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UNIVERSITY OF ROME “LA SAPIENZA”

Abstract
Faculty of Information Engineering, Informatics, and Statistics

Department of Information Engineering, Electronics, and
Telecommunications

Doctor of Philosophy

Design and Implementation of Machine Learning Techniques for
Modeling and Managing Battery Energy Storage Systems

by Massimiliano LUZI

The fast technological evolution and industrialization that have interested
the humankind since the fifties has caused a progressive and exponential
increase of CO2 emissions and Earth temperature. Therefore, the research
community and the political authorities have recognized the need of a deep
technological revolution in both the transportation and the energy distribu-
tion systems to hinder climate changes. Thus, pure and hybrid electric pow-
ertrains, smart grids, and microgrids are key technologies for achieving the
expected goals. Nevertheless, the development of the above mentioned tech-
nologies require very effective and performing Battery Energy Storage Sys-
tems (BESSs), and even more effective Battery Management Systems (BMSs).

Considering the above background, this Ph.D. thesis has focused on the
development of an innovative and advanced BMS that involves the use of
machine learning techniques for improving the BESS effectiveness and effi-
ciency. Great attention has been paid to the State of Charge (SoC) estimation
problem, aiming at investigating solutions for achieving more accurate and
reliable estimations. To this aim, the main contribution has concerned the
development of accurate and flexible models of electrochemical cells.

Three main modeling requirements have been pursued for ensuring ac-
curate SoC estimations: insight on the cell physics, nonlinear approximation
capability, and flexible system identification procedures. Thus, the research
activity has aimed at fulfilling these requirements by developing and inves-
tigating three different modeling approaches, namely black, white, and gray
box techniques. Extreme Learning Machines, Radial Basis Function Neural
Networks, and Wavelet Neural Networks were considered among the black
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box models, but none of them were able to achieve satisfactory SoC estima-
tion performances. The white box Equivalent Circuit Models (ECMs) have
achieved better results, proving the benefit that the insight on the cell physics
provides to the SoC estimation task. Nevertheless, it has appeared clear that
the linearity of ECMs has reduced their effectiveness in the SoC task. Thus,
the gray box Neural Networks Ensemble (NNE) and the white box Equiva-
lent Neural Networks Circuit (ENNC) models have been developed aiming
at exploiting the neural networks theory in order to achieve accurate mod-
els, ensuring at the same time very flexible system identification procedures
together with nonlinear approximation capabilities.

The performances of NNE and ENNC have been compelling. In par-
ticular, the white box ENNC has reached the most effective performances,
achieving accurate SoC estimations, together with a simple architecture and
a flexible system identification procedure.

The outcome of this thesis makes it possible the development of an inter-
esting scenario in which a suitable cloud framework provides remote assis-
tance to several BMSs in order to adapt the managing algorithms to the aging
of BESSs, even considering different and distinct applications.
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Chapter 1

Introduction

1.1 Background

Climate changes and global warming are some of the most relevant issues of
modern era. Indeed, the wide technological evolution that has interested the
nineteenth century has caused a progressive and exponential increase of the
Earth temperature, as shown in Figure 1.1.
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Figure 1.1: Variation of the land-ocean temperature with base period 1951-
1980. Data downloaded from data.giss.nasa.gov/gistemp/graphs.

One of the main reasons of this increasing trend is related to the uncon-
trolled emissions of carbon dioxide (CO2). In general, a suitable concentra-
tion of CO2 and of the other natural gases composing the Earth atmosphere
creates a beneficial greenhouse effect that has allowed and still allows a fa-
vorable environment for living beings. Nevertheless, any alteration on the
concentration of the greenhouse gases results in a significant and long last-
ing variation of the climatic conditions. Unfortunately, since the Industrial
Revolution until now the human activity has caused a progressive and un-
restrained increase of the CO2 concentration. In particular, this phenomenon

data.giss.nasa.gov/gistemp/graphs
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has become progressively more relevant together with the wide industrial-
ization and the very fast technological evolution that have interested the hu-
mankind since the fifties.

Several consequences are related to global warming and to the resulting
climate changes. First of all, variations in the biological environment cause
the extinction of several animal and plant species. Second, melting of ice is
an immediate effect of global warming. Specifically, this results in retreat of
glaciers, decline of Arctic sea ice, and rise of the sea levels. Third, global
warming affects also the seasonal cycles, with consequent changes in several
ecosystems, alterations in the plant and animal life cycles, anomalies in the
rainfall rhythms, and extreme weather conditions. Other consequences are
the acidification of oceans, expansion of deserts, and droughts. Moreover, all
of these phenomena will affect also the human society, with alterations in the
crop production and in general in the public health.

The above discussed negative situation has led both the research com-
munity and the political authorities at focusing on the mitigation of global
warming. Therefore, 195 countries have attended to the United Nation Cli-
mate Change Conference held in Paris on December 2015 aiming at discussing
about how to hinder climate changes. During this conference, it has been ne-
gotiated the Paris Agreement [1] in which the signatory countries has pledged
to adopt solutions aiming at «holding the increase in the global average tem-
perature to well below 2 ◦C above pre-industrial levels and pursuing efforts
to limit the temperature increase to 1.5 ◦C above pre-industrial levels, re-
cognizing that this would significantly reduce the risks and impacts of cli-
mate change»1. The agreement states that each country shall determine au-
tonomously the best contribution for achieving the expected goals. More-
over, each of them has to make its economical system consistent with a low
greenhouse gas emissions and climate-resilient environment. Indeed, each
country shall make efforts «to reach global peaking of greenhouse gas emis-
sions as soon as possible, [...] and to undertake rapid reductions thereafter
in accordance with best available science, so as to achieve a balance between
anthropogenic emissions by sources and removals by sinks of greenhouse
gases in the second half of this century [...] »2.

A graphical analysis of the expected goals and a forecast of the green-
house gas emissions trend by 2030 is shown in Figure 1.2. The negative ef-
fect of the human activity held until now is evident. Indeed, from one side

1Article 2.1.a from the Paris Agreement.
2Article 4.1 from the Paris Agreement.
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the historical data shows a constant increasing trend in the greenhouse gas
emissions. On the other hand, the figure highlights that the policies and the
pledges adopted so far are not satisfactory for fulfilling the expected goals.

Figure 1.2: Analysis of the CO2 emissions and comparison with the
Paris Agreement’s goals by December, 2018. Figure downloaded at www.

climateactiontracker.org.

The main reason of the inadequacy of the adopted solutions is attributable
to the ambitious and challenging technological revolution that is necessary
for matching the goals of the Paris Agreement. From the industrial point of
view, radical changes in the manufacturing process must be introduced in
order to limit the emissions of the industrial plants. Consequently, many
companies must provide huge investments for pursuing the aim of the agree-
ment. The most immediate solution consists in the renovation of the indus-
trial equipment. Nevertheless, often the simple modernization of the plants
could not be sufficient for matching the very demanding requirements con-
cerning the greenhouse gas emissions. Therefore, the most compelling so-
lution consists in a deep redesign of the entire manufacturing processes in
order to develop plants natively green. It is clear that this process is very de-
manding for many companies, and it requires structural changes and suitable
settling times.

Besides the industrial area, the transportation and the Energy Distribu-
tion System (EDS) are widely recognized as the two main fields where to act
for hindering global warming.

www.climateactiontracker.org
www.climateactiontracker.org
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The transportation system has been historically based on fossil fuel
propulsion. The main advantage of this solution has been always recognized
in the very high energy density of fuel that ensures very fast refills and long
distance ranges. Thus, gasoline-powered vehicles have dominated the trans-
portation technology so far even if electric cars have got a reliable produc-
tion with Thomas Parker in 1884 [2] about 20 years before of the Ford Model
T. Nevertheless, traditional Internal Combustion Engines (ICEs) are effective
but inefficient machines [3]. Indeed, the average efficiency is around 20 %,
meaning that most of the fuel energy is dissipated in heat and in the produc-
tion of waste gases, in particular CO2. Therefore, considering also that the
total number of vehicles in use worldwide has increased from 126 millions of
the sixties to 1.3 billions in 2014, it is straightforward to think about conven-
tional cars as one of the most relevant causes of the increasing trend in the
CO2 concentration.

Several actions have been done aiming at reducing the greenhouse gas
emissions of conventional vehicles, such as the introduction of international
rules like the European Emission Standards. The adoption of these rules have
forced car makers at finding solutions for developing more efficient ICEs and
for introducing novel strategies to limit the related emissions. Nevertheless,
these solutions alone are far to be sufficient for achieving the goals of the Paris
Agreement. Moreover, the conventional transportation technology is going to
be completely unsustainable considering that the number of cars is going to
further increase in the next future. Therefore, many countries and car makers
have recognized the need of coming back to the electric propulsion, and to
convert the transportation technology to Electric Vehicles (EVs) and Hybrid
Electric Vehicles (HEVs) [4], [5].

A simplified block diagram of the EV and HEV architectures is shown in
Figure 1.3. The powertrain of an EV is in general very simple. It consists of a
battery pack, a power converter, and an electric motor. The power converter
is in charge of performing two tasks. The first one consists in converting
the DC voltage of the battery pack to the suitable voltage specifications of
the electric motor. Very often, the power converter is actually an inverter
performing a DC-AC conversion because of the common use of AC induction
motors for the wheels traction. The second task is to control the amount
of power to be provided to the electric motor accordingly with the power
required from the driver.

HEVs have a more complicated architecture because electric and conven-
tional propulsion coexist in the same powertrain. HEVs can be split in two
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Figure 1.3: Powertrain architecture of electrified vehicles. (a) EVs. (b) Series-
HEVs. (c) Parallel-HEVs.

main categories: series-hybrid and parallel-hybrid. In the series architecture
only the electric motor provides traction to the driving wheels, whereas the
ICE works as a range extender being connected to a generator in order to
recharge the battery pack. Two power converters are required: the first one
is connected between the battery pack and the electric motor having the same
role seen for EVs. The second power converter is connected between the gen-
erator and the battery pack in order to allow the recharging process. Likewise
EVs, the required power must be satisfied only by the electric propulsion. In
the parallel-hybrid architecture both the ICE and the electric motor can drive
the wheels. Therefore, the power required by the user must be satisfied by
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means of an intelligent control of the powertrain. Indeed, it is possible to rec-
ognize at least four different operating modes. The first one is the full electric
propulsion, in which only the electric motor is used for driving the wheels.
Similarly, only the conventional propulsion is used in the ICE mode. The
third is the hybrid mode, in which the required power is satisfied by using
the ICE and the electric motor together. Finally, in the regenerative break-
ing mode the inertia of the car is used to recover energy for recharging the
batteries. Moreover, in some architecture it is possible to introduce a further
generator that is connected to the ICE in order to create a more complicated
series-parallel architecture. In this case, it is possible to have a further mode
in which the wheels are driven only by the electric motor, while the ICE is
used for recharging the batteries through the related generator.

Besides the zero and the low emissions properties, respectively, EVs and
HEVs have the further advantage of a more efficient powertrain with respect
to the conventional ones. Indeed, electric motors can achieve efficiency up to
more than 90 % on the whole rotational speed range. Moreover, very often
electric motors do not need a multi-gear transmission system because they
can handle higher rotational speeds with respect to ICEs. Consequently, it
is possible to avoid complex transmission gearboxes, further improving the
efficiency of the powertrain. Nevertheless, the main drawback of EVs is their
limited autonomy and limited flexibility of the refill process resulting in the
range anxiety commonly perceived by the drivers. HEVs provide a suitable
palliative to these drawbacks thanks to the installation of the ICE in their
powertrain, and for this reason their commercialization is being more promi-
nent with respect to EVs. Nevertheless, the actual reduction of CO2 emissions
lays widely in a consistent diffusion of EVs, and therefore it is necessary to
furtherly improve their performances, as well as to create the most suitable
environment for their diffusion, starting from a wide revolution of the EDS.

EDS has been based so far on the concept of centralized power genera-
tion and decentralized loads. In this context, the most diffused power plants
have relied on fossil fuels, where electric energy is harvested by burning
coal, natural gas, or petroleum [6], [7]. It is straightforward that also the
above described EDS has contributed in the increasing trend of CO2 emis-
sions and global warming. Moreover, the traditional grid is also character-
ized by a very rigid and inefficient operating condition. First, its stability
is deeply dependent on the synchronous AC electric machines of the cen-
tralized power plants. As a direct consequence, the traditional grid tech-
nology itself makes harder the transition to alternative and greener power
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sources [8]. Second, the centralized architecture implies that the distribution
must be organized and operated following a tree architecture in which of-
ten the plants are far away from the actual loads. Thus, the energy has to
flow among very long power lines, power transformers, transmission lines,
transmission substations, distribution lines, distribution substations, and fi-
nally to the loads. This means that the entire architecture has an intrinsic
lack of efficiency because of the losses unavoidably present in each node of
the tree. Moreover, this strict operating architecture has two further implicit
drawbacks. First, customers do not have any consciousness of the grid, of
the generation processes, of the energy prices, and consequently they have
a very limited opportunity of participating to the energy market. Second, it
is very hard to control the grid, and it is almost impossible to think about
a dynamic reconfiguration of the distribution architecture. This results in a
further lack of efficiency and in an implicit weakness of the grid, because pos-
sible failures can easily lead to blackouts [9], [10]. For the above discussed
reasons the traditional EDS looks widely inadequate for facing the more and
more increasing energy demand due to the deep pervasiveness of technology
and the incoming diffusion of EVs that will characterize the modern society.
Moreover, it is likewise inadequate for reducing CO2 emissions. Therefore, a
deep re-design of the entire EDS is necessary. In particular, the smart grid [7],
[11]–[14] and the microgrid [8], [15], [16] concepts have been recognized as
the most promising technologies for implementing the next generation EDS.

Smart grid and microgrid aim at creating a suitable environment for con-
verting the rigid, weak and inefficient distribution system based on central-
ized fossil fuel power plants to a flexible and reliable grid based on decen-
tralized Renewable Energy Sources (RESs) [17]–[19]. From the smart grid
perspective, the distribution system must be revolutionized through a deep
introduction of Information Technology (IT) tools [7]. The aim is to create a
constant two-way communication between suppliers and customers, as well
as to equip each node with suitable smart meters aiming at monitoring in real-
time the operative condition of the grid. The introduction of IT tools allows to
increase the flexibility of the distribution system, and to prepare the grid for
an effective use of RESs. Indeed, the constant monitoring of the system pro-
vides a real-time full knowledge of both the generation and the load status. If
this information were unnecessary for the traditional grid since both genera-
tion and loads were considered substantially constant along the network, the
installation of RESs, Energy Storage Systems (ESSs), DC fast charge station
for EVs, as well as the changed habits of customers make generation and load
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profiles very variable both temporally and spatially. Therefore, a constant
monitoring of the entire grid is mandatory for achieving a more effective
operation of the system. Moreover, a deep use of sensors makes EDS more
reliable and efficient. Indeed, it permits a prediction and a prompt detec-
tion of incoming failures, as well as the actuation of remote fixing, whenever
applicable. Furthermore, the decentralized architecture allows an adaptive
reconfiguration of the grid on the basis of the actual generation-load status,
aiming at increasing the efficiency of the entire system.

The constant communication between suppliers and customers is the
other foundation concept of smart grid. This communication aims at mak-
ing customers more active and more conscious of the energy market, being
informed in real-time about the energy prices and the grid status. Thus,
customers can have an active participation in the distribution system, also
because they are encouraged at being local suppliers by means of personal
RESs, as well as personal ESSs, Plug-in EVs (PEVs), or Plug-in HEVs (PHEVs)
[20]–[22].

The above described foundation concepts imply that next generation
smart grids shall be composed of Zero-net Energy Nodes (ZENs) [8], namely
part of the grid able to reach a self-sufficient energy balance by taking advan-
tage of local RESs and local ESSs. Microgrids are the most feasible candidates
for implementing a ZEN node. A microgrid is an atomic EDS that behaves
like a single entity with respect to the main grid [23]. It is composed of in-
terconnected loads, local generation plants, mainly RESs, and ESSs. Thanks
to the local generation and the presence of ESSs, a microgrid can be com-
pletely self-sufficient with respect to the grid, and therefore it can work in
an islanded mode. Nevertheless, the most challenging scenario sees the mi-
crogrid still connected to the main grid, such that the customer can acts as
a “prosumer”, i.e. both an energy producer and consumer at the same time.
Therefore, microgrids play a key role in the implementation of the smart grid
concept, involving each customer at having an active role in the energy mar-
ket. Indeed, each microgrid must be equipped with effective Energy Manage-
ment Systems (EMSs) for achieving a more efficient, more effective, smarter,
and more remunerative use of the available energy [24], [25].

It is clear from the above discussion the importance that EVs, HEVs, smart
grids, and microgrids have for leading the radical technological and social
revolution required by the Paris Agreement. Although these technologies be-
long to different application fields, all of them share ESSs as an invariant de-
vice for achieving significant improvements with respect to the conventional
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technologies.
Concerning EVs and HEVs, the importance of ESSs is straightforward.

The availability of effective and reliable battery packs is the first step for im-
proving the vehicle performances, as well as for ensuring the actual commer-
cialization of HEVs and especially EVs. Indeed, most of the restraints on the
diffusion of electrified cars comes from ESS related issues, such as range anx-
iety and high prices. Therefore, it is mandatory to focus on the development
of effective and reliable ESSs both for lowering the prices and for improving
the vehicle performances in terms of speed and distance range.

From the EDS perspective, the installation of ESSs is mandatory for facing
the stochastic nature of RESs and the variable operating condition character-
izing the incoming smart grid and microgrid environment [26]. The first im-
portant application of ESSs consists in facing the fluctuation of the generation
profiles characterizing RESs. Indeed, the energy production of photovoltaic
plants and wind turbines is strictly dependent on the actual atmospheric con-
ditions. Therefore, it could happen that RESs have a generation peak when
that energy is not required, or conversely the actual generation is not suffi-
cient for satisfying the loads request. Thus, ESSs are useful for implementing
an energy buffer that stores the overproduced energy for supplying it when
necessary. In addition to this application, ESSs are useful also for facing the
increased aleatory nature of load profiles due to the diffusion of EVs and
of the related charging stations. Indeed, thinking about a larger and larger
fleet of EVs, each car represents an unpredictable load that can be connected
to the grid in any time and in any node. Moreover, this problem is even
worse considering the incoming diffusion of DC fast charge stations, since
each connected EV is a full stochastic and unpredictable load greater than
50 kW [27]–[29]. In this context, ESSs will be key devices for addressing these
load peaks that otherwise the traditional grid would not be able to cope with.
Besides performing peak shaving of both generation and load profiles, the in-
stallation of ESSs allows the implementation of a smarter and more effective
management of the energy flows. Indeed, ESSs introduce a further degree
of freedom that can be exploited for implementing innovative and beneficial
strategies for handling the energy production and loads, especially in the mi-
crogrid environment. In this context, it is possible to think about strategies
in which the prosumer takes advantage of the local RESs and ESSs in order
to make profit. To this aim, it is necessary to decide when it is more advanta-
geous charging or discharging the ESSs, when it is more convenient buying
or selling energy from/to the main grid, as well as to schedule the activity
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of the home appliances. Therefore, it is necessary to implement smart EMSs
whose task is to manage the energy flows for optimizing suitable objectives
[24]. Herein, machine learning techniques play a key role for developing in-
novative EMSs, and to this aim several solutions have been already proposed
in the literature [15], [16], [30], [31].

Several technologies are available for implementing ESSs. The most dif-
fused ones can be classified in four macro-areas depending on the physical
nature of the stored energy, namely mechanical, electrochemical, electrical,
and chemical [26], [32]. A summary of the most important ESSs technologies
divided by the physical nature of stored energy is shown in Table 1.1.

Table 1.1: Most important ESSs technologies

Mechanical Electrochemical Electrical Chemical

Pumped Hydroelectric Lead-acid Capacitor Fuel Cell
Compressed Air Nickel-cadmium Supercapacitor

Flywheel Nichel-metal Hydrid Superconducting Magnetic
Li-ion

Sodium-sulfur
Flow Battery

Pumped Hydroelectric Storage (PHS) [33], Compressed Air Energy Stor-
age (CAES) [34], and Flywheel [35] belong to the mechanical category.

PHSs are the most common and mature energy storage technology for
EDSs. In PHSs energy is stored and dispatched by means of two water reser-
voirs placed at two different altitude levels. Specifically, the water is pumped
from the lower to the upper reservoir for storing energy, whereas it is released
back to the lower reservoir to get the energy back by driving suitable power
turbine units. The effectiveness of PHSs is ensured by their high maturity
level and their wide use worldwide. However, their actual installation is re-
strained by environmental issues, location limitations and high costs, as well
as their application is limited by the small energy and power densities.

In CAES a reversible motor/generator and a corresponding compressor-
turbine unit are used for converting electricity to compressed air and the
other way around. During the energy storing phase, the motor drives the
compressor that forces air into a suitable natural or artificial reservoir. Con-
versely, the stored air drives the turbine for getting back energy through the
generator. CAESs offer flexible sizes and durability. Nevertheless, their limi-
tation consists in low cycle efficiency (40-70 %), difficulties at finding suitable
geographical environments for their installation, high capital costs, and small
energy and power densities.
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Flywheels are very simple and intuitive ESSs converting electrical energy
in the kinetic one. Specifically, they consist of a flywheel and a reversible
motor/generator. The motor drives the flywheel accelerating it for storing
energy, whereas the flywheel decelerates while its inertia drives the gener-
ator for getting the stored energy back. The main advantage of flywheels
is their high cycle efficiency (90-95 %), absence of depth-of-discharge effects,
and easy maintenance. However, their main limitation consists in a very
high self-discharge ratio that implies the impossibility of storing energy for
long-term periods.

The electrochemical category is composed of rechargeable and flow bat-
teries, both of them characterized by storing and delivering energy by means
of redox reactions [26], [36].

Rechargeable batteries consist in several electrochemical cells that are
connected in series and in parallel for achieving the nominal voltage and
nominal energy required by the specific application they are used for. Each
electrochemical cell consists in three main components: two electrodes (cath-
ode and anode) immersed in one electrolyte. During the discharge phase a re-
dox reaction causes electrons flowing from the anode to the cathode through
the external system, and thus providing energy to it. Conversely, during the
charge phase the redox reaction is inverted by applying a suitable voltage to
the cell.

Several electrochemical technologies are available depending on the spe-
cific materials used for the anode, cathode, and electrolyte.

The most mature is the lead-acid technology, in which PbO2, Pb, and sul-
furic acid compose the cathode, the anode, and the electrolyte, respectively
[37]. Lead-acid cells offer a good cycle efficiency (60-90 %), as well as small
self-discharge ratio and low capital costs. However, their main drawback is
the limited life, together with a limited energy density and specific energy,
meaning that lead-acid ESSs are in general voluminous and heavy devices.

Nickel-Cadmium (NiCd) cells have nickel hydroxide as anode and metal-
lic cadmium as cathode, whereas the electrolyte is an alkaline solution. They
have a higher energy and power densities, as well as higher specific energy
with respect to lead-acid cells. Nevertheless, the actual use of NiCd bat-
teries is highly restrained by the presence of toxic metals (nickel and cad-
mium), and because they suffer from a prominent memory effect that can
easily compromise their effectiveness. Therefore, it has been developed the
Nichel metal Hydride (NiMH) technology, in which a hydrogen-absorbing
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alloy is used as cathode in place of cadmium. These cells have similar prop-
erties of the NiCd technology, but with the advantage of a reduced memory
effect, a higher energy density, and the use of environmental friendly mate-
rials. Despite that, NiMH cells suffer from a high self-discharge ratio and a
strong dependence on the depth-of-discharge effect that limit their lifetime.

Li-ion electrochemical cells use a lithium metal oxide for the anode, such
as LiCoO2, LiMO2, or LiFePO2, and graphite or carbon for the cathode [38].
The electrolyte is an organic liquid containing dissolved lithium salts. The
main advantages of this technology are the high cycle efficiency (80-97 %),
the high energy and power densities, and the high specific energy and spe-
cific power. Moreover, lithium cells do not suffer from the memory effect,
and they have a negligible self-discharge ratio. However, the main draw-
back is the prominent sensibility to the depth-of-discharge effect that requires
a very careful management of them for avoiding damages that can compro-
mise their effective use. In addition, lithium cells still have a higher capital
cost with respect to other electrochemical technologies.

Sodium-sulfur cells (NaS) have melted sodium and melted sulfur as cath-
ode and anode electrodes, respectively, whereas beta alumina composes the
electrolyte [39], [40]. These cells have high energy density, higher rated
capacity with respect to other electrochemical technologies, negligible self-
discharge ratio, and high pulse power capabilities. Furthermore, sodium
and sulfur are cheap, non-toxic, and highly available materials. However,
the working temperature must be set between 300 ◦C and 350 ◦C in order to
ensure both the electrodes are melted. This is the main disadvantage of this
technology, implying high operating costs and the presence of a dedicated
equipment for ensuring the working temperature.

Flow batteries are electrochemical ESSs storing energy in two external
tanks where two redox couples are dissolved in liquid electrolytes [36]. Be-
sides the tanks, a flow battery is composed of two electrodes connected to
related compartments separated by a ion selective membrane. When charg-
ing, the two electrolytes are pumped to the respective chambers so that one
electrolyte is oxidized and the other is reduced. The reverse reaction happens
when discharging. Flow batteries are very flexible and scalable ESSs since
the stored energy depends only on the size of the electrolyte tanks, whereas
the dispatchable power depends on the size of the electrodes. Moreover,
they have small self-discharge ratio. Despite that, flow batteries can lose per-
formances depending on non-uniform pressure drops and limitation on the
transfer of the electrolytes. Moreover, they have a high manufacturing cost
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and they make use of toxic materials.
Capacitor, supercapacitor and Superconducting Magnetic Energy Storage

(SMES) belong to the electrical category of ESSs.
Capacitors are a basic electrical device composed of two electrodes sep-

arated by a very thin dielectric layer. Energy is stored in the static electric
field generated by the accumulation of charge in the two electrodes. Super-
capacitors are actually standard capacitors characterized by a very high ca-
pacitance [41]. Capacitors and supercapacitors are power oriented devices
being characterized by a very high power density and specific power. Con-
versely, both of them are not able to store a large amount of energy. Other
advantages are their almost linear behavior, their long life, and the high cycle
efficiency (84-97 %). Nevertheless, besides the very low energy density and
specific energy, capacitors and supercapacitors are affected by a significant
self-discharge phenomenon.

An SMES system stores energy by inducing a DC current in a supercon-
ducting coil [42]. The main components of an SMES device are a refrigerator,
a power converter, and the superconducting coil. In particular, the refrig-
erator is necessary for bringing the environment temperature below of the
superconducting threshold, that is around 9 ◦K. The power converter is used
for inducing the current to the coil when charging, and to get the energy back
when discharging. SMESs have long lifetime, high cycle efficiency (95-98 %),
and an almost absent degradation from the depth-of-discharge. However,
SMES is a young technology, and therefore it is characterized by a high cap-
ital and maintenance cost, as well as a prominent self-discharge ratio and a
high sensibility to the temperature divergence.

Fuel cells are chemical ESSs in which energy is stored in high pressure
tanks of hydrogen [43]. The storing and the dispatching of energy is per-
formed by two separate and independent processes. For storing energy it is
necessary to produce hydrogen, and an example is water electrolysis. On the
other hand, the fuel cell device performs the conversion from the stored hy-
drogen to the electric energy. The advantage of the separate processes make
fuel cells very flexible and scalable ESSs, achieving a wide range of power
and energy densities. However, their actual use is limited by a very limited
efficiency (20-60 %), and by the hazard related to the high pressure tanks used
for storing hydrogen.

A graphical comparison of the above described ESS technologies in terms
of energy and power densities, specific energy and specific power is shown
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Figure 1.4: Comparison among different ESS technologies [26], [32]. (a) En-
ergy density vs power density. (b) Specific energy vs specific power.

in Figure 1.4, whereas Table 1.2 shows a comparison in terms of cycle ef-
ficiency, self discharge rate, lifetime, number of cycles, power capital cost,
energy capital cost.

Each ESS technology has different and specific beneficial properties, as
well as corresponding drawbacks. Therefore, it is impossible to determine
a dominant technology that suits successfully any kind of application. Nev-
ertheless, the brief overview discussed in the above and the comparisons
shown in Figure 1.4 and Table 1.2 highlight as Li-ion ESSs offer compelling
performances in a greater number of technical properties with respect to the
other ESS technologies. First, lithium cells show the overall best trade-off
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Table 1.2: Comparison among different ESSs technologies [26], [32]

Technology
Cycle

Efficiency
[%]

Daily Self
Discharge

[%]

Lifetime
[years]

Number of
Cycles

Power
Capital Cost

[$/kW]

Energy
Capital Cost

[$/kWh]

PHS 70-85 ∼0 40-60 10000-30000 2500-4300 5-100
CAES 40-70 ∼0 20-40 8000-12000 400-1550 2-250
Flywheel 90-95 100 15-20 >20000 250-350 1000-14000
Lead-acid 60-90 0.1-0.3 5-15 200-1800 200-600 50-400
Ni-Ca 60-83 0.2-0.6 3-20 2000-4500 500-1500 400-2400
Ni-MH 60-83 5-20 3-20 2000-4500 500-1500 400-2400
Li-ion 80-97 0.1-0.3 5-15 1000-20000 900-4000 600-3800
NaS 75-90 ∼0 10-20 2500-4500 350-3000 300-500
Flow
Battery 65-85 ∼0 5-20 2000-12000 200-2500 150-1000

Capacitor 60-70 40-100 1-10 >50000 200-400 500-1000
Supercapacitor 84-97 10-40 10-30 >50000 100-450 300-2000
SMES 95-98 10-15 20-30 >20000 200-489 500-72000
Fuel Cell 20-60 ∼0 5-20 1000-20000 500-3000 2-15

among energy density, power density, specific energy, and specific power.
Therefore, it is possible to develop very compact and light ESSs without los-
ing performances both in terms of stored energy and deliverable power. Sec-
ond, the negligible self-discharge ratio and the absence of the memory effect
allow long periods of inactivity, as well as a frequent charge of the battery
pack without jeopardizing the effectiveness of the cells. In addition, Li-ion
cells have one of the most high cycle efficiency with respect to all the other
technologies [26], [36], they offer a lifetime comparable to the other electro-
chemical ESSs, and they do not require specific environment conditions for
their effective use.

All the previous mentioned advantages make lithium cells the most
promising ESS technology in the field of portable electronics, automotive
industry, and EDS. Indeed, Li-ion ESSs have become the dominant storing
technology so far for notebooks, smartphones, cameras, and so on, as well as
it is becoming the main technology also for EVs, HEVs, and microgrid. The
main reason of that is because all the above mentioned applications are char-
acterized by very rigid requirements concerning the packaging of the battery
pack both in terms of weight and volume. Moreover, they can involve fre-
quent long lasting idle periods, frequent transitions between charging and
discharging phases, as well as partial charge/discharge cycles. It is evident
that lithium cells are the ESS technology that mostly cover the requirements
of these applications, especially the electrified transportation and the micro-
grid environment. Nevertheless, Li-ion ESSs are very fragile, and they need
to be carefully managed for achieving an effective and safe use of them. This
is because they are strongly affected by the depth-of-discharge effect, as well
as lithium is a very reactive and flammable element. Indeed, the chemical
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processes being at the basis of the cell functionality can be irreversibly com-
promised in case of a severe over-discharge condition. Therefore, lithium
cells must not be deep discharged in order to prevent any early aging and
loss of capacity. Similarly, a severe over-charge can easily result in damages,
loss of performances, as well as fire or even explosions. Moreover, although
lithium cells can work in a wide temperature range from -20 ◦C to 60 ◦C, a
high operating temperature can result in an early aging of the cells [44], and it
can contribute at making lithium even more prone to fire. Therefore, an accu-
rate management of lithium cells is mandatory and any Li-ion ESSs must be
equipped with a dedicated device called Battery Management System (BMS).

Any BMS is an ensemble of hardware and software components aiming at
monitoring, managing, and protecting Battery ESSs (BESSs). The main task
of any BMS is to safeguard the safety and the health of every cell by ensur-
ing that each of them works in a Safe Operating Area (SOA) concerning the
terminal voltage, the flowing current, and the operating temperature. This
task is typically performed by limiting the charging/discharging current or
at least by disconnecting the entire battery pack in case of severe violations
of the SOA boundaries. The second task of BMS is to evaluate the State of
Charge (SoC) of each cell, providing information about the residual energy
stored in them. Third, it has to perform State of Health (SoH) estimation in
order to retrieve information about the residual ability of each cell at storing
energy. Finally, the last task is cells balancing, aiming at ensuring that each
cell of the BESS works in an operating point as much as possible similar to
that of the others. Indeed, even if the battery pack is built by selecting and
balancing the cells, the randomness of the manufacturing process and of the
aging effect cause a progressive divergence of their operating points.

Besides the fundamental task of ensuring safety and health, BMSs are key
devices for significantly improving the performances of BESSs, in particular
the lithium ones.

The first benefit comes from an effective balancing of the battery pack.
Indeed, the undesired divergence of the cells operating points is one of the
main reasons of the gradual loss of performances characterizing BESSs. This
is because an unbalanced battery pack has a reduced operating range since
the most charged cell can easily violate the upper boundaries of the SOA, as
well as the most discharged one can violate the lower boundaries simultane-
ously. Therefore, a balanced BESS is able to better exploit the stored energy,
allowing to span a wider range of SoC, resulting in an increased cycle dura-
tion. Moreover, since all the cells work in similar operating points, also their
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aging will be similar.
Concerning SoH, an accurate determination of this quantity is critical for

tracking the aging of the BESS, and specifically that of each cell. Accurate
SoH estimations are beneficial for two reasons. First, considering that BESSs
are considered to become unfeasible when they lose more than 20 % of the
original capacity, any error in the SoH estimation can result in a early dis-
posal of healthy battery packs. Second, just because of the above mentioned
rigid health requirements, it is possible to think about second life applica-
tions of dismissed BESSs in order to amortize the capital cost of the first in-
stallation. Therefore, it will be very beneficial an accurate SoH estimation in
order to get an exact knowledge of the residual capacity of second life battery
packs.

Among the tasks belonging to BMS, SoC estimation is surely the most
critical one. Indeed, an accurate knowledge of the SoC value is of crucial
importance for maximizing the effectiveness not only of the BESS, but also of
the whole energy system. This is because the energy management algorithms
running on any EMS deeply involve the accurate knowledge of the current
SoC in order to improve the overall efficiency of the energy flows [31], [45].
It is clear that any estimation error can result in a loss of effectiveness of the
entire energy system. Moreover, a reliable and accurate SoC estimation is
helpful for performing all the other tasks of BMS, allowing to monitoring
in real-time the actual working point of the cells, the over-charge and over-
discharge conditions, to provide useful information for cells balancing, as
well as to track the loss of capacity.

