control messages for the upper lay-
ers describing the status of the node (i.e. health status and buffer occupancy), and transmitted
through the APElink protocol.

The network layer — APErouter — defines the switching technique and routing algo-
rithm. The Routing and Arbitration Logic manages dynamic links between blocks connected
to the switch. The APErouter applies a dimension order routing [103] (DOR) policy: it con-
sists in reducing to zero the offset between current and destination node coordinates along
one dimension before considering the offset in the next dimension. The employed switching
technique — i.e. when and how messages are transferred along the paths established by the
routing algorithm, de facto managing the data flow — is Virtual Cut-Through [104] (VCT):
the router starts forwarding the packet as soon as the algorithm has picked a direction and the
buffer used to store the packet has enough space. The deadlock-avoidance of DOR routing is
guaranteed by the implementation of two virtual channels [105] for each physical channel.

The transport layer — APE Network Interface — defines end-to-end protocols and
the APEpacket. The APE Network Interface block has basically two main tasks: on the
transmit data path, it gathers data coming in from the bus interfacing the programming sub-
system, fragmenting the data stream into packets — APEpacket— which are forwarded to
the relevant destination ports, depending on the requested operation; on the receive side, it
implements PUT and GET semantics providing hardware support for the RDMA (Remote
Direct Memory Access) protocol that allows to transfer data over the network without ex-
plicit support from the remote node’s CPU.

The full APE Network Interface offers a register-based space for configuration and status
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Figure 5.1: The layered architecture of
APEnet

Figure 5.2: A block diagram of APEnet ar-
chitecture

signalling towards the host. Further, it offers a variable size region for defining a number
of ring buffers, each one linked to an OS process accessing the device. These regions are
typically accessed in slave mode by the host, which is master (read/write of single 32-bit
based registers). A certain number of DMA engines are used to move data to and from the
device, plus other additional services: a TX descriptor queue (to issue buffer transfers from
host to device) and an event queue (to notify different kind of completions to host). Single
or Multiple DMA engines could manage the same intra-tile port.

The block diagram of the APEnet interconnect architecture is shown in Figure 5.2.

5.3 ExaNet

ExaNet is responsible for data communication at Tier 0/1/2 of the network interconnect of
the ExaNeSt project. ExaNet is the product of a joint collaboration among the Founda-
tion for Research and Technology [106] (FORTH) in Greece and the Istituto Nazionale di
Fisica Nucleare (INFN) in Italy. The INFN APE research group [32] is responsible for the
ExaNet Network IP providing switching and routing features and managing the communi-
cations over the High Speed Serial (HSS) links through different levels of the interconnect
hierarchy: (i) the high-throughput intra-QFDB level (Tier 0) for data transmission among the
four FPGAs of the ExaNeSt node; (ii) the intra-Mezzanine level (Tier 1) directly connecting
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the network FPGAs of different nodes within the same mezzanine and (iii) inter-Mezzanine
communication level (Tier 2) managing the connectivity of the Mezzanine based on SFP+
connectors and allowing for the implementation of a direct network among QFDBs within
a chassis. The ExaNet Network IP mainly consists of two hardware components: (i) the
APErouter, handling the routing and switching mechanism of the network IP as described in
Section 5.3.3; (ii) the APElink I/O interface, managing the data transfers over the HSS links
as reported in Section 5.3.4.

5.3.1 ExaNet development platform

The Trenz TEBF0808 system has been used since it features the same Xilinx Ultrascale+
MPSoC FPGA family chosen for the final prototype (XCZU9EG), being the early stages of
the ExaNeSt system prototype so that the node is still under development. Preliminary tests
were performed to validate the network, connecting up to four boards shaping a 2× 2 mesh
topology through the two SFP+ connectors available on each system (see Figure 5.3 and 5.4).

Figure 5.3: The ExaNet development
platform shaping 2× 2 topology.

Figure 5.4: The SFP+ connectors pro-
vided by the Trenz Board.

The testbed allows to validate the adoption of the APEnet architecture at both Tier 0
and Tier 1. The QFDB composed by four FPGAs matches perfectly with the testing plat-
form. Furthermore, the development platform emulates the communication among the four
network FPGAs of the QFDBs hosted within the track-1 mezzanine.

