
Neural and Fuzzy Neural Approaches to
Energy Time Series Prediction

Department of Information Engineering,

Electronics and Telecommunications

Ph.D. in

Information and Communications Technologies

XXXI Cycle

Advisor Candidate

Prof. Massimo Panella Antonello Rosato

This thesis has been evaluated by the two following external referees:

� Prof. Barbara Cannas, University of Cagliari, Electric and Electronic

Engineering Dept.

� Prof. Amedeo Andreotti, Department of Electrical Engineering and

Information Technology - University of Naples “Federico II”.

Neural and Fuzzy Neural Approaches to Energy Time Series Pre-

diction

Ph.D. thesis. Sapienza - University of Rome

2018 Antonello Rosato

Version: February 11, 2019

Author’s email: antonello.rosato@uniroma1.it

Abstract

The analysis of time series has a significant value in a lot of various and diverse

broad contexts, such as engineering, medicine, finance, physics and social sci-

ences. Its importance stems from the possibility to grasp a better knowledge

of the underlying processes involved in the field of interest. One of the core

objectives of time series analysis is prediction. In fact, the forecasting of fu-

ture values of any time series is very valuable, especially in applications were

adapting to later evolutions of a given system is profitable and often manda-

tory. Historically, time series prediction has been implemented mainly with

statistical models, but with the advent of new machine learning paradigms

such as neural networks, which mimic the human intuitive learning approach,

the horizon of possibilities for time series methods has been largely widened.

Also, pairing neural networks with the ability of fuzzy logic to deal with the

uncertainty of data, can give precious results in terms of accuracy for time

series forecasting algorithms. The main objective of this work is to investi-

gate these new machine learning approaches to solve the prediction problem

in the energy production context, which has a big challenging application

impact. The ability to forecast energy related time series, such as energy

commodities prices, electrical load of power systems and energy production,

in the short and middle term is a key issue to allow a high-level penetration

of the distributed generation into the grid infrastructure. Forecasting energy

production is mandatory for dispatching and distribution issues at the trans-

mission system operator level, as well as the electrical distributor and power

system operator levels. Also, forecasting the energy production of renewable

energy plants is today an essential tool for asset owners. Practically, it has

direct economic implications on the net operating income of the plants, whose

generated energy is sold in competitive electricity markets. Usually, energy

related time series are affected by a wide variety of impurities and wild behav-

iors which call for forecasting algorithms whose generalization capability must

be accordingly greater than other classical models. To this extent, in this dis-

i

sertation innovative prediction techniques based on neural and fuzzy neural

paradigms are developed and tested on real-world application cases, to assess

the reliability and strength of these techniques in operational contexts. In

detail, energy production forecasting is carried out in different environments,

such as single PV cell production, isolated grid, and multiple plants. A study

is also done on other energy-related quantities, namely load and energy price.

The machine learning models used in this work can be listed as: mixture

of gaussian neural network, radial basis function neural network, adaptive

neuro-fuzzy inference system, higher-order neuro-fuzzy inference system and

echo-state network. The results of the extensive experiments reported in this

thesis give a complete outlook on the performance of such methods, high-

lighting their versatility and good accuracy in the energy time series context.

Thus, neural and fuzzy neural approaches can be considered as a reliable

solution for the energy forecasting problem.

ii

Contents

Abstract i

List of Figures ix

List of Tables xv

I Background and Introduction 1

1 Introduction 3

1.1 Motivation . 3

1.2 Scope of the work . 4

1.3 Organization . 5

1.4 Research Contributions . 6

2 Time Series Analysis 9

2.1 Definition, description and examples 9

2.1.1 Basic properties and terminology 11

2.1.2 Components . 13

2.1.3 Time Plot . 15

2.1.4 Real Data . 15

2.2 Stationarity . 15

2.3 Approaches to time series analysis 16

II Energy Time Series Prediction 19

3 Time Series Prediction 21

3.1 Introduction . 21

3.2 Univariate Prediction Models 22

3.2.1 Autoregressive and Moving Average models 22

v

CONTENTS

3.2.2 Nonlinear models . 25

3.2.3 Heteroschedastic Models 29

3.2.4 Nonparametric models 29

3.3 Multivariate prediction models 30

3.4 Error Measures . 31

4 Neural and Fuzzy Neural Networks for Energy-related Time

Series Prediction 33

4.1 Introduction . 33

4.2 Models . 35

4.2.1 Radial Basis Function 36

4.2.2 Gaussian Mixture Model 37

4.2.3 Adaptive Neuro Fuzzy Inference System 37

4.2.4 Higher Order Neuro Fuzzy Inference System 38

4.2.5 Echo State Network . 40

4.3 Embedding . 42

4.4 Applications . 43

4.4.1 Energy market price prediction 43

4.4.2 Energy Production . 49

4.4.3 Ponza Island Case Study 79

4.4.4 Distributed prediction 85

5 Conclusive remarks and discussion 109

III Other Contributions 113

6 Validated Distributed Ensemble Clustering 115

6.1 Introduction . 115

6.2 The Proposed Clustering Algorithm 118

6.2.1 Initial clustering . 118

6.2.2 Collaboration phase . 120

6.2.3 Consensus computation 125

6.3 Cluster Validity in a Distributed Scenario 126

6.4 Experimental Results . 128

6.4.1 Conclusion . 131

vi

CONTENTS

7 Finite precision Random Vector Functional Link Network 135

7.1 Introduction . 135

7.2 RVFL Architecture . 137

7.3 A Finite Precision Model of RVFL Networks 138

7.3.1 Uniform Quantization 138

7.3.2 Nonuniform Quantization 145

7.4 Conclusion . 151

8 Remote Water Quality Prediction Monitoring 153

8.1 Motivation . 153

8.2 Methodologies . 155

8.2.1 Landsat 7, ANN and LOO 156

8.2.2 Landsat 8 and WANN 158

8.3 Case Studies . 163

8.3.1 Tucurui plant . 163

8.3.2 Cefni Reservoir . 167

Bibliography 173

vii

List of Figures

2.1 Crude Oil Price in Euro, from year 2008 to 2018 10

2.2 Maximum Daily Temperature in °C for Perth Airport, Australia 10

2.3 Average annual percent change in the population of Japan . . 11

2.4 Rounds per minute of a cooling fan (with max threshold in red). 11

2.5 ECG time series . 12

2.6 Number of deaths in road accidents in Belgium 13

2.7 Monthhy rainfall in Mozambique for the year 1968 14

4.1 Functional scheme of an ESN with explicit different connec-

tions: dashed if they are random, solid if trainable. 41

4.2 A sample of the considered PUN time series in 2016. 47

4.3 Best prediction on the 1st of July test set for the MoG predictor

(1-day training set): actual time series (blue); predicted one

(red). 48

4.4 Best prediction on the 1st of July test set for the RBF predictor

(1-day training set): actual time series (blue); predicted one

(red). 49

4.5 Best prediction on the 1st of July test set for the HONFIS pre-

dictor (1-day training set): actual time series (blue); predicted

one (red). 50

4.6 Best prediction on the 1st of December test set for the MoG

predictor (1-day training set): actual time series (blue); pre-

dicted one (red). 50

4.7 Best prediction on the 1st of December test set for the RBF

predictor (1-day training set): actual time series (blue); pre-

dicted one (red). 51

4.8 Best prediction on the 1st of December test set for the HON-

FIS predictor (1-day training set): actual time series (blue);

predicted one (red). 51

ix

LIST OF FIGURES

4.9 Histogram of the output current. 59

4.10 TS prediction on the 7-days training set: worst performance of

fifth-order consequents. 60

4.11 TS prediction on the 7-days training set: best performance of

third-order functions. 61

4.12 TS prediction on the 30-days training set: worst performance

of first-order consequents. 62

4.13 TS prediction on the 30-days training set: best performance of

fifth-order functions. 62

4.14 Prediction using the best model (HONFIS) for 15 January. . . 68

4.15 Prediction using the best model (HONFIS) for 15 February. . 69

4.16 Prediction using the best model (HONFIS) for 15 March. . . . 69

4.17 Prediction using the best model (HONFIS) for 15 April. . . . 70

4.18 Prediction using the best model (HONFIS) for 15 May. 70

4.19 Prediction using the best model (HONFIS) for 15 June. 71

4.20 Prediction using the best model (HONFIS) for 15 July. 71

4.21 Prediction using the best model (HONFIS) for 15 August. . . 72

4.22 Prediction using the best model (HONFIS) for 15 September. 72

4.23 Prediction using the best model (HONFIS) for 15 October. . . 73

4.24 Prediction using the best model (HONFIS) for 15 November. . 73

4.25 Prediction using the best model (HONFIS) for 15 December. . 74

4.26 Actual (blue) and predicted (red) load for the test samples. . . 83

4.27 Actual (blue) and predicted (red) solar production for the test

samples. 84

4.28 Estimated load (blue) and predicted solar production (red) for

the test. 84

4.29 Estimated load power surplus. 85

4.30 Real load power surplus. 86

4.31 Aerophoto showing the locations of the five PV plants. 95

4.32 Predicted (red) and real (blue) value of the time series at Plant

3 in the mid of December 2015, by using C-ESN and 1-day test

set. 100

4.33 Predicted (red) and real (blue) value of the time series at Plant

3 in the mid of December 2015, by using L-ESN and 1-day test

set. 101

x

LIST OF FIGURES

4.34 Predicted (red) and real (blue) value of the time series at Plant

3 in the mid of December 2015, by using D-ESN and 1-day test

set. 101

4.35 Predicted (red) and real (blue) value of the time series at Plant

3 in the mid of December 2015, by using C-ESN and 3-days

test set. 102

4.36 Predicted (red) and real (blue) value of the time series at Plant

3 in the mid of December 2015, by using L-ESN and 3-days test

set. 102

4.37 Predicted (red) and real (blue) value of the time series at Plant

3 in the mid of December 2015, by using D-ESN and 3-days

test set. 103

4.38 Predicted (red) and real (blue) value of the time series at Plant

3 in the mid of December 2015 by using C-ESN and 7-days test

set. 103

4.39 Predicted (red) and real (blue) value of the time series at Plant

3 in the mid of December 2015 by using L-ESN and 7-days test

set. 104

4.40 Predicted (red) and real (blue) value of the time series at Plant

3 in the mid of December 2015 by using D-ESN and 7-days test

set. 104

6.1 A distributed scenario for clustering. 116

6.2 Initial clustering on a 2-D toy problem at four nodes: each

color represents a different cluster a pattern is assigned. 120

6.3 Toy problem after merging . 124

6.4 Toy problem after splitting . 125

6.5 Toy problem after consensus 126

6.6 Quality Indexes comparison for Iris Dataset 132

6.7 Quality Indexes comparison for Wine Dataset 132

6.8 Quality Indexes comparison for Ionosphere Dataset 133

7.1 Visual scheme of the binary organization of a β(n) solution. . . 140

7.2 Output on Energy dataset using 64-bit floating point precision. 145

7.3 Output on Energy dataset using 8-bit precision optimized by

GA. 146

7.4 A chromosome defining the nonuniform quantizer, where θTj ,

j = 1 . . . d, is the jth column of θ. 148

xi

LIST OF FIGURES

7.5 Quantization levels of a 10-bit nonuniform quantizer optimized

by GA on the Energy dataset. 151

7.6 Output on Energy dataset using a 8-bit precision and GA op-

timization. 152

8.1 Diagram of the adopted ANN. 158

8.2 WANN . 162

8.3 Pre Processing Images: Cefni reservoir with group of pixels

area in gray values and corresponding digital numbers (DN) . 163

8.4 The area considered in this study. 164

8.5 C levels in hydroelectric power plant reservoir for sample sta-

tion: C1 - Caraipu 1, C2 - Caraipu 2, MBB - Breu Branco; E

= Estimated; O = Observed- 166

8.6 T levels in hydroelectric power plant reservoir for sample sta-

tion: M1 - Upstrem 1, M3 - Upstrem 3 , MJV - Jacunda Velho;