1.2 Objective of the Research

Considering the strategic role that BMSs have in the incoming technologi-
cal revolution concerning both the automotive and the energetic distribution
areas, this Ph.D. thesis has focused on the development of an innovative, re-
liable, and advanced BMS that largely involves the use of machine learning
techniques for improving the BESS effectiveness and efficiency.

The research activity has focused mainly on the software part of BMSs,
being most of the improvements concerning this device depending on the
introduction of innovative and more effective algorithms. In particular, be-
cause of its critical importance, great attention has been paid to the SoC es-
timation task, aiming at investigating solutions for achieving more accurate,
robust, and reliable estimations. To this aim, the most promising methods
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proposed in the literature have been considered and analyzed. Herein, the
BMS performances at estimating SoC are strictly dependent on the availabil-
ity of accurate models of electrochemical cells. Therefore, the main objective
of this thesis has been the study and the design of accurate and flexible mod-
els of electrochemical cells to be used for improving the BMS performances
at estimating SoC, as well as at performing the other tasks.

The research activity on electrochemical cell models has been conducted
aiming at fulfilling three main requirements considered mandatory for en-
suring accurate and reliable SoC estimations. First, the model shall provide
useful insights on the physics of the cell for exposing information about SoC.
Second, it shall track and approximate in the most accurate way all the non-
linearities characterizing electrochemical cells. Third, system identification
shall be as flexible as possible. In particular, the first and the second require-
ments have been considered necessary for improving the performances of
the SoC estimator at providing accurate and reliable SoC estimations. On the
other hand, the third property has aimed at allowing a frequent update of
the model parameters in order to track the aging of the cells. More precisely,
a flexible system identification procedure allows the task to be performed on
generic data, avoiding then to disassemble the BESS for performing specific,
long lasting and expensive offline tests.

Several modeling techniques have been analyzed looking for the solu-
tion that best fulfills all the above described requirements. To this aim, ma-
chine learning algorithms have been deeply investigated because it has been
a firm conviction that their data-driven approach and their capability of deal-
ing with nonlinearities and uncertainties would be very helpful for develop-
ing electrochemical cell models being simultaneously effective at performing
SoC estimation and characterized by a flexible system identification proce-
dure. Thus, three different approaches have been investigated: black box,
gray box, and white box techniques. In particular, black box models offer the
most flexible system identification and an easy nonlinear modeling as well,
but they provide a limited insight on the cell physics. White box models of-
fer a complete insight on the physics, but they do not allow a flexible system
identification procedure, as well as they could have a limited nonlinear ap-
proximation capability. Therefore, part of the research activity has focused
on the development of suitable methods for making system identification
more flexible for white box models. Finally, a promising research field has
been investigated by developing customized gray box and white box neural
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networks models. Indeed, the use of customized neural networks architec-
tures have appeared particularly suitable for modeling electrochemical cells,
allowing to keep satisfying insight on the cell physics, together with a flexible
system identification and a nonlinear approximation capability.

1.3 Overview on the Research Topic

1.3.1 Battery Management System

Monitoring

The basic task of any BMS is monitoring the status of each cell composing the
BESS. This task is straightforward and it is performed by the real-time mea-
surement of the main physical quantities related to the cell activity. Specif-
ically, these quantities are voltage, current, and temperature. To this aim,
BMSs are typically organized in a master-slave architecture. The master unit
is devolved to the computational tasks and to the consequent analysis of the
measured quantities. On the other hand, the slave device is equipped with
sensors and actuators. In particular, the sensors perform the required mea-
surements of voltage, current, and temperature, whereas the actuators are
the electronic hardware needed for performing cells balancing, as well as for
opening the main switch of the battery pack in case of severe hazards. More-
over, often the slave device is also equipped with a very simple monitoring
interface. This is implemented with a microcontroller that allows to set the
lower and upper SOA boundaries related to voltage and temperature, and to
throw a warning flag in case some of the cells violate these limits.

Several commercial slave devices are available in the market perform-
ing both the required measurements and cells balancing. Moreover, most of
them are equipped with several General Purpose Input Output (GPIO) pins
for controlling different actuators, mainly electronic switches. Examples are
the products from Linear Technology such as LTC 68043 or LTC 68134, and the
devices from Texas Instruments such as TIDA-005535 or bq76PL455A-Q16.

All the above mentioned devices are equipped with a suitable communi-
cation interface for transmitting the measurements and the warning flags to
the master. In particular, besides the other computational tasks, the master

3www.analog.com/en/products/ltc6804-1.html
4www.analog.com/en/products/ltc6813-1.html
5www.ti.com/tool/TIDA-00553
6www.ti.com/tool/BQ76PL455EVM

www.analog.com/en/products/ltc6804-1.html
www.analog.com/en/products/ltc6813-1.html
www.ti.com/tool/TIDA-00553
www.ti.com/tool/BQ76PL455EVM
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collects these information and performs a second and more accurate moni-
toring of the working condition of the cells, as well as it processes this data
for a more suitable visualization and analysis.

State of Charge

SoC estimation is the most critical task of BMSs. Indeed, besides providing
information about the residual stored energy, an accurate and robust deter-
mination of SoC helps at maximizing life, efficiency, and effectiveness of each
cell and of the whole BESS. Moreover, it makes easier performing the other
tasks, such as cells balancing and SoH estimation.

SoC is defined as the ratio between the actual stored charge and the capac-
ity Cn. More precisely, Cn is the total amount of charge that the cell can store
between the minimum and the maximum allowed voltage. Consequently,
SoC is a number belonging to the range [0, 1], with 0 and 1 meaning that the
cell is full discharged and full charged, respectively. Very often, SoC is ex-
pressed in a percentage unit by multiplying the ratio by 100. Thus, let Q(t)
be the actual stored charge at time t, SoC is defined as follows:

SoC(t) =
Q(t)
Cn

. (1.1)

Although the definition is very simple, SoC estimation is still considered
an open problem both from the research community and the industrial field.
Indeed, being SoC related to an internal state of the cell, it cannot be directly
measured and it has to be inferred from indirect information, specifically the
measurements of current, voltage, and temperature [46], [47].

Several methods have been proposed in the literature, and they can be
divided in four main categories: coloumb counting, open circuit voltage, ma-
chine learning, and state observers [48].

The coloumb counting approach estimates SoC by evaluating the stored
charge Q(t) through the integral of the charging/discharging current [49],
[50]. Therefore, SoC is evaluated as follows:

SoC(t) = SoC(t0) +
1

Cn

∫ t

t0

Iin(t)dt (1.2)

where Iin is the input current of the cell and it is considered positive during
charging, t0 is the initial instant, SoC(t0) is the initial value of SoC, and Cn

is the cell capacity expressed in Ah. Nevertheless, both the measurements
and the data elaboration are performed in discrete time. Therefore, coloumb
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counting is typically performed with the following discrete expression:

SoC[k + 1] = SoC[k] +
Ts

Cn
Iin[k] (1.3)

where k is the temporal index, and Ts is the sampling time.
Despite the very simple and intuitive approach, coloumb counting is not

a suitable method for several reasons. First, being based on the discrete
approximation of an integral, it is affected by error accumulation that pro-
gressively compromises the estimation accuracy. Second, coloumb count-
ing requires very accurate measurements of the input current Iin. Neverthe-
less, current sensing is not as straightforward as measuring voltage. Conse-
quently, the accuracy of the current measurements is often limited, making
even worse the error accumulation problem. Third, it is necessary to know
exactly the initial value of SoC. This is because expression (1.1) does not take
into account any physical properties of electrochemical cells, that indeed are
collapsed into the value SoC[0] [51]. The problem is that the initial SoC can
be retrieved only at the end of a full charging procedure. Therefore, coloumb
counting is not able to cope with partial charge/discharge cycles. Finally, it
is necessary to know the value of the capacity Cn, but this quantity changes
with the aging of the cell, and its value is significantly dependent on the pro-
cedure used for evaluating it.

The second approach is more consistent, and it estimates SoC by means of
the measured voltage. Indeed, it has been observed a unique correspondence
between the amount of stored charge and the Open Circuit Voltage (OCV),
with OCV being the steady-state terminal voltage of the cell. In particular,
these methods are based on the definition of a lookup-table upon the OCV-
SoC curve that determines the correspondence between each SoC value and
the related steady state voltage. Thus, SoC is estimated by comparing the
terminal voltage Vout with this lookup-table [47], [52]. The OCV-SoC curve
can be retrieved by applying a sequence of pulse loads to the cell and waiting
for equilibrium [53], or through machine learning methods such as genetic
algorithms [54]. An example of OCV-SoC curve of a lithium electrochemical
cell is shown in Figure 1.5.

The OCV method is easier and more effective than coloumb counting, but
it is has several drawbacks as well. First, the voltage response of any electro-
chemical cell to its input current is affected by parasitic effects. Specifically,
the internal resistance and charge redistribution phenomena cause instan-
taneous voltage drops and transient responses, respectively, that make the
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Figure 1.5: OCV-SoC curve of a lithium iron-phosphate cell.

measured voltage not anymore coincident with OCV. Consequently, there is
a weak correlation between SoC and the terminal voltage, causing errors in
the SoC estimation. Second, as shown in Figure 1.5, the OCV-SoC curve can
have a very flat shape for a wide range of SoC values, resulting in a variation
of few millivolts in front of high variations of SoC. Consequently, any small
measurement error or measurement noise cause a significant erroneous SoC
estimation. This phenomenon affects particularly the lithium technology, es-
pecially the iron-phosphate one.

Machine learning techniques are data-driven methods aiming at finding
suitable correlations between the measured physical quantities and SoC. In
particular, SoC estimation is formulated as a black-box function approxima-
tion problem, where voltage, current, and temperature are the inputs of the
system, and SoC the output. Examples are neural networks [55], [56], Sup-
port Vector Machines (SVM) [57], or neuro-fuzzy systems [58]. The main
drawback is that these approaches require a huge amount of historical data
related to the cell usage in order to train the machine learning tools. Nev-
ertheless, collect this amount of data is not a straightforward task, since it
involves expensive testing equipment, such as accurate battery cyclers and
climatic chambers, as well as long-term tests that can last tens of days [51]
Moreover, these techniques may require further data processing and filtering
for avoiding noisy estimations.

In accordance with the latest research results, the most promising SoC es-
timators are those based on state observer techniques such as Kalman Filters
(KFs) [59]. The foundation of these methods is that SoC is a state variable
of electrochemical cells, with expression (1.1) being the related state update
equation. Therefore, provided there is a suitable model in which expression
(1.1) appears in the state form equations, then any state observer is able to
estimate SoC together with all the other state variables of the model [59].

Since electrochemical cells are nonlinear devices, the nonlinear versions
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of KFs need to be considered. Thus, Extended Kalman Filter (EKF) [60]–[62]
and Unscented Kalman Filter (UKF) [63]–[65] have been widely used in the
literature for performing SoC estimation. EKF copes with the nonlineari-
ties through a piecewise linearization of the nonlinear system equations. Al-
though it provides good estimation performances, the effectiveness of EKF
decreases with deep nonlinear systems. Thus, UKF has been proposed in
1997 by Julier et.al [66] as a more suitable technique for dealing with nonlin-
ear systems. To this aim, UKF uses a deterministic sampling, called unscented
transformation, in order to obtain information about the current state variables
and the related state-covariance matrices. This procedure avoids the evalua-
tion of Jabobians, and it allows to obtain an accuracy up to the third order of
the Taylor approximation, in front of the first order accuracy of EKF.

The main advantage of state observers is that they are real-time and self-
correcting algorithms able to progressively correct a wrong estimation, con-
verging to the actual SoC value. Nevertheless, they are model-based tech-
niques requiring the availability of an accurate and effective model of the
system under analysis for a likewise effective estimation of the system state
vector. Therefore, the modeling and the related system identification of elec-
trochemical cells is of utmost importance for performing accurate SoC esti-
mations by means of Kalman filters.

In conclusion, a brief overview about the different SoC estimation meth-
ods is shown in Table 1.3.

State of Health

Likewise SoC, also SoH is not a directly measurable quantity, and therefore
its estimation is based again on the indirect information of voltage, current,
and temperature. Moreover, its real-time estimation is still considered an
open question from the research community.

One of the first problems concerning SoH estimation is that there is not
a unique and standardized definition. From a general point of view, SoH
should be an index in the range [0, 1] indicating with 1 a brand new cell, and
with 0 the End Of Life (EOL) status. Thus, SoH can be defined in many differ-
ent ways: some definitions are based on explicit expressions, whereas others
provide an SoH index by analyzing the trend that suitable parameters show
with respect to cell aging [67], [68]. In the latter case, the definition of SoH
is dependent on the specific parameters taken into account, and therefore it
cannot be generalized.
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Table 1.3: Overview on the SoC estimation methods

Method Description Advantages Drawbacks

Coloumb
Counting

Discrete integral of the
input current.

Simple and intuitive
approach. Computa-
tionally efficient.

It requires to know the initial SoC value. It
is affected by error accumulation. It does
not consider any physical property of the
cell. It requires accurate current measure-
ments. It is not able to cope with partial
charge/discharge cycles. It requires to know
the actual capacity Cn.

OCV

Matching of the ter-
minal voltage with
the OCV-SoC lookup-
table.

It takes into account
physical properties of
the cell. Computation-
ally efficient.

Internal resistance and charge redistribution
phenomena weak the correlation between
voltage and SoC. Flat SoC-OCV curves make
the SoC prediction more sensible to measure-
ment noises and errors.

Machine
Learning

SoC estimated with a
black-box function ap-
proximation tool.

Computationally effi-
cient.

It requires a huge amount of historical data
for training the tool. Collect the training data
involves expensive testing equipment and
long-lasting tests. The relationship between
voltage, temperature, current, and SoC is
hidden. It may require further data process-
ing and filtering.

State Ob-
server

Use of nonlinear KFs
for estimating SoC as
a state variable of the
system.

Real-time and self-
correcting method.
It can provide in-
formation about the
estimation accuracy.

Can be computationally demanding. It re-
quires an accurate model of electrochemical
cells.

Two explicit expressions of SoH can be found in the literature. The first
one is based on the evaluation of the actual cell capacity Cn and it is the
most used and the most recognized from the research community. Indeed,
even if the manufacturer declares a nominal capacity for a specific cell, Cn

progressively fades with aging. Therefore, SoH is defined as follows:

SoH(t) =
Cn(t)
CnSOL

(1.4)

where Cn(t) is the actual capacity at time t, and CnSOL is the capacity at the
manufacturing moment, or Start of Life (SOL).

The second definition is based on the observation that the internal resis-
tance of electrochemical cells shows an increasing trend with the number of
cycles. However, there is not an officially recognized expression, and differ-
ent authors have proposed their own:

SoH(t) =
REOL − R(t)
REOL − RSOL

[69]

SoH(t) = 1− R(t)− RSOL

RSOL
[70]

SoH(t) =
R(t)
RSOL

[71]

(1.5)
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where R(t), RSOL, and REOL are the internal resistance at time t, SOL, and
EOL, respectively. It can be noticed that the third definition is not actually
a number in the range [0, 1], as well as the expression proposed in reference
[69] requires to perform specific tests over aged cells in order to retrieve the
REOL value.

Several methods have been proposed for performing SoH estimation. The
most important ones are those based on capacity measurement [50], on in-
ternal resistance measurement [72], on Incremental Capacity Analysis (ICA)
[73], [74], on Electrochemical Impedance Spectroscopy (EIS) [75], [76], on
Kalman filters [70], and on machine learning techniques [77].

Both the capacity and the resistance measurement methods are based on
offline tests aiming at estimating the value of Cn(t) and R(t) to be applied
in expressions (1.4) and (1.5), respectively. In particular, the capacity test
consists in performing a discharge cycle until voltage reaches the minimum
allowed value, followed by a charge cycle run until voltage reaches the max-
imum allowed value. During this test, Cn(t) is evaluated by applying the
coloumb counting technique. The resistance test consists in applying a fast
current pulse to the cell and in measuring the resulting voltage drop. Thus,
let ∆I and ∆V be the current pulse and the related voltage drop, respectively,
the estimation of the internal resistance is evaluated as follows:

R =
∆V
∆I

. (1.6)

The main drawback of both the previous approaches is that they allow
only an offline SoH estimation. Moreover, it must be noticed that it is nec-
essary to disassemble the entire BESS and to perform specific tests over the
single cells in order to get the SoH of each of them.

ICA methods are based on the estimation of the OCV-SoC curve that im-
plicitly encloses information about SoH. In particular, these methods consist
in determining the Incremental Capacity (IC) curve from the OCV-SoC one
by evaluating the derivative of SoC with respect to OCV. The ICA method
is based on the observation that the peaks appearing in the IC curve become
smoother and progressively move towards higher value of OCV with the
aging of the cell [73]. Therefore, it is possible to define an SoH index by
matching the shape of the IC peaks with the health of the cell.

Similarly to the capacity and the internal resistance approaches, also ICA
can be performed only offline, it needs to disassemble the battery pack, as
well as it requires to perform specific tests in order to retrieve the OCV-SoC
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curve of the cells. Furthermore, it is necessary to define a suitable method for
getting an SoH index from the IC curve.

EIS methods are some of the most promising approaches for performing
online SoH estimations. They are based on the EIS analysis that involves
the measurement of the terminal impedance of the cell at different frequency
values. In particular, the impedance Z(ω) is evaluated by injecting a small
sinusoidal signal at different frequencies, and by measuring the consequent
absolute and phase-shift voltage responses. It has been observed that the
resulting Nyquist diagram of Z(ω) changes with the aging of the cell, so that
it is possible to define an SoH index similarly to the ICA method [75].

The EIS approach has the advantage of allowing an online SoH estima-
tion. Nevertheless, the currently available EIS hardware is very expensive
and voluminous. Therefore, it is not possible to provide a multi-cell BESS
with the sufficient amount of EIS devices needed for monitoring all the cells.
Moreover, as well as for the ICA approach, also EIS needs the definition of a
suitable method for retrieving an SoH index from the EIS curve.

Concerning Kalman filtering approaches, their application to SoH estima-
tion is very similar to that of SoC. Indeed, also in this case it is required the
availability of a suitable cell model in order to make Kalman filters track the
evolution of the cell capacity Cn and/or of the internal resistance R. Often,
dual Kalman filtering techniques can be used in order to estimate both SoC
and SoH simultaneously [70].

Also Kalman filter techniques have the advantage of an online and real-
time SoH estimation. However, besides the necessity of a suitable model,
the main drawback is that it is mandatory a very accurate SoC estimation in
order to permit a likewise accurate tracking of the Cn evolution. To make
things worse, also the accuracy of the SoC estimator depends on that of SoH,
since expression (1.3) use the value of Cn for evaluating SoC. Therefore, it can
happen that the Kalman filter estimating SoH tries to correct a wrong SoC
estimation, and similarly the SoC estimator tries to correct the erroneous Cn

estimation, resulting in an unstable and oscillating monitoring system.
Finally, machine learning approaches aim at finding suitable relationships

between the measurements of voltage, current, and temperature with the
progressive capacity fade of the cell. Therefore, SoH estimation is formu-
lated as a function approximation problem, similarly to the SoC estimation
task. Alternatively, machine learning methods, such as neural networks or
SVMs, have been used in the ICA and EIS approaches for retrieving an SoH
index from the IC and Z(ω) curves, respectively [74], [76].
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Likewise the SoC estimation, also in this case the main drawback comes
from the necessity of a huge amount of historic data in order to allow a suit-
able and effective training of the machine learning tools.

In conclusion, a brief overview about the different SoH estimation meth-
ods is shown in Table 1.4.

Table 1.4: Overview on the SoH estimation methods

Method Description Advantages Drawbacks

Capacity
Test

Direct measurement
of Cn by perform-
ing a controlled
charge/discharge test.

Simple and intuitive
approach.

Offline procedure. It requires expensive test-
ing equipment. It is necessary to disassemble
the BESS.

Internal
Resistance
Measure-
ment

Direct measurement
of the internal resis-
tance by applying a
short current pulse to
the cell.

Simple and intuitive
approach.

Offline procedure. It requires expensive test-
ing equipment. It is necessary to disassemble
the BESS.

ICA

Definition of a suit-
able procedure for re-
trieving an SoH index
from the analysis of
the IC curve.

It takes into account
physical properties of
the cell.

Offline procedure. It requires to retrieve the
OCV-SoC curve for evaluating the IC. It may
need expensive testing equipment. It is nec-
essary to disassemble the BESS. It is neces-
sary to define a suitable procedure for re-
trieving the SoH index from the IC curve.

EIS

Definition of a suit-
able procedure for re-
trieving an SoH in-
dex from the analysis
the Nyquist diagram
of Z(ω).

Online procedure. It
takes into account
physical properties of
the cell.

EIS hardware is very expensive and volumi-
nous. It cannot be applied to numerous elec-
trochemical cells. It is necessary to define a
suitable procedure for retrieving the SoH in-
dex from the EIS curve.

State Ob-
server

Use of a dual non-
linear KF for estimat-
ing both SoC and Cn
and/or the internal re-
sistance.

Online procedure.
Real-time and self-
correcting method.
It can provide in-
formation about the
estimation accuracy.

Can be computationally demanding. It re-
quires an accurate model of electrochemical
cells. It needs very accurate SoC estimations.
It may happen an undesired conflict between
the KF estimating SoC and that estimating Cn
and/or the internal resistance.

Machine
Learning

SoH estimated with a
black-box function ap-
proximation tool.

Online procedure.
Computationally
efficient. Machine
learning methods
may be used in the
ICA or EIS techniques.

It requires a huge amount of historical data
for training the tool. Collect the training
data involves expensive testing equipment
and long-lasting tests. The relationship be-
tween voltage, temperature, current and SoH
is hidden. It may require further data pro-
cessing and filtering.

Balancing

Cells balancing aims at ensuring that each cell of the BESS works in an oper-
ating point as much as possible similar to that of the others. To this aim, two
main approaches can be found in the literature, namely active and passive
balancing [78]. In the active approach, a programmable circuit composed of
capacitors or inductors is used for discharging the most charged cells in the
most discharged ones. More precisely, the capacitors/inductors network is
used as an electronic bridge aiming at transferring charge between the cells.
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Thus, the active balancing is controlled by means of a complex and expen-
sive switching system. Conversely, the passive balancing method consists
in discharging the most charged cells on suitable shunt resistors. Therefore,
each cell of the battery pack is coupled with a resistor, which activation is
controlled by a dedicated MOSFET switch.

The two methods have opposite properties in terms of complexity, cost,
and energetic efficiency. The active balancing approach has a widely more
complex and more expensive control circuit, but it is able to achieve negligi-
ble energy losses during cells balancing. On the opposite, the passive method
is way more simple and cheaper, but it implies a systematic loss of energy ev-
ery time a shunt resistor is activated.

Because of its lower cost and higher simplicity, the passive approach is
usually preferred as balancing method. Indeed, most of the slave boards
shown in the previous paragraphs are natively equipped with the necessary
hardware performing passive balancing. In particular, it is necessary to de-
velop a balancing algorithm aiming at evaluating which is the best config-
uration of the shunt resistors that progressively brings all the cells working
as much as possible in the same operating point. To this aim, the common
policy used both in the literature [79], [80] and in the industrial area [81] is
based on the leveling of the cells voltage at working time.

1.3.2 Modeling Techniques

In the previous section it has been briefly discussed as Kalman filter tech-
niques show very promising performances in the SoC estimation task, as
well as they can be used effectively also for performing SoH estimation. Nev-
ertheless, it has been discussed that state observers need the availability of
accurate models for achieving effective results as well. Therefore, great effort
of the research community is focusing on the development of effective and
accurate models of electrochemical cells.

The most accurate models are the electrochemical ones [82]–[85], based
on modeling the chemical processes occurring at the molecular level. Con-
sequently, these models achieve both a complete insight on the cell physics,
as well as they model accurately the nonlinearities of the cell. Despite that,
electrochemical models are typically highly computational demanding, and
often they cannot be used to implement real-time estimators. Moreover, the
related system identification is very stiff, being based on specific and long-
lasting offline tests. In addition, often it relies on the knowledge of property



Chapter 1. Introduction 29

parameters that are not made available by the manufacturer [60], [86].
A good trade-off between accuracy and complexity is achieved by Equiv-

alent Circuit Models (ECMs) [51], [60], [86]–[88], in which a connection of
bipolar lumped elements emulate the electrical behavior of the cell. ECMs
have the advantage of keeping a sufficient insight on the cell physics together
with a simple and computational efficient architecture. However, also for
ECMs system identification is stiff and time consuming, because it requires
long-lasting and specific charging and discharging tests to be performed of-
fline in order to complete the task [51].

Machine learning techniques are a valid alternative to the previous ap-
proaches, allowing to deal with the strong nonlinear and dynamical behav-
ior of electrochemical cells in a more effective way. Indeed, they are able to
achieve great estimation accuracy with a more flexible system identification
procedure due to their learning capabilities. Thus, several machine learning
approaches have been proposed in the literature addressing the modeling of
electrochemical cells. In [89] and [90] the authors have proposed a Radial
Basis Function Neural Network for estimating the terminal voltage of a cell
receiving as input the present current, the present SoC and a sliding window
of the previous output voltages. More recently, an Extreme Learning Ma-
chine and a Wavelet Neural Network performing the same task have been
proposed in [65] and in [91], respectively. Other approaches based on neuro-
fuzzy networks [92] and SVMs [93] estimate the voltage response of the cell
avoiding the windowing of the output voltage. All of these approaches per-
form system identification following a black box scheme and addressing the
estimation of the global input-output relationship only. Thus, they do not
provide any insight on the cell physics. Furthermore, most machine learn-
ing models use a nonlinear autoregressive approach by introducing a sliding
window of the previous output voltage in order to model the internal states
of the system. However, due to the very slow dynamics typical of any elec-
trochemical cell, these models could easily overfit the delayed output, con-
verging to the trivial prediction model in which the output voltage is almost
equal to its previous sample. This unwanted behavior could compromise the
dependence of the model output on SoC, jeopardizing an effective use of the
model in Kalman estimators.

From the above discussion it is possible to split the modeling techniques
in two main categories, namely the white box and the black box ones. White
box approaches are based on the definition of modeling equations that ex-
plicitly expose information about the physics of the system. Conversely,
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black box methods aim at building a universal approximator of the overall
input-output relationship, without providing any physical interpretation of
the model. Therefore, ECMs and electrochemical models belong to the white
box technique, whereas the machine learning models belong to the black box
one.

White box and black box techniques have opposite properties. Typically,
white box models offer a complete insight on the physics of electrochemical
cells that is helpful for performing accurate SoC estimations. Nevertheless,
they are or too much computational demanding for being used in the SoC
estimation task, or system identification is a stiff and time consuming task.
Conversely, black box models are able to easily catch the nonlinearities of the
cell, but unfortunately they do not provide any insight on their physics.

It is interesting to note that none of the models proposed in the literature
are able to fulfill the three modeling requirements discussed in Section 1.2.
For this reason this Ph.D. thesis aims at investigating novel modeling solu-
tions with the objective of pursuing all the three requirements in order to
improve the model performances in the SoC estimation task.
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Chapter 2

Machine Learning Techniques

2.1 Neural Networks

Artificial Neural Networks (ANNs) are powerful processing tools enclosing
the ability of learning from experience. From a general point of view ANNs
are a data-driven black box technique aiming at learning and modeling the
input-output relationship of a given process from the knowledge of a set of
input-output measurements only. Thus, ANNs have been applied with very
promising performances in several black box modeling tasks, involving clas-
sification [94]–[96], function approximation [97]–[99], system identification
[100]–[103], and image processing [104], [105].

Likewise other machine learning algorithms, also neural networks are
natural inspired techniques. Specifically, ANNs aim at emulating the func-
tionality and the learning capabilities of the animal brain. Thus, they are or-
ganized as a network of atomic computational units called artificial neurons,
each of them performing a very simple and basic processing of its inputs and
propagating the resulting output to the other neurons.

The artificial neuron has been firstly theorized by McCulloch and Pitts in
reference [106], and a first real implementation of an ANN has been proposed
by Rosenblatt in reference [107] with the perceptron. A graphical representa-
tion of the artificial neuron is shown in Figure 2.1.
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Figure 2.1: Basic functionality of the artificial neuron.
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Similarly to the brain cells, an artificial neuron is composed of two main
elements: nucleus and axon. The nucleus is the actual processing unit and it
is in charge of performing a nonlinear transformation of the weighted sum
of the inputs. The basic processing of the neuron is summarized as follows:

y = ϕ

(
m

∑
i=1

xiωi + b

)
(2.1)

where xi is the ith input, ωi is the related weight, b is a bias term, and ϕ(.) is
a nonlinear transformation called activation function. The axon is merely the
connection from the neuron to the following one and typically the weight-
ing operation is attributed to it. In general, the activation ϕ(.) can be any
kind of nonlinear function. For example, the neuron theorized by McCul-
loch and Pitts was based on the Heaviside step function and for this reason
it is commonly known as Linear Threshold Unit (LTU). Nevertheless, LTU
allows only a binary processing. Thus, smoother and continuous functions
such as hyperbolic tangent or sigmoid have been preferred in order to ensure a
continuous input-output mapping.

Feed-forward neural networks are the basic architecture of ANNs and
the most suitable example is the Multi-Layer Perceptron (MLP) shown in
Figure 2.2.
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Figure 2.2: Architecture of a feed-forward MLP.

Feed-forward MLPs are organized in a stack of layers in which the output
of each neuron is connected to the immediate following layer only. Thus, the
inputs are processed and propagated in only one direction moving layer by
layer to the output neuron. This means that feed-forward neural networks
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are pure combinatory and memoryless processing tools in which the current
output depends only on the current input. In particular, MLPs are character-
ized by fully connected layers, meaning that each neuron receives as input
the output of all the neurons composing the previous layer and it propagates
its output to all the neurons of the following layer. The MLP architecture is
organized in three groups: the input layer, one or more hidden layers, and
the output layer. In particular, the input layer is not composed of real neu-
rons, but it aims only at feeding the first hidden layer with the overall inputs
of the network.

It has been proven with the universal approximation theorem [108]–[110] that
a simple MLP configured with one hidden layer composed of n neurons hav-
ing arbitrary activation ϕ(.) can approximate continuous functions on com-
pact subsets of Rm.

Theorem 2.1.1 (Universal Approximation Theorem). Let ϕ(.) be an arbitrary
activation function. Let x ∈ X ⊆ Rm and X is compact. The space of continuous
functions on X is denoted by C(X). Then, ∀ f ∈ C(X), ∀ε > 0 : ∃ n ∈N, ωij ∈ R,
bi ∈ R, αi ∈ R, i ∈ {1, . . . , n}, j ∈ {1, . . . , m}:

f(x) =
n

∑
i=1

αi ϕ

(
m

∑
j=1

ωijxj + bi

)

is a universal approximation of f (.) such that:

‖ f (x)− f(x)‖ < ε.

Moreover, Hornik has showed in reference [98] that the universal ap-
proximation property of MLPs comes from the multi-layer architecture itself
rather than on the specific activation function of the neurons. Indeed, what
an MLP architecture does is to project the input vector x = {x1, x2, . . . , xm}
to a higher dimensional space where the indistinguishable properties of the
original data are made clearer and separable to successfully approximate
functions, classify objects, or identify the main properties of systems. More-
over, the multi-layer architecture reiterates this projection layer by layer, fur-
therly increasing the data abstraction in higher order dimensional spaces. In
the end, the output layer is in charge of recollecting and synthesizing the
abstract information in order to retrieve the useful knowledge.

The most common used activation functions are linear, hyperbolic tangent,
sigmoid, and rectifier linear unit (ReLU). The definition and the graphical rep-
resentation of each of them is shown in Figure 2.3.
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Figure 2.3: Most common activation functions.

Several alternatives to the above mentioned activation functions have
been proposed in the literature, such as sinusoidal [111], exponential linear units
[112], or softsign [113]. Furthermore, the use of specific activation functions is
at the basis of the definition of different and distinct neural networks topolo-
gies.

Radial Basis Function Neural Networks (RBF-NN) [114] are feed-forward
architectures having only one hidden layer and one output layer. As the
name suggest, the activation of the hidden neurons is a radial function. More-
over, the inputs are fed to the hidden layer without any weighting of them.
In particular, the most common radial activation is the gaussian function de-
fined as follows:

y = e−β‖x−µ‖2
(2.2)

where ‖.‖ is a distance operator, typically the Euclidean one, β is the shape
parameter, and µ is the center of the radial function. In RBF-NNs the learning
procedure must train not only the output weights, but also the parameters β

and µ of each radial neuron.
Wavelet Neural Networks (WNNs) aim at importing the wavelet analysis

theory to neural networks. WNNs have a similar architecture to RBF-NNs,
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except for the use of mother wavelet functions Φ(.) as activation of the hid-
den layer [115], [116]. Specifically, each wavelon performs the following elab-
oration:

y =
m

∏
j=1

Φ

(
xj − δj

γj

)
(2.3)

where δj and γj are the translation and dilation parameters related to the
wavelet theory, and j refers to the jth input. Also in this case the learning
procedure shall determine not only the output weights, but also the value of
the parameters δj and γj for each wavelon.

Functional Link Neural Networks (FLNNs) [102], [117], [118] differ from
MLPs, RBF-NNs, and WNNs for the fact that neurons do not share the same
nonlinear transformation. Indeed, the aim of FLNNs is to model the process
at hand by considering the superimposition of different functions selected
from an orthogonal basis. FLNNs have the same architecture of both RBF-
NNs and WNNs, but each neuron of the hidden layer evaluates a specific
function of the selected basis. Common choices for the functional reservoir
are the standard polynomial basis, Chebyshev polynomials, trigonometric
polynomials, or Bernstein polynomials. Furthermore, it is possible to mix dif-
ferent nonlinear representations in order to furtherly increase the nonlinear
abstraction of the inputs. Finally, the output neuron mixes all the nonlinear
transformations in order to match the output of the process to be modeled.

Besides the memoryless feed-forward architecture, neural networks can
also have a recurrent design in order to equip the model with memory. In-
deed, Recurrent Neural Networks (RNNs) involve the introduction of feed-
back connections resulting in the presence of delay units and circular loops.
Thus, the output of any RNN depends not only on the current input of the
network, but also on the values memorized in each of the delay units.

A typical example of RNN is the Elman network shown in Figure 2.4, in
which the output of each hidden neuron is fed back as an input of the same
layer. Therefore, each neuron performs the following elaboration:

yi = ϕ

(
m

∑
j=1

ωx
j xj +

n

∑
`=1

ωh
`h` + bi

)
(2.4)

where m and n are the number of inputs and the number of neurons, respec-
tively, h` is the state variable related to the `th hidden neuron, ωx

j and ωh
` are

the weights related to the jth input and the `th hidden state, respectively, and
bi is the bias term.
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Figure 2.4: Architecture of an Elman RNN.

More complex recurrent architectures have been introduced in order to
solve some issues of Elman RNNs concerning the loss of information that is
far away in the past [119]. These recurrent networks are based on the intro-
duction of more sophisticated neurons, such as the Long Short Term Memory
(LSTM) unit [120], [121] and the Gated Recurrent Unit (GRU) [122]. In particu-
lar, both LSTM and GRU units have an architecture that allows to propagate
the information through time, and thus to efficiently learn long-range depen-
dencies.