5.3.2 Packet structure

A modified version of the APEpacket is the data structure of the ExaNet communication
system based on the latest generation of the APEnet protocol. Figure 5.5 outlines the ExaNet
packet.

The packet is composed by a 128-bit header, a 128-bit footer and a payload. The max-
imum payload size is 256 ÷ 512 bytes, being a good compromise between bandwidth per-
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Figure 5.5: Format examples of packet and APElink protocol of the ExaNet interconnect

formances and routing efficiency (avoiding delay of high priority packet). Nevertheless,
APElink protocol supports the size up to 4 KB, equal to the size of a page of a standard
GNU/LINUX system.

The header contains the information to route packets to their proper destination:

• the Virtual Channels are used to avoid routing deadlocks and to prioritize packets;

• the Protection Domain ID carries the identifier of a system-level process group;

• the Destination Coordinates identifies each unit (FPGA) of the system;

• the Type field identifies different packets with specific encoding of header and footer
fields or without payload;

• the Size field identifies the payload length;

• the Destination Memory Address specifies the (virtual) address at the target node;

• the Header Error Detection and Correction Code is used to avoid traffic generated by
misrouted packets.

The footer encodes the following information:

• the Channel ID field identifies an outstanding packet that has been issued from a source
node;

• the Source Coordinate field is used for the end-to-end packet acknowledgment and
retransmission mechanism.

• The Valid field identifies the last valid byte within the last payload word;

• The User-Defined field is left for specific applications;

• The CRC field validates the content of the transmitted message.
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5.3.3 APErouter

The APErouter block (see Figure 5.6) dynamically interconnects the intra-tile ports — i.e.

the interface between the programming logic and the programming subsystem (see Fig-
ure 2.3) — and the inter-tile ports — i.e. the I/O interface with the other nodes — and
comprises a fully connected switch, plus routing and arbitration blocks. Together with the
Arbiter, the Routing Logic manages dynamic links between blocks connected to the switch;
depending on the final destination, the router decides which switch port the packet must be
delivered to among the possible ports, and the arbiter solves the contention between packets
requiring the same resources.

APErouter hardware IP

The latest release of APErouter is the result of a porting and adaptation activity to make the
IP synthesizable on Xilinx FPGAs. Furthermore, the IP is compliant with the new ExaNet
Header format and manages different kinds of packet (RDMA, ACK, RATE). The current IP
supports the byte alignment of the data structure in the memory – the previous releases were
word aligned. Finally, the design has been arranged to be more flexible, in order to simplify
the support of new network topologies and the introduction of important new features for
HPC – adaptive routing algorithm and collective hardware acceleration.

Although the basic functionalities of the APErouter were verified in the past — on the
QUonG prototype located in Rome — correct operation of the new release is currently tested
on the mini-cluster composed by Trenz boards, arranged into a 2 × 2 mesh described in
Section 5.3.1. Single and multiple hop tests have been performed and the results are shown
in Section 5.4 and Section 5.4.2 The proper behaviour of the routing algorithm on a larger
cluster is proved through the custom simulator described in Section 5.5.

The block diagram of the APErouter is depicted in Figure 5.6. The main components are
briefly described:

• Switch Port: it contains transmitting (TX) and receiving (RX) FIFOs. The FIFOs
are in show-ahead mode in the current release. Intra-tile ports are configurable and
implemented in TX/RX mode or TX mode only. The header/footer FIFOs are 128 ×
128 bit (2 KB), while the intra-tile and inter-tile payload FIFO are 4096 × 128 bit
(64 KB) and 1024× 128 bit (16 KB) respectively.

• Switch Gate: it connects data and control signals coming from the intra-tile and
inter-tile ports with the crossbar. It manages the data flow preventing FIFOs over-
flow and guarantees proper transmission of the packet — header, payload, footer. The
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Figure 5.6: The block diagram of the APErouter on ExaNet prototype.

IP can be configured – as a synthesis parameter, not in run-time – to manage a packet
length encoded either in words or in bytes. This latter functionality needs additional
information about byte valid of the first payload word – header and footer are always
assumed LSB aligned.