E = Estimated; O = Observed. 167

8.7 TSS levels in hydroelectric power plant reservoir for sample

station: MIP - Ipixuna, M3 - Upstrem 3 , MJV - Jacunda

Velho; E = Estimated; O = Observed. 167

8.8 Cefni Reservoir, Anglesey, UK. 168

8.9 Predicting Chlorophyll a Levels in the Cefni reservoir by

WANN and satellite images. 170

8.10 Predicting Turbidity in the Cefni reservoir by WANN and satel-

lite images. 170

8.11 Predicting Solids Suspended in the Cefni reservoir by WANN

and satellite images. 170

xii

List of Tables

4.1 Prediction Results (NMSE) for July 1st 46

4.2 Prediction Results (NMSE) for December 1st 46

4.3 Prediction Results (NMSE) for Different TS Orders of The

Rule Consequent . 59

4.4 Prediction results for 15 January. 64

4.5 Prediction results for 15 February. 64

4.6 Prediction results for 15 March. 65

4.7 Prediction results for 15 April. 65

4.8 Prediction results for 15 May. 65

4.9 Prediction results for 15 June. 66

4.10 Prediction results for 15 July. 66

4.11 Prediction results for 15 August. 66

4.12 Prediction results for 15 September. 67

4.13 Prediction results for 15 October. 67

4.14 Prediction results for 15 November. 67

4.15 Prediction results for 15 December. 68

4.16 Prediction results from 15–21 January. 74

4.17 Prediction results from 15–21 February. 75

4.18 Prediction results from 15–21 March. 75

4.19 Prediction results from 15–21 April. 76

4.20 Prediction results from 15–21 May. 76

4.21 Prediction results from 15–21 June. 76

4.22 Prediction results from 15–21 July. 77

4.23 Prediction results from 15–21 August. 77

4.24 Prediction results from 15–21 September. 77

4.25 Prediction results from 15–21 October. 78

4.26 Prediction results from 15–21 November. 78

4.27 Prediction results from 15–21 December. 78

xv

LIST OF TABLES

4.28 List of PV Plants with Their Geographic Coordinates 95

4.29 RMSE of Each Plant and Average Result for 1-day Test Set

and Different Algorithms . 105

4.30 RMSE of Each Plant and Average Result for 3-days Test Set

and Different Algorithms . 106

4.31 RMSE of Each Plant and Average Result for 7-days Test Set

and Different Algorithms . 107

6.1 Description of the datasets . 129

6.2 Cluster quality indexes for K-Means and EM initialization over

different initial network configurations. 131

6.3 Cluster quality Indexes for the Centralized, the ensemble clus-

tering approach and the V-DEC algorithm. 131

7.1 Detailed Description of Datasets 142

7.2 Optimal Number of Hidden Nodes (C) Found by The Inner-

fold Cross-validation . 143

7.3 Optimal λ Found by Inner-fold Cross-validation 144

7.4 Performance (NSR) of Basic Rounding Vs. Bit Precision . . . 144

7.5 Performance (NSR) of Genetic Optimizer Vs. Bit Precision . . 145

7.6 Description of The Adopted Datasets 149

7.7 Optimal Hidden Nodes (C) Found by Cross-validation 150

7.8 Optimal Regularization Factor (λ) Found Cross-validation . . 150

7.9 Performance (NSR) using a Uniform Quantizer of RVFL Inputs 150

7.10 Performance (NSR) using a GA-optimized Nonuniform Quan-

tizer of RVFL Inputs . 150

8.1 Characteristics of visible and NIR bands of the analyzed sensors.155

8.2 Landsat-8 Operational Land Imager (OLI). 160

8.3 MSE in the ANN training. 165

8.4 MSE in the ANN test (2014). 165

8.5 Relative Error (Er) in the ANN test (2014). 166

8.6 Mean square errors in the WANN training conducted in the

present study . 169

8.7 Relative Error (Er) in the sampling station, evaluated param-

eter and season cycle . 169

8.8 Approximation errors of the proposed method for 2017 in the

sampling station, evaluated parameter and seasonal cycle. . . . 171

xvi

Part I

Background and Introduction

1

Chapter 1

Introduction

1.1 Motivation

Forecasting the evolution of real-world complex systems is one of the grand

challenges of modern applied science. Thanks to widespread smart technology,

time series data can be gathered almost ubiquitously from different environ-

ments, capturing the behaviours of the underlying regulating processes. Thus,

time series provide a tractable mean to predict and monitor the evolution of

the system although its dynamics pose a challenging entanglement. In most

real-world systems, these predominant dynamics are inherently nonlinear and

non-stationary; they generate time series with aperiodic patterns even under

steady state. To the same extent, the evolution of real-world systems under

transient conditions contributes to the budding of multiple non linearities.

Nowadays, the electric industry is transforming mainly due to the pene-

tration of distributed grid and to the increasing need of smart and efficient

management of resources and assets. Consequently, prediction problems arise

from strategic analysis in production, transmission and distribution of energy.

In this framework, momentous significance is given to the prediction of power

outputs, loads and prices, because they have direct economic implications on

the net operating income of the players.

The establishment of the pivotal role of renewable energy sources has

greatly impacted the structure and handling of the current grids’ infrastruc-

ture. The cardinal characteristic of RES-based systems is the intrinsic in-

termittence of the natural phenomena on which these resources rely. Thus,

great attention must be put on the possible forecasting techniques. Also, the

reliability, resiliency and flexibility needed to seamlessly incorporate smart

3

1.2 Scope of the work

and private grids into the general network call for an accurate prediction of

future conditions, to ensure balance in load and generation.

In the RES environment, solar photovoltaic energy production has an

uncertain and non-dispatchable nature that poses serious problem for the

energy management and operational planning of the involved grids. To this

end, prediction of the amount of power fed by these renewable energy plants

into substations, is a necessary requirement to optimize short and middle

term operational decisions. In addition, accurate short-term forecasts are

mandatory in the PV case for regulatory and load following issues.

1.2 Scope of the work

Time series analysis has been historically applied in the economics field mainly

as a statistical tool for finance applications because of the direct implications

it has on the recordings of economic quantities. In general, time series can

also be gathered from a variety of different physical phenomena and their

analysis results to be quite useful for a plethora of diverse fields: environment

monitoring, demographics, process engineering, industry management among

others.

In the past, time series analysis was carried out traditionally using statis-

tical methods based on simple descriptive technique and on auto-regressive

models. Instead, in more recent years, the use of machine learning techniques

was predominant also in time series applications. This led to the employment

of well-known paradigms (such as neural network) to the time-series world,

making possible the realization of new models with much higher generaliza-

tion capabilities for describing time series.

In the time series analysis context, an important role is played by time

series prediction or forecasting which can be employed as a tool in many

energy-related industrial fields. In fact, this is one of the main area of interest

because of its great usefulness in terms of real world applications and aid to

the management and production sides, enabling the much discussed ‘smart’

environment. In this context, a lot of attention is gathered by the application

of novel neural and fuzzy neural paradigms to the prediction problem because

of their promising performances in dynamic real-world scenarios. In this work,

Neural and Fuzzy Neural models are studied with applications to the energy

production field, focusing especially on the prediction of energy price, energy

production, load and management.

4

1.3 Organization

1.3 Organization

The proposed work is structured in three main parts: the first one is an

introduction to time series analysis, the second one deals with time series

prediction and relative applications, the third one collects other relevant con-

tributions made by the author on other less related subjects. In detail, this

thesis is organized as follows:

� Part one

– Chapter 1 describes motivations and scope of the work.

– Chapter 2 introduces time series analysis.

� Part two

– Chapter 3 introduces time series prediction, with description of

the models.

– Chapter 4 illustrates in depth the Neural and Fuzzy Neural models

for time series prediction with applications.

– Chapter 5 presents the conclusion and discuss the results of the

applications.

� Part three

– Chapter 6 describes a novel distributed clustering algorithm.

– Chapter 7 explains the effect on finite precision metric on a specific

type of Neural model.

– Chapter 8 Illustrates a study on water quality prediction and mon-

itoring using the same algorithms presented in part two.

5

1.4 Research Contributions

1.4 Research Contributions

The main contribution of this dissertation is the study and the development

of forecasting methodologies for real-world energy time series, based on neural

and fuzzy neural paradigms. It is presented in Part II in this work, and details

of the research contributions are as follows.

� A. Rosato, R. Altilio, R. Araneo, M. Panella, “Embedding of Time Se-

ries for the Prediction in Photovoltaic Power Plants”, Environment and

Electrical Engineering (EEEIC), 2016 IEEE 16th International Confer-

ence on, 2016.

� A. Rosato, R. Altilio, R. Araneo, M. Panella, “Takagi-Sugeno Fuzzy

Systems Applied to Voltage Prediction of Photovoltaic Plants”, En-

vironment and Electrical Engineering and 2017 IEEE Industrial and

Commercial Power Systems Europe (EEEIC/ICPS Europe), 2017 IEEE

International Conference on, 1-6, 2017.

� A. Rosato, R. Altilio, M. Panella “A New Learning Approach for Takagi-

Sugeno Fuzzy Systems Applied to Time Series Prediction”, Fuzzy Sys-

tems (FUZZ-IEEE), 2017 IEEE International Conference on, 1-6, 2017.