As explained in the above, ANNs are able to learn the main properties of a
given process from a set of input-output samples. To this aim, the most used
learning algorithm is the Gradient Descent Backpropagation (GDBP). As the
name suggests, GDBP is based on the standard gradient descent optimiza-
tion technique. It consists in the re-iteration of two main phases, namely the
forward and the backward ones. During the forward step, the input samples
belonging to the training set are fed to the network and the related outputs
are evaluated. During the backward phase, the predicted outputs are com-
pared with the expected ones and the resulting errors are fed back to the
network in order to update all the weights. In particular, the latter step is
performed by minimizing a suitable error function by means of the gradient
descent algorithm. Typically, a differentiable function must be considered,
and examples are mean squared error or root mean squared error that are com-
monly used in function approximation problems, or categorical crossentropy
that is used for multi-class classification.
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Let E(.) be the error function at hand and ωij be a generic weight of the
network. The gradient descent algorithm iteratively updates the value of
ωij by moving towards the direction of the anti-gradient of E(.). Thus, the
update rule is defined as follows:

ωij[k] = ωij[k− 1]− λ
∂E

∂ωij
(2.5)

where k is the current iteration and λ is the learning rate that defines the step
width towards the anti-gradient direction. In particular, the backpropaga-
tion algorithm makes use of the derivative chain rule in order to propagate
the gradient back to each of the network weights. Thus, let consider as ex-
ample the application of the GDBP algorithm to the weight ω11 of the simple
network shown in Figure 2.5.
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Figure 2.5: Graphical representation of the backpropagation technique to
ω11. The backward path of the derivative chain rule is highlighted in the
figure.

Considering that y = ϕ(u31) and that u31 = ω31y21 + ω32y22 + b31, it
is possible to evaluate the partial derivative of E(.) with respect to ω11 as
follows:

∂E

∂ω11
=

∂E

∂y
∂y

∂ω11

=
∂E

∂y
∂ϕ(u31)

∂ω11

=
∂E

∂y
∂ϕ(u31)

∂u31

∂u31

∂ω11

=
∂E

∂y
∂ϕ(u31)

∂u31

∂(ω31y21 + ω32y22 + b31)

∂ω11

=
∂E

∂y
∂ϕ(u31)

∂u31

(
ω31

∂y21

∂ω11
+ ω32

∂y22

∂ω11

)
(2.6)

where ∂b31/∂ω11 = 0 because the bias term b31 is not dependent on ω11.
From the above expression, it is possible to apply again the derivative chain
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rule to ∂y21/∂ω11 and ∂y22/∂ω11. Specifically, ∂y21/∂ω11 is evaluated as fol-
lows:

∂y21

∂ω11
=

∂ϕ(u21)

∂ω11

=
∂ϕ(u21)

∂u21

∂u21

∂ω11

=
∂ϕ(u21)

∂u21

∂(ω21y11 + ω23y12 + b21)

∂ω11

=
∂ϕ(u21)

∂u21
ω21

∂y11

∂ω11

(2.7)

where u21 = ω21y11 + ω23y12 + b21, whereas ∂y12/∂ω11 and ∂b21/∂ω11 are
both zero because y12 and b21 are not dependent on ω11. Similarly, ∂y22/∂ω11

is evaluated as follows:

∂y22

∂ω11
=

∂ϕ(u22)

∂u22
ω22

∂y11

∂ω11
. (2.8)

Both expressions (2.7) and (2.8) require the evaluation of ∂y11/∂ω11, that
can be performed by applying again the chain rule as follows:

∂y11

∂ω11
=

∂ϕ(u11)

∂ω11

=
∂ϕ(u11)

∂u11

∂u11

∂ω11

=
∂ϕ(u11)

∂u11

∂(ω11x + b11)

∂ω11

=
∂ϕ(u11)

∂u11
x.

(2.9)

where u11 = ω11x + b11 and again ∂b11/∂ω11 = 0 because b11 is not depen-
dent on ω11.

In conclusion, the final expression of ∂E/∂ω11 is evaluated by mixing ex-
pressions (2.9) with (2.7), (2.8), and (2.6) as follows:

∂E

∂ω11
=

∂E

∂y
∂ϕ(u31)

∂u31

(
ω31

∂ϕ(u21)

∂u21
ω21 + ω32

∂ϕ(u22)

∂u22
ω22

)
∂ϕ(u11)

∂u11
x. (2.10)

The GDBP learning algorithm consists in applying the above described
procedure to every weight ωij and bias bij of the network for a certain amount
of iterations, also known as training epochs, or until a certain stop condition
is verified.

Besides GDBP, other learning procedures can be considered. For example,
evolutionary algorithms have been successfully applied for training different
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kind of ANNs [117], [123], [124]. Moreover, if the output activation is linear,
then RBF-NNs, WNNs, and FLNNs can be trained in a faster way because
of the static processing of their hidden layer. Concerning both RBF-NNs and
WNNs, it is possible to conceive a two step-learning procedure. During the
first step, a suitable clustering algorithm is used for determining the value of
the parameters β and µ for RBF-NNs, δ and γ for WNNs. During the second
phase, a linear least square is used for training the output weights. Con-
versely, only the linear least square phase is necessary for training FLNNs
because the hidden layer does not have any parameter to be trained. In gen-
eral, this faster learning approach is possible for any reservoir computing
network such as Extreme Learning Machines (ELMs) [125], Random Vector
Functional Links (RVFL) [126], and Echo State Networks (ESNs) [127].

2.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a family of meta-heuristics used for solv-
ing optimization problems where standard derivative based techniques are
ineffective. In order to introduce EAs, let consider a generic optimization
problem consisting in minimizing a suitable objective function F(.) with re-
spect to the set of parameters θ = {θ1, . . . , θn}, and subject to a certain set of
constraints. The optimization problem can be formalized as follows:

θopt = argmin
θ

F(θ)

s.t. gi(θ) ≤ 0, i = 1, . . . , m

hj(θ) = 0, j = 1, . . . , p

(2.11)

where gi(θ) ≤ 0 and hj(θ) = 0 are the inequality and equality constraints,
respectively. Note that this formulation is valid also for maximization prob-
lems, since they are actually coincident with minimizing −F(θ).

If certain conditions are verified, the optimization problem (2.11) can be
solved in a closed form or at least with an arbitrary precision. In particular,
if the objective function F(.) is convex and the feasibility region defined by
the constraints is convex as well, then the solution is unique and it can be
evaluated in a closed form by means of the Lagrange multipliers and the
Karush–Kuhn–Tucker methods [128]–[130]. Alternatively, it is possible to use
gradient descent techniques that will find a solution arbitrary close to the
global optimum because of the convexity of the problem.
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Both the Lagrange multipliers and the gradient descent techniques are
derivative based optimization methods. Indeed, the former is based on zero-
ing the gradient of F(.), whereas the latter is an iterative algorithm requiring
the evaluation of ∇θF(θ) at each step. Nevertheless, in some applications it
is not possible to evaluate the derivative of F(.). First, the parameters to be
optimized may not be real numbers, but structured data such as text, audio,
images, or graphs, upon which it is not possible to define a differentiation
operator. Second, the function F(.) may not be known in closed form, so that
it is impossible to evaluate ∇θF(θ). Moreover, if the problem is not convex,
then the solution is not unique anymore and any derivative based approach
can be trapped in local optimum solutions.

EAs are general purpose derivative-free methods aiming at solving opti-
mization problems affected by any of the above discussed issues. The main
concept of EAs is to emulate natural phenomena that implicitly involve an
optimization process, typically the survival of the species, or food supply
[131]. In general, EAs are population-based techniques in which a popula-
tion of individuals evolves looking for the best solution of the problem at
hand. More precisely, each individual encodes one possible solution of the
optimization problem and it interacts with the other individuals in order to
improve its suitability at solving the problem. To this aim, it is necessary to
evaluate how much a certain individual is eligible as a solution, or in other
words how much it “fits” the environment in which the population lives.
This evaluation is performed by means of a suitable function F(.), called fit-
ness function in the EA context, that includes the objective function, as well
as the optimization constraints.

Several EAs algorithms have been proposed in the literature. Examples
are Genetic Algorithm (GA) [132], Particle Swarm Optimization (PSO) [133],
[134], Ant Colony Optimization (ACO) [135], [136], Artificial Bee Colony
(ABC) [137], and many others. Nevertheless, the most used and pioneering
ones are GA and PSO.

GAs aim at applying the evolution theory of Darwin [138] for solving op-
timization problems of the form (2.11). It consists in evolving a population of
M individuals by applying the basic concepts of elitism, reproduction, and
mutation. In particular, as well as the fitness of a living being to a certain
environment is determined by its genetic code, the eligibility of a GA indi-
vidual to be a solution of (2.11) is determined by the set of parameters θi asso-
ciated to it. From a different perspective, θi is the genetic code characterizing
the ith individual, whereas its fitness fi is determined by the function F(.).
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Therefore, the entire population is modeled with a list of candidate solutions
having genetic code θi and related fitness value fi, as shown in Table 2.1.

Table 2.1: Represenation of the population in the GA algorithm

Individual ID Genetic Code Fitness

1 θ1 f1
2 θ2 f2
...

...
...

M θM fM

GA starts from the first generation by initializing a generic population
of random individuals. Successively, each of them evolves generation after
generation by applying three main operators, namely elitism, crossover, and
mutation.

The elitism operator encloses the natural selection theory, so that individ-
uals best adapted to the environment are more likely to survive and repro-
duce. Therefore, the E individuals having the best fitness survive to the next
generation without modifications.

The crossover operator models the reproduction process. It consists in
selecting two individuals and mixing their genetic codes for generating two
new offsprings. Thus, given the parent individuals θi = {θi1, . . . , θin}, and
θj = {θj1, . . . , θjn}, the two offsprings can be generated by swapping a ran-
dom set of the parents’ genes as follows:

θi = {θi1, θi2, θi3, θi4, θi5, θi6}
l l

θj = {θj1, θj2, θj3, θj4, θj5, θj6}
⇒

ϑi = {θj1, θj2, θi3, θi4, θi5, θj6}
ϑ j = {θi1, θi2, θj3, θj4, θj5, θi6}

(2.12)

where an example with n = 6 genes has been considered for simplicity.
As the name suggest, the mutation operator aims at emulating the effect

of a genetic mutation. Typically, it is performed by selecting one individual
and by applying a random modification of a random set of its genes. In case
of real numbers, it can be implemented through the summation of a random
noise, otherwise it is necessary to define a specific and suitable mutation op-
erator accordingly with the semantic of the gene to be muted.

It must be noticed that both the crossover and the mutation operators
imply the selection of the individuals to which they must be applied. In
particular, this selection process plays a crucial role in the GA performances
and therefore it must be designed carefully. The basic idea of the natural
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selection is that the best adapted individuals have the most interesting ge-
netic properties. Thus, the selection operator must be more sensible to them.
Nevertheless, applying the mutation and the crossover operators to the best
individuals only will compromise the genetic variability of the population,
resulting in a global lack of adaptation to the environment. Therefore, it is
necessary to promote the selection of the best individuals, without exclud-
ing the worst ones from the selection process. Two of the most used algo-
rithms are K-tournament and roulette wheel. In K-tournament, K individuals
are chosen randomly from the entire population independently of their fit-
ness. Successively, the best individual among those K is selected. In roulette
wheel, each individual has a probability to be selected that is directly or in-
versely proportional to its fitness depending if GA is solving a maximization
or a minimization problem, respectively. Thus, both in K-tournament and
roulette wheel the best individuals have the higher probability to be selected,
but the worst ones are not excluded a priori.

Summarizing, the pseudo code of GA is shown in Algorithm 1, where M
is the number of individuals, G is the maximum number of generations, and
E is the number of elites.

Algorithm 1 Pseudocode of GA
for i = 1 : M do . Initialize population

θi[1] = rand(n, 1);
end for
while !StopCondition do . Start GA

for g = 1 : G do
for i = 1 : M do . Evaluate fitness

fi[g] = F(θi[g]);
end for
sort(θ, f); . Sort population
for e = 1 : E do . Elite

θe[g + 1] = θe[g];
end for
while !CrossoverFinished do

i, j = selection(θ); . Selection
θi[g + 1], θj[g + 1] = cross(θi[g], θj[g]); . Crossover

end while
while !MutationFinished do

i = selection(θ); . Selection
θi[g + 1] = mutate(θi[g]); . Mutation

end while
end for

end while
sort(θ, f); . Sort population
return θ1[g]
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PSO is inspired by the behavior that birds show in their organization in
swarm. Indeed, it is observable a very strong cooperation between birds in
order to achieve a common objective, namely find the best source of food
in the environment they live. In the swarm organization, each individual
shows a dual behavior. From one side, it is a fully independent entity that
behaves and takes decisions by its own, pursuing the best for itself. From
the other side, its behavior influences and it is influenced by that of the other
individuals. These two attitudes are identified as the cognitive and the social
behaviors. From the cognitive perspective, the individual acts by taking into
account only its own experience. In particular, it tries to move toward the
best position it has found so far. From the social perspective, the individual
chases the success of the others, and therefore it tries to move toward the best
position found by the entire swarm.

Similarly to GA, also in PSO each individual, also called particle, repre-
sents a candidate solution for the problem (3.11). More precisely, the vector θ

belongs typically to Rn and it models the particle position inside the search
space. Again, the performance of each individual is evaluated by means of
the fitness function F(.), so that also in this case the swarm can be represented
by means of the list shown in Table 2.1.

The cognitive and the social behaviors are modeled by means of two at-
tractors called personal best and global best. Specifically, the personal best Θpi

is the best position that the ith particle has found so far, whereas the global
best Θg is the best position that the entire swarm has found.

The population is evolved by applying repeatedly two update rules: the
velocity update and the position update. Velocity update consists in evaluating
the direction toward which each particle has to move considering the two
attractors Θpi and Θg. Considering the ith particle, the velocity update rule
is evaluated with the following expression:

vi = ωvi + cprp(Θpi − θi) + cgrg(Θg − θi) (2.13)

where vi = {vi1, . . . , vin} is the velocity vector, ω is the inertial coefficient, cp

and cg are the acceleration coefficients related to the cognitive and the social
behaviors, respectively. The terms rp and rg are called craziness coefficients
and they are vectors whose elements are randomly chosen from a uniform
distribution in the range [0, 1] for providing the particle with a stochastic
behavior. In particular, the term ωvi aims at preventing a sudden change
of direction, the term cprp(Θpi − θi) models the cognitive behavior, whereas
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cgrg(Θg − θi) is the social component.
The position update is much more simple and it consists in adding the

updated velocity to the current position:

θi = θi + vi (2.14)

Summarizing, the pseudocode of PSO is shown in Algorithm 2.

Algorithm 2 Pseudocode of PSO
for i = 1 : M do

θi = rand(n, 1); . Initialize particle
vi = [0.5− rand(n, 1)]; . Initialize velocity
fi = F(θi); . Evaluate fitness
Θpi = θi; . Initialize personal best

end for
Θg = θi : min

i
F(θi); . Initialize global best

while !StopCondition do
for i = 1 : M do

vi = ωvi + cprp(Θpi − θi) + cgrg(Θg − θi); . Velocity update
θi = θi + vi; . Position update
fi = F(θi); . Evaluate fitness
if fi < F(Θpi) then

Θpi = θi; . Update personal best
end if

end for
Θ̄g = θi : min

i
F(θi);

if F(Θ̄g) < F(Θg) then
Θg = Θ̄g . Update global best

end if
end while
return Θg

2.3 Fuzzy Logic

Fuzzy logic has been theorized by Lofti Zadeh [139] and it is a powerful
methodology for handling uncertainty in a more effective way with respect
to the traditional boolean logic, also called crisp logic. The main foundation
is to go beyond the Aristotelian principle of the excluded third (tertium non
datur), for which any logical proposition can be only completely true or com-
pletely false. Conversely, fuzzy logic aims at emulating the human reasoning
in which any logical assumption is interpreted with a certain degree of truth,
as well as the transition between true and false is continuous. This is because
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usually humans do not think in terms of mere numbers, but more in terms
of abstract concepts, classes, and objects. For example, a ‘ball’ can be ‘small’,
‘big’, as well as ‘red’, ‘blue’, ‘spherical’, and ‘oval’. For this reason, fuzzy
logic is typically explained talking about linguistic variables.

Let consider the universe of discourse U composed of words, concepts,
and related meanings. Let consider the subset W ⊂ U. A fuzzy set F is
defined by a proposition p associating an element x ∈ U to the subset W,
and by a suitable function µ(x) assessing the grade of membership of x to W:

F = {x, p, µ(x)} :

{
p : x 7→W

µ : U 7→ [0, 1].
(2.15)

For example the proposition p:

The ‘ball’ is ‘red’

creates a fuzzy set where ‘ball’ is an element of U, the concept ‘red’ is a subset
of U, and µ(.) evaluates the membership of ‘ball’ to ‘red’.

The function µ(.) has codomain in the range [0, 1], with the values 0 and 1
indicating the falsity or the truth of p, respectively. In other words, 0 means
that x does not belong to the subset W, and conversely 1 that it belongs com-
pletely to W. The membership function µ(.) can have different shapes. The
most diffused ones are triangular, trapezoidal, gaussian, and bell shaped. In par-
ticular, µ(.) plays a crucial role for the definition of the fuzzy logical opera-
tors.

As well as in the boolean logic, also in the fuzzy one the main operators
are intersection (AND), union (OR), and complement (NOT). Let A and B be two
fuzzy sets having membership functions µA(.), and µB(.), respectively, the
AND, OR, and NOT operators project to other fuzzy sets whose membership
functions are evaluated as follows:

A OR B −→ µA∩B(x) = max (µA(x), µB(x))

A AND B −→ µA∪B(x) = min (µA(x), µB(x))

NOT A −→ µĀ(x) = 1− µA(x).

(2.16)

A graphical example of the fuzzy logical operators is shown in Figure 2.6,
where two fuzzy sets characterized respectively by a triangular and trape-
zoidal membership functions have been considered.
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µA µB

µA µB

µ

OR

max (µA, µB)

AND

min (µA, µB)

NOT

1− µ

Figure 2.6: Example of fuzzy logical operators.

The AND, OR, and NOT operators are used for defining the logical rules
of the fuzzy reasoning. In particular, these rules respect the IF-THEN struc-
ture as follows:

IF x IS A THEN y IS B (2.17)

or considering two variables:

IF x IS A AND y IS B THEN z IS C. (2.18)

In general, any fuzzy rule is characterized by two elements: the an-
tecedent, that is a generic combination of logical conditions on the inputs,
and the consequent, that is the fuzzy set inferred by the antecedent. Thus,
expressions (2.17) and (2.18) define an implication that associates the an-
tecedents x IS A, and x IS A AND y IS B to the corresponding logical conse-
quents y IS B, and z IS C, respectively.

From a practical and mathematical point of view, the fuzzy reasoning
is implemented by means of Fuzzy Inference Systems (FISs). In particular,
FISs are processing tools that receive as input a vector of real numbers and
provide as output a real number as well. They have been used in different
applications, such as function approximation [31], [140], classification [141],
decision making systems [30], and control systems [142], [143].

Any FIS involves four main phases: fuzzification, inference, composition,
and defuzzification. The fuzzification consists in evaluating the membership
of the inputs to the related fuzzy sets appearing in the antecedent of every
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fuzzy rule. The inference phase involves the evaluation of the fire strength
of each fuzzy rule, that represents the veracity of the rules themselves. The
composition step consists in mixing the rule consequents on the basis of the
fire strengths of the related rules. Finally, the defuzzification process evalu-
ates a real value from the fuzzy output of the composition phase.

Two main FIS structures have been proposed in the literature, namely the
Mamdani [144] and the Takagi-Sugeno [145] ones.

In the Mamdani FIS, the domain of every input variable and that of the
output variable are split in a certain number of fuzzy sets, such that the re-
lated membership functions are overlapped and they cover the entire do-
main. A graphical representation of a Mamdani FIS with two inputs and one
output is shown in Figure 2.7.
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Figure 2.7: Example of a Mamdani FIS with two inputs (x and y) and one
output (z). Defuzzification is made by means of COA method.

The IF-THEN reasoning is based on the AND-OR logic. Thus, each rule
antecedent consists in the application of the AND operator between fuzzy
sets of the inputs, whereas the combination of the rules is made by means
of the OR operator. Different options are available for the defuzzification
process. The most diffused one is the Center Of Area (COA) consisting in
finding the crisp value z where a vertical line would slice the area of the
output membership function into two equal parts. Alternatives are the first
of maximum, last of maximum, and mean of maximum, in which the defuzzified
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value is the first edge, the last edge, and the center of the highest output
fuzzy set, respectively.

The Takagi-Sugeno FIS is similar to the Mamdani one, except for the def-
inition of rule consequents. Indeed, conversely to Mamdani, they are not
fuzzy sets but mathematical expressions of the inputs. Typically, these ex-
pressions are polynomials, and FIS is said to be a kth order Takagi-Sugeno,
with k being the order of the polynomial used in the rule consequent expres-
sions. In particular, the most used Takagi-Sugeno FIS is the first order one,
in which consequents are hyperplanes. An example of a first order Takagi-
Sugeno rule is the following:

IF x ∈ A AND y ∈ B THEN z = ax + by + c (2.19)

where A and B are fuzzy sets of the inputs x and y, respectively, whereas a,
b, and c are the coefficients of the consequent hyperplane.

Adaptive Neuro-Fuzzy Inference System (ANFIS) [140], [146], [147] is the
mathematical implementation of the Takagi-Sugeno FIS. The ANFIS architec-
ture is shown in Figure 2.8, where gaussian membership functions have been
considered for the fuzzification of the inputs.
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Figure 2.8: Takagi-Sugeno ANFIS network with gaussian membership func-
tions. Parameters mXi and σXi are the mean and standard deviation of the
gaussian function related to the fuzzy set Xi.
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It is clear that ANFIS inherits the feed-forward architecture from neural
networks and this is the reason why it is called neuro-fuzzy. ANFIS is orga-
nized in 5 layers, each one performing one phase of the fuzzy reasoning. The
first layer is devolved to the fuzzification step. Herein, it is possible to use
different membership functions, such as triangular, trapezoidal, or gaussian.
The second and the third layers implement the inference phase. Specifically,
the second layer evaluates the fire strength of each rule, whereas the third
layer performs the normalization of the fire strengths with respect to their
sum. It must be noticed that the AND operator is performed by means of the
multiplication of the membership functions, instead of the minimum used
in the Mamdani FIS. The fourth layer composes the fuzzy rules by multiply-
ing each consequent expression by the normalized fire strength of the related
rule. Finally, the fifth layer performs the defuzzification. To this aim, it is
possible to consider two different approaches. The weighted average (AVG)
consists in evaluating the crisp output z by performing the average of the
consequents’ expressions by using the terms ω̄i as weights. Conversely, the
Winner Takes All (WTA) method evaluates z by considering only the conse-
quent expression that has achieved the highest fire strength ω̄:

AVG −→ z =
∑n

i=1 ω̄izi

∑n
i=1 ω̄

WTA −→ z = zi : {ω̄i = max
j=1,...,n

ω̄j}.
(2.20)

2.4 Multi-Swarm Hybrid Genetic Particle Swarm

Optimization

An improved version of PSO, called Multi-Swarm Hybrid Genetic PSO
(MSHG-PSO), has been developed for solving several optimization problems
concerning the research activity. This version involves the implementation of
three main improvements with respect to the vanilla version of PSO with the
aim of reducing the stagnation effect, increasing the exploration and exploita-
tion capability, and avoiding the convergence to local minima.

The main improvement has interested the hybridization of PSO with GA.
This hybridization has aimed at enhancing the exploitation capability of the
algorithm, facilitating it in escaping from local minima. In details, a certain
number of new particles are generated at the end of each iteration by apply-
ing the genetic operators of crossover and mutation to a set of individuals
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selected by means of the K-tournament algorithm. Once the new individu-
als have been generated, these substitute a set of particles randomly chosen
from the worst half of the original swarm. Mutation consists in adding a ran-
dom number to a random set of elements of the position vector. On the other
hand, crossover is performed by swapping a random set of elements from
the two parent particles.

The second improvement has been the introduction of a multi-swarm
heuristic. Herein, the entire swarm is split in a number G ≥ 1 of sub-swarms,
each one characterized by having its own global best. In this topology, each
particle belongs to the sub-swarm related to the geometrically closest global
best and consequently it updates its position with respect to that global best.
The advantage of using a multi-swarm implementation consists in an im-
proved exploration capability that allows to search in different areas of the
solution space and to avoid a premature convergence to local minima.

The final improvement was the implementation of the Guaranteed Conver-
gence update rule [148]. In this version, the velocity of a particle being close
to its global best is updated with expression (2.21) in place of the update rule
of the standard PSO:

vi = ωvi + Θg − θi + δ(1− 2r) (2.21)

where r is a random vector drawn from a uniform distribution in [0, 1] and
δ is a scaling factor. This update rule introduces a more random behavior
for the particles closer to the global best, allowing to avoid stagnation and to
improve exploitation around the current global best.

Besides the ability of dealing with real numbers, it has been implemented
also a binary version of MSHG-PSO, called MSHG-BPSO, in order to allow
its application to optimization problems that involve binary variables. To
this aim, it has been necessary to align the velocity and position update rules
of MSHG-PSO to those of the Binary PSO (BPSO) [149], [150].

In the BPSO context, the jth element of the velocity vector is interpreted
as the probability of the jth bit of the position vector of being 0 or 1. Thus, the
velocity update rule is the same of the standard PSO, whereas the position
update rule is evaluated by means of a sigmoid transformation of the particle



Chapter 2. Machine Learning Techniques 51

velocity. The update rules of BPSO are summarized as follows:

vi = ωvi + cprp(Θpi − θi) + cgrg(Θg − θi)

θij =


0 if 1

1+exp(−vij)
≤ rij

1 if 1
1+exp(−vij)

> rij

(2.22)

where θi and vi are the position and the velocity vectors related to the ith

particle, respectively. Similarly, θij and vij are the jth element of θi and vi,
respectively. Specifically, each element of θi, Θpi and Θg is a binary vari-
able. The terms rij is a random number drawn from a uniform distribution in
the range [0, 1]. Concerning the genetic hybridization, the mutation operator
complements a random set of bits in the original position vector. Similarly
to MSHG-PSO, the crossover operator generates two offspring particles by
swapping a random set of bits from the two parent individuals.
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Chapter 3

BMS Algorithms

3.1 Comparison Between EKF and SR-UKF for

SoC Estimation

3.1.1 Nonlinear Kalman Filters

Kalman filter techniques are the most promising methods for performing
SoC estimation. In particular, EKF and UKF have been largely used to this
purpose. Therefore, a comparison between these two main estimation tech-
niques has been performed aiming at analyzing which of them is the most
effective and reliable solution for dealing with the crucial task of SoC estima-
tion.

Let consider a discrete nonlinear system described by the following equa-
tions:

x[k + 1] = F (x[k], u[k]) + q[k]

y[k] = G(x[k], u[k]) + v[k]
(3.1)

where x, y, and u are the state vector, the output vector, and the input vector,
respectively; F (.) and G(.) are nonlinear functions defining the state update,
and the output equations, respectively; q = N (0, Q) and v = N (0, V) are
the state and output noises drawn from a zero mean gaussian distribution
having Q and V covariance matrices, respectively.

A Kalman filter is an iterative algorithm using a mixture of model-driven
and data-driven techniques aiming at estimating the state vector x that min-
imizes the error between the output of the real system and that estimated by
the model. The block diagram of the algorithm is shown in Figure 3.1.

Kalman filter involves two main phases: prediction and update. The pre-
diction phase is the model-driven part of the algorithm. Herein, the available
model is used to perform a prediction of the next state, of the next output,
and of their related statistics, namely the state-covariance matrix Pxx, the
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x+[k]

P+
xx[k]

Figure 3.1: Block diagram of a stochastic state observer.

output-covariance matrix Pyy, and the state/output-covariance matrix Pxy.
The update phase uses a data-driven approach in which the output vector
ym measured on the real system is used for updating and correcting the pre-
dicted state vector and the state-covariance matrix.

Although the asymptotic stability of Kalman filters can be established
only for linear systems, the same technique can be generalized to the non-
linear ones by means of EKF and UKF.

The core of EKF consists in the linearization of the nonlinear system
around the a posteriori estimation of the state vector x+[k]. This operation
is performed by computing the Jacobians Â[k] and Ĉ[k] related to the state
update equation F (.) and the output equation G(.), respectively:

Â[k] =
∂F (x[k], u[k])

∂x[k]

∣∣∣∣
x=x+[k]

Ĉ[k] =
∂G(x[k], u[k])

∂x[k]

∣∣∣∣
x=x+[k].

(3.2)

Thanks to the linearization process, EKF is formulated as a linear Kalman
filter applied to the linearized system defined by the Jacobians Â and Ĉ.
Thus, the prediction and update phases of EKF are summarized in Algo-
rithm 3, where the initial state vector x+[0] and the initial state-covariance
matrix P+

xx[0] are assumed to be set.
As opposed to EKF, UKF does not apply any linear approximation. It uses

a deterministic sampling of the system and a weighted average of the result-
ing samples in order to predict the current state vector and the current state-
covariance matrix. These samples, called sigma points, are obtained through
the unscented transformation defined by Jeffrey Uhlmann in reference [151]
and formalized by Simon Julier for the UKF context in [66].

Let P+
xx[k − 1] and x+[k − 1] be the a posteriori predictions of the state

vector and the state-covariance matrix at the previous filter step, respectively,
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Algorithm 3 Pseudocode of EKF.
Prediction step for EKF
Evaluate the Jacobians matrices Â[k− 1] and Ĉ[k].
Predict state and output vectors.

x−[k] = F
(
x+[k− 1], u[k− 1]

)
y−[k] = G

(
x−[k], u[k]

)
Predict covariance matrices.

P−xx[k] = Â[k− 1]P+
xx[k− 1]ÂT

[k− 1] + Q

P−yy[k] = ĈT
[k]
(

Ĉ[k]P−xx[k]Ĉ
T
[k] + V

)
P−xy[k] = P−xx[k]Ĉ

T
[k]

Update step for EKF

K[k] = P−xy[k](P
−
yy[k])

−1

x+[k + 1] = x−[k + 1] + K[k]
(
ym[k]− y−[k]

)
P+

xx[k + 1] = P−xx[k]− K[k]Ĉ[k]P−xx[k]

the sigma points χ and the related weights w are evaluated as follows:

Z =

{
+
√

P+
xx[k− 1]

∣∣∣∣ −√P+
xx[k− 1]

}
= {z1| . . . |z2D}

χ−0 [k] = x+[k− 1],

χ−i [k] = x+[k− 1] +

√
L
λ

zi, i = 1, . . . , 2D

w(m)
0 = 1− λ, w(c)

0 = 2− λ− α2 + β, w =
λ

2D

where D is the number of state variables, λ = L/(α2(L + κ)) is a scaling fac-
tor, and zi is the ith column of the matrix Z. The coefficients α ∈ (0, 1] and
κ ≥ 0 determine the spread of the sampling around the state x+; β is a coeffi-
cient incorporating information about the probability distribution, and β = 2
is optimal for the gaussian one. The terms w(m)

0 and w(c)
0 are the weights re-

lated to the zeroth sigma point for the evaluation of the mean and the covari-
ance, respectively, and w is the weight related to all the other samples.

The prediction and update steps for the UKF algorithm are described
in Algorithm 4, where again the initial state x+[0] and the initial state-
covariance matrix P+

xx[0] are assumed to be set.
The most critical operation in UKF is the evaluation of the square root

of the matrix Pxx, typically performed through a Cholesky decomposition.
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Algorithm 4 Pseudocode of UKF.
Prediction step for UKF
Evaluate Sigma Points χi[k] considering the previous state x+[k − 1] and the previous
square root state-covariance matrix P+

xx[k− 1].
Predict state and output vectors.

χ−i [k] = F (χi[k− 1], u[k− 1]), i = 0, . . . , 2D

υ−i [k] = G(χ−i [k], u[k]), i = 0, . . . , 2D

x−[k] = w(m)
0 χ−0 [k] + w

2D

∑
i=1

χ−i [k]

y−[k] = w(m)
0 υ−0 [k] + w

2D

∑
i=1

υ−i [k]

Predict covariance matrices.

P−xx[k] = w(c)
0 (χ−0 [k]− x−[k])(χ−0 [k]− x−[k])T + w

2D

∑
i=1

(χ−i [k]− x−[k])(χ−i [k]− x−[k])T

P−yy[k] = w(c)
0 (υ−0 [k]− y−[k])(υ−0 [k]− y−[k])T + w

2D

∑
i=1

(υ−i [k]− y−[k])(υ−i [k]− y−[k])T

P−xy[k] = w(c)
0 (χ−0 [k]− x−[k])(υ−0 [k]− y−[k])T + w

2D

∑
i=1

(χ−i [k]− x−[k])(υ−i [k]− y−[k])T

Update step for UKF
K[k] = P−xy[k](P

−
yy[k])

−1

x+[k] = x−[k] + K[k](ym[k]− y−[k])

P+
xx[k] = P−xx[k]− K[k]P−yy[k]K[k]T

Unfortunately, Pxx can lose its positive definite property during the UKF it-
erations, so that it is not anymore possible to evaluate its Cholesky decompo-
sition. To avoid this problem, a more numerically stable implementation of
UKF, known as Square Root UKF (SR-UKF), has been proposed in reference
[152]. In this implementation, the square root of the state-covariance matrix
Sxx =

√
Pxx is directly propagated iteration by iteration, avoiding to repeat-

edly apply the Cholesky decomposition to the matrix Pxx. In this way, the
positive definite property of Sxx is guaranteed and the numerical stability of
the algorithm is improved.

SR-UKF involves two fundamental linear algebra techniques: QR de-
composition and Cholesky rank one update/downdate (see [152] for details
about these techniques). In the following, the function qr (.) refers to the
operator performing QR decomposition and returning the upper triangular
part of the matrix R. Similarly, the function cholupdate (S, x, µ) refers to the
rank one update/downdate of S by means of the vector

√
|µ|x; the update

happens if µ > 0 and the downdate if µ < 0.



Chapter 3. BMS Algorithms 56

Algorithm 5 Pseudocode of SR-UKF.
Prediction step for SR-UKF
Evaluate Sigma Points χi[k] considering the previous state x+[k − 1] and the previous
square root state-covariance matrix S+

xx[k− 1].
Predict state and output vectors.