• Router: as already discussed in Section 5.2, APEnet applies a deterministic Dimension-
Ordered Routing (DOR) policy: it consists in reducing to zero the offset between
current and destination node coordinates along one dimension before considering the
offset in the next dimension. The APEnet DOR router is able to handle more than
one packet transaction. Specialized priority registers – writable at run-time — allow
selecting the coordinates evaluation order (i.e. first Z is consumed, then Y and finally
X) and disabling ports altogether. The employed switching technique, i.e. when and
how messages are transferred along the paths established by the routing algorithm,
is Virtual Cut-Through (VCT): the router starts forwarding the packet as soon as the
algorithm has picked a direction and the buffer used to store the packet has enough
space. The DOR algorithm is not per se deadlock-free, but deadlock-avoidance can
be enforced by the implementation of two virtual channels for each physical channel.
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The choice of the virtual channel is another important task for the router: it sends
packets using the upper virtual channel if the offset between current and destination
node is greater than zero, the lower virtual channel otherwise. The new routing func-
tion removes all the cyclic dependencies in the channel dependency graph (CDG), thus
ensuring deadlock avoidance.

• Arbiter: it manages conflicts among the requests — packets coming from different
ports could request the same destination port. The scheduling algorithm is config-
urable: Round Robin or Fixed Priority – the latter can be modified at run-time writing
the proper configuration register.

The meaningful occupancy values of the main components of a 3 × 2 APErouter are
shown in Table 5.2.

IP LUT LUT RAM LUT FF Registers BRAM GTH
Available Resources 274080 144000 274080 548160 912 16

APErouter 3× 2 9599 (3.5%) 0 3162 (1.2%) 7649 (1.2%) 116.5 (12.7%) 0
Intra-tile Switch Gate 194 0 142 250 0 0
Inter-tile Switch Gate 300 0 152 256 0 0

Arbiter 3× 2 2067 0 73 142 0 0
Router 3× 2 424 0 77 1548 0 0

Intra-tile Switch Port 852 0 300 598 28.2 0
Inter-tile Switch Port 1285 0 312 702 16 0

Table 5.2: Overview of the APErouter hardware resources.

The current operating frequency of the APErouter is 156.25 MHz and the power con-
sumption is 0.271 W according to the Xilinx estimation tool. The result is strongly dependent
on the number of intra- and inter-tile ports provided, as shown in Figure 5.7.

Figure 5.7: APErouter power consumption.
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The results are influenced by the dimension of the FIFOs and the number of the imple-
mented virtual channels. Although a fine tuning should reduce the power consumption, the
achieved result is encouraging.

APErouter performance

The latency introduced by the APErouter— i.e. from the arrival of the header in intra-tile
TX FIFO to the writing of the header in the inter-tile TX FIFO — is shown in Figure 5.8.

Figure 5.8: Intra-tile TX towards inter-tile TX latency.

The number of clock cycles is equal to 11 (about 70 ns at the current operating frequency
of 156.25 MHz). The performance is the same for the following path: (i) loopback: intra-tile
TX towards intra-tile RX; (ii) send: intra-tile TX towards inter-tile TX; (iii) receive: inter-tile
RX towards intra-tile RX and (iv) intermediate node: inter-tile RX towards inter-tile TX.

5.3.4 APElink

The data packet is encapsulated in a lightweight protocol sketched in Figure 5.5. Two words
– Magic/Start – are included into the data flow over the serial links to establish the logical
link between nodes. Magic and Start width is always equal to the transceiver bus width, thus
their transmission over the links takes 2 clock cycles only.

The Magic/Start sequence announces the transmission of the Header. The width of the
header and the information stored in it are totally parametric in order to match the require-
ments of the framework.

Since misrouted packets are disruptive for the network, the highly critical header integrity
is protected by an Error Correction Code (ECC). However, unrecoverable errors can still oc-
cur in the transmitted data flow. Necessarily, the entire packet is considered corrupted, when
a faulty (unrecoverable) header is received. The data are not flagged and are collected fol-
lowing the logical sequence of the data stream, trusting the “Size” field stored in the header.
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An “emergency” strategy is defined to manage the critical status and to avoid the stop/restart
procedure of the data transmission and minimizing the loss of information. The received
faulty packets are discarded until a Start is identified in the received stream — only the
faulty packet is loss — guaranteeing the recovery of the logical alignment between the peers
of the communication. APElink does not provide any acknowledgement or retransmission
mechanism, to not affect performance of the transmission and to not force the implementa-
tion of additional memory buffers. These mechanisms are provided at a higher level of the
networking framework (end-to-end communication managed by the transport layer).