� A. Rosato, R. Altilio, R. Araneo, M. Panella, “Prediction in Photo-

voltaic Power by Neural Networks”, Energies 10 (7), 1003, 2017.

� A. Rosato, R. Altilio, R. Araneo, M. Panella, “A Smart Grid in Ponza

Island: Battery Energy Storage Management by Echo State Neural Net-

work”, 2018 IEEE International Conference on Environment and Elec-

trical Engineering and 2018 IEEE Industrial and Commercial Power

Systems Europe (EEEIC/ICPS Europe), 1-4, 2018.

� A. Rosato, R. Altilio, R. Araneo, M. Panella, “Neural Network Ap-

proaches to Electricity Price Forecasting in Day-Ahead Markets”, 2018

IEEE International Conference on Environment and Electrical Engi-

neering and 2018 IEEE Industrial and Commercial Power Systems Eu-

rope (EEEIC/ICPS Europe), 1-5, 2018.

� A. Rosato, R. Araneo, M. Panella, “A Distributed Algorithm for the Co-

operative Prediction of Power Production in PV Plants”, IEEE Trans-

actions on Energy Conversion, 2018.

6

1.4 Research Contributions

Other contributions In Part III of this dissertation, other research contri-

butions are presented. Literature works on those matters are listed as follows.

� R. Fierimonte, M. Barbato, A. Rosato, M. Panella, “Distributed learn-

ing of random weights fuzzy neural networks”, Fuzzy Systems (FUZZ-

IEEE), 2016 IEEE International Conference on, 2287-2294, 2016.

� A. Rosato, R. Altilio, M. Panella, “Finite Precision Implementation of

Random Vector Functional-Link Networks”, Digital Signal Processing

(DSP), 2017 22nd International Conference on, 1-5, 2017.

� R. Altilio, A. Rosato, M. Panella, “A Nonuniform Quantizer for Hard-

ware Implementation of Neural Networks”, Circuit Theory and Design

(ECCTD), 2017 European Conference on, 1-4, 2017.

� H.A. Nascimiento Silva, G. Laneve, A. Rosato, M. Panella, “Retrieving

Chlorophyll-a Levels, Transparency and TSS Concentration from Multi-

spectral Satellite Data by Using Artificial Neural Networks”, Progress in

Electromagnetics Research Symposium-Fall (PIERS-FALL) 2017, 2876-

2883, 2017.

� A. Rosato, R. Altilio, M. Panella, “An unsupervised learning algorithm

for distributed environment”, Soft Computing, submitted in 2018.

� A. Rosato, R. Altilio, M. Panella, “On-line Learning of RVFL Neu-

ral Networks on Finite Precision Hardware”, Circuits and Systems (IS-

CAS), 2018 IEEE International Symposium on, 1-5, 2018.

� H.A. Nascimiento Silva, A. Rosato, R. Altilio, M. Panella, “Water Qual-

ity Prediction Based on Wavelet Neural Networks and Remote Sensing”,

2018 International Joint Conference on Neural Networks (IJCNN), 1-6,

2018.

� R. Altilio, A. Rosato, M. Panella, “A Sparse Bayesian Model for Ran-

dom Weight Fuzzy Neural Networks”, 2018 IEEE International Con-

ference on Fuzzy Systems (FUZZ-IEEE), 1-7, 2018.

7

Chapter 2

Time Series Analysis

2.1 Definition, description and examples

In this chapter we will give a comprehensive description of the properties and

characteristics of a time series. First of all, we can define it as a collection

of observations sequentially made through time and sequentially ordered by

it [1]. This set of statistics can be occur naturally in many fields such as, but

not limited to: economics, finance, environment, engineering, medicine. It is

useful to begin with illustrating some examples of time series in diverse fields,

to be able to intuitively grasp some knowledge on how a time series can look

like.

Financial and Economic Time Series

In economics it is possible to find many recorded time series pertaining to

prices, stock values, profits. They are usually relative to financial quantities

recorded over a period of time that can vary from hours to years. In Fig. 2.1

an example of a financial time series is reported.

Environmental Time Series

Time series can also stem from physical quantities, linked to meteorology or

geophysical studies. A classical example is the recorded temperature over

time, as reported in Fig. 2.2. In this field, many applications can derive from

monitoring these physical quantities by analysing the time series.

9

2.1 Definition, description and examples

Figure 2.1: Crude Oil Price in Euro, from year 2008 to 2018

Figure 2.2: Maximum Daily Temperature in °C for Perth Airport, Australia

Other Fields

Example of time series can also be found in multiple other fields such as:

demographic as in Fig. 2.3, process analysis as in Fig. 2.4, medicine as in

Fig. 2.5 and so on.

10

2.1 Definition, description and examples

Figure 2.3: Average annual percent change in the population of Japan

Figure 2.4: Rounds per minute of a cooling fan (with max threshold in red).

2.1.1 Basic properties and terminology

A time series can be continuous or discrete. A continuous time series arises

when observations are made continuously through time (as for example in the

occurrence of a certain event in time in Fig. 2.6).

A series is continuous also if its measured variables can only assume dis-

crete values. Instead, a time series can be defined as discrete when the ob-

11

2.1 Definition, description and examples

Figure 2.5: ECG time series

servations are taken only at certain specific times. Usually, the time interval

between observations does not vary (equally spaced observations). In this

work, all of the considered series are discrete and with equal intervals.

A discrete time series can arise in many ways. The most common is when

a continuous time series is sampled at discrete points in time (sampled time

series), uniformly or not 1. Other discrete time series can be generated from

aggregate values over given intervals of time (e.g. monthly rainfall) or can

be intrinsically discrete (e.g. annual revenues). One of the most important

and peculiar features of time series is that samples are usually dependent

upon their time order. In other words, successive observations are usually

not independent and when analysing them, this property must be taken into

account. If a time series can be predicted exactly by using past observation,

it can be defined as deterministic (I.e. the successive samples are dependant).

On the contrary, most of the time series are stochastic, which means that

can only partially be determined by past observations. In these cases exact

predictions are not possible (it can be assumed that the future values have a

probability distribution).

Depending on how many observed variables are changing over time, a

time series can be said to be univariate or multivariate. If it is univariate,

1The choice of the sample interval is very important and has to be done to lose as less
information as possible. If the goal is to reconstruct the original continuous signal, the
sampling must be done bearing in mind the Nyquist-Shannon theorem

12

2.1 Definition, description and examples

Figure 2.6: Number of deaths in road accidents in Belgium

only one variable is changing over time, for example data collected from a

temperature sensor in a room. If it is multivariate, multiple variables are

varying simultaneously over time, for example the three acceleration over

three spatial axes collected by an accelerometer constitute a multivariate time

series. In this work we will mainly focus on univariate time series.

2.1.2 Components

To further describe time series, here we introduce a straightforward approach

for analysing them. In fact, it is possible to exploit some typical time series

effects that can be found in most of them. In practice, a time series can

be decomposed in the variations listed and explained below. All of these

components can be present independently one from the other.

Seasonal variation

These are cyclic fluctuations that are related to the calendar. They can be

found in a number of time series, mostly relative to demographic observations

and environment quantities (as in Fig. 2.7). This seasonality is important

to highlight because, if suitable for the analysis, it can be removed to give

deseasonalized data that can be more effectively processed.

13

2.1 Definition, description and examples

Figure 2.7: Monthhy rainfall in Mozambique for the year 1968

Other cyclic variation

There are some variations in a time series which are not related to the calen-

dar, but that also have a fixed period. For example the daily consumption of

energy (described later). There are also some series that exhibit oscillations

that can be considered cyclic but with a more coarse period, such as business

cycles. Cyclic variations in general are very useful for prediction purposes be-

cause, if properly accounted for, can enhance the accuracy of the prediction

itself.

Trend

This variation can be defined as a long term movement in the mean. There is

an issue with what can be considered ’long term’ because, if there is a cyclic

variation with a long period and if the number of observation available is

not high enough, the complete cycle of the variation will not be available and

could be confused with a trend. Thus, in general a trend can be assessed when

there are sufficient observations to observe the process with a suitable time

horizon. Trends can be linear or non-linear, and can in general be described by

different simple mathematical models (e.g. fitted on a linear/quadratic/cubic

polynomial, logarithmic, piecewise linear function).

14

2.2 Stationarity

Other irregular fluctuations

Once cyclic variations are removed, a time series can still exhibit some kind

of fluctuations that may not be random. Those can also be called residuals.

2.1.3 Time Plot

Undoubtedly the first step for every kind of time series analysis is to plot it

against time. This results in a graph called simply time plot, from which all

its components can be easily and visually identified. The plotting operation

may seem trivial but in real problems it is not as easy as it sounds. The

visual inspection of a time series is always important, because can give us

many information on how to analyse it. Thus, a lot of attention must be

given to elements of the plot such as scales (relative to both time and other

variables), size, title. Some operations can be done on the time series to

be able to better visualize its components. These transformations are useful

when there is the need to stabilize the variance, modify the seasonal effect (if

directly proportional) or to make the data normally distributed.

2.1.4 Real Data

The time series that will be used in this work, like most of them stemming

from observation of real-world phenomena, can contain oddities and impuri-

ties due to various reasons. This can include: missing samples, format errors,

outliers and discontinuities. In fact, the preliminary part of the analysis con-

sists in the examination of the data itself to assess its quality and, if necessary,

modify it and clean it. This procedure is essential and tackles most of the

aforementioned errors. Data cleaning could include identifying and correct-

ing obvious errors, accounting outliers, and filling in any missing observations.

Most of the times, all of these defects are evidently revealed by the time plot,

hence its importance. Without a reliable procedure to clean real data, no

precise analysis is possible, in particular the adequate treatment of oddities

in relation to the context of operation.

2.2 Stationarity

A time series can be said to be stationary if a shift in time does’nt cause a

change in the shape of the distribution. In other words, stationarity is present

15

2.3 Approaches to time series analysis

when attributes like mean, variance and covariance are constant over time.

Some definitions can be formalized in this regard:

� Strict stationarity: A time series is said to be strictly stationary if the

joint distribution ofX(t1), . . . , X(tk) is the same as the joint distribution

X(t1 + τ), . . . , X(tk + τ), for every value of k and τ .

� First order stationarity: a time series has first order stationarity if its

first order momentum (mean) does not change with time. Any other

statistics (like variance) can change.

� Difference-stationarity: a time series which needs one or more differenc-

ings to become stationary.

2.3 Approaches to time series analysis

First, when working on time series analysis, we have to make sure if we

understand the problem correctly in all its aspects. This is true for every

experiment or scientific research, but in time series analysis the context of a

problem is crucial to the objectives, in particular regarding the collection of

data. This because if the observed time series is too short or has the wrong

measured variables, it may be impossible to solve the given problem. Time

series analysis can be used to reach several possible objectives that will be

discussed in this section, in turn.