χ−i [k] = F (χi[k− 1], u[k− 1]), i = 0, . . . , 2D

υ−i [k] = G(χ−i [k], u[k]), i = 0, . . . , 2D

x−[k] = w(m)
0 χ−0 [k] + w

2D

∑
i=1

χ−i [k]

y−[k] = w(m)
0 υ−0 [k] + w

2D

∑
i=1

υ−i [k]

Predict covariance matrices.
X[k] =

{
χ−1 [k]− x−[k]

∣∣ . . .
∣∣ χ−2D[k]− x−[k]

}
S∗xx[k] = qr

({√
wX[k]

∣∣ √Q
}T
)

S−xx[k] = cholupdate
(

S∗[k], χ−0 [k], w(c)
0

)


Y [k] =
{

υ−1 [k]− y−[k]
∣∣ . . .

∣∣ υ−2D[k]− y−[k]
}

S∗yy[k] = qr
({√

wY [k]
∣∣√V

}T
)

S−yy[k] = cholupdate
(

S∗yy[k], υ−0 [k], w(c)
0

)

P−xy[k] = w(c)
0 (χ−0 [k]− x−[k])(υ−0 [k]− y−[k])T + w

2D

∑
i=1

(χ−i [k]− x−[k])(υ−i [k]− y−[k])T

Update step for SR-UKF

K[k] = P−xy[k](S
−
yy[k]S

−
yy[k]

T)−1

x+[k] = x−[k] + K[k](ym[k]− y−[k])

S+
xx[k] = cholupdate

(
S−xx[k], K[k]S−yy[k],−1

)

The prediction and update phases of SR-UKF are described in Algo-
rithm 5. Once again, the initial state x+[0] and the initial square root state-
covariance matrix S+

xx[0] =
√

P+
xx[0] are assumed to be set.

3.1.2 Hardware in The Loop Comparison

Experimental Setup

Because of the more numerical stability of SR-UKF with respect to UKF, the
comparison in the SoC estimation task has been performed upon EKF and
SR-UKF.
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Both the SoC estimators have been implemented in an Hardware in the
Loop (HIL) architecture in order to get more realistic results. To this aim,
an Arduino Due board and a Matlab user interface have been configured for
emulating a BMS device managing a single cell BESS. Specifically, the Ar-
duino Due board works as the master device running the SoC estimation al-
gorithms, whereas the Matlab interface emulates the slave device by sending
the values of voltage and current measurements to the master.

Voltage, current, and SoC data has been collected through a pre-
vious acquisition campaign performed on one A123 Nanophosphate
AHR23113M1Ultra-B cell1. In particular, this was a lithium iron-phosphate
cell characterized by a capacity of 2.4 Ah. A realistic and highly dynamic
current profile derived from the US06 driving cycle from the Federal Test Pro-
cedure set has been considered for better analyzing the accuracy and the re-
liability of EKF and SR-UKF. Specifically, the test has been composed of one
hour of rest at zero current followed by six US06 cycles for a total of two
hours of measurements. The real SoC sequence has been evaluated by ap-
plying the coloumb counting algorithm related to expression (1.3) initialized
with the correct SoC value, i.e. SoC[0] = 100 %, and considering the real
capacity Cn = 2.4 Ah. Data has been collected at a sampling time of 1 s,
that is fast enough both for tracking the dynamics of electrochemical cells
and for providing a timely SoC estimation for most of the BESS applications.
Moreover, this sampling time together with the duration of the test ensure a
limited accumulation errors for expression (1.3), so that the obtained SoC se-
quence can be considered close to the real SoC of the cell. The current profile,
the voltage response, and the related SoC sequences are shown in Figure 3.2.

Both SR-UKF and EKF have been implemented on the Arduino Due board
with the aim of investigating which of them offers the most robust and the
most effective SoC estimation upon a limited hardware that will be similar
to that of a real BMS. In order to perform a rigorous comparison between
EKF and SR-UKF, the two algorithms have been tuned with the same model,
the same noise-covariance matrices, and the same initialization of the state-
covariance matrix. Specifically, the considered cell model is the nonlinear
ECM that will be discussed in Section 4.2.1.

1The measurement campaign has been performed by Dr. Gian Luca Storti from the Center
for Automotive Research (CAR), The Ohio State University, Columbus, Ohio, USA.



Chapter 3. BMS Algorithms 58

−20

−10

0

10

20

I i
n

[A
]

3.1

3.2

3.3

3.4

3.5

V
ou

t
[V

]

0 20 40 60 80 100 120
0

0.5

1

Time [m]

So
C

[%
]

Figure 3.2: Current profile, voltage response and SoC evolution related to
the US06 driving cycle.

The convergence capability of the algorithms has been investigated con-
sidering four different initialization values for SoC. The adopted perfor-
mance metric is the percentage error evaluated as follows:

Error [%] = 100

∣∣SoC− ˜SoC
∣∣

SoC
(3.3)

where SoC and ˜SoC are the real and the estimated SoC, respectively. The
configuration of EKF and SR-UKF are summarized as follows:

P+
xx[0] =

(
10−1 0

0 10−4

)
, x+[0] =

(
SoC[0]

0

)
,

Q =

(
10−11 0

0 10−11

)
, V = 10−6,

α = 0.5, β = 2, κ = 0,

Model: Nonlinear ECM2.

2Refer to Section 4.2.1 for more details about this cell model and the related system iden-
tification procedure.
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Experimental Results

The results obtained by setting SoC[0] = 100 % (i.e. the true value) are shown
in Figure 3.3. It can be noticed that both the algorithms perform a good SoC
estimation. In particular, EKF outperforms SR-UKF keeping an error almost
always lower than 0.5 %. Conversely, after losing temporarily the conver-
gence, SR-UKF keeps an error lower than 2 %.
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Figure 3.3: SoC estimation and related error performed by setting SoC[0] =
100 %.

The results obtained considering a 25 % error in the initialization of SoC
(i.e. SoC[0] = 75 %) are shown in Figure 3.4.
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Figure 3.4: SoC estimation and related error performed by setting SoC[0] =
75 %.
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It is clear that EKF does not converge anymore, whereas SR-UKF keeps
the same performances seen before. In particular, it converges in about 20 s
and it keeps again an error lower than 2 % after reaching the convergence.

In order to further investigate the convergence capability of SR-UKF over
higher initialization errors, two more tests have been performed. In particu-
lar, it has been considered an initial SoC of 50 % and 25 %, corresponding to
an initial error of 50 % and 75 %, respectively. EKF has not been considered
since it has not reached the convergence with these initialization values. The
results are shown in Figure 3.5.
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Figure 3.5: SoC estimation and related error performed by SR-UKF by setting
the initial SoC to 50 % and to 25 %.

It can be seen that SR-UKF succeeds again at reaching the convergence
in about 20 s when the initial SoC has been set to 50 %, and in about 25 s
when the initial SoC was 25 %. Furthermore, once again the error committed
is almost always lower than 2 % for both the initialization values once the
convergence has been reached.

The above results highlight that SR-UKF is the most suitable choice for
developing an effective and reliable SoC estimation. Indeed, except the case
when the correct initialization of SoC has been considered, SR-UKF per-
forms a more robust and a more accurate SoC estimation with respect to EKF.
Specifically, EKF achieves a better estimation accuracy only with the correct
initialization, but it loses the convergence capability as the initial SoC is set
with an erroneous value of more than 25 %. Conversely, SR-UKF shows a
more stable performance, reaching the convergence with all the initialization
values, and keeping an error almost always lower than 2 %. This conclusion
is reinforced also by considering the comparable computational cost of the
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algorithms, with both of them requiring about 8 ms for performing one esti-
mation step.

3.2 Real Time Optimal Balancing with a Binary

PSO

3.2.1 Passive Balancing Architecture

The most used technique for performing cells balancing is the passive ap-
proach, in which the most charged cells are discharged on suitable shunt
resistors. In this context, BMS is in charge of determining in real-time which
is the optimal configuration of the shunt resistors in order to maximize the
effectiveness of cells balancing.

An example of BESS equipped with a passive balancing hardware is
shown in Figure 3.6. The battery pack is composed of the series of N cells
ideally identical to each other. A shunt resistor Rs is connected in parallel
to each cell and its activation is managed by means of a related MOSFET
switch. Also the transistors and the shunt resistors are identical to each other
for every cell. The activation of the switches is controlled through the voltage
applied to the gate terminal of the transistors. Indeed, if the gate is connected
to the low digital value, the transistor is interdicted and the switch is OFF.
Conversely, when the gate is connected to the high digital value the transis-
tor is ON and it behaves like a short circuit. Therefore, the state of the ith

switch can be modeled by means of a binary variable, namely si.

Rs Rs Rs

Cell1 Cell2 CellN

s1 s2 sN

Is1 Is2 IsN

Iin Iin

V+ V−

Figure 3.6: BESS equipped with a passive balancing system.

The circuit related to the balancing of the ith cell is shown in Figure 3.7.
Herein, Iin is the overall input current of the BESS, Vouti is the terminal volt-
age of the cell, Rs is the shunt resistor, and si is the binary variable indicating
with 1 and 0 the activation and the deactivation of the MOSFET, respectively.
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Rs

Vouti

si

Iin Iin

Isi

Ici

Figure 3.7: Balancing circuit related to the ith cell.

The input current is split in two components, Ici that flows through the
cell and Isi flowing through the shunt resistor Rs:

Iin = Ici + Isi . (3.4)

When si = 0 the switch is OFF and the shunt resistor is electrically dis-
connected from the cell, resulting in Isi = 0 and Ici = Iin. Otherwise, when
si = 1 the MOSFET is ON and Rs is electrically connected in parallel to the
cell. Assuming that the voltage drop across the MOSFET is negligible, the
current flowing through the resistor is Isi = Vouti /Rs. Thus, the current Ici

flowing through the cell can be expressed as a function of the binary variable
si as follows:

Ici = Iin −
Vouti

Rs
si. (3.5)

It can be noticed that the balancing is performed by subtracting the current
Isi from the cell. This means that an implicit loss of energy happens every
time the shunt resistor is activated.

The aim of the balancing algorithm is to evaluate online which is the bi-
nary vector s = {s1, . . . , sN} that progressively brings all the cells working
as much as possible in the same operating point. Moreover, the development
of the balancing system needs to take into account also the implicit energy
loss related to the activation of the shunt resistors. For this reason, it is desir-
able that the balancing task is performed by limiting the number of the active
shunts in order to avoid excessive energy losses.

3.2.2 Proposed Balancing Algorithm

In the literature, cells balancing is typically performed by considering only
the terminal voltage Vout and by leveling it among all the cells [79]–[81].
However, the terminal voltage is affected by several resistive and transient
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phenomena that weaken the correlation between the voltage of the cell and
its operating point. Indeed, the internal resistance causes instantaneous volt-
age drop as a response to the input current and the internal charge redistribu-
tion results in the typical low pass transient response that any electrochem-
ical cell exhibits in front of sharp variations of the input current. Moreover,
many lithium cells show a flat OCV-SoC curve, resulting in a limited depen-
dence of voltage on SoC in a wide range of operating points. For this reason,
voltage based balancing algorithms can work only when the cells are in the
high SoC range, such that the contribution of the OCV response is prevalent
with respect to the resistive and transient phenomena. It is clear that both of
the previous drawbacks can significantly reduce the effectiveness of the bal-
ancing algorithm. Moreover, because of the not optimal approach, typically
voltage balancing is performed only during the charging phases (i.e. when
Iin > 0) in order to limit the loss of dispatchable energy.

Aiming at overcoming the above discussed drawbacks, it has been devel-
oped a novel approach for determining in real-time the optimal configura-
tion of the passive balancing hardware. Specifically, instead of considering
the terminal voltage, the proposed method aims at leveling directly the op-
erating points of the cells represented by their SoC. In order to do that, the
balancing algorithm has been formulated as an optimization problem aim-
ing at progressively minimizing the variance of the SoC of the cells. Thus,
this approach is not affected by the parasitic voltage responses and it can
be performed independently of the actual cells’ SoC. Moreover, because of
the optimal solution, the proposed approach can be performed both during
the charging and discharging phases without facing an excessive loss of dis-
patchable energy thanks to a fast and optimal leveling of the cells.

The block diagram of the BMS including the proposed balancing system
is shown in Figure 3.8. The architecture is composed of three main units: the
slave device, the SoC estimator, and the balancer.

Vout

Iin
SoCsoptBalancer Slave

Device
SoC

Estimator

Figure 3.8: Block diagram of the BMS including the balancing system.

Slave device: It is the slave board of the BMS architecture including the
electronic hardware devoted to the measurements of the cells’ voltage
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Vout = {Vout1 , . . . , VoutN} and of the input current Iin, as well as to the
actuation of passive balancing.

SoC estimator: It performs the SoC estimation for each cell by means of the
SR-UKF algorithm. The SoC estimator receives as input the measure-
ments of the current Iin and of the cells’ voltage Vout, and it provides as
output the SoC of each cell SoC = {SoC1, . . . , SoCN}.

Balancer: It evaluates at each time-step the optimal configuration of the
switches sopt = {s1, . . . , sN} resulting in the best achievable leveling of
the cells’ SoC. The balancer receives as inputs the measurements of Iin,
Vout, and the vector of the estimated state of charges SoC. It provides
as output the best configuration sopt.

The balancing algorithm aims at evaluating at each instant k which is the
optimal configuration sopt resulting in the maximum achievable minimiza-
tion of the SoC variance in the present time-step. In order to perform this
task, it has been necessary to evaluate an s dependent prediction of the fu-
ture SoC. Given the measurements Iin[k] and Vout[k], as well as the SoC es-
timations SoC[k] provided by the SoC estimator, the predicted SoC∗[k + 1]
can be evaluated by applying the coloumb counting expression. Thus, the
predicted SoC for the ith cell can be written as follows:

SoC∗i [k + 1] = SoCi[k] +
Ts

Cn
Ici [k]. (3.6)

Expression (3.5) can be substituted in (3.6), obtaining:

SoC∗i [k + 1] = SoCi[k] +
Ts

Cn

(
Iin[k]−

Vouti [k]
Rs

si

)
. (3.7)

Two terms can be identified in the above formula:
ai = SoCi[k] +

Ts

Cn
Iin[k]

bi =
Ts

Cn

Vouti [k]
Rs

si

(3.8)

where ai is coincident with the future SoC without the presence of the shunt
resistor, whereas bi is the amount of charge subtracted from the cell due to
the connection of Rs.
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By assigning a = {a1, . . . , aN} and B equal to the diagonal matrix whose
ith element is bi, the predicted SoC can be rewritten as follows:

SoC∗(s) = ai − Bs (3.9)

where the term SoC∗[k + 1] has been expressed as a function of the binary
variables s and the temporal dependence has been neglected for simplicity.

Let µ∗(s) be the average of SoC∗[k + 1], the unbiased variance of the pre-
dicted SoCs can be evaluated as follows:

σ∗SoC(s) =
(SoC∗(s)− µ∗(s))T (SoC∗(s)− µ∗(s))

N − 1
(3.10)

where again the temporal dependence has been neglected for simplicity.
Consequently, at each time-step k the balancer has to solve the following op-
timization problem in order to progressively minimize σ∗SoC:

sopt = argmin
s

σ∗SoC(s)

s.t. s ∈ {0, 1} .
(3.11)

The problem defined in (3.11) performs cells balancing without taking
into account the amount of energy lost in the activation of the shunt resis-
tors. Indeed, the best solution should achieve the maximum leveling of the
cells by activating the minimum number of switches at the present time-step.
This condition can be formalized by forcing the solution vector sopt to be
sparse. To this purpose, the `1 regularization [153] is a well known method
for achieving sparse solutions from an optimization problem. Therefore, the
`1 regularization has been included in the problem (3.11) in order to make the
balancing algorithm more energetically efficient. The resulting `1 regularized
version of problem (3.11) is formalized as follows:

sopt = argmin
s

σ∗SoC(s) + λ ∑ |si|

s.t. s ∈ {0, 1}
(3.12)

where λ is the regularization coefficient and the |.| operator evaluates the
absolute value.

Both the optimization problems defined in (3.11) and (3.12) belong to the
zero-one integer programming. Therefore, it has been necessary to use opti-
mization techniques able to deal with binary variables. In particular, being
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both (3.11) and (3.12) non-convex problems, heuristic methods must be con-
sidered. Thus, both of them have been solved by means of the MSHG-BPSO
algorithm explained in Section 2.4.

3.2.3 Tests and Results

Experimental Design

The developed balancing algorithm has been validated by investigating its
effectiveness at dealing with the main causes of an unbalanced BESS. The
first source of a systematic unbalancing is related to the stochastic nature of
the manufacturing process. Indeed, despite a specific electrochemical cell is
declared to have a certain nominal capacity, each manufactured one is char-
acterized by a slightly different Cn. Consequently, every cell composing the
BESS is systematically dissimilar from the others and it has a likewise dif-
ferent charging/discharging rate in front of the same input current. Second,
every cell is characterized by a different capacity fade related to the aging
process. Thus, even if all the cells start from a quite close value of Cn, the
aging effect causes a progressive divergence of their real capacity. Also in
this case, the consequence is a different charging/discharging rate in front of
the same input current. Finally, it is possible that the cells start working with
different initial SoC values.

In order to allow a flexible testing of the proposed method in front of all
the three unbalancing causes, the BESS has been simulated by using a suit-
able model of electrochemical cells. Specifically, the ECM discussed in Sec-
tion 4.2.2 has been considered for this task. The simulated BESS has been
implemented by considering the series connection of N models. Each of
them was characterized by both a random value of the initial capacity and
a random linear fading of it. These choices have aimed at emulating the ran-
domness of the manufacturing process and of the aging effect, respectively.
The initial capacity of each cell has been drawn from a normal distribution
whose average value is the plate capacity Cn and the standard deviation is
γ Ah. Moreover, the aging effect has been emulated with the following ex-
pression: {

C̃ni [0] = N (Cn, γ)

C̃ni [k] = C̃ni [k− 1]− δik
(3.13)

where C̃ni [k] is the actual capacity of the ith cell at the kth time-step, N (.) is
the normal distribution, and the fading rate δi is a constant value drawn from
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a uniform distribution. Furthermore, the SoC of each cell has been initialized
with a random value drawn from a uniform distribution as well.

The balancing algorithm has been tested by simulating the use of the BESS
in the powertrain of a pure electric vehicle. To this aim, the software Ad-
vanced Vehicle Simulator (ADVISOR) [154] has been considered for retrieving
the charging/discharging current interesting the BESS during a simulated
journey of the vehicle. In particular, ADVISOR has been set for emulating an
electric vehicle similar to the Nissan Leaf, whose specifications are shown in
Table 3.1.

Table 3.1: Vehicle configuration in ADVISOR

Powertrain Weight Motor ESS Energy ESS Capacity

Electric 2068 Kg AC 83 KWh 30.6 KWh 85 Ah

The journey has been built by mixing urban and highway driving cycles
from the Federal Test Procedure (FTP) repository with rests and battery charg-
ing phases. The obtained current profile has been firstly normalized with
respect to the capacity of the BESS used in ADVISOR and successively re-
scaled to the nominal capacity of the cell simulated with ECM. The list of
the driving cycles composing the journey is shown in Table 3.2, whereas the
resulting speed and charging profiles are shown in Figure 3.9.

Table 3.2: List of the driving cycles composing the journey

Name∗ Duration [s] Distance [km]

Rest 600 0
NREL2VAIL 4320 105.2
Rest 600 0
Charge 7200 0
Rest 600 0
UDDS 1370 12
US06 600 12.89
ARB02 1640 31.91
Rest 3600 0

Tot. 20530 162.00

∗The acronyms refer to the driving cycles belonging to the FTP repository.

Experimental Results

The validation of the proposed balancing approach has been performed on
a BESS counting N = 10 cells. In particular, ECM simulates the Li-ion cell
model 18650 having nominal capacity of 2.1 Ah related to the Randomized
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Figure 3.9: Speed and charging profiles used for testing the balancing algo-
rithm.

Battery Usage Data Set collected by the NASA Ames Research Center [155]. ECM
has been configured with 3 RC dipoles and the sampling time has been set
to 1 s. Refer to Section 4.2.2 for more details about this cell model and the
related system identification procedure.

The real capacities of the ten cells have been evaluated by applying ex-
pression (3.13) with Cn = 2.1 Ah and γ = 0.1 Ah. The fading coefficient
δi has been chosen randomly from the range [0, 1e-5] in order to achieve a
maximum capacity fade of 0.2 Ah along the 20530 time samples composing
the simulated journey. The resulting capacities are shown in Figure 3.10.
Moreover, the SoC of each cell has been randomly initialized in the range
[75 %, 100 %].
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Figure 3.10: Simulated capacity fade for the ten cells composing the BESS.

SoC estimation has been performed with SR-UKF. In particular, ten state
observers have been instantiated, each one performing SoC estimation upon
a single cell of the BESS. All of the SoC estimators have been initialized with
an SoC value of 50 %. In particular, the choice of initializing the SR-UKFs
with a wrong SoC value has aimed at investigating if the effectiveness of the
developed balancing algorithm is affected by erroneous SoC estimations, as
well as if the influence of the balancer unit can affect the convergence capa-
bility of the SR-UKFs. Moreover, it is worth noting that both the SoC estima-
tor and the balancer unit consider the plate capacity Cn for performing their
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tasks. This is because it is not possible to known online the real value of the
cells capacity until specific offline tests are performed on them. Therefore, the
only reasonable choice has been to consider the nominal capacity declared by
the manufactured for performing both the SoC estimation and the balancing
algorithms. As a consequence, SR-UKF can temporary lose the convergence
from the real SoC, providing then erroneous estimations, as well as also the
prediction of the future SoC performed by the balancer unit can be wrong.
Thus, it will be interesting to verify the robustness of the proposed balancing
algorithm with respect to the previous discussed issues.

The configuration of MSHG-BPSO is shown in Table 3.3, in which Npop,
Nmut, Ncrs, G, and Nitr refer to the number of individuals, the number of mu-
tations, the number of crossovers, the number of sub-swarms, and the maxi-
mum number of iterations, respectively. Specifically, the number of individ-
uals and iterations have been chosen looking for the best trade-off between
effectiveness and speed.

Table 3.3: MSHG-BPSO Configuration

Npop ω cp cg Nmut Ncrs K G N itr

30 0.7298 1.4962 1.4962 3 4 6 1 30

The proposed balancing algorithm has been compared with a standard
voltage based approach. More precisely, the procedure explained in refer-
ence [81] has been considered. In this balancing algorithm, only the cells
having the terminal voltage Vouti greater than a suitable threshold Vth are
considered for being balanced. This is because voltage based methods can
operate only with cells having a high SoC value, and the voltage threshold
aims at selecting only these cells. Successively, the actual activation of the
switches is conditioned to the voltage difference between the selected cells
and those having a lower voltage value with respect to them. More precisely,
the switch is activated only when the maximum of this voltage difference is
greater than another suitable threshold ∆Vth. This procedure aims at ensur-
ing a faster balancing of the BESS by activating the switches only for those
cells having an operating point farther from the others. Summarizing, the
voltage based balancing is formalized with the following logic condition:

si = Vouti > Vth ∧ max
Voutj<Vouti

∣∣∣Vouti −Voutj

∣∣∣ > ∆Vth. (3.14)
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Figure 3.11: Actual applied current, terminal voltage, real and estimated SoC
for different balancing algorithms. (a) No balancing. (b) Voltage balancing.
(c) MSHG-BPSO balancing. (d) MSHG-BPSO balancing with `1 regulariza-
tion.

Even if the considered voltage based approach should be performed only
during the battery charging phases, the procedure has been applied indepen-
dently of the sign of the input current in order to achieve a fair comparison
with the proposed balancing approach.

The results achieved by four distinct balancing schemes are shown in Fig-
ure 3.11. Part (a) refers to a BMS without any kind of balancing system. Part
(b) is related to the voltage based algorithm configured with Vth = 3.8 V and
∆Vth = 0.05 V. Parts (c) and (d) refer to the MSHG-BPSO algorithm solving
the baseline problem (3.11) and the regularized one (3.12), respectively. With
regards to the regularized approach, the coefficient λ has been set equal to
1e-6. This value has proved to offer the best trade-off between an effective
balancing of the cells and the energetic efficiency of the procedure. Indeed,
the introduction of the `1 regularization limits the number of cells being bal-
anced at the same time. Therefore, a too high value of λ will compromise the
effectiveness of the balancing, whereas a too small value reduces the ener-
getic efficiency of the procedure.
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The results without the balancing system highlights the importance of
performing an effective cells balancing. Indeed, it can be seen in Fig-
ure 3.11(a) that BMS was forced to limit the total charging current at the end
of the charging phase. This is because some of the cells were close to the
maximum allowed voltage (4.2 V) and it was necessary to limit the charging
current for avoiding damages to them. Consequently, the entire BESS has
received less charge than the expected one, despite that only few of the cells
were close to the upper boundaries.

With regards to the balancing approaches, the MSHG-BPSO methods
have achieved a more effective balancing with respect to the voltage based
one. Indeed, MSHG-BPSO has succeeded at leveling all the cells in less
than two hours considering both the baseline and the regularized problems.
Moreover, the proposed approach was able to keep balanced the battery pack
despite the effect of the random aging. It is remarkable that the effective-
ness of the proposed balancing approach has not been affected neither by
the wrong initial SoC values, nor by the erroneous SoC estimations caused
by the difference between the actual cells’ capacity and that used in SR-UKF.
Furthermore, none of the SR-UKFs has shown convergence issues related to
the effect of cells balancing. Conversely, the voltage based algorithm has
reached a good balancing only for 7 of the 10 cells, as well as this method
was not able to maintain the achieved balancing for the remainder of the test.
These observations are confirmed also by analyzing the initial, final, and av-
erage differences between the highest and the lowest SoC values among the
cells, as shown in Table 3.4.

Table 3.4: Initial, final, and average difference between the maximum and
minimum SoC values among the cells

No Bal. Voltage MSHG-BPSO MSHG-BPSO `1 Reg.

Initial 21.4 % 21.4 % 21.4 % 21.4 %
Final 22.1 % 7.0 % 1.2 % 3.2 %
Average 22.2 % 10.7 % 3.8 % 5.2 %

Three metrics have been used for comparing the balancing performances.
The first one is the unbiased variance of the actual state of charge ˜SoC evalu-
ated by means of expression (3.6) and considering the real capacity C̃ni of the
cells. The second metric is the unbiased variance of the cells’ voltage. Finally,
the third metric is the energy lost for the activation of the shunt resistors. The
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three metrics are formalized in the following expressions:

σSoC[k] =
( ˜SoC[k]− µ̃[k]

)T ( ˜SoC[k]− µ̃[k]
)

N − 1
(3.15)

σVout [k] =
(Vout[k]− ν[k])T (Vout[k]− ν[k])

N − 1
(3.16)

L[k + 1] = L[k] +
N

∑
i=1

si[k]
Vouti [k]

2

Rs
Ts (3.17)

where µ̃[k] and ν[k] are the average of the actual SoC and of the cells voltage
evaluated at the kth time-step, respectively. The energy loss L has been eval-
uated through the discrete integral of the instantaneous power dissipated
upon the active shunt resistors. The three metrics evaluated for all the bal-
ancing schemes are shown in Figure 3.12.
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Figure 3.12: Comparison between the balancing algorithms in terms of SoC
variance, voltage variance and total energy loss.

The MSHG-BPSO algorithm solving the baseline problem has achieved
the best performances both in the SoC variance and voltage variance. Never-
theless, the better balancing of the BESS is counterbalanced by the highest en-
ergy losses. This is because the baseline problem (3.11) does not take into ac-
count the energy dissipated from the activation of the switches. Conversely,
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the performances of MSHG-BPSO applied to the regularized problem are re-
markable. As expected, the introduction of the `1 regularization has reduced
the balancing performances in front of a better energetic efficiency with re-
spect to the baseline problem. Despite that, this method has achieved a better
balancing with respect to the voltage based approach with a slightly higher
and still comparable energy losses. More precisely, the total amount of en-
ergy dissipated by the activation of the shunt resistors is 6.24 Wh, 12.89 Wh,
and 8.55 Wh for the voltage based balancing, the baseline MSHG-BPSO, and
the regularized MSHG-BPSO, respectively.

The proposed approach is clearly more computationally demanding with
respect to the voltage based balancing. Indeed, it solves an optimization
problem at each time-step, whereas the voltage based method requires the
evaluation of a single logic condition. Thus, it will be necessary to evaluate
its suitability for being applied in real-time tasks.

Even if the MSHG-BPSO algorithm has achieved very interesting and ef-
fective results, in particular when solving the regularized problem, the pro-
posed procedure will be clearly more advantageous considering an active
balancing hardware. Indeed, in this case the entire system will be not af-
fected by the energy losses due to the activation of the shunt resistors, and
the MSHG-BPSO algorithm shall determine which cells must be charged, in-
stead of discharged. Thus, future works will focus on the application of the
proposed procedure to an active balancing system in order to further im-
prove the effectiveness and efficiency of BESSs.
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Chapter 4

Modeling Electrochemical Cells

4.1 Modeling Background

Any electrochemical cell is a nonlinear dynamical system whose behavior is
affected by several physical quantities, namely the input current, the terminal
voltage, the cell temperature, and the amount of stored charge. As any non-
linear dynamical system, also electrochemical cells can be described through
the following discrete time state form:

x[k + 1] = F (x[k], u[k])

y[k] = G(x[k], u[k])
(4.1)

where x, u, and y are the internal states, the input variables, and the out-
put variables vectors, respectively, F (.) and G(.) are the nonlinear functions
defining the state update and the output equations, respectively.

In accordance with reference [51], the typical voltage response of any elec-
trochemical cell due to a given input current can be thought as the superim-
position of three main nonlinear contributions. Each of these distinct volt-
age responses is related to a different timescale, namely the instantaneous,
the dynamic, and the quasi-stationary ones. The instantaneous response Vist

tracks the memoryless relationship between the input current and the ter-
minal voltage due to the internal resistance. The dynamic contribution Vdyn

tracks the voltage transient response related to the internal charge redistri-
bution which exhibits a low pass behavior with respect to the input current.
Finally, the quasi-stationary term Vqst is coincident with the OCV and it is
the voltage contribution related to the amount of charge actually stored in
the cell.

Because of the nonlinear electrochemical processes occurring during the
charging/discharging phases, each of the internal voltage responses can have
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a potential nonlinear dependence on the current Iin, SoC, and the cell temper-
ature Tin. Therefore, the canonical state form equations of electrochemical
cells can be formalized as follows:

SoC[k + 1] = FSoC (SoC[k], Iin[k])

Vdyn[k + 1] = Fdyn
(
Vdyn[k], SoC[k], Iin[k], Tin[k]

)
Vout[k] = Vqst (SoC[k], Iin[k], Tin[k]) + Vdyn[k]+

+ Vist (SoC[k], Iin[k], Tin[k])

(4.2)

where k is the temporal index, the output variable is the terminal voltage
Vout, the state variables are SoC and Vdyn, and Fdyn(.), Vqst(.), and Vist(.) are
nonlinear functions.

The state update functionFSoC(.) is well defined by the coloumb counting
algorithm. Therefore, FSoC(.) is coincident with expression (1.3), so that it is
dependent only on the previous SoC and the input current Iin. Thus, the
temperature quantity has not been considered as input variable of FSoC(.).

The block diagram corresponding to (4.2) is shown in Figure 4.1, where
uist, udyn, and uqst refer to the inputs related to the instantaneous, dynamic,
and quasi-stationary responses, respectively. From a general point of view,
these inputs are tuples composed of the physical quantities Iin, Tin, and SoC.

Iin[k]

Tin[k]

In
pu

tM
ap
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ng

FSoC(SoC, Iin)

z-1SoC[k−1]

SoC[k] udyn[k] Fdyn(Vdyn, udyn)

z-1Vdyn[k−1]

Vdyn[k]

uist[k] Vist(uist)
Vist[k]

uqst[k] Vqst(uqst)

Vqst[k]

+
Vout[k]

Figure 4.1: Block diagram of the discrete system modeling electrochemical
cells.

It has been largely discussed in reference [51] the importance of accurately
identifying and separating the three main distinct voltage responses of elec-
trochemical cells. Indeed, an effective separation and approximation of Vist,
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Vdyn, and Vqst is critical for improving the model performances and accuracy.
Moreover, it allows a physical interpretation of each distinct voltage response
that is helpful for exposing the insights on the cell physics which importance
has been discussed in Section 1.2.

4.2 White Box Technique

4.2.1 Nonlinear Equivalent Circuit Model

Model Background

The first developed model takes inspiration from the nonlinear ECM pro-
posed in reference [51] and illustrated in Figure 4.2.

Vqst Cqst

Vist

Rist

Vdyn

Rdyn1

Cdyn1

Rdyn2

Cdyn2

RdynM

CdynM
Vout

Iin

Figure 4.2: Nonlinear ECM proposed in [51].

This circuit aims at providing an ECM able to reflect the nonlinear phys-
ical behaviors of electrochemical cells. Thus, both the quasi-stationary and
the instantaneous voltage responses are modeled by means of nonlinear elec-
tric components, respectively a nonlinear capacitor and a nonlinear resistor.
In particular, the electrical behavior of Cqst is implemented by means of the
OCV-SoC curve, whereas Rist emulates the different resistive behavior that
electrochemical cells expose in front of different current values, especially
when opposite in sign. Conversely, the low-pass transient response related
to Vdyn is modeled by means of the series connection of M parallel Resistor-
Capacitors (RC) dipoles. The state form system equations of the model are
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expressed as follows:

SoC[k + 1] = SoC[k] +
Ts

Cn
Iin[k]

Vdyn1
[k + 1] = Vdyn1

[k]e
−Ts

τdyn1 + Rdyn1
Iin[k]

(
1− e

−Ts
τdyn1

)
... =

...

VdynM
[k + 1] = VdynM

[k]e
−Ts

τdynM + RdynM
Iin[k]

(
1− e

−Ts
τdynM

)
Vout[k] = Vqst(SoC[k]) +

M

∑
i=1

Vdyni
[k] +Rist(Iin[k])Iin[k]

(4.3)

where the nonlinear function Vqst(.) is coincident with the OCV-SoC curve
used for modeling the nonlinear capacitor Cqst, whereasRist(.) is the nonlin-
ear function modeling the nonlinear resistor Rist.

The system identification procedure is based on the analysis of the voltage
response of the cell to the current profile shown in Figure 4.3.
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Figure 4.3: Current profile used for performing system identification upon
the nonlinear ECM.

This current profile aims at exciting and exposing each of the distinct volt-
age responses in order to allow their proper identification. In particular, start-
ing from a full charged cell, the procedure consists in a constant current dis-
charge phase followed by a corresponding constant current charge. Both the
discharge and the charge phases involve the application of a current pulse
of the same width I and duration ∆T, so that the transferred charge is ∆Q.
Moreover, rest periods are present at the beginning of the test, between the
discharge and charge pulses, and at the end of the test in order to allow the
transient responses to decay.

The identification procedure consists in three subsequent steps performed
by analyzing the voltage response to the pulse edges, the rest periods, and
the charging/discharging periods, respectively.
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Edges: The first step consists in analyzing the voltage response to the edges
of the current pulses in order to identify the instantaneous contribu-
tion. Indeed, the effect of the internal resistance causes a sudden volt-
age drop as a response to the current step. Therefore, it is possible to
evaluateRist(I) as follows:

Rist(I) =
∆V

I
(4.4)

where ∆V is the width of the voltage drop and I is the width of the
current pulse. Moreover, it is possible to track the variation of Rist(.)
with respect to the input current by applying the same procedure using
different current rates.