Buffer availability is measured by credit; exchanging credits by two communicating
nodes is mandatory to avoid buffer overflow. Outbound words consume it, causing trans-
mission suspension as soon as a programmable credit threshold (TRED) is reached — i.e.

credit is exhausted — and resuming as soon as info about newly available space bounces
back to the transmitter — i.e. credit is eventually restored. This information is exploited
by the router to manage the data flow implementing the VCT switching mechanism. Credit
content is configurable according to the architectural choices: (i) start/stop commands for
a latency-optimized interconnect — a 64-bit credit word is able to manage up to 8 virtual
channels limiting the amount of transmitted extra bits; (ii) usedword value reporting the
occupancy of the receiving buffer. The efficiency of the protocol is clearly affected (only
two virtual channels are managed with a 64-bit credit), but more sophisticated routing al-
gorithms — i.e. adaptive and fault-tolerant — can be implemented exploiting the precise
information of the status of the receiving buffer of the neighboring nodes. The information
contained in the credit is protected by redundancy (the status of the receiving FIFOs is re-
peated three times and the value is chosen by the majority). A whole credit is transmitted
between two different packets considering the importance of the contained information. Be-
sides, some information regarding the health of the node can be optionally embedded in the
credits, allowing for a fault communication mechanism — LO|FA|MO [54] — that avoids
single points of failure, and guaranteeing a fast broadcast of critical status to neighboring
nodes. This embedding of diagnostic messages in the communication protocol limits the
amount of additional overhead (no custom diagnostic packets are necessary) and prevents
this flow from affecting overall performance.

APElink hardware IP

The APElink hardware IP manages the communication protocol over the serial links, adapt-
ing the inter-tile port interface (FIFO-based) of the APErouter with the outbound interface of
the network adapter. The APElink IP consists of two main components: (i) the Transmission
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Control Logic (TCL), a totally FPGA vendor-independent IP, that manages data and credit
flow over the link (OSI Data Link, APElink) and (ii) the Transceiver, normally based on a
customization of tools provided by the FPGA vendor, that implements the OSI Physical layer
(APEphy).

The interface between TCL and Transceiver is based on a standard Ready/Valid mecha-
nism, to be compliant with the AXI stream protocol (and not only), and to increase the com-
patibility of the APElink hardware component with different FPGA vendor IPs or custom
transceiver controllers. The block diagram of current EXAnet APElink data transmission
system is shown in Figure 5.9. An overview of the exploited FPGA hardware resources is
reported in Table 5.3.

Figure 5.9: APElink block scheme.

IP LUT LUT RAM LUT FF Registers BRAM GTH
Available Resources 274080 144000 274080 548160 912 16

APElink TCL 2627 (1.0%) 0 849 (0.3%) 2427 (0.4%) 0 0
RX CTRL 1364 0 351 0 0 0
TX CTRL 770 0 173 954 0 0

APEphy Aurora 829 (0.3%) 69 (0.1%) 488 (0.2%) 3107 (0.6%) 2 (0.2%) 2 (12.5%)
Master 405 35 244 1529 1 1
Slave 400 34 239 1508 1 1

Table 5.3: APElink hardware resources overview.

The transceiver IP is based on Xilinx Aurora 64B/66B core. Aurora 64B/66B is a
lightweight, serial communications protocol for multi-gigabit links. It is used to transfer
data between devices using one or many GTH transceivers. Connections can be full-duplex
(data in both directions) or simplex (data in either one of the directions). The core supports
the AMBA protocol AXI4- Stream user interface. Aurora 64B/66B cores automatically ini-
tialize a channel when they are connected to an Aurora 64B/66B channel partner. After
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initialization, applications can pass data across the channel as frames or streams of data.
Aurora 64B/66B frames can be of any size and can be interrupted any time by high prior-
ity requests. Gaps between valid data bytes are automatically filled with idles to maintain
lock and prevent excessive electromagnetic interference. The Aurora 64B/66B protocol uses
64B/66B encoding. The 64B/66B encoding offers improved performance because of its very
low (3%) transmission overhead, compared to 25% overhead for 8B/10B encoding.