Describe

The most common objective of time series analysis is description of the time

series itself. Usually, apart from the time plot, cited above, a time series is

well described by some model with few parameters values. These parameters

can reflect the salient features of the time series and give us a knowledge of

the time series itself.

Predict

In many applications in various fields (e.g. economics, finance, industry, geo-

science, etc.), it may be of interest to predict the future values of an observed

time series. In many works, including this one, the terms ‘prediction’ and

‘forecasting’ are used interchangeably, but note that some authors do not.

16

2.3 Approaches to time series analysis

The goal of the prediction could also be different from the accurate deter-

mination of the actual future single values of the observation. For example

it would be possible to predict only one of the aforementioned variations, or

classify the series into classes, for example trying to forecast if the variable

will go up or down.

Transform

In some cases, it could be of interest to transform a time series into another

(e.g. oil prices into interest rates), to be able to reach a deeper understanding

of the mechanism that generated a given time series or to simply visualize it

in a different way.

This work is primarily concerned with the prediction objective, but the de-

scription is often a prerequisite. In fact, all of the discussed analysis objectives

are inherently bound and are routinely considered together.

17

Part II

Energy Time Series Prediction

19

Chapter 3

Time Series Prediction

3.1 Introduction

Good predictions are cardinal in numerous activities in diverse fields. For

example, scientific research, industrial monitoring, commercial analysis, eco-

nomic and financial business are all among the applications which benefit of

a good forecasting. The goal of this chapter is to give an overview of the

most commonly used methods for prediction, providing the reader with the

intuitive ideas and basic theory of every presented method. The first and

basic prediction method 1 10 is called judgemental forecasting and is based

on intuition, subjective judgement and information that can be gathered via

the descriptive analysis explained in Chapter 2. Apart from that, prediction

methods can be coarsely divided in two categories:

� Univariate methods: in this category, forecasting depends only on the

values of the single time series being predicted.

� Multivariate methods: in this category, forecasting depends, to a certain

degree, on values of more than one time series variables. This methods

can depend on multivariate models.

In general, the former judgemental analysis is always present and taken

into account to incorporate subjective information to the prediction.

1 A forecasting method or prediction method is a procedure for computing future values
of a time series. It may be just a rule and it can also not depend on a mathematical model.
Thus, the meaning of the terms ’model’ and ’method’ must be kept diverse. Unfortunately,
in literature the locution ’forecasting model’ is often loosely used to address a forecasting
method.

21

3.2 Univariate Prediction Models

3.2 Univariate Prediction Models

In this section a variety of common forecasting models is introduced and

discussed. These are the basis of many univariate prediction methods and

their knowledge is mandatory to be able to follow further analysis carried on

later in this work.

3.2.1 Autoregressive and Moving Average models

This class of models represents a fundamental prediction tool, and it is the

basis of a lot of elementary ideas in time-series analysis. Most of the time,

the acronym ARIMA (Autoregressive Integrated Moving Average) is used to

address this category of models; it can be found in [2].

Autoregressive processes

An autoregressive (AR) process of order p (AR(p)) is defined as a time series

{Xt} that is a weighted linear sum of the past p values plus a random additive

quantity:

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + Zt (3.1)

where {Z} is a purely random process with zero mean and φi are the param-

eters of the model. If we define an operator L such that LXt = Xt−1, the

model can be written compactly:

φ(L)Xt = Zt (3.2)

where

φ(B) = 1− φ1B − φ2B
2 − · · · − φpBp (3.3)

The term autoregression stems from the fact that value at time t depends

linearly on the last p values, like a regression model. The trivial example of

an AR process is the first order one:

Xt = φXt−1 + Zt (3.4)

22

3.2 Univariate Prediction Models

The model properties depend on the characteristics of the coefficients φ. If

φ = 1 then the model is reduced to a random walk (when non-stationary). If

|φ| > 1 the series is explosive and thus non-stationary. If |φ| < 1 the process

is stationary [3] and its autocorrelation function decreases exponentially. A

useful property of an AR(p) process is that the partial autocorrelation func-

tion is zero at all lags greater than p. This means that the sample partial

autocorrelation function can be used to help determine the order of an AR

process, which is usually unknown, by looking for the lag value at which the

sample partial autocorrelation function ‘cuts off’ to zero.

Moving average processes

A moving average (MA) process of order q (MA(q)) is a time series that is

a weighted linear sum of the last q random noise samples (called shocks in

other works):

Xt = Zt + θ1Zt−1 + · · ·+ θqZt−q (3.5)

where {θj} represents the parameters of the MA process. Thus the value at

time t is a sort of moving average random noise samples, which are unobserv-

able. It can be proven that the first order MA process (MA(1)) is stationary

for all θ values. Similarly to the AR process, the MA can also be written in

the form:

Xt = θ(L)Zt (3.6)

Autoregressive moving average processes

A mixed process model with p autoregressive terms and q moving average

terms (ARMA(p,q)) can be written as:

φ(L)Xt = θ(L)Zt (3.7)

The importance of ARMA processes is that many real data sets may be

approximated in a more parsimonious way (meaning fewer parameters are

needed) by a mixed ARMA model rather than by a pure AR or pure MA

process.

23

3.2 Univariate Prediction Models

Autoregressive integrated moving average processes

This more general class of models derive from practice, where most time series

to which predictors are applied are non stationary. Thus, stationary AR, MA

or ARMA processes cannot be applied directly. One possible way of handling

non-stationary series is to apply differencing so as to make them stationary.

The first differences, namely Xt −Xt−1 = (1− L)Xt may may themselves be

differenced to give second differences, and so on. The dth differences may be

written as (1−B)dXt. If the original data series is differenced d times before

fitting an ARMA(p,q) process, then the model for the original series is defined

as ARIMA(p,d,q), where the ’I’ stands for integrated. This generalization can

be expressed as:

φ(B)(1−B)dXt = θ(B)Zt (3.8)

It can be noted that φ(B) and θ(B) are both just equal to unity (i.e. p and

q are zero) and d equals one, then the model reduces to an ARIMA(0,1,0)

model, given by:

Xt −Xt−1 = Zt (3.9)

which is trivially the random walk model. When fitting the models in this

section, the main difficulty does not lie in estimating the coefficients φ and

θ but is instead found in valuating the order of the process (regarding p

and q). With ARIMA models, there is an additional problem in choosing

the required order of differencing d. Some formal procedures are available,

but in many cases the method merely relies on differencing the series until

the autocorrelation function comes down to zero in a decent time. First-

order differencing is usually adequate for non-seasonal series, but second-order

differencing is sometimes needed. Once the series has been made stationary,

an ARMA model can be fitted to the differenced data in the usual way. More

details on the fitting procedure can be found in [4], [5] and [6].

Other processes

Apart from the aforementioned AR, MA, ARMA and ARIMA processes, there

are a number of variations to them that are suitable for prediction of different

type of time series. For instance, if the series is seasonal, a seasonal ARIMA

model (SARIMA) can be generalized from the ARIMA in 3.2.1. When fitting

24

3.2 Univariate Prediction Models

SARIMA models, the seasonal and non-seasonal orders of differencing must

be chosen beforehand, to remove most of the seasonality and make the series

stationary. After that, an ARMA-type model is fitted to the differenced series

(there may be AR and MA terms at lags which are a multiple of the seasonal-

ity period). A variant of the SARIMA model can be employed when if there

is no need for the model coefficients to stay constant throughout the year. In

these periodic autoregressive models the values of the autoregressive param-

eters are allowed to vary through the seasonal cycle. More generally periodic

correlation arises when the size of autocorrelation coefficients depends, not

only on the lag, but also on the position in the seasonal cycle. Another inter-

esting variant of ARIMA models stems from allowing the d in the model to be

non-integer (fractional differencing, thus ARFIMA or FARIMA). This tech-

nique entails an added difficulty in the computation and in the interpretation

of the model itself but can be advantageous in the prediction of many time

series which can be modeled with a so called long memory model in which

deviations from the long-run mean decay more slowly than an exponential de-

cay. Other processes based on ARIMA models are the one called ARIMAX,

where explanatory foreign variables are added to the model to ensure better

generalization capabilities.

3.2.2 Nonlinear models

Up to 10 − 15 years ago, in literature, time series analysis and forecasting

in particular, has focused on linear methods and models, essentially because

of their mathematical convenience and intrinsic convenience. Despite their

simplicity, linear univariate methods often deliver properly good results and

adequate approximation for most of the practical tasks. However, process

generated in real life may be (and most of them are!) not linear. Thus, many

observed time series disclose non linear features which cannot be modeled via

linear approaches. In fact, compelling forecasting of future states of a complex

system from time series is still a challenge, mainly due to diverse combina-

tions of the nonlinear (and also non-stationary) dynamic behaviors exhibited

by these systems. The statistical characteristics which can be observed in a

time series emerging from a non linear system are, among others: aperiodic-

ity, non-normality, time irreversibility, non-normality, asymmetric cycles. In

complex dynamic systems, time series data capture the dynamic behaviors

and causalities of the underlying processes and provide a tractable means to

25

3.2 Univariate Prediction Models

predict and monitor system state evolution. For most real-world systems, the

vector field of state dynamics is a nonlinear function of the state variables;

i.e., the relationship connecting intrinsic state variables with their autoregres-

sive terms and exogenous variables is nonlinear. Statistically speaking, time

series may be considered as emerging from a nonlinear dynamic system if it

is marked by characteristics such as non-normality, aperiodicity, asymmetric

cycles, multi-modality, nonlinear causal relationships among the lagged vari-

ables, variation of forecasting performance over the state space [7]. Time series

emerging from such complex systems exhibit aperiodic (or chaotic) patterns

even under steady state. Also, since real-world systems often evolve under

transient conditions, the signals obtained therefrom tend to exhibit myriad

forms of non-stationarity. For these reasons, conventional approaches do not

adequately capture the system evolution (in particular regarding sensitivity

to quantity and quality of a priori information) in these applications. From

around the year 2000 and forth, the need for such nonlinear forecasting meth-

ods brought to the development of the nonlinear models described in this

section.

In this section, various methods reported in the recent works are described

and categorized based on their application to real-world data. Coarsely speak-

ing, these forecasting methods may be classified based on the assumptions

that: there is a known trend in the first moments, a piecewise stationarity of

the signals is present, parameters vary progressively, the signal can be decom-

posed into linear segments. The focus is more acute on these models because

their knowledge will introduce the reader to the approaches mainly used in

the rest of the work.