Rest Periods: Since Iin = 0 during the rest periods, then Vqst keeps constant
and Vist is zero as well. Therefore, only the dynamic contribution is
active and it is possible to identify the components Rdyni

and Cdyni
as

the parameters resulting in the best fitting of the transient voltage re-
sponses.

Discharge/Charge Pulses: All the three voltage responses are active during
the charging/discharging periods. Nevertheless, it is possible to re-
trieve Vqst by difference, since both the instantaneous and the dynamic
contributions have been estimated in the previous steps:

Vqst(t) = Vout(t)−Vdyn(t)−Vist(t). (4.5)

This procedure allows to estimate the OCV-SoC curve for both the
charging and the discharging distinct processes. A unique Vqst(.) func-
tion is evaluated considering the average curve between the charging
and discharging OCV-SoC curves.

Nonlinear RC Dipole for Modeling the Low-Pass Transient Response

The dynamic contribution plays a fundamental role at determining the global
effectiveness of the whole cell model. Indeed, according to expression (4.5)
Vqst can be accurately estimated only if the model provides an accurate ap-
proximation of the transient phenomena.

In the literature, the dynamic response is commonly modeled through the
series connection of a suitable number of RC parallel dipoles [51], [86]–[88].
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This solution is justified by the similarity between the measured transient re-
sponse of the cell and the transient response of a low-pass filter. However,
this assumption could be inadequate due to the intrinsic nonlinear nature
of the device. In addition, there is not a systematic procedure to choose the
number of RC dipoles. In fact, this choice is strictly dependent on the de-
signer experience and it is performed looking for a good trade-off between
complexity and accuracy. For example, in [88], [86], [156], [51], and [87] a
single, two, two, three, and eight RC dipoles have been considered, respec-
tively. In general, the model accuracy enhances with the increasing of the
filter order, but this implies an increasing model complexity, as well as an
increased state space dimension that results in an impracticable SoC estima-
tion by means of Kalman filters. Furthermore, there may exist several sets of
couples Rdyni

, Cdyni
producing a good fitting of the same transient response

with the same filter order M.
An alternative modeling of the transient response has been proposed aim-

ing at solving the previous issues. In particular, the dynamic contribution has
been modeled by means of a single nonlinear RC dipole, where it has been
chosen to further use nonlinear electrical components for achieving a model
closer to the nonlinear physical behavior of electrochemical cells. The pro-
posed model is shown in Figure 4.4.

Vqst Cqst

Vist

Rist

Vdyn

Rdyn

Cdyn Vout

Iin

Figure 4.4: Proposed nonlinear ECM.

The modeling of Vqst and Vist is coincident with that of Figure 4.2. Con-
versely, Vdyn is modeled by means of the parallel connection of one standard
linear resistor and one nonlinear voltage driven capacitor. This solution al-
lows to overcome the uncertainty in the number of RC filters because the
model uses only one nonlinear dipole. As a consequence, the state space
dimension decreases, allowing to reduce the computational cost of the SoC
estimator. Moreover, the presence of only one dipole helps in making more
robust the identification of Rdyn and Cdyn, since most likely there will be less
local optimum solutions.
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System Identification Procedure for the Nonlinear RC Dipole

Let Qc and Vc be the stored charge and the terminal voltage of a nonlinear
capacitor, respectively, the related constitutive equation is expressed as fol-
lows:

Qc(t) = f (Vc(t)) (4.6)

where t is the time variable and f (.) is a generic nonlinear function. By eval-
uating the derivative with respect to time, expression (4.6) becomes:

dQc(t)
dt

=
d f (Vc(t))

dt
=

d f (Vc(t))
dVc

dVc

dt
. (4.7)

Being dQc(t)/dt coincident with the current Ic flowing through the capac-
itor and indicating with V̇c(t) the time derivative of Vc, expression (4.7) can
be rewritten as follows:

Ic(t) =
d f (Vc(t))

dVc
V̇c(t). (4.8)

By comparing the above expression with the constitutive equation of a linear
capacitor I = CV̇, it is possible to define the nonlinear capacitor as follows:

C(Vc(t)) =
d f (Vc(t))

dVc
(4.9)

where C(.) is the value of the capacity expressed as a nonlinear function of
the terminal voltage Vc.

The voltage response of the nonlinear RC dipole can be retrieved by mix-
ing the constitutive equation of the nonlinear capacitor with that of the lin-
ear resistor. Let Ic, Ir, Iin, and Vdyn be the current flowing through Cdyn, the
current flowing through Rdyn, the input current of the cell, and the voltage
measured on the RC dipole, respectively, then:

Iin(t) = Ic(t) + Ir(t)

Iin(t) = Cdyn(Vdyn(t))V̇dyn(t) +
Vdyn(t)

Rdyn

⇒ V̇dyn(t) =
Iin(t)

Cdyn(Vdyn(t))
−

Vdyn(t)
RdynCdyn(Vdyn(t))

(4.10)

and defining the characteristic time function of the nonlinear capacitor as
follows:

Tdyn
(
Vdyn(t)

)
= RdynCdyn

(
Vdyn(t)

)
(4.11)
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the governing equation of the nonlinear RC dipole is:

V̇dyn(t) =
1

Tdyn
(
Vdyn(t)

) (Rdyn Iin(t)−Vdyn(t)) (4.12)

whose discrete time version can be expressed as follows:

Vdyn[k + 1] = Vdyn[k]e
−Ts

Tdyn(Vdyn[k]) + Rdyn Iin[k]

(
1− e

−Ts
Tdyn(Vdyn[k])

)
. (4.13)

According to expressions (4.12) and (4.13), the transient model is totally
defined by the value of Rdyn and by the nonlinear function Tdyn(.). In order to
estimate these parameters, the current profile shown in Figure 4.3 is applied
to the cell and the rest periods are considered, as discussed in Section 4.2.1.

The value of Rdyn can be simply estimated as follows:

Rdyn =
∆Vdyn

I
(4.14)

where ∆Vdyn = V∞
dyn − V0

dyn is the total voltage drop of the rest period, with
V0

dyn and V∞
dyn being the voltage at the beginning and at the end of the tran-

sient response, respectively.
The identification of the characteristic time function Tdyn(.) has been per-

formed by applying a sampling and interpolating approach. In particu-
lar, this method uses a limited number L of samples equally distributed in
the function domain as representatives of the nonlinear function to identify.
Then, the L samples are interpolated with a cubic polynomial in order to re-
cover the overall shape of the function. Thus, the identification procedure is
in charge of finding only the values of the L samples, searching for the best
sampling representation of Tdyn(.). A graphic example of the procedure is
illustrated in Figure 4.5.
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Figure 4.5: Sampling and interpolating approach for the identification of the
nonlinear function Tdyn(.).
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The identification of the L samples has been performed by means of the
MSHG-PSO algorithm presented in Section 2.4. Herein, the position of each
particle θ is the vector having as components the samples of Tdyn(.):

θ =
{

τdyn1
, . . . , τdynL

}
(4.15)

where τdyni
is the ith sample of the Tdyn(.) function.

The fitness of each particle has been evaluated by first interpolating the
samples τdyni

and successively by evaluating the voltage transient response
of the RC dipole by means of expression (4.13). More precisely, the fitness F

has been defined as a convex linear combination of two terms, representing
respectively the estimation error ε and a penalty function ν:

F(θ) = γε + (1− γ)ν (4.16)

where γ ∈ [0, 1] sets the weight between ε and ν.
The estimation error ε has been evaluated by means of the Root Mean

Squared Error (RMSE) between the estimated voltage response Ṽdyn and the
measured one Vdyn. RMSE has been evaluated both for the positive and the
negative transient responses and the average value has been considered as
follows:

RMSE+ =

√√√√ 1
K

K+

∑
k=1

(
V+

dyn[k]− Ṽ+
dyn[k]

)2

RMSE− =

√√√√ 1
K

K−

∑
k=1

(
V−dyn[k]− Ṽ−dyn[k]

)2

ε =
RMSE+ + RMSE−

2

(4.17)

where the + superscript refers to the positive transient, the − superscript to
the negative transient, and K is the number of time samples composing the
transient responses.

The penalty function ν has been added in order to avoid that any compo-
nent of the vector approximating the function Tdyn(.) assumes some incon-
sistent value. In particular, ν has been evaluated as follows:
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νi =


lb− τdyni

if τdyni
< lb,

τdyni
−Ub if τdyni

> Ub,

0 otherwise

ν =
L

∑
i=1

νi

(4.18)

where lb and Ub are the minimum and the maximum admissible value for
each samples τdyni

, respectively. In particular, the lower bound lb was nec-
essary because no value can be less or equal to zero. In fact, a negative or a
zero value of Tdyn(.) corresponds to an unstable system. On the other hand,
the higher bound Ub has forced the characteristic time function under a rea-
sonable value.

Performance Analysis

The proposed nonlinear ECM and the related system identification proce-
dure have been tested on the same A123 Nanophosphate AHR23113M1Ultra-B
cell used in Section 3.1. To this aim, the current profile of Figure 4.3 has
been set with a charging/discharging pulse of width I = 0.4 A and duration
∆T = 6 h, resulting in a total transferred charge ∆Q = 2.4 Ah. The voltage
response of the cell is shown in Figure 4.6, where the value ∆Vdyn used for
identifying Rdyn has been highlighted.
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Figure 4.6: Voltage response of the A123 Nanophosphate AHR23113M1Ultra-B
cell to the current profile used for the system identification procedure.
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Before performing the estimation of Tdyn(.), both the positive and nega-
tive transient responses have been normalized with respect to ∆Vdyn:

V̂dyn =
Vdyn −V0

dyn

∆Vdyn
. (4.19)

This normalization has allowed to simplify and generalize the identification
procedure, because it automatically transforms the negative transient in a
positive one and it makes possible to apply the same procedure to different
electrochemical technologies.

The configuration of the MSHG-PSO algorithm is summarized in Ta-
ble 4.1, where it has been noted also the configuration of the parameters γ,
lb, and Ub related to the evaluation of the fitness function.

Table 4.1: MSHG-PSO Configuration

Npop ω cp cg Nmut Ncrs K G Nitr γ lb Ub

100 0.7298 1.4962 1.4962 3 4 10 5 1000 0.8 10 4e4

The identification procedure has been repeated considering different L
values in order to retrieve the most suitable number of samples needed for
approximating Tdyn(.). Precisely, the values 7, 9, 11, 13, 15, 17, 19, and 21
have been tested. The obtained functions Tdyn(.) are shown in Figure 4.7.
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Figure 4.7: Tdyn(Vdyn) function obtained considering different number of
samples L.

Although the different resolution, the resulting functions are very similar
to each other and all of them show an asymmetrical shape, meaning that the
cell has a different response among the positive and the negative transients.
The main differences occur at Vdyn = 0, most probably because the acquisi-
tion noise is more relevant for voltage values close to zero, where the signal to
noise ratio becomes excessively small. Table 4.2 summarizes the best fitness
achieved with the different number of samples and the related number of
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iterations to get convergence. The contiguity of the fitness values highlights
that the differences between the several Tdyn(.) functions around Vdyn = 0
are not so significant for the final estimation accuracy. Therefore, it has been
concluded that the best configuration counts L = 13 samples, because it has
achieved the best trade-off between accuracy and time to convergence. The
resulting Tdyn(.) function obtained with 13 samples is shown in Figure 4.8.

Table 4.2: Results obtained varying the number of samples

L Convergence at Iter F

7 160 2.15e-2
9 163 2.12e-2
11 197 2.07e-2
13 223 2.04e-2
15 422 2.03e-2
17 454 2.03e-2
19 727 2.02e-2
21 646 2.02e-2
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Figure 4.8: Tdyn(Vdyn) function obtained by applying the identification pro-
cedure with L = 13 samples.

The performances of the proposed model have been compared with that
of the ECM shown in Figure 4.2 in which Vdyn has been approximated con-
sidering 3 linear RC dipoles. In particular, the values of the resistors and ca-
pacitors have been retrieved by using again the MSHG-PSO algorithm. The
obtained values are summarized in Table 4.3.

Table 4.3: Identified Rdyn and Cdyn values for the reference ECM

Group Rdyn [Ω] Cdyn [F] τdyn [s]

First 1.97e-2 5.33e3 1.05e2
Second 1.66e-2 9.30e4 1.54e3
Third 1.17e-2 1.02e6 1.78e4

A first comparison between the linear and the nonlinear modeling of the
dynamic contribution can be seen in Figure 4.9. Herein, the fitting perfor-
mances of the two models during the rest periods are compared.
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Figure 4.9: Comparison between the measured voltage and the voltage esti-
mated by the linear and the nonlinear RC models.

It can be seen that the linear RC model is too fast in the first part of the
positive transient and it is too slow in the first part of the negative transient.
Conversely, the proposed nonlinear RC approach shows a better fitting in
both the positive and the negative transient responses.

In order to consider a more realistic testing condition, the model perfor-
mances have been analyzed upon the current profile shown in Figure 4.10
and derived from the US06 driving cycle test. This driving cycle has been
chosen because it provides a highly dynamic current profile that widely ex-
cites the transient response of the dynamic contribution.
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Figure 4.10: Current profile related to the US06 driving cycle.

Again the performance of the proposed ECM equipped with the nonlin-
ear RC dipole has been compared with that of the ECM equipped with 3
linear RC groups. In particular, the percentage error committed at estimat-
ing the output voltage has been considered as performance metric and it has
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been evaluated as follows:

Error [%] = 100
Ṽout −Vout

Vout
(4.20)

where Vout is the measured voltage and Ṽout is the estimated one.
The performances of the two models have been analyzed considering the

application of the US06 driving cycle when the cell has two different initial
conditions, specifically SoC[0] = 60 % and SoC[0] = 100 %1. The obtained
results are shown in Figure 4.11.
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Figure 4.11: Voltage estimation accuracy of the ECMs equipped with the
nonlinear RC dipole and the three linear RC dipoles.

The proposed model has obtained the best results considering both the
initial SoC values. Indeed, it has kept a percentage error generally limited in
the range of [−1 %, 2 %], with only two error peaks at −4 % for the test with
SoC[0] = 100 %. Conversely, the ECM with linear RC dipoles has shown a
repetitive error peak over the −3 %. The same conclusions can be drawn by
analyzing the overall RMSE performed by the two models and summarized
in Table 4.4.

1The measurement campaign has been performed by Dr. Gian Luca Storti from the Center
for Automotive Research (CAR), The Ohio State University, Columbus, Ohio, USA.
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Table 4.4: Comparison between the resulting RMSE

Model RMSE RMSE
SoC[0] = 60 % SoC[0] = 100 %

3 Linear RC Dipole 3.74e-2 4.44e-2
Nonlinear RC Dipole 2.99e-2 2.89e-2

4.2.2 Linear Equivalent Circuit Model

Flexible Identification Procedure

The nonlinear ECM described in the previous section has shown very
promising performances in terms of model accuracy and SoC estimation (see
Section 3.1), together with a simple and efficient architecture and the abil-
ity of tracking the nonlinearities of electrochemical cells. Despite that, the
main drawback is the complex and rigid system identification procedure. In-
deed, it implies to test the cell with a very specific and long lasting current
profile. As a consequence, the entire procedure can last some days in order
to allow the identification of the parameters related to the slowest transient
responses. Moreover, it is necessary to repeat the test for different current
rates and different temperatures aiming at characterizing all the operating
conditions of the cell. Thus, this identification procedure is very rigid, time
consuming and expensive to perform, because it requires to disassemble the
cell from the BESS and to test it offline using expensive testing equipment,
such as climatic chambers and high precision sensors.

From the above discussion, it is clear that ECMs can be suitable models
for performing SoC estimation, but it is necessary to make system identi-
fication simpler and more flexible. To this aim, some alternative solutions
have been proposed in references [157] and [158], where system identifica-
tion has been performed by fitting the datasheet curves of the cell by means
of a Gray Wolf Optimization (GWO) [159] and a PSO, respectively. Never-
theless, these approaches can be ineffective since most likely electrochemical
cells will work differently with respect to their datasheet curves because of
manufacturing deviations or aging. Therefore, it has been developed a novel
flexible identification procedure for ECMs. Similarly to [157] and [158], sys-
tem identification has been formulated as a fitting problem solved by means
of swarm intelligence algorithms. However, the proposed method searches
for the best parameters set resulting in the best fitting of the voltage response
measured during the use of the cell, instead of considering the generic in-
formation of the datasheet curves. Consequently, this approach results in a
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more flexible identification procedure that does not require any specific test
and that is tailored on the specific cell upon which the procedure is applied,
bringing to a more accurate modeling of its functionality.

In order to achieve this improved flexibility, it has been necessary to lin-
earize most of the ECM discussed in Section 4.2.1. First, it has been consid-
ered again the architecture of Figure 4.2 in which Vdyn is modeled by means
of the series of M RC linear dipoles. Second, the modeling of Vist has been
simplified by using a linear resistor in place of the nonlinear one. The re-
sulting ECM is shown in Figure 4.12 and the related system equations are
summarized as follows:

SoC[k + 1] = SoC[k] +
Ts

Cn
Iin[k]

Vdyn1
[k + 1] = Vdyn1

[k]e
−Ts

τdyn1 + Rdyn1
Iin[k]

(
1− e

−Ts
τdyn1

)
... =

...

VdynM
[k + 1] = VdynM

[k]e
−Ts

τdynM + RdynM
Iin[k]

(
1− e

−Ts
τdynM

)
Vout[k] = Vqst(SoC[k]) +

M

∑
i=1

Vdyni
[k] + Rist Iin[k]

(4.21)

Vqst Cqst

Vist

Rist

Vdyn

Rdyn1

Cdyn1

Rdyn2

Cdyn2

RdynM

CdynM
Vout

Iin

Figure 4.12: Circuit diagram of the linearized ECM.

Because of the linearization process, all the model parameters are real
numbers, except for those of the quasi-stationary contribution. In fact, the
identification of the OCV-SoC curve is more complicated since it requires to
retrieve the shape of the nonlinear function Vqst(.). To this purpose, it has
been considered again the sampling and interpolating procedure discussed
in Section 4.2.1 that has proved to achieve effective results. Thus, the identifi-
cation procedure is in charge of finding the parameters set θ being coincident
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with the following vector:

θ =
{

Rist, τdyn1
, Rdyn1

, . . . , τdynM
, RdynM

, Vqst1
, . . . , VqstL

}
(4.22)

where Vqsti
is the ith sample of the OCV-SoC curve representation.

As explained in the above, system identification has been formulated as
a fitting problem to be applied on generic data measured during the use of
the cell. Thus, let Vout and Iin be any sequence of the measured voltage and
current, respectively, the identification algorithm aims at finding the optimal
parameters set θopt that minimizes the error between the estimated voltage
and the measured one. Consequently, the identification procedure consists
in solving the following optimization problem:

θopt = argmin
θ

{
RMSE

(
Vout, Ṽθ

out

)}
(4.23)

where Ṽθ
out is the estimated voltage given the parameters set θ, and RMSE(.)

is the root mean squared error function evaluated between Vout and Ṽθ
out.

Again, the MSHG-PSO algorithm has been used for solving the optimization
problem (4.23).

Performance Analysis

The proposed method has been validated by applying the defined system
identification procedure upon a real Li-ion cell. In order to highlight the
achieved flexibility, the Randomized Battery Usage Data Set [155] collected by
the NASA Ames Research Center has been considered for building the Train-
ing Set and the Test Set sequences. This data set is composed of the mea-
surements performed over a 2.1 Ah Li-ion cell model 18650 tested with a
randomly generated sequences of charging/discharging pulses. Starting
form a full charged cell in a stationary condition (i.e. SoC = 100 % and
Vdyn = 0), each pulse of the sequence is randomly selected from the set
{−4.5 A, −3.75 A, −3 A, −2.25 A, −1.5 A, −0.75 A, 0.75 A, 1.5 A, 2.25 A, 3 A,
3.75 A, 4.5 A}, and it is applied to the cell until either the terminal voltage
goes outside the range [3.2 V, 4.2 V] or 5 minutes have passed. In particular,
the input current Iin, the terminal voltage Vout, and the surface temperature
Tin have been measured during the test with a sampling time of 1 s. The SoC
sequence has been retrieved by applying the coloumb counting algorithm
considering Cn = 2.1 Ah. The Training Set includes the first 100 pulses of the
first random cycling test performed on the cell ID RW9. Similarly, the Test Set
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is composed of the first 100 pulses related to the second random cycling test
of the same cell. The sequences of Iin, Vout, Tin, and SoC of the NASA data
set are shown in Figure 4.13. Since the simplified ECM does not consider the
effect of the temperature, Tin has been ignored in this work.
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Figure 4.13: Data set related to theRandomized Battery Usage Data Set.

In order to analyze the robustness of the proposed identification proce-
dure, the entire process has been performed 100 times considering a different
random initialization of MSHG-PSO at each run. Then, a statistical analysis
of the obtained results has been performed considering the values of the 1st,
2nd, and 3rd quartiles; note that the 2nd quartile coincides with the median
value. The ECM model has been configured with M = 3 RC dipoles, and
the identification of the nonlinear function Vqst(.) has been performed con-
sidering L = 15 and a total of 1000 interpolation points. The configuration of
MSHG-PSO is summarized in Table 4.5.

Table 4.6 collects the results and the related statistical analysis concerning
the RMSEs performed at estimating the output voltage of both the Training
and the Test Sets sequences, as well as the results related to the identified
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Table 4.5: MSHG-PSO Configuration

Npop ω cp cg Nmut Ncrs K G Nitr

50 0.7298 1.4962 1.4962 5 4 12 2 1000

Table 4.6: System identification results and statistical analysis

Median Q1 Q3 Q3-Q1

RMSE Training 1.56e-2 1.56e-2 1.56e-2 2.70e-5
RMSE Test 2.76e-2 2.76e-2 2.76e-2 7.91e-5
Rist [mΩ] 79.09 78.99 79.16 0.16
Rdyn1

[mΩ] 20.36 20.25 20.49 0.24
τdyn1

[h] 4.93e-3 4.82e-3 5.05e-3 2.28e-4
Rdyn2

[mΩ] 21.22 21.13 21.31 0.18
τdyn2

[h] 8.35e-2 8.23e-2 8.57e-2 3.45e-3
Rdyn3

[mΩ] 24.00 13.75 75.20 61.46
τdyn3

[mΩ] 6.62 4.16 10.94 6.78

Q1: 1st quartile; Q3: 3rd quartile; Q3-Q1: Difference between 3rd and 1st quartile

values of Rist, Rdyni
and τdyni

. The retrieved Vqst(.) function is shown in
Figure 4.14.
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Figure 4.14: Function Vqst(.) identified by MSHG-PSO.

The effectiveness of the proposed flexible system identification procedure
is largely proved by the obtained results. Indeed, ECM has achieved a great
accuracy, performing a median RMSE of 1.56e-2 and 2.76e-2 for the Training
Set and the Test Set, respectively. Moreover, the similar performances be-
tween Training and Test sets proves the good generalization capability of the
proposed identification method. It is clear also the robustness of the proce-
dure. Indeed, the difference between the 3rd and the 1st quartiles is always
at least one order of magnitude lower than the median value for almost any
of the circuital parameters, meaning that MSHG-PSO converges every time
to very close solutions. The only exception is the third RC dipole, most prob-
ably because the time constant τdyn3

is comparable with the entire length of
the Training Set sequence, making more uncertain its identification.
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In addition to the robustness analysis, all the 100 identified models have
been implemented in an SR-UKF for performing SoC estimation upon the
Test Set data. In order to avoid a trivial test in which the dynamical states of
the cell are known, SoC estimation has been started with a temporal offset of
one hour. This way, when SR-UKF is started the cell is in a non-stationary
and unknown dynamical condition. The obtained estimated sequences of
SoC and Vout are shown in Figure 4.15, where SR-UKF has been initialized
considering a generic state with SoC = 50 % and Vdyni

= 0 for each RC
dipole.
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Figure 4.15: SoC and Vout estimations performed by the models identified
with MSHG-PSO. SoC estimation has been performed by means of SR-UKF.

It can be seen that SR-UKF succeeds at correcting the state estimation
in few minutes, achieving then an accurate SoC estimation along the entire
length of the Test Set sequence. In particular, it has performed a median
RMSE between the real SoC and the estimated one equal to 4.06e-2. More-
over, it is noticeable also the robustness of the estimation with the median
almost always overlapped with both the 1st and the 3rd quartiles evaluated
on the 100 estimated SoC sequences.

4.2.3 Mechanical Inspired Equivalent Circuit Model

Mechanical Analogy

Both the linear and the nonlinear ECMs discussed in the previous sections
use coloumb counting as SoC state update equation, as well as the OCV-SoC
curve is used for retrieving the electric response of the nonlinear capacitor
Cqst. Nevertheless, an alternative approach has been proposed in reference
[51] by introducing a mechanical analogy between storing of charge in elec-
trochemical cells and storing of liquid in tanks.



Chapter 4. Modeling Electrochemical Cells 94

From an engineering point of view, both electrochemical cells and liquid
tanks can be seen as a suitable reservoir characterized by two main mea-
surable quantities. The first one is related to the amount of charge/liquid
flowing inside or outside the reservoir, whereas the second quantity is re-
lated to the amount of charge/liquid stored in it. Specifically, the flowing
quantity is the input current for electrochemical cells, that is equivalent to
the liquid flow rate for tanks. The quantity related to the amount of stored
charge/liquid is given by the terminal voltage for cells and the liquid level
for tanks. More precisely, the liquid level is typically measured through the
pressure measured at the bottom of the tank.

The mechanical analogy concerns also the decomposition of the terminal
voltage Vout in the distinct voltage responses Vist, Vdyn, and Vqst. Indeed, as
the instantaneous and the dynamic contributions are parasitic responses of
the cell to the input current, similarly the total liquid pressure Pout is affected
by parasitic effects related to the presence of waves on the liquid surface.
Thus, Pout can be split in a quasi-stationary term Pqst related to the actual
stored liquid, and a dynamic term Pdyn related to the waves effect. A graph-
ical representation of the mechanical analogy is shown in Figure 4.16.

dPqstdVqst

Cqst(Pqst)
Pqst

Pdyn

Pout Pmax

Pmin

Replenishment Control

Pressure Gauge

Emptying Control

Figure 4.16: Mechanical analogy of electrochemical cells with a liquid reser-
voir.

It is clear that the shape of the reservoir must be known in order to esti-
mate the amount of stored quantity. Indeed, as shown in Figure 4.16, two
reservoirs having a different shape can store a different amount of liquid
even if their measured quantities are the same. For this reason, usually liquid
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tanks are manufactured with a known and regular shape (typically cylindri-
cal), so that it is straightforward to relate the liquid level to the stored one.
Unfortunately, the same process cannot be applied for electrochemical cells.
Indeed, the nonlinear chemical processes cannot be controlled to produce
regular and perfectly known reservoir shapes. Therefore, it is necessary to
determine how the amount of liquid/charge can be related to the measured
pressure/voltage when the reservoir has a generic and irregular shape.

With regards to Figure 4.16(a), it is possible to define the shape of the
tank by means of a nonlinear function Cqst(.) of the quasi-stationary pressure.
Indicating with V(Pqst) the liquid volume expressed as a function of Pqst, the
shape of the tank can be evaluated as the derivative of V(.) with respect to
the quasi-stationary pressure:

Cqst(Pqst) =
dV(Pqst)

dPqst
. (4.24)

Consequently, the amount of stored liquid can be retrieved from the generic
shape C(.) by evaluating:

V(Pqst) =
∫ Pqst

Pmin

Cqst(p)dp, Pqst ∈ [Pmin, Pmax] (4.25)

where Pmax and Pmin are the maximum and the minimum allowed stationary
pressure in the considered tank, respectively.

The previous discussion can be extended to any electrochemical cell in-
dependently of the manufacturing technology. Remembering that the liquid
pressure and the liquid volume are equivalent to the cell voltage and the
amount of stored charge, respectively, the shape of the charge reservoir is
modeled with the following expression:

Cqst(Vqst) =
dQ(Vqst)

dVqst
(4.26)

where Q(.) is the actual stored charge expressed as a nonlinear function
of the quasi-stationary voltage Vqst. Thus, if the reservoir shape Cqst(.) is
known, it is possible to evaluate the residual stored charge by means of the
following integral:

Q(Vqst) =
∫ Vqst

Vmin

Cqst(v)dv, Vqst ∈ [Vmin, Vmax] (4.27)
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where Vmax and Vmin are the maximum and the minimum allowed stationary
voltage, respectively.

Thanks to the mechanical analogy, it is possible to introduce an alternative
definition of SoC with respect to the coloumb counting one. Indeed, SoC can
be obtained by normalizing expression (4.27) with respect to the total amount
of charge that the cell can store. Specifically, this quantity is now well defined
and it is evaluated as follows:

Qmax = Q(Vqst)
∣∣∣
Vmax

=
∫ Vmax

Vmin

Cqst(v)dv. (4.28)

Therefore, SoC is evaluated by means of the following expression:

SoC(Vqst) =
1

Qmax

∫ Vqst

Vmin

Cqst(v)dv. (4.29)

This new definition overcomes the drawbacks related to the coloumb
counting approach. Indeed, expression (4.29) takes into account a physical
characteristic of the cell, namely the shape of the reservoir defined by the
nonlinear function Cqst(.). Consequently, it does not require the knowledge
of the initial SoC value for being applied correctly. Moreover, this formula-
tion is not anymore based on current measurements, resulting in an easier
and more accurate definition. Finally, all the parameters Qmax, Vmax, and
Vmin are well defined.

By comparing expression (4.26) with expression (4.9) it can be noticed that
both of them model the same physical phenomenon, being coincident with
the electric response of a nonlinear capacitor. Therefore, it is possible to use
the mechanical analogy for defining a linear ECM like that of Figure 4.12, in
which the electrical behavior of the nonlinear capacitor Cqst is modeled by
means of the reservoir shape function Cqst(.), instead of the OCV-SoC curve.
Thus, the state form equations of the Mechanical inspired ECM (M-ECM) are
formalized as follows:
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Vqst[k + 1] = Vqst[k] + Ts
Iin[k]

Cqst(Vqst[k])

Vdyn1
[k + 1] = Vdyn1

[k]e
−Ts

τdyn1 + Rdyn1
Iin[k]

(
1− e

−Ts
τdyn1

)
... =

...

VdynM
[k + 1] = VdynM

[k]e
−Ts

τdynM + RdynM
Iin[k]

(
1− e

−Ts
τdynM

)
Vout[k] = Vqst +

M

∑
i=1

Vdyni
[k] + Rist Iin[k]

(4.30)

where it can be noticed that the coloumb counting equation has been substi-
tuted with the state update equation related to the nonlinear capacitor.

System Identification

The same flexible system identification procedure discussed in Section 4.2.2
has been maintained also for M-ECM. Thus, the procedure has been formu-
lated as a fitting problem to be performed on generic sequences of measured
current and voltage. In particular, system identification aims again at identi-
fying the values of Rist, Rdyni

, and τdyni
for i = 1, . . . , M, as well as at retriev-

ing the shape of the nonlinear function Cqst(.).
If the representation of Rist, Rdyni

, and τdyni
is straightforward because

they are all real numbers, modeling the nonlinear function Cqst(.) is more
complicated and it requires the implementation of a suitable function esti-
mator. To this aim, it has been used an ANFIS approximator (Section 2.3),
whose block diagram for the specific application is shown in Figure 4.17.

The architecture counts one input and one output, corresponding to the
quasi-stationary voltage Vqst and the value of the nonlinear capacitor Cqst,
respectively. The fuzzy reasoning has been implemented by means of a first
order Takagi-Sugeno FIS. In particular, each rule antecedent has been imple-
mented by gaussian membership functions, whereas the overall output of the
FIS is computed with the AVG method. Therefore, the aim is to estimate the
reservoir shape Cqst(.) by means of a fuzzy piecewise linear approximation.
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Figure 4.17: Architecture of the ANFIS used for approximating the reservoir
shape Cqst(.).

The ANFIS is characterized by a total of N rules defined as follows:

if Vqst ∈ A1 then Cqst = f1 = Vqstm1 + q1

if Vqst ∈ A2 then Cqst = f2 = Vqstm2 + q2

...
...

if Vqst ∈ AN then Cqst = fN = VqstmN + qN

(4.31)

where Ai is the ith fuzzy set defined by the univariate gaussian function cen-
tered in µi and characterized by a σi deviation. In conclusion, let ωi be the
fire strength of the ith rule, the output of the ANFIS is given by the following
expression:

Cqst(Vqst) =
N

∑
i=1

ω̄i
(
Vqstmi + qi

)
(4.32)

where ω̄i = ωi/ ∑ ωj.
The model is therefore represented by 4N + 2M + 1 real numbers given

by the following vector:

θ =
{

Rist, Rdyn, τdyn, µqst, σqst, mqst, qqst

}
(4.33)

where Rdyn and τdyn are the vectors of the M dynamic resistances and dy-
namic time constants, respectively, whereas µqst, σqst, mqst, and qqst are the
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vectors of the mean values, standard deviations, slopes, and intercepts re-
lated to the N rules of the ANFIS, respectively. In particular, system identifi-
cation has been performed again by solving the optimization problem (4.23)
by means of the MSHG-PSO algorithm.

It is clear that MSHG-PSO is in charge not only of retrieving the param-
eters Rist, Rdyn, and τdyn, but also of training the ANFIS for estimating the
charge reservoir shape. However, it should be noticed that this training pro-
cedure is unsupervised since the function Cqst(.) is not known at training
time. Moreover, also the input of the ANFIS is unknown because the quasi-
stationary contribution Vqst cannot be measured during the cell activity, be-
ing one of the internal dynamical states of the system. Despite that, the AN-
FIS can be trained in an effective way because the dynamical nature of the
state update equation related to Vqst allows to retrieve the evolution of the
quasi-stationary voltage response starting from the knowledge of the initial
Vqst value. The advantage with respect to the coloumb counting equation is
that the initial value Vqst[0] can be retrieved in an easier and more accurate
way with respect to SoC[0]. Indeed, the quasi-stationary contribution Vqst

is by definition coincident with the terminal voltage when all the transient
phenomena have decayed. Thus, it is sufficient to rest the cell at Iin = 0 for
a suitable long period in order to measure accurately the initial Vqst value,
independently of the actual SoC of the cell.