The APElink operating frequency is 156.25 MHz in order to achieve 10 Gbps capability
of the I/O system. The power consumption for each APElink TCL is limited to 0.009 W,
as depicted in Figure 5.10, while the Aurora transceivers of the APEphy consume 0.337 W,
without any major differences between the master and the slave channel (Figure 5.11).

Figure 5.10: The APElink power con-
sumption.

Figure 5.11: The APEphy power con-
sumption.

APElink performance

The APElink hop latency is defined as the time to move the header from the inter-tile TX
port of the APErouter of the sender node to the inter-tile RX port of the receiver node.

The hop latency LL can be split into three main components (see Figure 5.12): (i) FIFO
delay LF , from the “write enable” signal asserted in the writing side to the “empty” signal
not asserted in the read side; (ii) APElink Transmission Control Logic latency LTCL, on
both the sender (TX) and the receiver (RX); (iii) Aurora latency LW , between the transceiver
cores of the sender and receiver nodes:

LL = LF + LTCL + LW

The implemented FIFO and Xilinx Aurora IP latencies take 3 and 42 clock cycles respec-
tively. The latency added by the Transmission Control Logic is 6 clock cycles only. In the
current implementation, the APElink operates at 156.25 MHz with a capability of 10 Gbps,
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thus the entire APElink hop latency is about 325 ns — i.e. submicrosecond latency per
hop.

Figure 5.12: APElink hop latency.

An estimation of the APElink efficiency is provided. As described above, the user data
are contained in the payload only, so the protocol overhead (P ) — additional clock cycles
to manage the message communication — depends on the sizes of start (S), magic (M ),
header (H), footer (F ) and credit (C):
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where W is the capability of the transceiver (bytes transmitted per clock cycle). The n

credits between two different packets do not need the submission of a magic word, instead
a magic is mandatory to distinguish the k credits from the payload, i.e. within the packet, in
order to manage the suspension of the packet transmission. Therefore, the efficiency of the
APElink protocol is:

EP =
D
W

P + D
W

where D is the size of the payload — D/W is the number of clock cycles to transmit the
payload of the packet.

In ExaNet the header and footer are 16 Byte long. The Magic and Start width is always
equal to transceiver bus width, each wasting only a clock cycle. The Credit issuing the
start/stop command is 8 Byte only and the heavier version with the receiving buffer status is
32 Byte long (considering 8 virtual channels). The estimation of the efficiency for different
payload sizes and credit types is reported in Table 5.4.
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Efficiency
Payload Size [Byte] start/stop usedword

16 0.22 0.17
32 0.36 0.29
64 0.53 0.44

128 0.70 0.62
256 0.82 0.76
512 0.90 0.86

1024 0.94 0.90
2048 0.96 0.92
4096 0.97 0.93

Table 5.4: APElink data transmission efficiency considering a transceiver bus of 8 bytes.

5.4 KARMA Test Framework

King ARM Architecture (KARMA) is a software-oriented test framework to validate the
ExaNet Network IP. The main idea behind its design is the use of the multicore ARM
Cortex-A53 Programming System (PS) to emulate in software the functionalities of the Net-
work Interface (NI), exploiting the AXI low latency communication capabilities between the
PS and the Programming Logic (PL) that implements the systems under test. This approach
turned out to be very effective, allowing for the test and validation of the ExaNet Network IP
since the earliest stages of its development. It also enabled the rapid prototyping of various
architectural solutions for the interface between the NI and the Switch systems. Finally, us-
ing the framework we were able to characterize the performance of the two systems in terms
of latency.

Figure 5.13: KARMA test framework for the ExaNet Network IP validation.

On the hardware side, the intra-tile ports are directly connected to the ARM HPM AXI
port through an adapter IP, whose only purpose is the conversion between streaming and
memory-mapped AXI protocols. Current KARMA does not implement any DMA-access to
the intra-tile ports, so that ARM must issue a write for every single word into header/data
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FIFOs, which is obviously suboptimal for bandwidth but appropriate for gauging the latency
of small-sized packets.

Moreover, a set of configuration/status registers is accessible on the same AXI bus through
the “Target Controller” IP, which allows the configuration of the router (e.g. setting coordi-
nates and lattice size) and the probing of FIFOs and link status.