Nonlinear AR models

As already discussed earlier in this work, AR, MA and their derivatives and

combinations assume a linear relationship between the lagged variables. As

most of the linear models, ARMA performance degrades considerably when

time trends, seasonality and non-stationarity appear in the time series. In

general, this category of models just gives a rough approximation of complex,

real-world systems, failing to accurately approximate their evolution. For

the sake of truth, however, it should also be pointed out that these methods

can be used to remove or reduce non-stationarity, but limited only to the

first order one. Apart from the obvious, merely formal, ways to generalize

26

3.2 Univariate Prediction Models

the linear autoregressive model pf order p via a generic nonlinear function

of the samples (NLAR(p)) or introducing a time-varying parameter, the first

approach to nonlinearization of the autoregressive models is represented by

the threshold autoregressive model (TAR). In this case, an AR model of order

1 is used, but the parameters depend on whether the past observations are

above or under a certain threshold. In other words, TAR models assume a

piecewise linearity, dividing the input space in terms of a threshold variable.

Also, the threshold itself can be assumed to vary with time, allowing good

flexibility of the model, especially regarding variations in model parameters

through a regime-switching behavior. A variation of these models is the

Smooth Transition AR (STAR) which can capture transition between different

regimes with a less hard discontinuity [8], [9]. Other further variation include

a design of time lagged state space (proposed in [10]).

Support Vector Machine models

SVM-based forecasting methods use a class of generalized regression models,

such as Support Vector Regression (SVR) and Least-Squares Support Vec-

tor Machines (LS-SVMs in [11]). An SVM maps the inputs into a higher-

dimensional feature space; only the estimate of the inner product of the

mapped pattern is necessary. This estimate is expressed as a linear combina-

tion of specified kernel functions and thus the method can be classified by it

as linear, Gaussian or RBF, polynomial, and multilayer perceptron). A linear

regressor is then constructed by minimizing the structural risk minimization

(the upper bound of the generalization error).

Neural networks

A completely different type of non-linear prediction model is provided by

Neural Networks (NNs), which are designed with a structure that mimics the

human brain to certain extent. Since the core of this work is focused on pre-

diction via NN and Fuzzy-NN, we just give a brief general introduction here,

remanding a more detailed description of the single application cases later

on. NNs have been applied successfully to a very wide variety of scientific

problems, notably to pattern recognition [12]. These models are vastly used

in classification problems where a collection of features is presented to the

network and the task is to assign the input feature to one or more classes.

Another common field of use for NNs is constitued by regression problems

27

3.2 Univariate Prediction Models

in which a smooth interpolation between points has to be found. In gen-

eral, in pattern recognition problems all the relevant information is presented

simultaneously to the network. In contrast, time series prediction involves

processing of patterns that evolve over time. In this case, temporal infor-

mation may be presented spatially to the network by a time-lagged vector.

As stated, these models provide a very large set of solutions, which can be

considered a subject on their own and in fact cover the vast majority of this

work. Although they cannot be considered as conventional time series models

in the sense that there is usually no attempt to model the ‘error’ component,

they can be modeled and designed to result in approaches with a high fore-

casting ability. A NN can be described as a system connecting a set of inputs

to a set of outputs in a possibly non linear way. Speaking about time series,

its output could be the value of a time series to be predicted and the input

could be lagged values of the series and of other explanatory variables. The

connections between inputs and outputs are typically made via one or more

hidden layers of neurons or nodes. The structure of an NN is usually called

the architecture and choosing it includes determining the number of layers,

the number of neurons in each layer, and how the inputs, hidden layers and

output(s) are connected. It is necessary to highlight that each connection in

a network has an associated weight which has to be estimated to reach best

result. Also, the activation function of each neuron must be chosen. All of

these analysis are carried out for each problem and described thoroughly for

each application case later in this work. It can be said that in general, the

weights to be used in the NN model are estimated from the data by some sort

of optimization (for example minimizing the sum of squares of the one-step

ahead errors) over a suitable portion of the data. This non-linear optimiza-

tion problem is one of the core procedures of the forecasting methods with

NN. It is sound practice to divide the data into two sections, to fit the NN

model to the first section (training set) and use the remainder of the data

(test set) to check the prediction performance. The weights to estimate are

typically a large number and the procedures to fit them are complicated and

time consuming. In the specialized literature, the iterative estimation pro-

cedure is a training algorithm, which often implies the widely known back

propagation. Note that in some analyses, the fitting of NN is done to get the

best prediction of the test set data, rather than the best fit to the training

data. In this case the test set is no longer ‘out-of-sample’ in regard to model

fitting and so a third section of data should be kept in reserve so that gen-

28

3.2 Univariate Prediction Models

uine out-of-sample forecasts can be assessed 2. Neural models are also often

coupled with fuzzy logic to give fuzzy-neural predictors. These approaches

are similar in the method but with different models, in which fuzzy rules are

incorporated. Further details can be found in the remainder of this work.

3.2.3 Heteroschedastic Models

To overcome the limitation on the order of the non-stationarity that can

be captured by ARIMA models, the work [13] introduced a class of het-

eroschedastic models (Autoregressive Conditionally Heteroscedastic models,

ARCH) that can describe the dynamic changes in conditional variance as a

(often quadratic) function of past observations. In this case, the objective is to

give better estimates of the local variance, instead of improving directly fore-

casts of the observations. A generalization of ARCH models, called GARCH,

has also been introduced in [14] where additional dependencies are permitted

on lags of the conditional variance. This model has a representation that

resembles the ARMA, so those two models share many properties. ARCH

and GARCH approaches find profitable results mainly in financial time series

prediction [15], [16]. Also, several extensions of the original GARCH model

have been proposed in the past, by specifying different parameterizations to

capture serial dependence on the conditional variance. For instance, some of

them are integrated GARCH (IGARCH), exponential GARCH (EGARCH),

threshold GARCH (TGARCH or GJR), GARCH-in-mean (GARCH-M), and

so forth. All of them are able to observe some common characteristics of

returns series, in particular volatility clustering, leverage effect, and heav-

ier/fat tails, although they remain weak in capturing wild fluctuations and

unanticipated events.

3.2.4 Nonparametric models

If the models are correctly specified, parametric models can provide accurate

predictions but they tend to become suboptimal whenever the underlying

dynamics are unknown or difficult to determine. Most real-world complex

systems are inherently nonlinear (and non-stationary). In contrast, the class

of nonparametric models is able to simplify the efforts of modeling because

it does not impose any structural constraint. Consequently, the modeling

2For this reason, some works include a third chunk of data, called ’validation set’, on
which the model is appropriately verified before the actual tests take place

29

3.3 Multivariate prediction models

and forecasting accuracy for nonlinear and non-stationary time series is im-

proved. One of the main drawbacks of this procedure is that, to glean un-

derlying structures and relationship, nonparametric models usually require

larger datasets than their parametric counterpart. These models for time se-

ries forecasting include: State space neighborhood and local topology-based

models [17], bayesian inference models [18], and functional decomposition

models [19]. Since it is out of the scope of this work, an exhaustive definition

of each model is not included but can be found in the cited works.

3.3 Multivariate prediction models

All of the models considered before are univariate, they use a single time series

to obtain the prediction. In some situations, different observations are taken

simultaneously on two or more time series. For example, various measures

of economic activity in a particular business sector can be collected through

time (price, revenue, shares). Given such multivariate data, there could be

the need to develop a multivariate model to describe the interrelationships

among the series, and then to use this more complex model to make fore-

casts. The multivariate prediction models are only listed in this section (with

sources), since they found rare applications outside economic analysis and

are not used in the rest of the work: multiple regression, transfer function

and distributed lag models, econometric models and multivariate versions of

AR and ARMA models, including vector autoregressive (VAR) models. Since

fitting a multivariate model is still a not easy task, computationally speaking,

an useful remark must be done on the goodness of the results of multivariate

prediction models. While multivariate models can usually be found which

give a better fit than univariate models, there are several reasons why this do

not lead to better forecasts: the computation of accurate forecasts of a depen-

dent variable may require future values of explanatory variables; multivariate

models are more complicated and thence more vulnerable to misspecifica-

tions; observed multivariate data may not necessarily be suitable for fitting

a multivariate model and with more variables, errors and outliers are more

common. A comparison and description of these models can be found in [20].

30

3.4 Error Measures

3.4 Error Measures

Since a lot of models and methods are presented in this work, an important

remark must be done on how these solutions are evaluated in terms of fore-

casting performance. In general, the interest is to know how much accurate

a prediction is, considering the best forecasting method as the most accurate

one, in terms of some error metric. This section discusses ways of measuring

prediction accuracy. The first thing to say is that the accuracy metric de-

pends on the field of application of the prediction. In two diverse areas as, for

example, finance and environment, the focus of the error will be so different

that two distinct metrics must be used. The basic error metric is found by

computing the residuals, namely the within-sample one-step ahead forecast

error. Clearly, the less the error, the more accurate the forecast:

et = xt − x̂t−1 (3.10)

where x̂ denotes the predicted sample. In statistics, the accuracy is almost

always measured by computing the mean square error (MSE) or its root

(RMSE). The MSE is amenable to theoretical analysis but poses a problem

of interpretation: it implies an underlying quadratic loss function that can

cloud the understating (e.g. if the error doubles, is it two or four times as

bad?). Instead, the RMSE is in the same units as the measured variable and

so is often a better descriptive statistic. Also, normalization can be applied

to the MSE to give a better accuracy metric, by dividing from the difference

between the maximum and minimum value of the series (NMSE). Usually, the

customary form of calculating the MSE is the prediction mean square error

(PMSE):

PMSE =
N∑

t=N−m+1

e2t/m (3.11)

where N is the number of samples, and m is the number of last observation

on which it is computed. Sometimes, when the loss function is thought to be

linear, the preferred estimate of accuracy is given by the mean absolute error

(MAE):

MAE =
N∑

t=N−m+1

‖et‖/m (3.12)

31

3.4 Error Measures

A problem of using the PMSE is when forecasts are required for more than one

step ahead. In this case the question arises as to whether the formula in Eq.

3.11 must be modified to look at the step ahead errors or the within sample

ones. Another type of scale-independent measure that is used is computed

via the percentage errors, instead of the raw ones, and is called mean absolute

prediction error (MAPE):

MAPE =
N∑

t=N−m+1

‖et/xt‖/m (3.13)

which, since it is based on percentages, must be used carefully when dealing

with time series with zeros. The error can be also measured via the mean

absolute range error (MARE), which is also normalized:

MARE =
N∑

t=N−m+1

‖xt − x̃t‖2/m
xmax − xmin

(3.14)

This, compared to the RMSE, it is dimensionless and incorporates the in-

herent property of the data structure being analyzed. In some occasions, it

would be convenient to express the error via logarithmic scale. By analogy

with the telecommunication case, this can be expressed via the noise to signal

ratio (NSR) in dB:

NSRdB = −10log10

∑N
t=N−m+1 (xt − x̃t)2/m∑N

t=N−m+1 x
2
t

(3.15)

32

Chapter 4

Neural and Fuzzy Neural

Networks for Energy-related

Time Series Prediction

In this chapter the prediction of energy-related time series will be delineated

and characterized with theoretical remarks on the algorithms used in various

real-world application cases.