Performance Analysis

Experimental Setup The performances of the M-ECM model and of the re-
lated system identification procedure have been analyzed again considering
the Randomized Battery Usage Data Set shown in Figure 4.13. Herein, both
Iin and Vout have been normalized in order to facilitate MSHG-PSO at per-
forming the training of the ANFIS, as well as at identifying the other model
parameters. Specifically, Iin has been normalized with respect to its maxi-
mum absolute value measured in the Training Set sequence. This is because
it is necessary to keep unmodified the sign and the zero of the input current
for preserving the information about the internal resistance and the transient
phenomena. The voltage Vout has been scaled in the range [0, 1] by normaliz-
ing it with respect to its maximum and minimum values measured in the
Training Set sequence. The maximum allowed Vqst has been set to 4.2 V
because this is the typical maximum value used in the Constant Current-
Constant Voltage charging procedure for lithium-ion cells. The minimum
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Vqst has been set to 3.3 V for having a reasonable margin with respect to the
lower threshold of the procedure used for building the data set.

Concerning the number of RC dipoles, the model has been configured
again with M = 3. Conversely, some preliminary tests have been performed
for tuning the ANFIS estimator modeling Cqst(.). The best solution has been
achieved by using N = 15 fuzzy rules. Moreover, it has been imposed a
maximum admissible value for the deviation σi in order to avoid an excessive
overlapping of the fuzzy sets. In particular, this constraint has been imposed
by modifying the fitness function introducing a suitable penalty function as
follows:

νj =

σj − σmax, if σj > σmax

0, otherwise
, j = 1, . . . , N

F(θ) = RMSE(Vθ
out, Vout) +

N

∑
j=1

νj

(4.34)

where νj is a penalty term and σmax is the maximum allowed standard devi-
ation. Specifically, a maximum value of 0.5 has been considered. Finally, the
complete configuration of MSHG-PSO is shown in Table 4.7.

Table 4.7: MSHG-PSO Configuration

Npop ω cp cg Nmut Ncrs K G Nitr

75 0.7298 1.4962 1.4962 7 4 18 2 1000

All the model parameters have been initialized with a random uniform
distribution evaluated in the range [0, 1], except for those related to the stan-
dard deviations, that have been initialized in the range [0, 0.5], and to the
slopes mqst and intercepts qqst, that have been initialized with a gaussian dis-
tribution having zero mean and unitary standard deviation.

System Identification Results The properties of the identified charge reser-
voir are shown in Figure 4.18.

The effectiveness of the ANFIS training is proved by the comparison be-
tween the estimated and the real OCV-SoC curves shown in Figure 4.18(c).
Specifically, the real curve has been obtained from a dedicated experimen-
tal measurement performed over the cell. It can be seen that MSHG-PSO
succeeds at finding a suitable set of the parameters µqst, σqst, mqst, and qqst

resulting in an almost perfect overlapping between the estimated OCV-SoC
curve and the real one. A further effectiveness proof of the ANFIS training
can be found in Figure 4.18(b). This curve is coincident with the function
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Figure 4.18: Identified Reservoir Properties. (a) Reservoir shape Cqst(Vqst).
(b) Charge-Voltage function Q(Vqst). (c) OCV-SoC curve.

Q(.) and it has been evaluated by means of expression (4.27). In accordance
with expression (4.28), the total storable charge Qmax is equal to 2.12 Ah, that
is almost equivalent to the declared cell capacity of 2.1 Ah. This result proves
the effectiveness of the proposed reservoir approach at evaluating the ac-
tual charge capacity, as well as the effectiveness of the ANFIS training itself.
Moreover, the defined modeling procedure allows also to introduce a phys-
ical definition of the nominal voltage of electrochemical cells. Indeed, it can
be seen in Figure 4.18(a) that the reservoir shape shows only one global peak,
corresponding to the voltage value in which it is stored most of the charge.
Therefore, accordingly with [51], it is possible to define the nominal voltage
Vn of electrochemical cells as the quasi-stationary voltage Vqst related to the
maximum of the reservoir shape Cqst(.). In this case, it has been obtained a
value of 3.79 V with respect to the 3.7 V declared by the manufacturer.

The model performances at estimating the total output voltage consider-
ing both the Training Set and the Test Set sequences are shown in Figure 4.19,
where it is shown also the estimation error evaluated as Vout − Ṽout.
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Figure 4.19: Estimation of the terminal voltage in the Training and Test Sets
data.

It can be seen that the proposed model is effective also in the overall Vout

estimation. Indeed, the absolute error is almost always lower than |0.1|V,
whereas the performed RMSE in the Training Set and in the Test Set are
1.46e-2 and 2.84e-2, respectively. The slight difference among the performed
RMSEs proves the generalization capability of the model, as well as the ef-
fectiveness of the designed training procedure, which avoids to overfit the
training data.

SoC Estimation Results A further test has been performed to measure the
model performances in the SoC estimation task. To this aim, the same proce-
dure discussed in Section 4.2.2 has been considered. Specifically, the trained
model has been implemented in an SR-UKF state observer and SoC estima-
tion has been performed over the Test Set sequence considering a temporal
offset of one hour. Also in this case the temporal offset has aimed at testing
the convergence of SR-UKF when the cell is in a non-stationary condition, in
which the dynamical states are unknown.

SR-UKF is in charge of estimating four state variables, namely the quasi-
stationary voltage Vqst and the three dynamic voltages Vdyni

related to the
RC dipoles. SoC is retrieved from the Vqst estimation by applying expression
(4.29). The resulting SoC sequence has been compared with that obtained
from the coloumb counting approach. In particular, coloumb counting has
been started from the beginning of the Test Set sequence because it is known
that the cell starts from a fully charged condition. Therefore, expression (1.3)
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has been initialized with SoC[0] = 1. Moreover, the sequence evaluated with
coloumb counting can be reasonably considered equivalent to the real SoC
of the cell since Cn ' Qmax, and the overall sequence is short enough to
assume the accumulated errors negligible. The state vector of SR-UKF has
been initialized by considering Vqst coincident with the measured nominal
voltage Vn, whereas all the dynamic terms Vdyni

have been set equal to zero.
The estimated Vqst, SoC, and Vout and the related comparison with the real
SoC and the measured voltage are shown in Figure 4.20.
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Figure 4.20: Performances of the model in the SoC estimation task.

It is clear that the proposed reservoir modeling and the related SoC def-
inition are effective not only at estimating the output voltage, but also for
performing SoC estimation, that is the main reason for which it has been de-
veloped. Indeed, SR-UKF converges in few minutes to a Vqst value that is
related to an SoC close to the real one, obtaining a total RMSE between the
real and estimated SoC of 5.04e-2, slightly worse of the 4.06e-2 performed by
the linear ECM.

Besides a more proper definition of SoC, the main advantage of M-ECM
is that the related system identification procedure can be applied indepen-
dently of the actual SoC of the cell. In fact, the identification procedure re-
quires the knowledge of the initial value of Vqst instead of that of SoC. The
benefit is that it is always possible to measure accurately the value of Vqst
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after a sufficiently long rest of the cell, whereas the value of SoC can be re-
trieved only after a full charging procedure. Nevertheless, the main draw-
back of this approach is that SoC estimation is based on the evaluation of the
integral of the reservoir shape function Cqst(.). Therefore, any kind of esti-
mation error of Cqst(.) can easily result in a significant drop of performances.

4.3 Black Box Technique

The most important black box modeling approaches are those based on ELM
[65], RBF-NN [89], [90], and WNN [91]. Accordingly with the black box the-
ory, these models address only the input-output relationship and therefore
they are not able to provide any information about the physical properties of
electrochemical cells. Moreover, they need the implementation of an autore-
gressive feedback of the previous output voltage samples in order to model
the dynamical response of the cells. The architecture of the ELM, RBF-NN,
and WNN models is very similar to each other and it can be generalized in
the neural network shown in Figure 4.21.

Iin[k]

Tin[k]

Vout[k-1]

SoC[k]

ϕ

ϕ

ϕ

ϕ

ϕ

lin
Vout[k]

Figure 4.21: Architecture of the neural network black box models.

All the models are feedforward neural networks characterized by only
one hidden layer. As explained in Section 2.1, the main differences between
ELM, RBF-NN, and WNN concern the activation function used in the hidden
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neurons. ELM uses an hyperbolic tangent, RBF-NN uses a gaussian function,
whereas WNN uses a mother wavelet function. The elaboration of the neu-
rons related to the three models can be summarized as follows:

ϕ =


tanh(Wx + b), ELM

e−β‖x−µ‖2
, RBF-NN

∏m
j=1 Φ

(
xj−δj

γj

)
, WNN

(4.35)

where x is the generic input vector of the neuron; W and b are the weights
matrix and the bias value related to a neuron of ELM; µ and β are the cen-
troids and the shape parameters of the gaussian function related to RBF-NN;
Φ(.) is a mother wavelet function, whereas δj and γj are the translation and
dilation terms related to the jth input of a wavelon.

As introduced above, black box models need the feedback of a sliding
window of the previous output voltage samples for modeling the dynamical
response of the cells. In particular, the sliding window is typically set to one
backward step since electrochemical cells are characterized by a markovian
dynamical behavior. Thus, the terminal voltage Vout[k] is approximated con-
sidering the tuple {Iin[k], Tin[k], Vout[k− 1], SoC[k]} as input. Alternatively,
the tuple {Iin[k], Vout[k− 1], SoC[k]} is considered if temperature measure-
ments are not available.

A comprehensive analysis of the performances of ELM, RBF-NN, and
WNN both in the estimation of Vout and SoC is discussed Section 4.4.3. In
particular, it is shown as black box models are highly ineffective in the SoC
estimation task despite they achieve very accurate Vout estimations. The main
reason of that is attributed to the feedback of the output voltage. Indeed, the
sliding window of Vout brings all the black box models at overfitting the pre-
vious voltage sample, converging to the trivial prediction model for which
Vout[k] ' Vout[k− 1]. This fact reduces the dependence of the model output
on SoC, resulting in a consequent inability of SR-UKF at correcting a wrong
SoC estimation. A more detailed discussion can be found in Section 4.4.3.

4.4 Gray Box Technique

4.4.1 Neural Networks Ensemble Model

White box and black box modeling techniques are characterized by oppo-
site properties. White box models offer a complete insight on the physics of
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electrochemical cells that is helpful for performing accurate SoC estimations.
Nevertheless, the most accurate electrochemical models are too much com-
putational demanding for being applied in a real-time SoC estimator. Con-
versely, it has been shown that ECMs are effective and efficient models offer-
ing promising performances at estimating both the output voltage and SoC.
Nevertheless, it has been discussed in Section 4.2.1 that even if the nonlinear
ECM is able to track the nonlinearities of electrochemical cells, the related
system identification is a stiff, time consuming, and expensive task. Thus, it
has been shown in Sections 4.2.2 and 4.2.3 that system identification can be
made more flexible for ECMs, as long as the model is largely simplified so
that it does not consider anymore most of the nonlinearities of the cells.

As opposite to the white box technique, black box models are able to eas-
ily catch the nonlinearities of the cells together with a very flexible system
identification procedure. Unfortunately, they address the estimation of the
global input-output relationship only, so that black box models do not pro-
vide any insight on the cell physics. Furthermore, most of them need a non-
linear autoregressive approach by introducing a sliding window of the previ-
ous output voltage in order to model the dynamical response of the system.
However, due to the very slow dynamics typical of any electrochemical cell,
these models could easily overfit the delayed output, converging to the triv-
ial prediction model in which the output voltage is almost equal to its previ-
ous sample. This unwanted behavior could compromise the dependence of
the model output on SoC, jeopardizing its effective use for performing SoC
estimation.

From the previous analysis, it is clear that neither the white box ECMs,
nor the black box machine learning methods are able to fulfill all the three
main modeling requirements discussed in Section 1.2. Indeed, ECMs provide
a complete insight on the cell physics, but it is necessary to neglect most
of the nonlinearities for achieving a flexible system identification procedure.
Conversely, black box models offer nonlinear approximation capabilities and
flexible system identification procedures, but they do not provide any insight
on the cell physics. Thus, a novel gray box neural network model has been
developed aiming at achieving a more satisfying compliance with the three
main modeling requirements.

The main novelty consists in the application of the gray box technique to
neural networks, aiming at identifying not only the overall input-output rela-
tionship, but also the internal responses of electrochemical cells. This choice
is supported by two reasons. First, it has been discussed that a key aspect for
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improving the model accuracy consists in the ability of accurately identify-
ing and separating the three main voltage contributions composing the cells’
response. Second, an accurate identification of the internal behaviors allows
a physical interpretation of them that helps in achieving a more effective SoC
estimation by means of state observers.

In order to implement this gray box model, the network architecture has
been designed by taking advantage of the a priori knowledge of the system
at hand. The architecture consists in a Neural Networks Ensemble (NNE) in
which distinct neural networks are used for directly implementing the state
form representation of the system. More precisely, all the unknown nonlin-
ear functions appearing in the system equations are approximated with a
distinct and specialized neural network. However, the NNE architecture it-
self does not allow the automatic identification of the internal behaviors of
the system, since it still requires a supervised learning of each internal net-
work. Unfortunately, often only the inputs and outputs of the system can be
measured, meaning that only a global supervised learning can be performed.
Consequently, each internal network should be trained with an unsupervised
scheme. To overcome this problem, the inputs and the topology of each inter-
nal neural network must be specialized to the specific behavior the network
is modeling, so that it is possible to apply an effective globally supervised-
locally unsupervised learning of the model.

It must be noticed that the defined gray box neural network approach
can be applied to any dynamical system and it is a novel method for apply-
ing gray box modeling to nonlinear dynamical systems. Indeed, usually this
problem is faced with a black box approach that does not provide any useful
insight nor a physical interpretation of the internal behaviors of the system.
The only similar gray box method has been found in reference [160], in which
the authors use a distinct neural network for each nonlinear function appear-
ing in the state form equations, likewise the proposed approach. However,
in that work it is supposed that the internal quantities are measurable and
all the related networks are trained with a supervised learning. Conversely,
the proposed gray box model is trained considering the supervision of the
global output only, whereas ground truth output values of each internal net-
work are actually unknown.

The NNE designed for modeling electrochemical cells is a faithful imple-
mentation of the system equations (4.2) and it considers the current Iin as
input, the terminal voltage Vout as output, whereas the state variables are
SoC and the dynamic voltage contribution Vdyn. Three unknown nonlinear
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functions can be identified in (4.2), specifically Vist(.), Fdyn(.), and Vqst(.).
As explained in the above sections, Vist(.) models the instantaneous contri-
bution, Fdyn(.) defines the state update equation related to the dynamic volt-
age response, and Vqst(.) is coincident with the OCV-SoC curve. In particular,
the function FSoC(.) has been implemented again considering the coloumb
counting algorithm and it is coincident with expression (1.3).

The resulting NNE model is shown in Figure 4.22, where the unknown
functions Vist(.), Fdyn(.), and Vqst(.) have been modeled with an MLP, a
Leaky Recurrent Neural Network (Leaky-RNN) [127], and an FLNN, respec-
tively. The choice of each network topology has been guided by the a priori
knowledge of each specific behavior and it will be discussed in details in the
next paragraphs.

It is worth noting that the proposed NNE model estimates the dynamic
contribution taking only the current Iin as input. In fact, the internal state re-
lated to Vdyn is modeled by means of the feedback loops of the Leaky-RNN.
Conversely, the black box models ELM, RBF-NN, and WNN need to include
the previous sample of the output voltage Vout[k− 1] in the input tuple for ap-
proximating Vout[k]. However, due to the very slow dynamics characterizing
the cells (hundreds or even thousands of seconds) and because the sampling
time is usually set close to one second, black box models can easily converge
to the trivial prediction model in which Vout[k] ' Vout[k− 1]. This fact could
jeopardize the effectiveness of the models in the SoC estimation task since it
widely compromises the dependence of Vout on SoC. Indeed, as any state ob-
server, SR-UKF requires that all the state variables must affect the output of
the model in order to allow their effective estimation. If the model converges
to Vout[k] ' Vout[k − 1], the influence of SoC in the estimation of Vout is re-
duced or even nullified, compromising its estimation. The proposed neural
model overcomes the drawback discussed above. In fact, it avoids the in-
troduction of a sliding windowing of Vout, preserving the influence of SoC in
the model output. In addition, it has the further advantage of estimating sep-
arately the unknown distinct voltage responses, providing then information
about the physical behavior of electrochemical cells.

In the following a detailed description of the three neural networks com-
posing the NNE model is presented.

Instantaneous Timescale Modeling

The instantaneous contribution, which represents the nonlinear resistive be-
havior of the cell, is modeled by Vist(.). In general, it can be thought as a
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Figure 4.22: Diagram of the NNE model. Top, middle, and bottom networks
model the dynamic, the instantaneous, and the quasi-stationary contribu-
tions, respectively. The weights of the connections are neglected in the fig-
ure, whereas tanh, lin, and sig refer to the hyperbolic tangent, linear, and
sigmoid activation functions, respectively.

memoryless nonlinear function of the input current and it is constrained to
be zero when the current is zero because of its resistive nature. Thus, any
kind of non-recurrent neural network can be used for modeling Vist(.). MLP
has been chosen among other topologies because it has offered the best trade-
off between effectiveness, complexity, and simplicity in forcing the resistive
constraint. Indeed, the weak nonlinearity of the instantaneous contribution
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did not justify the use of other nonlinear approximation models, such as RBF-
NN, WNN, and FLNN. Furthermore, all of them have required tricky solu-
tions for ensuring Vist = 0 when Iin = 0. ELM was a potential network can-
didate, but it has required a greater number of hidden neurons for reaching
the same performances of MLP.

The network keeps the current Iin as input and it counts one hidden layer
composed of Nist neurons and one output layer composed of one neuron. The
activation function of the hidden neurons is the hyperbolic tangent, whereas
that of the output neuron is linear. No bias term has been considered neither
for the neurons of the hidden layer nor for that of the output layer. This
choice, together with the chosen activation functions, ensures the validity
of the resistive constraint. In conclusion, the instantaneous contribution is
approximated by means of the following equation:

Vist[k] =
Nist

∑
n=1

ωout
istn

tanh
(

ωin
istn

Iin[k]
)

(4.36)

where ωin
istn

and ωout
istn

are respectively the input and output weights of the nth

neuron.

Dynamic Timescale Modeling

It can be observed from experimental data that electrochemical cells show
a typical low pass behavior characterizing their transient response to sharp
variations in the input current Iin. In general, this kind of low pass behav-
ior has a nonlinear nature and for this reason it is modeled with the non-
linear state update function Fdyn(.). Furthermore, this voltage response is
constrained to convergence to zero when all the transient phenomena have
decayed due to its stable nature. Since Fdyn(.) is a state update function,
it has been necessary to implement a memory equipped model and recur-
rent architectures must have been considered. However, both Elman RNN
or nonlinear auto-regressive architectures could not ensure the low pass be-
havior because of possible positive feedbacks. Alternatively, more complex
architectures such as LSTM layers were too much computationally demand-
ing for the aim of the model. For this reason, the dynamic contribution has
been modeled with a Leaky-RNN, in which the hidden layer is composed
of leaky integrator neurons [127]. This choice has allowed to automatically
force the low pass behavior in the network, preserving its computational ef-
ficiency.
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The dynamic timescale network takes the current Iin as input, and it
counts one hidden layer with Ndyn leaky integrator neurons with hyperbolic
tangent activation and one output layer composed of one neuron with linear
activation. The network has no bias neither in the hidden layer nor in the
output layer in order to reproduce the convergence to zero in absence of the
input current. Thus, the output of the dynamic scale network is given by the
following equations:

yH
n [k] = αn tanh

(
ωin

dynn
Iin[k]

)
+ (1− αn)yH

n [k− 1]

Vdyn[k] =
Ndyn

∑
n=1

ωout
dynn

yH
n [k]

(4.37)

where ωin
dynn

, ωout
dynn

, αn ∈ [0, 1], and yH
n refer to the input weight, the output

weight, the leak coefficient, and the output of the nth leaky integrator neuron,
respectively.

Quasi-Stationary Timescale Modeling

The quasi-stationary voltage contribution is related to the amount of charge
actually stored in the cell. It is a nonlinear function of the state variable SoC
and it is modeled by Vqst(.). Even if this contribution is related to a state vari-
able, a recurrent architecture was not necessary in this case because the func-
tion FSoC(.) is known and well defined by expression (1.3). Consequently,
the quasi-stationary response could be modeled with a non-recurrent archi-
tecture having SoC as input and Vqst as output. Considering the results ob-
tained in [54] and [60], in which the OCV-SoC curve was approximated in
an effective way by using a mixture of several nonlinear functions, FLNN
is appeared to be the most suitable option for the quasi-stationary network.
Indeed, RBF-NN, WNN, MLP, and ELM are resulted not able to deal effec-
tively with the nonlinearity characterizing this response, unless the number
of layers, the number of neurons, and the training time were significantly
increased.

The functional reservoir is composed of Chebyshev polynomials of the
first kind from the zeroth to the Nche

qst
th degree and of trigonometric polyno-

mials from the 1th to the Ntrg
qst

th degree. The output layer is composed of one
neuron with sigmoid activation function. In this case, the sigmoid is pre-
ferred since the term Vqst has to be non-negative and it has an implicit upper
bound given by the full charge condition of the cell. Moreover, the bias term
of the output neuron is needed since the quasi-stationary contribution has
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a natural offset that can be interpreted as the nominal voltage of the cell.
Despite that, the bias has not been included in the output neuron since it is
implicitly implemented by the zeroth-degree Chebyshev polynomial. Thus,
the Vqst contribution is approximated by the following expression:

Vqst[k] = sig

Nche
qst

∑
n=0

ωche
qstn

pche
n (SoC[k])+

+

Ntrg
qst

∑
n=1

(
ωsin

qstn
sin(nSoC[k]) + ωcos

qstn
cos(nSoC[k])

)
(4.38)

where pche
n (.) is the nth degree Chebyshev polynomial of the first kind, ωche

qstn
,

ωsin
qstn

, and ωcos
qstn

are the weights of the Chebyshev, sinusoidal, and cosinu-
soidal polynomials of the nth order, respectively.

4.4.2 Model Training and Testing

Data Sets

Three different data sets have been considered for validating the effective-
ness of the proposed model. Two of them have been synthetically generated
for evaluating the ability of the proposed gray box NNE at identifying auto-
matically the internal contributions of the cell. In fact, only with a synthetic
data set it has been possible to get ground truth sequences of Vist, Vdyn, and
Vqst and to compare them with the estimated ones. The third data set is the
Randomized Battery Usage Data Set collected by the NASA Ames Research Cen-
ter, already introduced in Section 4.2.2 and shown in Figure 4.13. Specifically,
the NASA data set has been used for validating the model both in the system
identification and the SoC estimation tasks upon real data related to a generic
use of a real cell.

The two synthetic data sets have been built by using the linear ECM dis-
cussed in Section 4.2.2 as data generator. Similarly to Section 3.2.3, the input
current Iin has been generated by simulating the use of a BESS in a pure elec-
tric vehicle, synthesizing current and voltage sequences as close as possible
to those measurable in a real cell during its activity. Also in this case the soft-
ware ADVISOR has been considered for retrieving the charging/discharging
current of the cell by simulating an electric vehicle similar to the Nissan Leaf.

Both the Training Set and the Test Set have been generated by simulating
a typical daily journey. Thus, they are composed of a sequence of urban,
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extra-urban, and highway driving cycles alternated with rests and battery
charging phases. Again, the selected driving cycles belong to the FTP set.
The Training Set simulates a journey of about six hours for a total of 162 km
of driving, whereas the Test Set simulates a journey of about five hours for
a total of 157.06 km of driving. The data has been collected considering a
sampling time Ts = 1 s, value that is in line with the sampling time of the
NASA data set, and that is fast enough both for tracking the dynamics of
electrochemical cells and for providing a timely SoC estimation for most of
the BESS applications. The list of the cycles composing both the Training Set
and the Test Set are shown in Table 4.8.

Table 4.8: List of the driving cycles composing the data sets

Training Set Test Set

Name∗ Duration
[s]

Distance
[km]

Name∗ Duration
[s]

Distance
[km]

Rest 600 0 Rest 60 0
NREL2VAIL 4320 105.2 VAIL2RAIL 5915 139.29
Rest 600 0 FTP-75 2478 17.77
Full Charge 7200 0 Rest 3600 0
Rest 600 0 Partial Charge 3600 0
UDDS 1370 12 Rest 3600 0
US06 600 12.89
ARB02 1640 31.91
Rest 3600 0

Tot. 20530 162.00 Tot. 19253 157.06

∗The acronyms refer to the driving cycles belonging to the FTP set.

In order to generate the sequences of Vout, Vist, Vdyn, and Vqst, the current
profiles obtained from ADVISOR have been firstly scaled to the capacity of
the cell to be simulated and then applied to the related ECM. In particular,
the circuit model has been initialized considering a full charged cell in a sta-
tionary condition, i.e. the state variables SoC and Vdyn have been initialized
to one and zero, respectively. Furthermore, the inaccuracy of the voltage and
current sensors has been emulated by adding a zero mean gaussian noise to
the input current Iin and to the terminal voltage Vout. The gaussian noise
added to Vout has a standard deviation equal to 1e-4 V, whereas the one of the
input current has a standard deviation equal to 3e-3 A. These values match
the standard accuracy of real voltage and current sensors.

The procedure discussed above has been applied to two different ECMs
in order to generate the two data sets. The main difference between them is
related to the lithium technology of the considered cells, whose specifications
are shown in Table 4.9.
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Table 4.9: Specifications of the A123 and ePLB cells

Parameter A123 ePLB

Technology Lithium iron-phosphate Lithium polymer
Capacity 2.4 Ah 15 Ah
Nominal Voltage 3.3 V 3.6 V

The first data set has been generated by applying the current Iin to the
ECM of an A123 Nanophosphate AHR23113M1Ultra-B, whereas the second one
refers to an ePLB C020. The former cell belongs to the lithium iron-phosphate
technology and the latter is a lithium polymer cell. Besides the differences
in terms of total capacity, nominal voltage, internal resistance, and different
low pass behaviors, the main discrepancy between the two technologies is
related to the quasi-stationary contribution. In fact, iron-phosphate cells usu-
ally show an almost flat OCV-SoC curve for mid-range SoC values, whereas
lithium polymer ones have a steeper curve in the same region of SoC. The
synthetic data sets related to the A123 and ePLB cells are shown in Figure 4.23
parts (a) and (b), respectively.

To the purpose of this work the temperature influence has not been taken
into account neither in the synthetic nor in the NASA data sets.

Training Procedure

Only the measurements of the input current Iin and of the output voltage Vout

are available at training time, whereas the internal contributions Vist, Vdyn,
and Vqst are unknown. Consequently, although the learning of the whole
NNE model is globally supervised, that of the internal networks is locally
unsupervised. Thus, the network has been trained only on the output volt-
age Vout by means of GDBP aiming at minimizing the RMSE between the
measured and the estimated Vout. Despite the local unsupervised learning,
the effectiveness of each internal network is guaranteed by the architectural
constraints imposed to reproduce the specific dynamical behaviors of the sys-
tem.

The NNE model has been implemented in the Python framework Keras
running on top of the backend Theano, and both the training and the testing
have been performed on a laptop featuring an Intel i5 3230M and 8GB RAM.
GDBP has been performed with the optimizer Nadam that has proved to be
the most effective with respect to other alternatives such as Adam, Adadelta,
or RMSprop. All the network weights have been initialized with the Glorot
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Figure 4.23: Generated Training and Test Sets, Iin, SoC, Vout, Vist, Vdyn, Vqst.
(a) A123 cell, (b) ePLB cell.

normal initialization, except for those of the FLNN output layer. In this case,
a zero initialization has been preferred for avoiding initial oscillations due
to a casual mixing of the functional reservoir. The leak coefficients α have
been initialized imposing a logarithmic distribution of the leaky integrator
time constants in the range between 100 s and 20000 s, in order to cover the
characteristic decay times of electrochemical cells [51].

The structural complexities of the three internal neural networks have
been preliminary selected by performing a grid search upon the parameters
Nist, Ndyn, Nche

qst , and Ntrg
qst for each data set. The best achieved configurations

are shown in Table 4.10.

Table 4.10: Configuration of the internal networks of NNE

Data set Nist Ndyn Nche
qst Ntrg

qst

A123 10 5 20 0
ePLB 10 5 20 10
NASA 10 5 20 10
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Two different GDBP training schemes have been investigated for the gray
box model. The first one is a standard GDBP algorithm, in which all the net-
work weights are updated together during each epoch. The second method
performs an alternated training of the internal networks aiming at improv-
ing the identification of the unknown behaviors. During each epoch, the
three networks are trained in sequence, one at a time, for a certain number of
sub-epochs. In particular, when one of the networks is trained, the other two
are frozen. In this way, during each global epoch the training procedure up-
dates first only the weights of the instantaneous network, second only those
of the dynamic network, and finally only the weights of the quasi-stationary
network. The pseudo-code of the Alternated GDBP (A-GDBP) procedure is
shown in Algorithm 6.

Algorithm 6 Pseudo-code of the A-GDBP procedure
Initialize all the weights.
for epoch = 1 : NG do

Freeze dynamic and quasi-stationary networks.
for subepoch = 1 : NS do . Update instantaneous network

full_network.update(Iin, Vout)
end for
Freeze instantaneous and quasi-stationary networks.
for subepoch = 1 : NS do . Update dynamic network

full_network.update(Iin, Vout)
end for
Freeze instantaneous and dynamic networks.
for subepoch = 1 : NS do . Update quasi-stationary network

full_network.update(Iin, Vout)
end for

end for

It has been noticed that the effectiveness of A-GDBP depends on the num-
ber of sub-epochs NS. Indeed, a small value did not allow a significant im-
provement of the internal networks, whereas a big value could result in an
oscillation of the training algorithm. For this specific case, a number of 10
subepochs has provided the best trade-off between learning speed and un-
desired oscillations.

The effectiveness of the two learning approaches has been analyzed by
executing both of them without any limitation on the training time. In par-
ticular, a significant high number of epochs has been considered with the
aim of ensuring that both the learning schemes would reach the convergence.
With regards to the A-GDBP method, a training epoch has been considered
coincident with each local update of the networks’ weights. Thus, A-GDBP
has been run for 334 global epochs and 10 subepochs for each subnetwork,
resulting in a total of 334× 10× 3 = 10020 updates. For the sake of a fair
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comparison, also the GDBP method has been performed with 10020 epochs.
The evolution of the training loss of the two learning schemes considering all
the data sets is shown in Figure 4.24.
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Figure 4.24: Evolution of the training loss for A-GDBP and GDBP training
methods.

Both A-GDBP and GDBP have reached a similar loss value at the end of
the training epochs for any of the three data sets. In particular, GDBP has
showed a more stable and efficient convergence characterized by fewer os-
cillations and a faster decreasing of the training loss. Conversely, A-GDBP
has introduced a systematic oscillation beginning from between the 200th

and the 1000th epoch. These oscillations are related to the switching between
the learning of the internal networks. Indeed, as the learning of NNE ad-
vances, a temporary increase of the training loss is observed at the beginning
of each local training. Despite this phenomenon, A-GDBP is characterized by
an overall improvement of the training loss resulting in a final performance
similar to that of the GDBP algorithm.

The training times and the overall RMSE performed by the two learning
schemes at estimating Vout, Vist, Vdyn, and Vqst for both the Training and the
Test Sets are listed in Table 4.11.

The performances of the two learning schemes are very similar and both
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Table 4.11: RMSE Performances of A-GDBP and GDBP

Training Set
A-GDBP GDBP

A123 ePLB NASA A123 ePLB NASA

Time 3366 s 4332 s 5035 s 6821 s 7964 s 8840 s
Vout 2.14e-3 1.42e-3 1.62e-2 2.15e-3 1.45e-3 1.54e-2
Vist 7.33e-4 1.48e-4 N/A 7.30e-4 2.64e-4 N/A
Vdyn 5.02e-3 4.00e-4 N/A 4.51e-3 3.46e-4 N/A
Vqst 5.25e-3 1.28e-3 N/A 4.57e-3 1.37e-3 N/A

Test Set
A-GDBP GDBP

A123 ePLB NASA A123 ePLB NASA

Vout 1.84e-3 1.37e-3 2.71e-2 1.86e-3 1.28e-3 2.80e-2
Vist 6.01e-4 1.23e-4 N/A 5.97e-4 1.89e-4 N/A
Vdyn 6.34e-3 3.75e-4 N/A 5.80e-3 3.74e-4 N/A
Vqst 6.64e-3 1.16e-3 N/A 5.71e-3 1.21e-3 N/A

of them have succeeded at training NNE such that it approximates the out-
put voltage and all the internal contributions in a very effective way. Fur-
thermore, the slight differences between the RMSEs performed in the Train-
ing and the Test Sets proves that both the learning algorithms have achieved
a good generalization capability, without overfitting the training data. Al-
though the two learning methods have been equivalent in terms of the final
approximation accuracy, A-GDBP is appeared significantly better with re-
gards to the training time. Indeed, it has required almost half of the total
time of GDBP for completing the training of NNE. Moreover, even if the to-
tal number of epochs is the same, A-GDBP has updated each network weight
only 334 × 10 = 3340 times during the entire training procedure. Conse-
quently, A-GDBP has proved to be the most effective learning approach,
reaching the same final performances with a lower time and a lower num-
ber of weights update. In conclusion, the estimation of Vout, Vist, Vdyn, and
Vqst performed by NNE trained with A-GDBP over the Test Set of the A123,
the ePLB, and the NASA data sets are shown in Figure 4.25 parts (a), (b), and
(c), respectively.

4.4.3 Model Performances

System Identification Task

The performances of the proposed gray box NNE model have been compared
with those of the black box models ELM, RBF-NN, and WNN.
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Figure 4.25: Estimation of Vout, Vist, Vdyn, and Vqst on the Test Set: (a) A123
cell, (b) ePLB cell, (c) NASA cell.

The ELM model has been setup with the same configuration of [65],
counting ten hidden neurons with hyperbolic tangent activation function and
one output neuron with linear activation. In accordance with the ELM tech-
nique, the weights of the hidden layer have been randomly initialized and
the training of the output weights has been performed by solving a linear
least square problem.

The RBF-NN model has been configured with ten hidden neurons and
one output neuron with linear activation function. In particular, the centroids
of the hidden layer have been initialized with a K-means clustering. The
training procedure updates both the centroids and the standard deviations
of the gaussian function as well as the weights of the output neuron.

The WNN model has been configured with ten hidden wavelons and one
output neuron with linear activation function. In accordance with [91], the
Morlet wavelet has been used as activation function of the wavelons. A K-
means clustering has been used in order to initialize the translation and the
dilatation parameters of the wavelets. In particular, the translations have
been initialized to the centroids of the detected clusters and the dilatation to
their radius. The training procedure updates the translation and the dilata-
tion of the wavelons and the weights of the output neuron.
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Also the competing models have been implemented with Keras and all
the weights have been initialized with a Glorot normal initialization. Fur-
thermore, all of them keep the tuple {Iin[k], SoC[k], Vout[k− 1]} as input and
estimate the terminal voltage Vout[k]. The training procedure has been per-
formed again with the Nadam optimizer and both the RBF-NN and the WNN
models have been trained for 10020 epochs for allowing a fair comparison
with the NNE model.