An overview of the KARMA test framework is depicted in Figure 5.13 and the resource
usage of the ExaNet Network IP is reported in Table 5.5

IP LUT LUT RAM LUT FF Registers BRAM GTH
Available Resources 274080 144000 274080 548160 912 16
ExaNet Network IP 17287 (6.3%) 0 5577 (6.3%) 18954 (6.3%) 116.5 (12.7%) 0

APErouter 3× 2 9599 (3.5%) 0 3162 (1.2%) 7649 (1.2%) 116.5 (12.7%) 0
APElink TCL (2x) 5253 (2.0%) 0 1698 (0.6%) 4854 (0.8%) 0 0
Target Controller 2468 (0.9%) 0 187 (0.1%) 6451 (1.1%) 0 0
APEphy Aurora 829 (0.3%) 69 (0.1%) 488 (0.2%) 3107 (0.6%) 2 (0.2%) 2 (12.5%)

Table 5.5: KARMA hardware resources overview.

The power consumption of ExaNet Network IP is reported in Figure 5.14. The Ex-
aNet Network IP composed by a 3× 2 APErouter, 2 APElink TCL and the target controller
consumes 0.34 W. The total power consumption, considering the APEphy transceivers, is
0.677 W. The Zynq Ultrascale+ drains 2.822 W, thus the total power consumption of each
board of the development platform is 3.5 W.

Figure 5.14: ExaNet Network IP power consumption.

5.4.1 Latency test

On the software side, a first test is implemented in user-space by simply writing commands
and data to the hardware (using the /dev/mem to access the memory-mapped hardware).
In this phase no interrupts, no system-wide locking and no easy virtual-to-physical address
translation are implemented. A kernel-space device driver creates a “proc” file-system entry
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to output debug and status information, together with the output of the internal configura-
tion/status registers. The module also parses the device tree to find the IRQ number as-
sociated to the “NIC”, and then assigns a callback function to handle the interrupt request
generated by the arrival of new data.

Figure 5.15 shows the normal execution of a generic Send/Receive test execution using
the kernel space module.

Figure 5.15: Send/Receive test execution us-
ing kernel module API.

Figure 5.16: Latency for small packets in
kernel space test.

In the sending phase, the kernel-space module copies data from the user buffer to a
bounce buffer, then prepares header and footer and writes them onto the corresponding FI-
FOs. The receiving phase is just the opposite: arriving data are copied in a bounce buffer
(waiting for the user-space process to request them) while header and footer are “consumed”.
Round-trip latencies between two boards have been measured at different sizes, up to 4 KB,
as shown in Figure 5.16.

Because of the non-optimal bounce-buffering mechanism and the notoriously slow inter-
rupt handling by GNU/Linux, in Figure 5.17 and Figure 5.18 we compare these results with
a test where the kernel driver is bypassed by a user-space ping-pong application, again ex-
ploiting /dev/mem to directly access the memory-mapped hardware. The stated difference
in time of 0.46µs for the two and one hops measurements provides an estimate of the single
hop traversal time contribution to the total latency. The times spent by the ARM in reading
(∼ 0.4µs, about 20 clock cycles per word) and in writing (< 0.1µs, 4 clock cycles per word)
the intra-tile port are independent from the number of hops.
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Figure 5.17: The Roundtrip latency for one
and two hops.

Figure 5.18: A small-packet, up to 128 Byte
— zoom of the roundtrip latency.

5.4.2 Hardware Bandwidth Test

As stated before, the KARMA testbed is not the appropriate platform to evaluate the band-
width of the hardware solution proposed.

Nevertheless, the ExaNet Network IP firmware is provided with a self-test mechanism to
measure the bandwidth achieved by the APErouter and APElink. The self-test mechanism is
composed by three simple IPs: (i) the Traffic Generator generates EXApackets and fills in
the transmitting FIFOs; (ii) the Consumer flushes the receiving FIFOs avoiding the overflow;
(iii) the Performance Counter stores the clock cycles needed to complete the data transfers.
The Packets can be configured through configuration registers defining the type, the size, the
destination coordinates and ports.