4.1 Introduction

In recent years, electrical power systems have progressively evolved from cen-

tralized bulk systems to decentralized systems in a distributed generation

(DG) scenario characterized by smaller generating units connected directly

to distribution networks near the consumer [21]. Several economic and envi-

ronmental reasons, driven by government financial incentives [22], have con-

siderably pushed the widespread adoption of DG in the energy marketplace,

especially that from renewable resources (e.g., solar power and wind energy).

However, technical barriers often prevent the entrance of DG into the cur-

rent distribution infrastructure with a significant penetration level due to the

intermittent nature of the renewable energy resources that often do not match

the energy load demands [23]. Indeed, the transition to an energy economy

primarily founded on renewable resources depends on overcoming the difficul-

ties associated with the variability and reliability of these non-dispatchable

resources [24]. These issues give rise to substantial critical issues with respect

to the usual working habits of the transmission (TSO) and distribution (DSO)

33

4.1 Introduction

system operators, utility companies, as well as power producers: voltage and

frequency regulation, islanding detection, harmonic distortion, distribution

issues, as well as demand side management of prosumers. Certainly, energy

storage systems (EES) could become a valuable response providing specific

support services for renewable energy production in order to reduce short-

term output fluctuations and, consequently, improve power quality [25].

In this framework, it is of paramount importance to forecast accurately the

power output of plants over the next hours or days in order to integrate in an

optimal way the DG from non-programmable renewable resources into power

systems on a large scale [26]. The ability to forecast the amount of power fed

by renewable energy plants into substations is a necessary requirement for

the TSO in order to optimize short- and middle-term decisions, such as cor-

rections to out-of-region trade and unit commitments [27]. Besides, accurate

short-term and intra-hour forecasting are required for regulatory, dispatch-

ing and load-following issues [28], while power system operators are more

sensitive to intra-day forecasts [29], especially when handling multiple load

zones, since they avoid possible penalties that are incurred due to deviations

between forecasted and produced energy. Moreover, power system operators

are mostly interested in developing methods to be used in the framework of

the daily session of the electricity market where the producers must present

energy bid offers for the 24 h of the following day [30].

In general, forecasting problems can be broadly divided into four major

categories [31], namely long-, medium-, short- and very short-term forecast,

on the basis of the time horizon’s scale, which ranges from several years in the

long-term forecasting to hours in the medium-term forecasting, till arriving at

minutes in the very short-term forecasting. When employed in photovoltaic

(PV) power plants management, forecasting techniques can be applied di-

rectly to the produced power (direct methods) or indirectly to the solar irra-

diation, which is the main factor related to the output power that is calculated

in a second successive step (indirect methods) [32]. Both cases share similar

techniques that can be coarsely divided [31] into persistence methods, phys-

ical techniques, statistical techniques and hybrid models. Usually, physical

methods try to obtain an accurate forecast using a white box approach, that

is to say physical parametric equations. On the other hand, statistical or

probabilistic methods try to predict the relevant quantities extracting domi-

nant relations from past data that can be used to predict the future behavior.

In addition, both methods can be properly mixed, originating the so-called

34

4.2 Models

“gray box” approaches [33].

We already stated that in the prediction of time series, past observations

are used to develop a method able to describe underlying relationships among

data. Therefore, this can be viewed as extrapolating a mathematical model

of the data, especially for those contexts where missing and incomplete data

can limit the ability to gain knowledge about the data generated by the

underlying, unknown process. As in the cases analysed here, complexity and

dynamics or real-world problems require advanced methods and tools able

to use past samples of the sequence in order to make an accurate prediction

[34]. Additionally, the problem of forecasting future values of a time series

in an energy context is often mandatory for the cost-effective management

of available resources. These are well-known hard problems [26], given the

non-stationarity and, often, the non-linearity of time series, which result in

a complex dynamics that is hard to model adequately by using standard

predictive models.

For many years in this application field, regressive statistical approaches

[35] have been considered for prediction of energy-related time series; among

them, the already cited moving average (MA), auto regressive (AR), auto re-

gressive moving average (ARMA), auto regressive integrated moving average

(ARIMA) and autoregressive integrated moving average with exogenous vari-

ables (ARIMAX) are typical examples of these approaches. Unfortunately,

standard structural models provide a poor representation of actual data and

therefore result in poor accuracy when used for forecasting. Consequently,

many worldwide research activities intend to improve the accuracy of pre-

diction models. In this regard, computational intelligence is considered as

one of the most fruitful approaches for prediction [36]. Several forecasting

methods, with different mathematical backgrounds, such as fuzzy predictors,

artificial neural networks (ANN), evolutionary and genetic algorithms and

support vector machines, have been considered [37]. Nevertheless, dealing

with noisy and missing training examples and the lack of robustness against

outliers are still open problems.

4.2 Models

In this section, some prediction models will be described which are all based on

neural and fuzzy-neural approaches. These models are the core of prediction

methods which constitute the central part of the present work. The goal of

35

4.2 Models

this section is to delineate these methods in order to introduce a report and

discussion of the employ of such methods in applications involving real-world

time series.

4.2.1 Radial Basis Function

An RBF neural network is used to build up a function approximation model

having the following structure:

f(x) =
M∑
i=1

λiφ(‖x− ci‖), (4.1)

where x ∈ RN is the input vector, φ(·) is a radial basis function centered in ci

and weighted by an appropriate coefficient λi. The choice of φ(·) and ci must

be considered for the ability of the network in its approximation capability.

Commonly used types of radial basis functions include:

� Gaussian:

φ(r) = e−(εr)
2

;

� Multiquadric:

φ(r) =

√
1 + (εr)2;

� Inverse Quadratic

φ(r) =
1

1 + (εr)2
,

where ε is the so called shape parameter which regulates the ‘flatness’ of

the RBF. Several methods can be used to minimize the error between desired

output and model output and hence, to identify the parameters ci and λi [38].

36

4.2 Models

4.2.2 Gaussian Mixture Model

In the MoG neural network M different Gaussian components in the joint

input-output space <N ×< are used in a mixture density model:

p(x, y) =
M∑
j=1

π(j)G(j)
x,y(x, y) , (4.2)

where π(j) is the prior probability of the jth Gaussian component G
(j)
x,y,

j = 1 . . .M . The mixture parameters are estimated by the Splitting Hier-

archical Expectation Maximization (SHEM) technique [39].

The conditional density p(y|x) is computed from (4.2):

p(y|x) =
M∑
j=1

hj(x)G
(j)
y|x(y) , (4.3)

where G
(j)
y|x(y), j = 1 . . .M , is the conditional density of G

(j)
x,y, and hj(x) is the

projection of G
(j)
x,y into the input space. It can be evaluated by the marginal

density G
(j)
x of G

(j)
x,y:

hj(x) =
π(j)G

(j)
x (x)∑M

k=1 π
(k)G

(k)
x (x)

. (4.4)

4.2.3 Adaptive Neuro Fuzzy Inference System

An ANFIS neural network implements a fuzzy inference system to approxi-

mate the function y = f(x), f : IRN → IR. Fuzzy-based approaches such as

the one detailed here are very flexible and act well when the mappings to

be approximated are characterized by very irregular behaviors. An ANFIS

network is composed of M rules of Sugeno first-order type, where the kth

rule, k = 1 . . .M , is:

If x1 is B
(k)
1 , . . . , and xN is B

(k)
N then y(k)=

∑N
j=1 a

(k)
j xj + a

(k)
0 , (4.5)

where x =
[
x1 x2 · · · xN

]
is the input to the network and y(k) is the output

of the rule. The antecedent part of the rule depends on the membership

functions (MFs) µ
B

(k)
j

(xj) of the fuzzy input variables B
(k)
j , j = 1 . . . N ; the

consequent part is determined by the coefficients a
(k)
j , j = 0 . . . N , of the

crisp output y(k). By using standard options for composing the input MFs

37

4.2 Models

and combining the rule outputs [40], the output of the ANFIS network is

represented by:

ỹ =

M∑
k=1

µB(k)(x) y(k)

M∑
k=1

µB(k)(x)

, (4.6)

where ỹ is the estimation of y and µB(k)(x) is the composed MF of the kth

rule.

When dealing with data driven estimation procedures the mapping y =

f(x) is known by numerical examples (i.e., by a training set of P input-

output pairs {xi, yi}, i = 1 . . . P). Clustering on the training set is thus

a useful approach to the synthesis of ANFIS networks. Different types of

clustering approaches can be used in this regard, followed by a suited clas-

sification for associating patterns a rules [41, 42]. For instance, clustering in

the joint input-output space can overcome some drawbacks pertaining most

of traditional approaches, where clustering is used only to determine the rule

antecedents in the input space. In this work, an ANFIS synthesis procedure

is used that is based on the joint input-output space approach. The first step

is using a suitable clustering procedure to determine the coefficients of the

Sugeno rule consequent. Then the rule antecedents are determined using a

fuzzy classifier. Fuzzy Min-Max classifiers represent a valid solution in this

regard because of their computational effectiveness. In particular, the use of

Min-Max classifiers based on adaptive resolution mechanisms will be adopted.

If the architecture consists of a suitable number of rules, the generalization

capability of an ANFIS network can be sufficient. This is a crucial problem

since in general neuro fuzzy networks can be affected by overfitting (for ex-

ample in case of noisy or ill-conditioned data). To automatically determine

the optimal number of rules, other techniques can be employed, based on

well-known concepts of learning theory [43].

4.2.4 Higher Order Neuro Fuzzy Inference System

The HONFIS model adopted for data regression is a Takagi–Sugeno (TS)

fuzzy inference system that is a generalization of ANFIS where the consequent

part in Equation (4.21) is a polynomial of order greater than one combining

the input values xj, j = 1 . . . N . It is made of M different fuzzy rules, and

38

4.2 Models

the coefficients are obtained through the use of a clustering procedure in the

joint input-output space [42].