Three performance metrics have been considered in order to compare the
models. First, the RMSE between the measured and estimated output volt-
age has been adopted in order to measure the average estimation accuracy.
Second, the maximum percentage error Emax

% and the maximum absolute er-
ror Emax

abs expressed in mV have been evaluated with the aim of measuring the
overall spread of the estimation error. The results for all the models are listed
in Table 4.12, including the temporal information related to the training and
testing times2.

The proposed NNE has achieved the best performances with RMSEs up
to two order of magnitude better than those of the competing models in both
the Training and the Test Sets of the A123 and the ePLB data sets. Moreover, it
has achieved also the best performances for the maximum percentage error
Emax

% and the maximum absolute error Emax
abs . In fact, the maximum values

of these performance metrics computed on the Test Set of the two synthetic
data sets are 0.15 % and 4.95 mV, respectively. Considering the real data of
the NASA data set, NNE has shown a slight worse RMSE with respect to the
competing models. On the other hand, it has achieved again the best Emax

%

and Emax
abs . In particular, the network has performed a Emax

% of 5.22 % and a
Emax

abs of 167.29 mV for the Test Set.
As expected, the greater complexity of NNE is resulted in a likewise

greater computational demand both in the training and in the execution of
the model for all the three data sets. Despite that, both the higher computa-
tional demand and the slight worse accuracy performed in the NASA data
set are largely counterbalanced by the introduction of the gray box approach.
Indeed, this method has allowed to obtain the identification of the internal
behaviors of the cell together with the best performances in the A123 and
ePLB data sets, and worst but still comparable estimation accuracy in the
NASA data set. In particular, the former aspect makes the NNE model more
suitable for its application in the SoC estimation task.

2Both training and testing of every model have been performed on a laptop featuring an
Intel i5 3230M and 8GB RAM.
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Table 4.12: Comparison among NNE, ELM, RBF-NN and WNN

A123 Data Set
Training Set Test Set Time

Model RMSE Emax
% Emax

abs RMSE Emax
% Emax

abs Train Test
[%] [mV] [%] [mV] [s] [s]

NNE 2.14e-3 0.16 5.38 1.84e-3 0.15 4.95 3366 3.45
ELM 1.12e-2 1.82 59.45 8.55e-3 1.47 47.76 0.62 0.61
RBF-NN 1.06e-4 1.47 48.18 8.86e-3 1.48 48.09 2851 0.72
WNN 9.77e-3 1.69 55.24 1.17e-2 1.48 48.03 3651 0.75

ePLB Data Set
Training Set Test Set Time

Model RMSE Emax
% Emax

abs RMSE Emax
% Emax

abs Train Test
[%] [mV] [%] [mV] [s] [s]

NNE 1.42e-3 0.17 6.79 1.37e-3 0.14 5.52 4332 3.86
ELM 9.91e-3 3.21 119.94 1.07e-2 2.77 98.77 0.61 0.63
RBF-NN 6.91e-3 1.31 51.78 8.77e-3 1.72 61.56 2840 0.74
WNN 6.45e-3 1.28 48.23 1.02e-2 1.70 60.77 3683 0.79

NASA Data Set
Training Set Test Set Time

Model RMSE Emax
% Emax

abs RMSE Emax
% Emax

abs Train Test
[%] [mV] [%] [mV] [s] [s]

NNE 1.62e-2 4.85 155.10 2.71e-2 5.22 167.29 5035 3.89
ELM 1.53e-2 12.74 460.83 1.64e-2 7.84 276.02 0.60 0.65
RBF-NN 8.99e-3 6.89 255.42 9.99e-3 6.37 245.02 3393 0.73
WNN 8.25e-3 6.98 273.51 1.03e-2 5.82 216.47 4252 0.79

SoC Estimation Task

Two further tests have been performed for investigating the effectiveness of
all the considered models in the SoC estimation task.

The first one has aimed at analyzing if SoC affects enough the estimation
of Vout. Indeed, as explained in Section 4.4.1, the output of a model to be
used in the SoC estimation task should be SoC dependent to ensure the ef-
fectiveness of the state observer estimator. Thus, NNE, ELM, RBF-NN, and
WNN have been tested again on the NASA Test Set imposing an intentional
50 % error in the initialization of expression (1.3). Therefore, it is expected
that the resulting erroneous SoC sequence should compromise significantly
the estimation of Vout. The obtained results are shown in Figure 4.26.

Concerning NNE, the wrong SoC values are resulted in the expected loss
of accuracy in the Vout estimation. Consequently, the proposed model is
able to provide information to the state observer in order to correct a wrong
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Figure 4.26: Estimation of Vout for the Test Set of the NASA cell considering a
wrong SoC sequence as input. A likewise wrong Vout estimation is expected.

SoC estimation and to converge to its real value. Conversely, all the com-
peting models have kept acceptable Vout estimations despite of the wrong
SoC sequence. These results suggest that the voltage estimation is slightly
affected by SoC in the ELM, RBF-NN, and WNN models. Therefore, the
state observer could not have sufficient information for converging to the
true SoC. The reason of this undesirable behavior is related to the inclusion
of Vout[k − 1] in the input tuple. In fact, the windowing of Vout is resulted
in the overfitting of Vout[k− 1] caused by the very slow dynamics of electro-
chemical cells.

The performances of the considered models in the SoC estimation task
have been directly compared in the second test. In particular, all the models
have been implemented in the SR-UKF state observer and SoC estimation
has been performed again on the NASA Test Set. Furthermore, similarly to
the white box models, SR-UKF has been started again with a temporal offset
of one hour in order to perform the task when the cell is in a nonstationary
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condition in which all the internal states are unknown. The SR-UKF related
to the NNE model is characterized by a 6-D state space dimension. The first
element of the state vector is SoC, whereas the last five are the output of each
leaky integrator neuron of the dynamic network. In accordance with [65],
[89]–[91], all the competing models share the same SR-UKF configuration
and the state vector is composed of SoC and of the output voltage Vout. The
results are shown in Figure 4.27.
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Figure 4.27: SoC and Vout estimations performed by the SR-UKF.

Despite the greater state vector dimension, the proposed NNE is much
more effective than the competing models. Indeed, it has provided a more
accurate and robust estimation with a total RMSE between the real and the
estimated SoC of 3.12e-2. In more details, SR-UKF has converged to the true
SoC in few minutes and then it has kept an accurate estimation during the en-
tire sequence length. Conversely, all the competing models have been char-
acterized by temporary losses of convergence that have compromised their
estimation accuracy. The ELM, RBF-NN, and WNN models have reached a
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total RMSE between the real and the estimated SoC of 9.43e-2, 8.46e-2, and
8.78e-2, respectively. These worst performances are due to the slight depen-
dence of the Vout estimation on SoC. Indeed, it can be noticed that SR-UKF
has reached a very good estimation of the output voltage for all the compet-
ing models, but often it was not able to find the true value of SoC.

4.5 A Neural White Box Model: Equivalent Neural

Network Circuit

4.5.1 Equivalent Neural Network Circuit

Model Architecture

In the previous sections it has been shown that black box models are not
able to provide satisfactory SoC estimation despite their good model accu-
racy and their flexible system identification procedure. The main reason of
that has been recognized in the overfitting of the sliding window of the out-
put voltage that compromises the dependence of the model output on SoC.
Conversely, the white box ECM and gray box NNE have proved to be very
promising models for being used in the SoC estimation task.

ECM and NNE counterbalance themselves in terms of complexity, flexi-
bility, and generalization capability. The former is a very simple and almost
linear model. Consequently, ECM is very fast both in the voltage prediction
and in the SoC estimation task. Furthermore, its white box nature allows a
complete understanding of the cell behavior. Nevertheless, ECM does not
take into account most of the nonlinearities affecting the relationships be-
tween the input physical quantities and each voltage contribution. NNE is
definitively more complex and more computationally demanding than ECM.
Despite that, it easily takes into account the nonlinear behaviors of the cell,
thanks to its architecture and to the learning capability of neural networks.
As a result, NNE is more accurate and it performs better in the SoC estima-
tion task. Moreover, its gray box nature still allows a good understanding of
the cell physics. Nevertheless, NNE is still not as flexible to coverage all the
possible nonlinear relationships between each voltage contribution and all
the input physical quantities. This is because the model must respect some
architectural constraints in order to ensure its effectiveness at separating and
identifying the three main voltage responses of the cell.
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A novel Equivalent Neural Network Circuit (ENNC) model being an evo-
lution of NNE has been developed with the purpose of designing a model
able to provide a complete insight on the cell physics, a complete approxi-
mation of the nonlinear responses, as well as a flexible system identification
procedure. In particular, the architecture of ENNC aims at taking advantage
of the strengths of both the white box and the gray box techniques by means
of an hybridization between NNE and ECM. More precisely, ENNC inher-
its from the linear ECM of Figure 4.12 the overall model architecture and its
white box nature based on the connection of lumped elements. On the other
hand, it inherits from NNE the neural networks ensemble design, the flexi-
ble system identification based on the learning procedure, and the nonlinear
approximation capability typical of neural networks. The block diagram of
ENNC is shown in Figure 4.28.
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Figure 4.28: Block diagram of the ENNC model.

The overall architecture is actually coincident with that of ECM. Never-
theless, the elements used in the proposed model are not properly electrical
components. Indeed, they can be thought as generic dipoles generalizing the
constitutive equations of the original electrical devices. Thus, each resistor
and capacitor still imposes VR = RIR and IC =

∫
VC/C dt, respectively, but

the values of the resistance and the capacitance are defined as generic nonlin-
ear functions of the main physical quantities Iin, Tin, and SoC. More precisely,
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each of these nonlinear functions has been approximated with a dedicated
neural network, whose inputs are the tuples uist, udyn, and uqst, referring
to the instantaneous, dynamic, and quasi-stationary elements, respectively.
Therefore, the circuit architecture of ECM has been used for imposing the
physical equations of the circuit elements, whereas the neural networks have
allowed to generalize each resistance and capacitance as a nonlinear func-
tion of the input physical quantities. Considering the above discussion, the
system equations can be written as follows:


SoC[k + 1]

Vdyn1
[k + 1]
...

VdynM
[k + 1]

 = A(udyn[k])


SoC[k]

Vdyn1
[k]

...
VdynM

[k]

+ B(udyn[k])Iin[k]

Vout[k] = Vqst(uqst[k]) +
M

∑
i=1

ωdyni
Vdyni

[k] +Rist(uist[k])Iin[k]

(4.39)

where M is the number of RC dipoles modeling the dynamic response Vdyn,
D = M + 1 is the state space dimension of the model, A(udyn[k]) is a D× D
diagonal matrix, and B(udyn[k]) is a D× 1 matrix; Vdyni

and ωdyni
are the out-

put and the weight of the ith dynamic dipole, respectively;Rist(.) is the non-
linear function related to the instantaneous resistor, and the function Vqst(.)
is again coincident with the OCV-SoC curve. The matrices A(udyn[k]) and
B(udyn[k]) are defined as follows:

A(udyn[k])=



1 0

e
−Ts

Tdyn1(udyn[k])

. . .

0 e
−Ts

TdynM(udyn[k])


(4.40)

B(udyn[k])=



Ts
Cn(

1− e
−Ts

Tdyn1(udyn[k])
)
Rdyn1

(
udyn[k]

)
...(

1− e
−Ts

TdynM(udyn[k])
)
RdynM

(
udyn[k]

)


(4.41)

where Rdyni
(.) is the nonlinear function modeling the ith dynamic resistor,
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whereas the ith dynamic capacitor has been modeled by means of the char-
acteristic time constant, whose value is defined by the nonlinear function
Tdyni

(.).

Neural Network Implementation

The neural network implementation of ENNC is shown in Figure 4.29. The
model is composed of four main neural networks, each one modeling one of
the circuit elements shown in Figure 4.28.
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Figure 4.29: Neural Network implementation of the ENNC model.

Distinct and dedicated MLPs have been used for modeling the instanta-
neous resistor Rist, the dynamic resistors Rdyn = {Rdyn1

, . . . , RdynM
}, and the

dynamic time constants τdyn = {τdyn1
, . . . , τdynM

}. In particular, the MLP
related to Rist has only one output neuron because the model has only one
instantaneous resistor. Conversely, the MLPs related to Rdyn and τdyn count
M output neurons, with M equal to the number of RC dipoles composing
the overall dynamic response of the model. With regards to the input tuples,
both the instantaneous and the dynamic electric components can be poten-
tially affected by all of the physical quantities. Consequently, uist and udyn

can include any kind of combination of Iin, SoC, and Tin.
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In accordance with the modeling techniques discussed in Sections 4.2.2
and 4.4.1, the capacitor Cqst has been modeled by means of the nonlinear
OCV-SoC curve, that provides directly the value of the quasi-stationary volt-
age Vqst as a function of SoC. Likewise NNE, this nonlinear curve has been
approximated through an FLNN taking as input the tuple uqst, and provid-
ing as output the value of Vqst. Indeed, it has been already shown in Sec-
tion 4.4.1 that FLNN offers the best approximation performances of the OCV-
SoC curve with respect to other neural network architectures. In accordance
with the OCV-SoC representation, SoC is a mandatory input of FLNN and it
must be always included in uqst. Although Vqst can be affected also by Iin,
only the temperature Tin can be considered as a further input of FLNN. This
is the only constraint of the model and it has been necessary for avoiding
any kind of conflict between the MLP modeling Rist and the FLNN modeling
Vqst. Indeed, since both the networks have a memoryless architecture, the
inclusion of Iin in the tuple uqst will cause the FLNN trying to approximate
part of the instantaneous voltage Vist, compromising the effectiveness of the
MLP related to Rist.

The other blocks composing ENNC perform the remaining calculations
for implementing the system equations (4.39). Thus, the value of Rist is mul-
tiplied by Iin to get the instantaneous contribution Vist. Similarly, the state
update equations related to each RC dipole are applied for obtaining the val-
ues of every Vdyni

. Moreover, the final value of the dynamic contribution Vdyn

has been obtained as the weighted sum of the single responses Vdyni
. Con-

sequently, the learning procedure is in charge also of training the weights
ωdyni

.

4.5.2 Experimental Setup

Data Sets

Two distinct data sets have been considered for testing the proposed ENNC.
Both of them have been chosen in order to test the model upon measurements
related to generic or realistic applications of the cell. Indeed, one of the main
advantages of the proposed approach is its greater flexibility that allows to
perform system identification upon generic data, avoiding specific and time
consuming tests.

The first set is again the Randomized Battery Usage Data Set chosen for its
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generic use of the cell. In particular, also the Tin sequence has been consid-
ered in this case because ENNC has the ability of dealing with the tempera-
ture input conversely to the other models discussed so far.

The second data set has been collected autonomously by means of a self-
developed programmable battery cycler whose details are discussed in Sec-
tion 5.2. More precisely, a lithium polymer cell model ePLB C020 character-
ized by an effective capacity of 15 Ah has been tested by simulating its use
during a journey of an electric vehicle similar to the Nissan Leaf. Two differ-
ent trips have been considered for building the Training and the Test Sets. In
order to consider a realistic environment, both the trips have been composed
by mixing urban, extra-urban, and highway driving cycles with rests and
battery charging phases. The considered driving cycles have been selected
from the FTP repository. The complete list of the cycles composing both the
Training and the Test Sets are shown in Table 4.13. The Training Set consists
in a trip of 277.64 km for a total of about 12 h of data, whereas the Test Set
counts 163.24 km and about 7 h of data. The measurements of Iin, Vout, and
SoC have been performed with a sampling time of 1 s and the resulting se-
quences are shown in Figure 4.30. The SoC sequence has been evaluated by
means of expression (1.3) considering Cn = 15 Ah. Unfortunately, the battery
cycler has not still provided with temperature sensing and Tin has not been
considered for the ePLB data set.
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Figure 4.30: Sequences of Iin, SoC, and Vout composing the ePLB data set.
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Table 4.13: List of the driving cycles composing the ePLB data set

Training Set Test Set

Name∗ Duration [s] Distance
[km]

Name∗ Duration [s] Distance
[km]

ARB02 1639 31.91 Rest 600 0
Rest 1200 0 FTP 2478 17.77
REP05 1400 32.25 SC03 600 5.76
Rest 1200 0 UDDSHDV 1060 8.94
US06 600 12.89 Rest 1800 0
SC03 600 5.76 REP05 1400 32.25
Rest 1200 0 SC03 600 17.77
HWFET 765 16.51 UDDS 1369 11.99
Rest 1200 0 Rest 600 0
UDDS 1369 11.99 Partial Charge 1800 0
Rest 1200 0 Rest 1800 0
OCC 1909 10.53 UNIF01 1930 22.05
Rest 1200 0 FTP 2478 17.77
HWFETMNT 765 16.51 HWFET 765 16.51
Rest 1200 0 OCC 1909 10.53
Full Charge 15193 0 NYCC 598 1.9
Rest 1200 0 Rest 3600 0
VEIL2NREL 5915 139.29
Rest 3600 0

Tot. 43318 277.64 Tot. 25387 163.24

∗The acronyms refer to the driving cycles belonging to the FTP repository.

ENNC Implementation and Training

The ENNC model has been developed in Python by means of the framework
Keras running on top of the backend Theano. In particular, the whole archi-
tecture has been implemented as a unique computational graph. Thus, it has
been possible to train ENNC through the direct minimization of the RMSE
between the measured and the estimated output voltage Vout. The training
procedure has been performed with the GDBP algorithm that has been run
with the optimizer Nadam. Indeed, preliminary tests have proved that this
optimizer reaches the most effective results with respect to other alternatives
such as Adam, Adadelta, or RMSprop. Both the training procedure and all
the performed tests have been run on a laptop featuring a quad-core Intel i7
7770HQ 2.8 GHz and 16 GB RAM. Moreover, GDBP has been run for 2000
epochs. The Glorot normal procedure has been considered for initializing all
the weights of ENNC, except for those related to the FLNN network. Indeed,
likewise NNE, also in this case it has been preferred to initialize the weights
to zero in order to avoid oscillations due to a random mixing of the functional
reservoir.

It is worth noting that also in this case each internal network is actually
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trained in an unsupervised way even if the whole model is trained with a
supervised approach. Indeed, ground truth sequences of the internal resis-
tance Rist, of the dynamic resistances Rdyn, of the dynamic time constants
τdyn, and of the quasi-stationary voltage Vqst are not available at training
time. Consequently, the outputs of all the MLPs and FLNN are unknown,
so that their learning procedure relies necessary on an unsupervised scheme.
Despite that, the effectiveness of GDBP is ensured by the white box nature of
the model. Indeed, the system equations defined in (4.39) force each internal
network at modeling only the specific electrical component to which they are
devolved, making unnecessary the knowledge of ground truth outputs.

ENNC Configurations

Several meta-parameters need to be set in order to get the most suitable con-
figuration of ENNC. First, it is necessary to select which quantities among
Iin, SoC, and Tin should compose the input tuples uist, udyn, and uqst. Sec-
ond, the number of hidden layers, the number of neurons per layer, and the
activation functions must be set for each of the MLPs modeling Rist, Rdyn,
and τdyn. Finally, it is necessary to configure the functional reservoir of the
FLNN approximating the voltage response Vqst. It is clear that a complete
grid search of all the possible configurations of ENNC was impracticable.
Therefore, only a reasonable and suitable subset of them has been analyzed,
looking for the best model setup.

With regards to the input tuples, all the possible combinations of the
quantities Iin, SoC, and Tin have been investigated. However, it has been
imposed the same configurations for uist and udyn in order to limit the num-
ber of combinations to be tested. Consequently, every MLP share the same
input tuple. Regarding FLNN, only two input configurations were available.
Indeed, as explained in Section 4.5.1, the tuple uqst can be composed of only
SoC or it can include SoC and the temperature Tin. In particular, the inclusion
of the temperature has been aligned with those of the inputs uist and udyn.

All the MLPs share the same setup concerning the number of hidden lay-
ers, the number of neurons per layer, and the activation functions. In par-
ticular, all the hidden layers have been configured with a fixed value of 15
neurons. Conversely, the number of output neurons depends on the specific
component the MLP is approximating, as explained in Section 4.5.1. There-
fore, the MLP related to Rist counts one output neuron, whereas those mod-
eling Rdyn and τdyn have M output neurons. Specifically, the model has been
configured with M = 2.
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Starting from this baseline configuration, a grid of eight architectures has
been analyzed. More precisely, two different numbers of hidden layers and
two different hidden activation functions have been tested for all the MLPs.
Furthermore, two output activation functions have been analyzed for the
MLPs modeling Rist and Rdyn.

First, the impact of using one or two hidden layers has been investigated.
In particular, the aim was to state if a higher approximation capability were
beneficial for modeling the circuit elements of ENNC. Second, besides the
most common hyperbolic tangent (tanh) activation, also the more computa-
tionally efficient rectifier linear unit (ReLU) function has been investigated
for the hidden layers.

The setup of the output activation functions deserves a more detailed ar-
gumentation. Concerning Rist and Rdyn, there were no particular constraints
on their effective modeling and two different output functions have been
tested. The first one is the standard linear (lin) activation that is commonly
used in function approximation problems. However, the value of a resis-
tance should be not negative in order to provide a physical interpretation
to its functionality. Therefore, it has been chosen to force the non-negativity
of Rist and Rdyn by using a sigmoid (sig) output activation function. Con-
versely, the lin activation was impractible for the output layer of the MLP
modeling τdyn. Therefore, only sig has been considered in this case. This
choice was forced by the need of ensuring the stability of the model and of
its training procedure. Indeed, the value of any time constant cannot be in
any case lower or equal to zero. Otherwise, the model is unstable and the
overall output can easily result in a Not a Number that compromises the suc-
cess of the training process. Moreover, the value range of the time constants
of any electrochemical cell is very wide and it can go from tens to thousands
of seconds [51]. Consequently, the training procedure can be ineffective at
finding a suitable modeling of the τdyn vector. The use of the sig activation
has solved both the problems. Indeed, it guarantees always a positive value
for each τdyni

, ensuring the stability of the model. Moreover, the output value
range is limited from 0 to 1 and it can be easily denormalized for getting the
desired actual range. Specifically, the denormalization of each τdyni

has been
implemented with the following expression:

τdyni
=
[
τmin + τMLPi (τmax − τmin)

]
γi (4.42)

where τdyni
and τMLPi are the time constant of the ith RC dipole and the ith
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output of the MLP, respectively; τmax and τmin are the maximum and mini-
mum admissible values for τdyni

. Moreover, it has been introduced the tun-
ing factor γi in order to introduce a suitable tolerance in the denormalization
process. Specifically, τmax and τmin have been set to 10000 s and 10 s, respec-
tively, whereas the coefficients γi are tuned by the training procedure.

The configuration of the FLNN modeling the voltage response of Cqst has
been already analyzed in Section 4.4.2 with regards to the NNE model. In-
deed, it has been observed that the best results were obtained by considering
a functional reservoir composed of a mixture of Chebyshev polynomials of
the first kind from the zeroth to the 20th degree, and of trigonometric poly-
nomials from the 1st to the 10th degree. However, Chebyshev polynomials
are characterized by suffering significantly from the Runge’s phenomenon
and by having a high computational load. For this reason, it has been cho-
sen to substitute them with Bernstein polynomials. Indeed, they allow to
avoid the Runge’s effect and their evaluation is much more computationally
efficient with respect to Chebyshev polynomials. Therefore, FLNN has been
configured with a functional reservoir composed of 21 neurons evaluating
the Bernstein polynomials from the zeroth to the 20th degree, plus 20 neu-
rons evaluating both sinusoidal and cosinusoidal polynomials from the 1st to
the 10th degree. Preliminary tests have been conducted and this configura-
tion has proved to offer a better model accuracy and a faster evaluation with
respect to the Chebyshev polynomials. Similarly to NNE, the sig activation
function has been considered for the output layer of FLNN. Summarizing,
the overview of the considered model configurations is shown in Table 4.14.

Table 4.14: Overview on the model configurations

Rist Rdyn τdyn Cqst

Network MLP MLP MLP FLNN
Input Tuple Iin | SoC | Tin Iin | SoC | Tin Iin | SoC | Tin SoC | Tin
Hidden Layers 1 | 2 1 | 2 1 | 2 1
Hidden Neurons 15 15 15 21 + 20
Hidden Activation tanh | ReLU tanh | ReLU tanh | ReLU bern + trig
Output Neurons 1 2 2 1
Output Activation lin | sig lin | sig sig sig

4.5.3 Performances Analysis

Performance Metrics

The performances have been evaluated by means of three metrics. The first
one evaluates the model accuracy ΦVout , the second performance metric ΦSoC
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tracks the effectiveness in the SoC estimation task, whereas the third one is a
suitable fitness coefficient F that summarizes the model performances jointly
with its computational cost.

The first performance metric ΦVout aims at analyzing the overall model ac-
curacy. Its definition is straightforward since it is automatically represented
by the RMSE performed at estimating the output voltage Vout. Specifically,
ΦVout has been evaluated only on Test Set sequences in order to verify the
generalization capability of the model.

The effectiveness in the SoC estimation task ΦSoC has been analyzed by
means of a suitable SoC estimator. To this aim, SoC estimation has been per-
formed with the SR-UKF state estimator. Specifically, the state vector has
been always initialized considering a 50 % SoC and Vdyn = 0. Again, the SoC
estimation task has been performed on Test Set sequences only. In order to
avoid straightforward estimations, SR-UKF has been started with a temporal
offset with respect to the first sample of the sequences, ensuring that the cell
is in an unknown non-stationary working point at the beginning of the SoC
estimation task. Two different temporal offsets have been considered aiming
at analyzing not only the mere SoC estimation accuracy, but also its robust-
ness. Indeed, this procedure has allowed to analyze the capability of SR-UKF,
jointly with the considered model, at correcting the initial wrong state vector
estimation starting from two different initial errors. Specifically, the tempo-
ral offsets have been set to 30 min and 60 min, respectively. The accuracy of
the SoC estimation has been evaluated by means of the RMSE between the
real and the estimated SoC3. Successively, the overall metric ΦSoC has been
defined as the average of the performed RMSEs among the two temporal
offsets.

The definition of the model fitness F has required the evaluation of the
computational cost as well as of the physical memory occupancy of the mod-
els under analysis. With regards to the memory occupancy, this value has
been measured by counting the total number of floating point parameters
Npar to be memorized for executing the model.

The evaluation of the computational cost has been based on the estima-
tion of the model latency L, i.e. the total number of processor clock cycles
needed for propagating the inputs to the model output. In order to do that, it
has been counted the overall number of additions, multiplications, compar-
isons, and nonlinear transformations interesting each execution of the model.

3The real SoC sequence has been evaluated by applying the coloumb counting algorithm
starting from the beginning of the Test Set sequence and initializing expression (1.3) with the
correct SoC value, i.e. SoC[0] = 100 % for both the data sets.



Chapter 4. Modeling Electrochemical Cells 135

Successively, the latency has been evaluated through the summation of these
values weighted by the expected number of clock cycles required for execut-
ing each basic operation. Therefore, L has been expressed as follows:

L = NaddLadd + NmulLmul + NcmpLcmp + NnltLnlt (4.43)

where Nadd, Nmul, Ncmp, and Nnlt are the number of additions, multipli-
cations, comparisons, and nonlinear transformations, respectively, whereas
Ladd, Lmul, Lcmp, and Lnlt are the number of clock cycles related to each ba-
sic operation. The latter values have been set accordingly with the standard
CPU latency and they are shown in Table 4.15.

Table 4.15: Clock cycles per basic operation

Ladd Lmul Lcmp Lnlt

2 4 2 20

Since the model approximates a dynamical system, it has been considered
also its state space dimension D for a more accurate determination of the
computational cost. To this aim, it has been exploited the knowledge that
the model must be executed 2D + 1 times during the prediction phase of
SR-UKF. Therefore, the overall computational cost C has been evaluated by
multiplying the model latency L by 2D + 1:

C = (2D + 1)L. (4.44)

The model fitness F has been defined by taking into account ΦVout , ΦSoC,
C, and Npar. However, all of these coefficients belong to a different value
range. Therefore, it has been necessary to make them comparable. To this
aim, each term has been scaled in the range [0, 1] by applying a normalization
with respect to the maximum and minimum values achieved among all the
configurations of ENNC discussed in Section 4.5.2. Indicating with Φ̃Vout ,
Φ̃SoC, C̃, and Ñpar the normalized coefficients, the fitness has been defined
with the following expression:

F = α1Φ̃Vout + α2Φ̃SoC + α3C̃+ α4Ñpar (4.45)

where α1, α2, α3, and α4 are suitable weighting factors subject to ∑ αi = 1.
More precisely, the previous constraint, together with the applied normaliza-
tion, ensures that F belongs to the same range [0, 1]. The weighting factors
have been set as shown in Table 4.16. Herein, it has been chosen to give a
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greater importance to the SoC estimation accuracy since it is the most impor-
tant performance being the model developed for performing this task.

Table 4.16: Weighting coefficients for the Model Fitness

α1 α2 α3 α4

0.7 0.1 0.1 0.1

Discussion on the ENNC Configurations

The value of ΦVout , ΦSoC, and F performed by the considered configurations
of ENNC above the NASA and the ePLB data sets are shown in Figure 4.31
part (a) and (b), respectively.
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Figure 4.31: Heatmap of the model performances ΦVout , ΦSoC, and F. (a)
NASA data set. (b) ePLB data set. Brighter colors refer to a better perfor-
mance.
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The flexibility of the ENNC architecture is surely the first remark to draw.
Indeed, several model configurations have achieved effective results con-
cerning both the model accuracy ΦVout and the performance in the SoC es-
timation task ΦSoC. Thus, it can be argued that ENNC can be effectively used
in a wide range of applications. Indeed, it allows to pursue the maximum
performances according to the available measurements and to the specific re-
quirements concerning model accuracy and its computational cost. Only two
input configurations have appeared to be unsuitable for ENNC. The first one
considers only the current Iin as an input of the MLPs, whereas the second
configuration uses both Iin and Tin as input quantities. Indeed, ENNC has
performed a significant worst ΦSoC in the NASA data set with those input
configurations, even considering different MLP architectures. The same con-
clusion can be drawn by analyzing the results performed in the ePLB data
set concerning the configuration with only Iin as an input.

By analyzing the results achieved on the NASA data set, the model con-
figurations can be split in four categories. Specifically, those including or not
the temperature Tin in the input tuples uist, udyn, and uqst, and those having
one or two hidden layers in the MLPs.

The first observation is that the use of two hidden layers has caused a gen-
eral loss of performances in all of the three metrics. In particular, the higher
computational cost due to the presence of two hidden layers have caused a
significant worse fitness F even in those few cases where the two layers re-
sulted in a better ΦVout and/or ΦSoC. Moreover, it has been also observed
that including dropout layers did not outcome in any relevant or system-
atic performance improvements, allowing to exclude that ENNC overfits the
training data. Most likely, the loss of performances of the two hidden layers
configuration is related to an increased probability of GDBP to be stuck in
local minima due to the higher number of weights and to the unsupervised
learning that characterizes each internal MLP. Therefore, the use of only one
hidden layer is preferred.

As expected, the inclusion of temperature in the input tuples is resulted
in a general improvement of the model performances, even when two hid-
den layers have been considered. Indeed, temperature is one of the physical
quantities mostly affecting the voltage response of electrochemical cells [84].
Therefore, the inclusion of Tin in the input tuples is almost always advan-
tageous whenever this measurement is available. The remarkable point of
the achieved results is that the temperature information has been exploited
without performing specific and time consuming tests over the cell. Indeed,
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the most common procedure for investigating the temperature influence con-
sists in performing several acquisition campaigns by keeping the tempera-
ture constant through climatic chambers, and by repeating the test swiping
the temperature over suitable ranges. Consequently, these acquisition cam-
paigns are very time consuming and they require accurate and expensive
testing equipment. Conversely, thanks to its neural networks architecture,
the proposed ENNC is able to track the temperature influence on each elec-
trical component by considering only data acquired during the cell activity.
This fact results in a more flexible, more practical, and cheaper modeling
technique.

The results achieved in the ePLB data set confirm the previous observa-
tions concerning the use of one or two hidden layers. Indeed, also in this
case it is evident a loss of performances when two hidden layers have been
considered. Again, the use of dropout layers did not result in a performance
improvement, suggesting the same tendency of GDBP at being stuck in local
minima. Unfortunately, temperature measurements were not available for
this data set.

Concerning the configuration of both the hidden and output activation
functions, it can be seen that their choice is not affecting significantly the
final model performances. Except few cases, the three performance metrics
ΦVout , ΦSoC, and F are close to each other in both the data sets although differ-
ent activation functions have been used. Consequently, the selection among
tanh|ReLU and sig|lin must be guided by the requirements of the specific
application in terms of real-time constraints and model effectiveness.

With the aim of a deeper analysis, the model configurations performing
the best fitness for each input tuple are shown in Table 4.17. Herein, the con-
figurations with the overall best fitness along each data set are highlighted
in bold. Table 4.17 provides a useful insight helping at discerning the per-
formances of the activation functions. Indeed, it can be seen that the use of
ReLU for the hidden layers and sig for the output layers appear to be the pre-
ferred setup. In fact, this configuration has achieved the overall best results
in both the data sets, as well as it has reached most frequently the best model
fitness F among the different input tuples.
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Table 4.17: Best model configuration per input tuple

Data
Input
Tuple

Hidden
Layers

Hidden
Act.

Output
Act.

ΦVout ΦSoC F

NASA

Iin 2 tanh lin 2.23e-2 3.56e-2 0.1984
SoC 1 ReLU sig 2.63e-2 3.77e-2 0.0753

Iin, SoC 1 ReLU sig 2.61e-2 3.38e-2 0.0646

Tin 1 ReLU sig 2.17e-2 3.01e-2 0.0250
Iin, Tin 1 ReLU lin 2.56e-2 4.91e-2 0.1503

SoC, Tin 1 ReLU lin 2.10e-2 3.16e-2 0.0343
Iin, SoC, Tin 1 ReLU sig 2.34e-2 3.15e-2 0.0613

ePLB
Iin 1 ReLU sig 1.33e-2 3.49e-2 0.1859

SoC 1 tanh sig 1.03e-2 2.50e-2 0.0700
Iin, SoC 1 ReLU sig 8.60e-3 2.27e-2 0.0351

4.6 Comparison Among White Box, Black Box,

and Gray Box Models

The performances of all the white box, black box, and gray box models dis-
cussed in the previous sections have been compared aiming at analyzing
more thoroughly which of them is the most suitable modeling technique for
performing SoC estimation and more generally for being used in BMSs. To
this aim, the comparison has been performed considering the performance
metrics ΦVout , ΦSoC, and F presented in Section 4.5.3. In particular, all the
models have been tested upon the NASA and the self-collected ePLB data
sets introduced in Section 4.2.2 and Section 4.5.2, respectively.

Concerning the white box models, ECM and M-ECM have been config-
ured in accordance with what discussed in Sections 4.2.2 and 4.2.3, respec-
tively. Thus, a total of 3 RC dipoles have been used for modeling the dynamic
voltage response Vdyn, whereas system identification has been performed by
means of MSHG-PSO. With regards to ENNC, the comparison has concerned
the best model configurations shown in Table 4.17.