Figure 5.19 shows the APErouter achieved bandwidth while moving data between two
different ports. The square markers denote the theoretical peak bandwidth considering the
128-bit bus operating at 156.25 MHz. The efficiency is 76% for a 512-byte packet — i.e. the
maximum packet size — when the protocol overhead is 6.25%. The loss of performance is
due to the not optimized pipeline of APErouter hardware IP. Some improvements are gained
doubling the sending ports (i.e. 2× Intra-Tile ports) and transmitting packets to the same
target port; in this case, the efficiency at 512 byte is 89.5%.

The APElink result is shown in Figure 5.20. The theoretical bandwidth is limited to
10 Gbps due to the SFP+ connectors of the Trenz Boards. The efficiency is 90% for a
512-byte packet, in line with the estimation of Table 5.4.

5.5 Network simulator results

Benchmarking and characterization of an interconnection network depend on many parame-
ters — e.g. traffic pattern, buffers and network sizes — therefore at very large scale simula-
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Figure 5.19: APErouter bandwidth. Figure 5.20: APElink bandwidth.

tions are mandatory to evaluate solutions and understand criticalities. The simulator [107] is
implemented in a modular way to ease switching between different network designs (topolo-
gies, routing algorithms and traffic generators), and to allow for an effective way of measur-
ing latency and accepted traffic.

For APEnet in ExaNeSt evaluation, we used the OMNeT++ [108] framework to imple-
ment the base functionality of the APEnet network in a proprietary simulation library.

As a first evaluation, we use synthetic benchmarks on different network configurations.
All the nodes were producing traffic using a Bernoulli process and with a uniformly random
destination. The tests were performed for 2D/3D torus and dragonfly topologies and for
several routing algorithms, as listed in Table 5.6. Star-channel [109] is a minimal path fully
adaptive routing algorithm for N-dimensional tori and meshes based on the e-cube. This al-
gorithm adds an extra virtual channel in addition to the ones used by the e-cube to achieve full
adaptivity. The Smart dimension-order is a partly adaptive non minimal routing algorithm
for N-dimensional tori and meshes based on the e-cube. This algorithm takes advantage of
the extra unused channel to provide adaptivity to the network. Finally the min-routing [18] is
a minimal non adaptive routing algorithm for dragonflies and it can be considered as a base
algorithm for adaptive or more complex ones.

In the test, the accepted traffic is normalized dividing it by the number of nodes in the
network.

Network topology Routing Algorithm
2D torus 10× 10 e-cube, star-channel, smart dim-order
2D torus 32× 32 e-cube, star-channel, smart dim-order

3D torus 10× 10× 10 e-cube, star-channel, smart dim-order
Fully connected dragonfly “72 nodes” min-routing

Fully connected dragonfly “1056 nodes” min-routing

Table 5.6: Topology and routing algorithm analyzed.
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Preliminary results for the network accepted traffic (Figure 5.21) show a linear region
shared by all the different network configurations tested.
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Figure 5.21: Normalized accepted throughput vs applied load.

When the network is in the linear region, it is below its critical congestion threshold and
properly handles the incoming traffic; enhancing the applied load results in higher accepted
traffic. If the applied load is above the saturation point, the accepted traffic starts to exit from
the linear region of the plot and reaches a plateau. The plateau value could not correspond
to the maximum value that the network is able to deliver due to congestion effects.
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Figure 5.22: Latency vs applied load for the different configurations tested.

The latency graph in Figure 5.22 shows similar behavior with an upward slope when
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applied load is increased. It is important to note that even if the network has not reached
saturation and the accepted traffic has not plateaued yet, latency increases together with the
applied load, leading to longer delivery times for the packets. This aspect must be taken into
account when designing the system in order to meet the requirements.