Let Γ = {Γ1,Γ2, . . . ,ΓM} be a set of M clusters (each associated with a

rule output), and let every pattern of the training set be assigned randomly

to one of these clusters. Then, the clustering procedure is fundamentally

an alternating optimization technique that aims at identifying the M cluster

prototypes [44]. At the end of the iterations, a label q, 1 ≤ q ≤ M , is

associated with each pattern, representing the rule it has been assigned during

the last iterations. In this way, a classification model able to assign a fuzzy

label L(x) to any pattern x of the input space is obtained:

L(x) = [µB(1)(x) µB(2)(x) . . . µB(M)(x)] (4.7)

where the k-th element of L(x) represents the fuzzy membership of the pat-

tern to the k-th class, that is the firing strength µB(k)(x) in Equation (4.6).

In the following, we will adopt a K-nearest neighbor (K-NN) strategy for

classification of the fuzzy label during the prediction tests. This is done by

using the input value x only, and hence, the fuzzy label of x will be:

L(x) =
1

K

K∑
q=1

L(xtq) (4.8)

where xt1 ,xt2 , . . . ,xtK are the K patterns of the training set that score the

smallest Euclidean distance from x, with their fuzzy labels determined during

the training phase.

The output ỹ is calculated through Equation (4.6) by means of the firing

strengths contained in the fuzzy label L(x) and the output consequents whose

parameters have been previously determined by clustering in the joint input-

output space. For instance, in the case of a 3rd order polynomial as adopted

in the following, the k-th rule’s consequent, k = 1 . . .M , is:

y(k) = a
(k)
31 x

3
1 + · · ·+ a

(k)
3Nx

3
N+

a
(k)
21 x

2
1 + · · ·+ a

(k)
2Nx

2
N+

a
(k)
11 x1 + · · ·+ a

(k)
1NxN + a

(k)
0

(4.9)

Regarding the generalization capability, the optimal number of rules is

automatically determined on the basis of learning theory [45]. The best model

is chosen by evaluating a cost function based on network complexity and

39

4.2 Models

approximation error [46]. As a measure of the network performance on the

training set, the mean squared error (MSE) is adopted:

E =
1

NT

NT∑
t=1

(yt − ỹt)2 (4.10)

where NT is the number of samples in the training set to be predicted and

ỹt is the output generated by HONFIS in correspondence with the t-th input

pattern xt. The optimal network is selected by minimizing the following cost

function that depends on the maximum allowed number of the HONFIS rules:

F (M) = (1− λ)
E(M)− Emin

Emax − Emin

+ λ
M

NT

(4.11)

where Emin and Emax are the extreme values of the performance E that are

encountered during the analysis of the different models, while λ is a non-

critical weight, 0 ≤ λ ≤ 1, set to 0.5 by default.

4.2.5 Echo State Network

For prediction problems in which real-world time series are involved, very

useful models can be found in the framework of neural network techniques

[47, 48]. Most of them can achieve good results when applied to time series

with many outliers and missing samples. The approach proposed herein relies

on the Echo State Network model (ESN), which is a class of recurrent neural

network where the ‘reservoir’ (recurrent part of the NN) is separated from

the ‘readout’ (the non-recurrent part of the NN). The recurrent part is fixed

and the the non-recurrent one is solved as a standard linear regression over its

weights. ESNs are used in different domains for their flexibility when applied

to chaotic time series prediction [49], grammatical inference [50], stock price

prediction [51] and acoustic modeling problems [52], between others.

The ESN was first proposed in [53] and it pertains to the ANN paradigm,

in particular to the class of recurrent neural networks (RNNs). These kind of

machine learning techniques are extensively used for prediction applications,

being a reliable mean for solving non-linear time series analysis [54]. In the

classical RNNs, all of the internal weights are updated during training via an

iterating optimization method. When the problem requires less memory, the

more simple approach of the ESN can be used with fruitful results. In fact, the

recurrent part of an ESN is fixed: the weights of the recurrent reservoir are

40

4.2 Models

randomly assigned. Conversely, the output layer (readout, the non recurrent

part) is trained based on the available data. The main advantage of this

approach, which makes the ESN efficient also with large datasets, stems from

the easier training problem, which is economically reduced to a straight linear

regression problem.

The ESN model can be split into three different components, as illustrated

in Fig. 4.1, where the boxes enclose the different parts and the lines are dashed

if the relative connection is random, solid if it is trainable.

Figure 4.1: Functional scheme of an ESN with explicit different connections:
dashed if they are random, solid if trainable.

The input of the network is an Ni dimensional vector x ∈ NNi given to

the reservoir with dimension of Nr. The reservoir internal state h ∈ NNr is

then updated using the following equation:

h[n] = fres(W
r
i x[n] +W r

r h[n− 1] +W r
o y[n− 1]) , (4.12)

where W r
i ∈ RNr×Ni , W r

r ∈ RNr×Nr and W r
o ∈ RNr×No are matrices

generated randomly, fres(·) is a non-linear function defined suitably, and

y[n − 1] ∈ RNo is the previous No-dimensional output of the network. If

stability has to be increased, adding a small uniform noise to the update is a

viable option. This is done before computing the non-linear transformation

fres(·) [53].

The output is then computed as:

y[n] = fout(W
o
i x[n] +W o

r h[n]) , (4.13)

41

4.3 Embedding

where W o
i ∈ RNo×Ni ,W o

r ∈ RNo×Nr are modified and adapted in accordance

with the training data, and fout(·) is an non-linear, invertible function.

Given a time series S[n], n > 0, to be predicted, the input x to the ESN

is a vector of Ni consecutive past samples of the time series while the desired

output d is the sample to be predicted; more precisely:

x[n−Ni + 1] =
[
S[n] S[n− 1] · · · S[n−Ni + 1]

]T
,

d[n−Ni + 1] = S[n+m] , (4.14)

n = Ni, Ni + 1, . . . , Q+Ni − 1 ,

where m > 0 is the prediction distance, which is usually set to m = 1, and

the available samples of the time series should range from S[1] up to S[Q +

Ni +m− 1].

4.3 Embedding

In the following, the generalized embedding approach is presented for which,

at the generic time n, the input to the predictor can be any combination

of past available samples, which are used to predict the next one S[n + m].

As the relation between predicted and past samples usually is not given, in a

prediction problem it is important to study which samples of the sequence are

relevant to the prediction task. The naive approach resides in assuming that

all the past samples of the sequence to be predicted are equally important,

without finding an optimal subset. However, a more fruitful approach consists

in selecting the samples via embedding of the sequence [55]. The sequence

generated by a complex, often chaotic and noisy system like the PV under

exam can be observed by its output only. So, in order to reconstruct the

evolution of the system, the original sequence S[n] must be embedded. This

is done by determining two parameters [56]: the embedding dimension D and

the time lag T . In such a way the reconstructed state at time n can be found

as:

S[n] =
[
S[n] S[n− T] . . . S[n− T (D − 1)]

]T
. (4.15)

By setting xn = S(n), it is evident that the regressor input is an estimate

of the unfolded, reconstructed state of the unknown system that generates

the observed time series. By the way, looking at (4.4.1), it becomes evident

42

4.4 Applications

that in the MA case it is implicitly assumed T = 1. By driving the function

approximation model with embedding data, neural networks and fuzzy infer-

ence systems are nonlinear approximation models that extend the linear one

adopted in (4.4.1) and result very suited to prediction tasks on real-world

time series. In a more general approach, the embedding parameters can be

estimated using the Average Mutual Information (AMI) procedure for T and

the False Nearest Neighbors (FNN) procedure for D, respectively [57].

4.4 Applications

4.4.1 Energy market price prediction

Introduction

Over the last two decades, all the commodities that are traded internation-

ally among many different stockholders have played an ever more pervasive

role making several authors to envisage a future invasive commodified econ-

omy [58]. Generally, all the commodity prices are basically determined by

supply and demand, but they can be strongly influenced by several exter-

nal irregular events, e.g., stock levels, macroeconomic factors, political as-

pects, monetary policy, psychological expectations [59]. Forecasting com-

modity prices is an essential tool in modern competitive markets [60,61] but

it can be extremely challenging when dealing with commodities characterized

by intrinsic difficulties and high volatility [62], which make the time series of

past prices highly nonlinear and nonstationary.

Since the late Nineties, with the deregulation process of the energy mar-

ket that has moved from a centralized operational approach to a competitive

wholesale spot market [63], forecasting energy prices has become a valuable

tool and emerged as a hot research field in electrical engineering [64, 65].

Nowadays, any company that trades energy, especially in the day-ahead mar-

ket but also in the intra-day market [32], needs an accurate price prediction

mainly for twofold reasons [66]: on the one hand, the forecast of the market

clearing price (MCP) helps producers or consumers to prepare an effective

offering or bidding strategy that maximize benefits; on the other hand, when

recurring to bilateral contracts, a good knowledge of expected market pool

prices helps to hedge against volatility.

A huge number of forecasting techniques have been proposed in literature

43

4.4 Applications

to predict electricity prices and extensive reviews are available in [67, 68]. It

is quite impossible to cite all of the approaches that have been developed

for analyzing and forecasting energy prices; further details in this regard can

be found in [67]. Generally speaking, these approaches can be summarized

in five different classes: multi-agent, fundamental, reduced-form, statistical,

and computational intelligence models. All the methods present strengths

and deficiencies that must be seriously considered when applied to the energy

market that is affected by a high percentage of unusual prices as all of the

non-perfect oligopolistic markets.

In this section, we analyze three techniques based on neural and fuzzy neu-

ral networks for forecasting electricity prices in the day-ahead market, namely:

Radial Basis Functions (RBF) neural networks [69], Mixture of Gaussians

(MoG) neural network [70] and Higher-Order Neuro-Fuzzy Inference System

(HONFIS) [71]. The present approach leans on the possibility of consider-

ing a prediction problem as a data regression or classification one, which can

be solved by using neural models and/or fuzzy inference systems [40, 72], by

means of a suitable transformation of input data and, possibly, using ad-hoc

input selection techniques [73]. Throughout several case studies, the illustra-

tion of their validity in terms of prediction performance and model accuracy

is carried out and the applicability of these approaches to the forecasting of

energy prices is assessed.

Regarding the forecasting in day-ahead markets, the auction system in

place in Italy must be explained. The day-ahead auction for hourly delivery in

the six Italian zones takes place every day at 12:00 noon. Until then, starting

from 8:00 of the eighth day before, consumers and producers that participate

to market make proposal to purchase (bids) and sell (offers) a certain amount

of electric energy at some prices. Market participants can anonymously sub-

mit their bids/offers with a minimum volume of 1 kWh for individual hours

and blocks and a minimum price change of 0.01 ¿/MWh. Moreover, prices

for hourly contracts must remain within the range between ±3000 ¿/MWh.