Some modifications have been applied concerning the implementation of
the gray box NNE. First, the functional reservoir of the FLNN modeling Vqst

has been setup in accordance with that used in ENNC in order to avoid the
Runge’s phenomenon and to reduce the computational cost of the model.
Consequently, Bernstein polynomials have been preferred to the Chebyshev
ones. Second, all the applicable input configurations have been tested also for
NNE. However, only four possibilities were available for this kind of model
because of the architectural constraints characterizing NNE. More precisely,
the current Iin needs to be always included in the input tuples due to the
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specific architecture of the model.
Concerning the black box models, ELM, RBF-NN, and WNN have been

configured and trained in accordance with what discussed in Section 4.4.3.
Moreover, concerning the NASA data set it has been analyzed also their per-
formances including the temperature Tin in the input tuple.

System identification has been performed considering 2000 iterations of
the respective learning procedures for any of the considered models aim-
ing at ensuring a fair comparison among them. Moreover, the values ΦVout ,
ΦSoC, C, and Npar have been normalized with respect to the maximum and
the minimum values performed among all the models in order to get com-
parable values for the fitness F. Furthermore, the average training time and
the average time for completing one SR-UKF step have been considered as
further terms of comparison. Specifically, the training time has been eval-
uated on the laptop featuring a quad-core Intel i7 7770HQ 2.8 GHz and 16
GB RAM where all the models have been trained. Conversely, the SR-UKF
step has been evaluated on an Arduino Due board by means of the same HIL
architecture discussed in Section 3.1.2. In this way, all the models have been
compared considering their actual temporal load for performing SoC estima-
tion over a board with computational power closer to that of a real BMS. The
obtained results are shown in Table 4.18.

The performances of the black box models confirm the conclusions drawn
in Section 4.4.3. Indeed, ELM, RBF-NN, and WNN are widely resulted the
worst models concerning the SoC estimation task both in the NASA and in
the ePLB datasets, despite they have achieved very accurate voltage estima-
tions. Moreover, also their fitness F is resulted the worst among all the mod-
els, meaning that their simple architecture is not sufficient for counterbalanc-
ing the inadequacy at performing SoC estimation. The main reason of that
has to be attributed to the overfitting of the previous output voltage sample
included in the input tuple. Indeed, as explained in Section 4.4.3, the overfit-
ting of Vout[k− 1] makes ELM, RBF-NN, and WNN very accurate models at
estimating Vout, but it compromises the dependence of the model output on
SoC, as well as it nullifies the possibility of getting any physical information
about the cell behavior. As a consequence, black box models are not able to
provide satisfactory results in the SoC estimation task.

A general improvement can be observed with the white box ECM. Indeed,
it has achieved a better ΦSoC with respect to the black box models both in the
NASA and the ePLB data sets, as well as a better fitness in the NASA data set.
This fact proves the importance of retrieving information about the physical
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Table 4.18: Comparison among Black, White, and Gray box models

NASA data set

Model Input Tuple ΦVout ΦSoC F
Training

Time
[min]

SR-UKF
step
[ms]

B
la

ck
B

ox

ELM
Iin, SoC, Vout 1.59e-2 7.87e-2 0.2508 0.10 6.30

Iin, Tin, SoC, Vout 1.53e-2 6.50e-2 0.1841 0.10 7.00

RBF-NN
Iin, SoC, Vout 1.22e-2 6.82e-2 0.1877 8.28 7.98

Iin, Tin, SoC, Vout 1.23e-2 7.06e-2 0.1993 8.53 8.00

WNN
Iin, SoC, Vout 1.01e-2 1.02e-1 0.3367 12.04 20.00

Iin, Tin, SoC, Vout 1.14e-2 7.93e-2 0.2359 12.89 26.00

W
hi

te
B

ox

ECM N/A 2.76e-2 4.01e-2 0.1783 137.90 10.01

M-ECM N/A 2.91e-2 1.05e-1 0.3739 159.38 18.15

ENNC

Iin 2.23e-2 3.56e-2 0.2029
19.30

135.38
SoC 2.63e-2 3.77e-2 0.1281 75.68

Iin, SoC 2.61e-2 3.38e-2 0.1144 75.62

Tin 2.17e-2 3.01e-2 0.0877

22.12

132.48
Iin, Tin 2.56e-2 4.91e-2 0.1968 131.77

SoC, Tin 2.10e-2 3.16e-2 0.0960 132.26
Iin, SoC, Tin 2.34e-2 3.15e-2 0.1113 134.80

G
ra

y
B

ox

NNE

Iin 2.65e-2 3.82e-2 0.1403 10.94 131.81
Iin, SoC 2.67e-2 3.96e-2 0.1513 144.11

Iin, Tin 2.58e-2 4.36e-2 0.1896 20.78 249.72
Iin, SoC, Tin 2.67e-2 8.12e-2 0.3728 250.86

ePLB data set

Model Input Tuple ΦVout ΦSoC F
Training

Time
[min]

SR-UKF
step
[ms]

B
la

ck
B

ox ELM Iin, SoC, Vout 1.28e-2 6.83e-2 0.1542 0.10 6.92
RBF-NN Iin, SoC, Vout 1.00e-2 2.17e-1 0.5730 14.30 7.71

WNN Iin, SoC, Vout 1.08e-2 2.65e-1 0.7111 21.62 20.00

W
hi

te
B

ox

ECM N/A 1.66e-2 5.86e-2 0.2399 235.48 10.22

M-ECM N/A 1.20e-2 8.25e-2 0.2011 307.27 19.00

ENNC
Iin 1.33e-2 3.49e-2 0.0866

32.91
74.95

SoC 1.03e-2 2.50e-2 0.0565 99.91
Iin, SoC 8.60e-3 2.27e-2 0.0403 74.59

G
ra

y
B

ox

NNE Iin 1.62e-2 4.28e-2 0.1278 18.49 140.96
Iin, SoC 1.66e-2 2.80e-2 0.0905 143.29

behaviors of the cell. Indeed, even if ECM is not resulted the best model
at estimating Vout, the complete insight on the cell physics, as well as the
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separation and identification of the voltage contributions Vist, Vdyn, and Vqst

have been beneficial for improving the SoC estimation accuracy.
The same conclusions cannot be drawn for M-ECM. Indeed, this model

has not achieved satisfying results neither in the NASA and in the ePLB data
sets. As explained in Section 4.2.3, the main reason of that has to be attributed
to the high sensibility of the model performances to the accurate identifica-
tion of the nonlinear function Cqst(.), so that any minimal error compromises
the effectiveness of M-ECM.

The advantage of fulfilling all the three modeling properties discussed in
Section 1.2 is proved by the performances achieved by ENNC and NNE. In-
deed, they are the only models able to provide insight on the cell physics, to
take into account the nonlinear responses of electrochemical cells, as well as
to perform system identification in a flexible way all together. Specifically, it
can be seen that, except for few model configurations, ENNC and NNE have
achieved the best results both in the SoC estimation task and in the fitness
F for both the data sets. Moreover, by comparing their performances with
ECM, it is clear the importance of achieving an effective modeling of the
nonlinearities characterizing electrochemical cells. Indeed, although ECM
provides insight on the cell physics, its effectiveness is limited by its almost
linear nature. Conversely, ENNC and NNE have achieved a significant im-
provement in the SoC estimation accuracy thanks to the nonlinear modeling
capability along with their white box and gray box properties, respectively.

Among all the models, the performances of ENNC are remarkable. In-
deed, it is largely resulted the best model both in the NASA and the ePLB
data sets concerning both ΦSoC and F. In particular, ENNC has achieved the
overall best ΦSoC and F in the NASA data set with the input tuple {Tin}, and
it is resulted the overall best model in all the three performance metrics in the
ePLB data set with the input tuple {Iin, SoC}. The most remarkable result is
that all the model configurations have got very similar performances to each
other. Moreover, ENNC has outperformed all the other models with almost
every input configuration. Concerning the NASA data set, the only excep-
tion is for the input tuples {Iin} and {Iin, Tin}, whereas all the configurations
of ENNC have got the best results in the ePLB data set. It is remarkable to
notice that ENNC is the only model that offer a complete fulfilling of all the
three modeling requirements discussed in Section 1.2.

With regards to the temporal performances, as expected the black box
models have got the best results concerning both the training time and the
average time per SR-UKF step. In particular, ELM is resulted the overall best
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model in both the temporal performances thanks to its fast training proce-
dure and its simple architecture. Conversely, ECM and M-ECM are character-
ized by the highest training time, being one order of magnitude greater with
respect to that of the other models. Concerning NNE and ENNC, they have
achieved comparable training times with respect to RBF-NN and WNN. In-
deed, NNE has required about the same time, whereas the training of ENNC
has lasted about twice the time than NNE, RBF-NN, and WNN, but it is still
in the order of tens of minutes.

Concerning the SR-UKF step, all the simplest models, namely ELM, RBF-
NN, WNN, ECM, and M-ECM, have required less than 30 ms for completing
one estimation step, resulting the best models among the others. In partic-
ular, the performances of ELM, RBF-NN, and ECM are remarkable, with all
of them requiring less than 10 ms per SR-UKF step. Conversely, NNE was
largely penalized by its 6-D state space dimension and it has required from
131.81 ms to 250.86 ms per SR-UKF step, depending if temperature was or
was not considered as model input. Also in this case ENNC has reached the
best trade-off, since it has required from 74.59 ms to 144.11 ms per SR-UKF
step, together with a significant better SoC estimation accuracy.

From Table 4.18 it can be confirmed that the inclusion of temperature in
the input tuples is almost always beneficial, as proved by the general im-
provements observed in the performance metrics ΦVout , ΦSoC, and F. As ex-
pected, the presence of a further input has caused an increased training time
and SR-UKF step, especially for ENNC and NNE. Indeed, it can be observed
that the temporal performances of ELM and RBF-NN have been slightly af-
fected by the inclusion of temperature in the input tuples both considering
the training time and the SR-UKF step, whereas WNN has got similar train-
ing times, but it has shown an increased SR-UKF step of 6 ms. Conversely,
the training times of ENNC and NNE are increased of about 3 and 10 min, re-
spectively, whereas the SR-UKF step has passed from about 75 ms to 130 ms
for ENNC, and from about 130 ms to 250 ms for NNE.

The above results show that the inclusion of temperature can be consid-
ered negligible with respect to the training times. Indeed, in the worst case
the presence of temperature has caused only an increased training time of 10
minutes. Once again, the best trade-off with respect to the SR-UKF step has
been achieved with the ENNC model. Indeed, the time for completing one
SR-UKF step is about 130 ms, that allows to achieve an accurate real-time SoC
estimation of 7 cells with a sampling time of 1 s. In order to increase the num-
ber of cells, it will be necessary to consider either a higher sampling time, or



Chapter 4. Modeling Electrochemical Cells 144

to use more powerful boards for the master device, considering also the hard-
ware acceleration of the BMS algorithms by means of Field Programmable
Gate Array (FPGA) devices.
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Chapter 5

Hardware Implementations

5.1 BMS Prototype

The research activity has aimed at developing an advanced BMS device and
related algorithms. Therefore, it has been designed a suitable BMS prototype
where to implement the algorithms and the models object of the research
activity. The architecture of the prototype is shown in Figure 5.1.

Master Slave BESS
Vout

Iin

Tin

sopt

CAN BUS

Figure 5.1: Block diagram of the BMS architecture: Vout, Iin, Tin, and sopt
refer to the terminal voltage, flowing current, working temperature, and
balancing configuration, respectively.

In accordance with what explained in Section 1.3.1, the BMS prototype
respects a master-slave architecture. The master device is the system core
and it is in charge of performing all the computational tasks belonging to
BMS. In particular, it has to estimate SoC, to determine which is the optimal
configuration for cells balancing, to evaluate SoH, as well as it has to ensure
each cell respects the SOA boundaries. It is clear that all of these tasks are
computationally demanding and consequently the master has to provide a
sufficient processing power. The main task of the slave device is to perform
the required measurements over the battery pack, specifically terminal volt-
age, flowing current, and working temperature of each cell. Moreover, it is
in charge of actuating cells balancing by applying the optimal configuration
determined by the master device.
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It is clear that the integration of a suitable communication protocol is
mandatory for coordinating the activity of master and slave. To this aim,
it has been chosen to use the CAN BUS protocol. This choice has aimed at
aligning the BMS prototype to one of the most used, flexible, and reliable
communication protocol, especially for the automotive industry.

It must be noticed that, depending on the specific hardware used for im-
plementing the master and slave devices, it is possible to adapt the BMS pro-
totype to different application fields like electric vehicles, smart grids or mi-
crogrids, as well as to different electrochemical technology.

The implementation of the BMS prototype is shown in Figure 5.2.

BESS
Master - Arduino Due

CAN BUS

Slave - DC1942C & Linduino

Figure 5.2: Hardware implementation of the BMS prototype.

The master device has been implemented with the Arduino Due1 board,
featuring the CPU Atmel SAM3X8E ARM Cortex-M3. It is a 32-bit ARM mi-
crocontroller working at a clock of 84 MHz. The board has 96 kB of SRAM
and 512 kB of flash memory. Furthermore, it provides 54 general purpose
I/O pins, 4 UARTs, 1 USB OTG capable connection, 2 DAC and 1 CAN inter-
face. Moreover, the non-volatile memory can be extended through a microSD
card. These specifications guarantee sufficient processing power and flexible
communication capabilities for managing a battery module of about twelve
series cells by executing the developed models and algorithms. If more cells
must be managed, it will be necessary to use more Arduino Due boards or to
consider more powerful devices. Moreover, for applications counting hun-
dreds of cells could be necessary to implement the master unit by means of
hardware acceleration devices such as FPGA boards.

1store.arduino.cc/arduino-due

store.arduino.cc/arduino-due


Chapter 5. Hardware Implementations 147

The slave device has been implemented with the DC1942C2 and the Lin-
duino One3 boards both from Linear Technology. In particular, Linduino One
is necessary for interfacing and configuring the DC1942C board, that is the
main element of the slave device. The DC1942C board features the LTC6804-2
integrated circuit, able to monitor up to 12 cells. This capability can be
expanded for monitoring a greater number of cells by connecting multiple
DC1942C through an ISO-SPI bus. The terminal voltage of the cells is mea-
sured through two 16 bits Sigma-Delta ADCs providing a maximum absolute
error of 1.2 mV. A single board requires 290 µs to measure all the twelve cells
it can manage. Moreover, it is equipped with a full programmable passive
balancing hardware that can achieve up to 120 mA of discharging current on
the shunt resistors array. Current sensing is performed by means of the hall
effect sensor LEM CAB 300 C/SP34, that is natively equipped with a CAN
interface for the output reading. Temperature sensing has not been imple-
mented yet.

As explained before, it has been chosen to implement all the communica-
tions between the master device, the slave boards, and the external system
by means of the CAN-BUS protocol. This choice was guided by the aim of
taking advantage of the robustness of the CAN protocol, together with uni-
forming the prototype to the standard communication messages related to
the commercial BMSs. For this reason, this protocol has been preferred to the
ISO-SPI that is built-in the slave board. In particular, the CAN-BUS Shield V25

from Seeed Studio has been used for equipping both the master and the slave
boards with a CAN interface.

5.2 Battery cycler

Besides the BMS prototype, it has been also developed a programmable bat-
tery cycler to be used for testing and data acquisition purposes. The block
diagram is shown in Figure 5.3.

The cycler is composed of three main components: generator, electronic

2www.analog.com/en/design-center/evaluation-hardware-and-software/

evaluation-boards-kits/dc1942c.html
3www.analog.com/en/technical-articles/meet-linduino.html
4www.lem.com/en/cab-300csp3004
5www.seeedstudio.com/CAN-BUS-Shield-V2-p-2921.html

www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/dc1942c.html
www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/dc1942c.html
www.analog.com/en/technical-articles/meet-linduino.html
www.lem.com/en/cab-300csp3004
www.seeedstudio.com/CAN-BUS-Shield-V2-p-2921.html
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Figure 5.3: Block diagram of the self-developed programmable battery cy-
cler.

load, and sensors. The generator and the load are used for charging and dis-
charging the BESS, respectively, whereas the sensors are necessary for mea-
suring voltage, current, and temperature of every cell. In particular, the gen-
erator has been implemented with the QPX1200SP6 and the load with the
LD400P7, both from Aim-TTi.

The aim was to develop a testing equipment that emulates the use of
BESSs in the realistic environment of an electric vehicle. Therefore, the
LD400P has been used for emulating the current drained by the electric mo-
tor, whereas the QPX1200SP reproduces the regenerative breaking and the
battery charging procedure. Both the load and the generator can be remotely
controlled by means of an ethernet connection. Thus, the main computer,
the LD400P, and the QPX1200SP have been connected through a dedicated
LAN switch. The voltage and current measurements have been performed
by means of the slave board DC1942C and the hall sensor LEM LTS25-NP8,
respectively. Specifically, the output voltage of the LEM LTS25-NP is sensed

6www.aimtti.com/product-category/dc-power-supplies/aim-qpxseries
7www.aimtti.com/product-category/electronic-loads/aim-ld400series
8www.lem.com/en/lts-25np

www.aimtti.com/product-category/dc-power-supplies/aim-qpxseries
www.aimtti.com/product-category/electronic-loads/aim-ld400series
www.lem.com/en/lts-25np
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by one of the auxiliary inputs of the DC1942C board. Similarly to the BMS
prototype, also in this case the Linduino One board was necessary for inter-
facing and configuring the DC1942C. Besides this task, Linduino One must
collect the voltage and current measurements and send them to the main
computer through a USB serial communication. As for the BMS prototype,
also the battery cycler is still not provided with temperature sensing.

A dedicated Graphic User Interface (GUI) has been developed for the
Matlab IDE. The GUI allows the user to easily setup the desired test and to
perform it. Specifically, the interface is in charge of controlling the load and
the generator in order to apply the desired current to the BESS, as well as to
retrieve the measurements from the Linduino board.

The developed battery cycler can test BESSs having up to 12 series cells
for a maximum charging and discharging power of 1200 W and 600 W, re-
spectively. It is possible to expand the power capability by adding more
QPX1200SP and LD400P devices.

5.3 Hardware in The Loop Equipment

An HIL testing equipment has been designed and implemented during the
research period abroad at the Center for Automotive Research9 of The Ohio State
University with the aim of developing a suitable system for validating the
BMS algorithms at managing real BESSs. In particular, the design of this test-
ing equipment has been focused at recreating the environment conditions
in which a BMS works while managing the BESS of a real electric vehicle.
To this aim, the HIL equipment has needed the integration of two main de-
vices: a suitable and powerful hardware simulator for emulating the real-
time electrical and dynamical behavior of electric vehicles, and a powerful
programmable battery cycler able to supply and draw an amount of power
close to that interesting the electric powertrain. Moreover, the HIL equip-
ment has been designed in order to be scalable to the size of the BESS, allow-
ing then to test either a single cell, a battery module, or an entire BESS.

The architecture of the developed HIL equipment is shown in Figure 5.4.
The entire system is composed of four main elements: the BESS, the

dSPACE mid-size10 simulator, the AV90011 programmable battery cycler, and
the Wilson Scott slave board.

9The Ohio State University, Columbus, Ohio, USA.
10www.dspace.com/en/inc/home/products/hw/simulator_hardware/dspace_

simulator_mid_size.cfm
11www.avtestsystems.com/av-900

www.dspace.com/en/inc/home/products/hw/simulator_hardware/dspace_simulator_mid_size.cfm
www.dspace.com/en/inc/home/products/hw/simulator_hardware/dspace_simulator_mid_size.cfm
www.avtestsystems.com/av-900
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Figure 5.4: Block diagram of the HIL architecture.

The dSPACE simulator is a very versatile and powerful device consisting
in a processing board and of an ensemble of I/O ports and communication
protocols specifically developed for simulating automotive environments.
In particular, the dSPACE device is in charge of simulating every aspect of
the electric vehicle except those related to the BESS, since the HIL system
is equipped with a real battery pack. Thus, dSPACE simulates the vehicle
dynamics, the electric powertrain, as well as the control strategy. Moreover,
being the HIL equipment focused on the validation of the BMS algorithms,
the dSPACE simulator implements also the master device of BMS, including
all the related managing algorithms to be validated.

The dSPACE device evaluates also in real-time the amount of charg-
ing/discharging power interesting the battery pack. In particular, the pro-
grammable battery cycler is in charge of providing this charging/discharging
power to the BESS. Thus, the dSPACE simulator is connected by means of
a CAN BUS protocol to the AV900 in order to communicate the required
power to be applied to the BESS at each time-step. In particular, the AV900
device ensures a sufficient scalability to the size of BESSs, being able to sup-
ply a maximum of 900 V DC and to reach a maximum charging/discharging
power of 250 kW.

As explained in the above, the HIL involves the use of a real BESS
equipped with a suitable slave device. To this aim, it has been used a Wilson
Scott board featuring 18 AD converters devolved to voltage and temperature
measurements, and an array of shunt resistors for performing passive balanc-
ing. In particular, this board is directly equipped with a CAN transceiver by
which it is possible to retrieve the voltage and temperature measurements,
as well as to configure cells balancing. Finally, current sensing has been per-
formed by means of a suitable shunt resistor.
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The physical realization of the entire HIL testing equipment is shown in
Figure 5.5.

dSPACE HIL

Current Sensing

BESS

AV900

Wilson Scott

V+

V−

CAN

Figure 5.5: Implementation of the HIL testing equipment.

As discussed above, at the present stage the HIL equipment has been de-
veloped for validating only the BMS algorithms, so that the master device is
implemented in the dSPACE simulator. Future works will aim at modifying
the actual architecture in order to consider a real master board in order to
perform a real-time validation of the entire BMS device, considering both its
software and hardware components.
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Chapter 6

Conclusions

Lithium BESSs are widely recognized as one of the most promising technolo-
gies for hindering climate changes and global warming because of their crit-
ical application in the automotive industry and EDS. This is because only
an effective use of BESSs makes the transition from conventional propul-
sion to electrified powertrains possible, as well as from centralized fossil fuel
EDSs to the smart grid and microgrid environment based on a wide use of
RESs. For this reason, research community and companies are paying great
attention to the development of effective BESSs and to the related managing
systems. Considering this great research interest, this Ph.D. thesis has been
focused on the design and implementation of an effective and innovative
BMS device aiming at increasing the effectiveness and reliability of BESSs by
means of a rigorous and effective management of them.

The research activity has involved the design of both the hardware and
the software components of BMSs. From the hardware perspective, it has
been developed a BMS prototype adopting a typical master-slave architec-
ture. Specifically, the master device is in charge of performing all the compu-
tational tasks, whereas the slave board performs the required measurements
and actuates cells balancing. The BMS prototype is able to monitor and man-
age lithium BESSs composed of up to twelve cells, but it is ready for man-
aging a greater number of cells by using multiple slave devices. Besides the
BMS prototype, two dedicated testing equipment have been developed. The
first one is a programmable battery cycler that has been used for performing
measurement campaigns over small BESSs by simulating the realistic envi-
ronment of electric cars. The second equipment is an HIL interface that has
been developed for testing and validating the performances of the BMS al-
gorithms at managing a real BESS.

Most of the research efforts have been dedicated to the software aspects of
BMS, being its effectiveness mostly depending on the algorithms running on
the device. In particular, it has been chosen to deeply investigate the use of
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machine learning techniques because it has been a firm conviction that their
data-driven nature, together with their ability of dealing with nonlinear and
uncertain phenomena, would be very helpful for improving the effectiveness
of BMSs.

Among the tasks of BMS, SoC estimation is surely the most critical one.
Thus, it has been performed an analysis of the state observer techniques,
being the most promising methods for performing SoC estimation. To this
aim, it has been developed and validated an SR-UKF SoC estimator and its
performances have been compared with that of the most common EKF algo-
rithm. In particular, it has been shown that the proposed SR-UKF is a very
performing algorithm that achieves not only accurate SoC estimations, but
also reliable and robust results. Indeed, SR-UKF has proved to converge to
the true SoC value even in front of different and consistent initialization er-
rors. Conversely, EKF has been able to converge only if a small initial error
was made.

The availability of an accurate and robust SoC estimation has permitted
to develop a novel strategy for performing cells balancing. Indeed, the most
common techniques used in the literature and in the industrial field evaluate
the optimal configuration of the balancing circuit aiming at leveling the volt-
age of the cells. However, it has been discussed as this approach can be in-
effective because of the lack of correlation between the terminal voltage and
the working point of electrochemical cells due to parasitic voltage responses
and flat OCV-SoC curves. Therefore, it has been developed a novel strategy
that takes advantage of an accurate SoC estimator for performing cells bal-
ancing by leveling directly their SoC instead of their terminal voltage. To this
aim, cells balancing has been formulated as a zero-one integer programming
problem solved at each time-step by means of the MSHG-BPSO algorithm
aiming at progressively minimizing the variance of the cells’ SoC. The ad-
vantage of the proposed approach is that it is not affected by the parasitic
voltage responses of the cells, allowing then to get a more effective and effi-
cient balancing of BESSs.

It is clear that performing an accurate SoC estimation is critical not only
for retrieving information about the residual energy stored in BESSs, but also
for performing the other tasks of BMS, such as cells balancing. For this rea-
son, the research activity has focused on further improving the effectiveness
of SR-UKF at estimating SoC. To this aim, most of the efforts have been de-
volved to the development of effective and reliable models of electrochemical
cells, since the accuracy of SR-UKF relies deeply on the performances of the
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model used in the prediction step.
The research about modeling electrochemical cells has been guided con-

sidering three main requirements that a model shall fulfill for ensuring ac-
curate SoC estimations. First, the model shall provide useful insight on the
physics of electrochemical cells in order to ensure SR-UKF has sufficient in-
formation for converging to the actual SoC value. Second, the model shall
approximate as accurately as possible the nonlinearities of electrochemical
cells for improving the model accuracy. Third, system identification shall be
as flexible as possible for ensuring a straightforward update of the model
parameters with the aging of the cells.

Black box, white box, and gray box modeling techniques have been an-
alyzed looking for a model able to successfully fulfill all the three require-
ments discussed above. Concerning the black box ELM, RBF-NN, and WNN
models, none of them were able to achieve satisfactory results in the SoC
estimation task, even if they were characterized by a very simple and fast
system identification procedure, as well as by the innate ability of modeling
the nonlinearities of the cells. The main reason of this unsuitability has to be
attributed to their inability at providing information about the physical be-
haviors of electrochemical cells. Indeed, black box models address only the
overall input-output relationship of the system and they need to use a slid-
ing windowing of the output voltage for modeling the dynamical response
of the cells. This modeling architecture is easily resulted in the overfitting
of the delayed output voltage, compromising the effectiveness of black box
models in the SoC estimation task.

Concerning the white box ECMs, they are characterized by providing a
complete insight on the cell physics. Nevertheless, the related system iden-
tification procedure is very stiff and rigid, requiring to perform very specific
and long lasting tests. Therefore, the research activity has focused on the de-
sign of a more flexible system identification for ECMs that can be performed
over generic data measured during the activity of the cell. In order to retrieve
this result, it has been necessary to apply a wide linearization of the model,
resulting in the inability of tracking most of the nonlinear behaviors of elec-
trochemical cells. Specifically, only the nonlinear OCV-SoC relationship has
been preserved. Two ECMs have been developed following this approach
and for both of them system identification has been formulated as a generic
fitting problem solved by means of the MSHG-PSO optimization algorithm.
In particular, in the linear ECM the OCV-SoC curve has been approximated
with a sampling and interpolating approach, whereas in the M-ECM it has
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been used a mechanical analogy and an ANFIS approximator for the same
purpose. It has been observed that the insight on the physical behaviors has
been helpful for improving the SoC estimation accuracy. Nevertheless, it has
appeared clear also that the wide linearization of ECMs has reduced their
effectiveness in the SoC estimation task.

The gray box NNE and the white box ENNC models have been devel-
oped aiming at fulfilling the three modeling requirements discussed above.
Both of these approaches have aimed at taking advantage of the neural net-
works theory in order to achieve a very flexible system identification proce-
dure together with nonlinear approximation capabilities. In the NNE model,
three distinct and dedicated neural networks have been used for modeling
and separating the three main voltage contributions of electrochemical cells,
namely Vist, Vdyn, and Vqst. Specifically, each neural network has been de-
volved and specialized to model only one of the distinct voltage responses.
Conversely, ENNC has aimed at taking advantage of the strengths of both
the white box and the gray box techniques by means of an hybridization be-
tween NNE and ECM. Thus, ENNC uses the ECM system equations for forc-
ing the white box property to the model, whereas each electrical component
has been modeled as a generic nonlinear device whose electrical response is
approximated by a dedicated neural network.

Thanks to their architectures, both NNE and ENNC are the only models
able to fulfill all the three modeling requirements. The main difference be-
tween NNE and ENNC concerns their flexibility at modeling the nonlinear-
ities of electrochemical cells. Indeed, because of its gray box nature, NNE is
subject to architectural constraints needed for allowing an effective identifi-
cation and separation of Vist, Vdyn, and Vqst. Unfortunately, these constraints
partly limit the physical quantities that can be included in the input tuples of
the neural networks, resulting in the impossibility of NNE at tracking all the
possible nonlinear relationships affecting electrochemical cells. Conversely,
ENNC ensures natively the separation and identification of the distinct volt-
age responses because of the white box system equations inherited from
ECMs. As a consequence, ENNC is way more flexible than NNE, allowing
also to reduce the architectural complexity of the model.

It is interesting to note that both NNE and ENNC are resulted way more
accurate at performing SoC estimation with respect to all the other models,
especially in the realistic ePLB data set. Moreover, ENNC is largely the over-
all most effective and flexible model, achieving the best performances at esti-
mating SoC, as well as at performing the best model fitness both in the NASA
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and the ePLB data sets considering different model configurations. It is im-
portant to remark that these outstanding performances have been achieved
without increasing excessively the computational cost of the model, and with
acceptable training times. These results confirm and validate the importance
of the three requirements that have been pursued for developing electro-
chemical cell models, being NNE and ENNC the only ones that fulfill all
of them. In particular, the performances of ENNC makes particularly clear
that the best model for BMSs shall show white box properties together with
strong nonlinear approximation capabilities.

It has been discussed that flexible system identification has been consid-
ered a mandatory requirement of the developed models for allowing a more
frequent and more flexible update of the model parameters. Indeed, the most
common system identification techniques for electrochemical cells are very
rigid and time consuming tasks, requiring to disassemble the BESS and to ex-
ecute specific, long lasting, and expensive tests. Therefore, those procedures
cannot be applied frequently, resulting in a progressive loss of effectiveness
of the BMS algorithms with the aging of BESSs. Thus, it is straightforward to
recognize a clear benefit in the developed flexible system identification pro-
cedures. Indeed, they allow to identify the model parameters by using data
collected during the ordinary use of the battery pack, resulting in a more
simple and cheap procedure that is tailored on the specific cell and its spe-
cific application, and that avoids to disassemble the BESS and to perform
specific tests. This advantage is even more prominent with ENNC, because
of the very promising performances and flexibility it has shown with respect
to the other models.

Besides the above discussed benefits, the flexible system identification
procedure and the performances of ENNC make possible to develop a very
interesting scenario, consisting in a remote assistance framework for BMSs,
whose conceptual diagram is shown in Figure 6.1.

The framework aims at providing remote assistance to any application
involving the use of BESSs, such as electrified vehicles, microgrids, smart
grids, and other portable electronic applications. It is composed of three main
components: a set of services to be assisted, a cloud interface, and a remote
server equipped with machine learning algorithms devolved to perform sys-
tem identification of electrochemical cell models. Each of the assisted services
is able to collect, communicate, and save in cloud the historic data concerning
the specific workload performed by its BESS. On the other side, the server is
in charge of collecting these data and to perform system identification over
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Figure 6.1: Diagram of the remote assisted BMS framework.

them in order to update the model parameters of each specific service. Once
the new model parameters are ready, they are sent back to the service in order
to update the model to the current status of the related BESS.

From the BMS side, the remote assistance framework will require only the
implementation of a suitable logging system for allowing the memorization
of the operating voltage, current, and temperature of the cells composing the
BESSs. In particular, considering the data sets used for training and vali-
dating all the models discussed in this thesis and considering also the com-
pelling performances shown by the ENNC model, it can be argued that a
successful implementation of the framework can be achieved by considering
a sampling time of 1 s and training sequences of about 6-12 h. Considering
the above configuration, the training data of each cell can be stored in files
of few MBs, so that the logging system can be implemented by means of
suitable and cheap microSD cards. With regards to the communication with
the cloud interface, it is possible to think about two scenarios. The first one
implies that BMSs are equipped with an internet connection in order to com-
municate directly with the cloud interface in order to send the training data
and receive back the updated model parameters. Otherwise, the communi-
cation with the cloud can be devolved to external devices being part of the
application infrastructure, such as the charging stations related to the EVs
context.

The remote assisted BMS framework provides several advantages. The
first and most important benefit is the capability of adapting the models used
in BMSs to the aging of BESSs. This fact allows to keep as high as possible the
effectiveness of the BMS algorithms, as well as to increase the life of the entire
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BESS. Second, the framework allows to generalize the whole BMS, since the
same devices and the same framework can be used effectively independently
of the specific application, size of the BESS, and electrochemical technology.
Indeed, it must be noticed that all the developed models are not technology
dependent, and they can be easily applied to other electrochemical cells, such
as lead-acid or NiMH. Third, the framework allows to perform system identi-
fication on data measured on the exact BESS installed in the specific service.
As a consequence, the identified models are tailored on the actual electro-
chemical cells of the BESS, as well as to the actual measurement sensors used
in the specific application. Conversely, offline data acquisition campaigns are
often performed on cells that are not actually used in the final BESS, as well
as by using measurement sensors that are different from that of the actual ap-
plication. Finally, the remote assistance framework allows to tailor the model
also to the specific workload performed by the user with his own BESS.

Besides the above discussed advantages, an implicit corollary to the re-
mote assistance framework concerns SoH estimation and second life use of
automotive BESSs. Indeed, as explained before, the frequent update of the
model parameters implies that the models used in BMSs are adapted to the
actual aging status of electrochemical cells. Thus, it is clear that this adap-
tation can be exploited for retrieving accurate information about the actual
SoH of BESSs. The immediate consequence is that the remote framework is
a very helpful tool for tracking the SoH of several BESSs related to a wide
variety of different applications. In particular, considering that automotive
BESSs are considered unfeasible when they lose about 20 % of their original
capacity, it is expected and encouraged a second life reallocation of dismissed
automotive BESSs in different and less critical applications. In this context,
the remote assistance framework will allow not only to accurately tracking
the SoH of each BESS, but also to easily reallocate them to different services
keeping information about their actual status and historic usage. Therefore,
the framework allows not only an effective management of single BESSs re-
lated to a specific service, but also a more effective and smart management of
the entire ensemble of BESSs included in the remote assistance framework.
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