The 2D tori handle ∼45% normalized applied load in a 10 × 10 network configuration,
but only ∼20% in a 32 × 32 configuration. Tori are not optimized for uniform network
traffic and the performance degrades quickly increasing the radius of the configuration. To
reduce the radius, we can move from a 2D to a 3D torus. The fully adaptive star-channel
routing algorithm provides a better use of the available network resources, resulting in higher
sustained load and lower latency than those achievable by using the simpler e-cube (DOR)
routing. The 72 nodes dragonfly performs better than 10×10 torus adopting the fully adaptive
algorithm but on a smaller network, while the 1056 nodes setup shows better performance
than the non-adaptive tori but with lower throughput than the fully adaptive ones.
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CONCLUDING REMARKS

I have described two research topics currently explored by the INFN APE research group:
(i) the study of modern technologies and networking strategies for the development of a
European interconnect system for the Exascale High Performance Computing infrastracture
in the framework of the EU H2020 ExaNeSt project, and (ii) the high resolution simulation
of cortical activity expressed in different brain-states, e.g. the slow waves expressed during
deep-sleep and anesthesia and the asynchronous neural regime characteristic of wakefulness.
The joint between these research branches is the driving motive of this thesis. The achieved
results are the first-stage product of a hopefully effective system design method based on
co-design approach.

The Distributed and Plastic Spiking Neural Network (DPSNN) simulation engine is ex-
ploited as a source of requirements and architectural inspiration for future parallel/distributed
computing systems. The miniDPSNN approach has been proven as an adequate tool of eval-
uation to outline software and hardware architectures dedicated to neural simulations. The
characterization of the network traffic generated by a cortical simulator running on a stan-
dard computing system provides information for the definition of specification of alternative
network adapter. The ever growing amount of small-sized packets generated by a strong
scaling test shows the limitation of the adopted off-the-shelf interconnects — i.e. Infiniband
and Gigabit Ethernet.

The result obtained with miniDPSNN drives to the specification of a network IP, char-
acterized by a low-latency transfer optimized architecture and to the definition of a data
transmission protocol providing high-throughput also for small dimensions of data payload.
The APEnet architecture is at the basis of the ExaNeSt hierarchical multi-tiered network.
The presented ExaNet Network IP provides a point-to-point latency of 1.3 µs in a standard
ping-pong test. APErouter and APElink sport an efficiency of 76% and 90% respectively,
transferring 512-bytes packets. Further, from the software point of view, a tuned version of
the MPI-based communication within the DPSNN leveraging a hierarchical mechanism is
planned for the next future.

ARM processors turned out to be an efficient solution in terms of power consumption.
The energy-to-solution result obtained running the DPSNN application on ARM Cortex-
A57 based platform is about three times lower than the x86 core architecture. The power
consumption of the ExaNet board is < 4 W according to the preliminary estimations, with
the ExaNet Network IP coupled with Aurora-based APEphy draining less than 1 W.

Finally, the APElink communication protocol provides two key elements for the achieve-
ment of a resilient interconnection network architecture: (i) the mechanism based on the
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implementation of Error Correction Code to discard faulty packets avoiding the misrouting
of garbage data traffic and (ii) the management of credit flow at datalink level, with min-
imal additional protocol overhead to create a general awareness of the health status of the
computing system.

To sum up, the thesis explores three pillars of the race towards the Exascale (system
power constraint, data movement optimization, hardware/software co-desing), introducing
effective solutions. Nevertheless, this study is still a long way from the arrival. ExaNeSt
is just getting in the second half period and the obtained results represent only the starting
point. The node of the system, the QFDB, will be ready at the end of 2017. An evolution of
the ExaNet Network IP equipped with a larger I/O interface will be developed to manage the
inter-Mezzanine communication at Tier 2. The track-1 prototype will provide an adequate
platform to test the n-dimensional torus and dragonfly topologies. A more sophisticated
routing logic will be able to consume the coordinates in a more exotic way, or to recognize
critical directions and then change appropriately the packet header to follow an alternative
path to reach the destination (adaptive and fault-tolerant routing). The DPSNN provides
an additional requirement coming directly by the construction of connectivity infrastructure
and the delivery of spiking messages during the simulation phase, both based on widespread
use of calls to the MPI Alltoallv library function. An HPC computing system equipped
with hardware offloading mechanism of collective communication functions should enhance
overall application performance, especially for very large scale runs. This feature will be
designed and tested exploiting ExaNet and the track-1 prototype, both representing the basis
for the track-2 prototype. A patent [110] is pending on the topic, further details will be
available in the next future. Finally, Track-2 platform will be finalized in the framework of
the EU H2020 EuroEXA project, started in September 2017 with the goal to innovate across
a new ground-breaking platform for computing in its support to deliver Exascale systems,
collecting the achievements of ExaNeSt, ECOSCALE and ExaNoDe projects.
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