After all bids have been collected, based on a System Marginal Price model,

the market clearing price, which applies to all transactions, is determined

and published after 12:40 pm. The delivery takes place during the respective

hour of the following day and hence, this is the reason of the term ‘day-

ahead’. Italy’s national single price (PUN) is the average of the six different

zonal prices in the day-ahead market, weighted for total purchases and net

of purchases for pumped-storage units and by neighboring countries. In this

44

4.4 Applications

framework, the importance of an accurate forecasting of the PUN for properly

tailor energy offers and bids is clear and evident.

Once the context is clear, we can now approach the forecasting technique

used here. Given a time series S(n), n > 0, the prediction of a future sample

S(n + m) at distance m is generally obtained by solving a function approxi-

mation problem, that is by estimating the parameters θ of a regression model

y = f(x;θ), f : IRD → IR, where x is an input vector whose D elements are

chosen among the previous samples of the time series observed so far.

For instance, a standard Dth-order moving average (MA) predictor is

based on a linear regression model and each input is made of D subsequent

samples of S(n):

xn =
[
S(n) S(n− 1) · · · S(n−D + 1)

]
,

yn = S(n+m) ,

flin(xn;θ) =
D∑
j=1

θjxnj , (4.16)

and hence, we have:

S̃(n+m) =
D∑
j=1

θjS(n− j + 1) , (4.17)

where S̃(n + m) is the estimate of the predicted sample and parameters θ

can be determined by standard estimation techniques, usually considering

the statistical properties of the observed time series.

In the following, we propose to use a generalized approach for embedding

the time series, considering the specific behavior that is relevant to the pro-

duction of energy commodities and the related market prices [55]. A time

series generated by a complex, often chaotic and noisy market system, like

in the case of PUNs under exam, can be observed by its output only. So, in

order to reconstruct the evolution of the system, the original sequence S(n)

must be embedded so as to reconstruct the evolution of the underlying, un-

known market model. The technique used here is the same described in Sec.

4.3. In the following, we analyze the performance of three techniques based

on neural and fuzzy neural networks, all already detailed in Sec. 4.2:

� RBF: a neural network that builds up a function approximation model

with a usually multiquadratic radial basis function [69];

45

4.4 Applications

� MoG: a neural network model in which a density mixture of Gaus-

sian components are used in the joint input-output space; the mixture

parameters are estimated via the Expectation-Maximization algorithm

and constructive learning as proposed in [70];

� HONFIS: a neuro-fuzzy inference system based on a set of ‘higher-than-

one order’ rules of Takagi-Sugeno type [71].

Table 4.1: Prediction Results (NMSE) for July 1st

Prediction Model
Training Set (# days after the latest sample and before the test set)

1 day 2 days 3 days 4 days 5 days 6 days 7 days 8 days 9 days

LSE training 0.0201 0.0204 0.0198 0.0212 0.0213 0.0220 0.0189 0.0197 0.0241
LSE test 1.3229 1.2223 1.9396 1.7311 0.8341 1.5018 1.3010 2.3254 1.4010

MoG training 0.0153 0.0158 0.0160 0.0166 0.0158 0.0174 0.0163 0.0186 0.0252
MoG test 0.5721 1.4201 1.2939 3.2144 0.5231 6.1050 1.2001 2.1191 1.3034

RBF training 0.0472 0.0497 0.0493 0.0479 0.0470 0.0467 00.0479 0.0486 0.0508
RBF test 0.1955 0.1444 0.3041 0.3981 0.3132 0.5639 0.5434 0.8395 0.4653

HONFIS training 0.1001 0.1076 0.1119 0.0982 0.0889 0.0849 0.1135 0.1023 0.1172
HONFIS test 0.1934 0.3543 3.0712 0.9914 0.5827 0.7099 0.4809 0.7076 0.1887

Table 4.2: Prediction Results (NMSE) for December 1st

Prediction Model
Training Set (# days after the latest sample and before the test set)

1 day 2 days 3 days 4 days 5 days 6 days 7 days 8 days 9 days

LSE training 0.0355 0.0398 0.0271 0.0364 0.0584 0.0765 0.0134 0.0254 0.0369
LSE test 0.2001 0.3751 0.3642 1.6984 0.3224 0.2954 0.7700 2.3335 0.7465

MoG training 0.0048 0.0056 0.0046 0.0035 0.0037 0.0043 0.0043 0.0038 0.0038
MoG test 0.3898 2.4182 1.8551 1.7290 1.4141 2.2025 10.328 9.1297 1.3567

RBF training 0.0151 0.0144 0.0141 0.0119 0.0103 0.0116 0.0116 0.0129 0.0128
RBF test 0.1981 0.4543 0.9945 1.1542 0.1915 0.2860 0.6601 4.0883 0.6612

HONFIS training 0.0911 0.0898 0.0878 0.0851 0.0836 0.0833 0.0835 0.0871 0.0873
HONFIS test 0.2239 1.2202 2.3941 1.1652 0.7782 3.4035 11.632 7.5510 0.3277

To validate the described approach, some numerical experiments were

investigated. The dataset used for these experiments is associated with a real

PUN time series belonging to the year 2016. The original sequence is sampled

every 15 minutes but it is downsampled at one sample per hour for reducing

the computational cost. A sample interval of this time series is shown in

Fig. 4.2.

46

4.4 Applications

Figure 4.2: A sample of the considered PUN time series in 2016.

Two sets of experiments are considered, with two different days of pre-

diction: the 1st of July and the 1st of December. These days are chosen

because they are very representative in terms of price variation. The test set

is therefore composed by the 24 samples (1 sample per hour) for either one

of these two days. Nine different training sets are considered for a same test.

Each training set is always composed by 720 samples (related to 30 days) but

referring to 9 different intervals, that is the last day of the training set is 1

day up to 9 days before the day of the test set. This reflects the different

cases of price prediction, one for every of the 9 days prior to the ending of the

transactions. The embedding parameters are found by using the AMI and

FNN algorithms: for the July case, we will adopt T = 1 and D = 9 for every

training set; for the 1st of December, we will adopt T = 1 and D = 27 for

every training set. This difference is due to the characteristics of the training

sets related to different seasons and it should not be considered as an incoher-

ence, as in the operational phase the embedding parameters can be estimated

at any given time.

47

4.4 Applications

The performance index of prediction accuracy is the Normalized Mean

Squared Error (NMSE), which is defined as:

NMSE =

∑
n

[
S(n)− S̃(n)

]2
∑

n

[
S(n)− S̄

]2 , (4.18)

where S̄ is the average of the PUN time series over the 24 samples of each test

set. The numerical results are reported in Table 4.1 and Table 4.2 for July

1st and December 1st, respectively, considering the nine different training sets

(i.e., 1 day to 9 days before) and they are compared with the performance

of the naive LSE for benchmarking purposes. The best performance on the

test set versus the different training condition is reported for each predictor

in bold.

The best prediction model in terms of stable performance over the different

trading conditions (i.e., different training sets) is evidently the HONFIS one.

While MoG exhibits good performances but it is affected by large errors in

some cases, likely due to the fast changing of the time series, the RBF is the

less suitable one for prediction, as it achieves the highest NMSE values on

the test set.

Figure 4.3: Best prediction on the 1st of July test set for the MoG predictor
(1-day training set): actual time series (blue); predicted one (red).

It should be noted that the NMSE is a normalized L2-norm, which is

purely indicative of the general prediction performance. Further details on

48

4.4 Applications

the prediction capability can be captured by visual inspection looking at

resulting plots. For the sake of illustration, the best predictions for the 1st of

July are shown in Figs. 4.3-4.5 and the best ones for the 1st of December in

Figs. 4.6-4.8, respectively.

Figure 4.4: Best prediction on the 1st of July test set for the RBF predictor
(1-day training set): actual time series (blue); predicted one (red).

From the graphical results, it is clear that the variation of the training

set has a non negligible effect on the HONFIS model. Actually, this model

is very sensitive to the setting of parameters of its learning algorithm and

so, it should be re-learned at every iteration. It can also be noted that the

performance is generally worst for December. This can be explained with a

different volatility of prices in the related training sets.

4.4.2 Energy Production

This section presents embedding approaches based on neural and fuzzy neural

networks that have been properly tailored to be efficiently applied to PV

time series prediction. The models were applied to the time series of sampled

output current of a test PV plant, predicting a single day of operation. The

models were trained using different training sets, namely 1-day, 3-day, 7-

day or 30-day. The obtained results demonstrate that in normal operation

conditions, all of the solutions are suitable for the proposed goal, except for the

49

4.4 Applications

Figure 4.5: Best prediction on the 1st of July test set for the HONFIS pre-
dictor (1-day training set): actual time series (blue); predicted one (red).

Figure 4.6: Best prediction on the 1st of December test set for the MoG
predictor (1-day training set): actual time series (blue); predicted one (red).

shorter training sets, which result in less reliable performances. In particular,

the approaches were shown to be very accurate when considering a seven-day

training set to forecast the successive day, mostly because in a single-week

window, the solar irradiation is more stable.

A novel approach is presented in this section, where fuzzy neural networks

50

4.4 Applications

Figure 4.7: Best prediction on the 1st of December test set for the RBF
predictor (1-day training set): actual time series (blue); predicted one (red).

Figure 4.8: Best prediction on the 1st of December test set for the HONFIS
predictor (1-day training set): actual time series (blue); predicted one (red).

are considered as a predictive tool in the strategic field of photovoltaic power

plants prediction. The complexity and dynamics as a real-world problem

require advanced methods and tools able to use past samples of the sequence

in order to make an accurate prediction of the future ones. In this regard,

computational intelligence is considered as one of the most fruitful approaches

for prediction and for photovoltaic applications too [47]. In effect, several

51

4.4 Applications

forecasting methods have been proposed such as fuzzy predictors [74], artificial

neural networks [48,75], evolutionary and genetic algorithms [76], and support

vector machines [77]. Nevertheless, the lack of robustness against outliers

and having to deal with noisy and missing training examples are still an open

problem.

Here, a new learning approach of Takagi-Sugeno (TS) fuzzy inference sys-

tems is presented to solve the problem of voltage prediction in photovoltaic

plants. The parameters of each rule are obtained through a clustering synthe-

sis in the joint input-output space and a computationally efficient optimiza-

tion is also reported. This optimization is based on a constructive procedure,

by which the number of rules is progressively increased. The optimal one

is then automatically determined on the basis of learning theory in order to

maximize the generalization capability of the resulting neural network. The

proposed approach is applied in the case of well-known photovoltaic time se-

ries. The application is ascertained by several benchmark results and exten-

sive computer simulations, which prove the validity of the proposed learning

procedure and show a favorable comparison with other well-known prediction

techniques.

Complexity and dynamics of real-world problems require advanced meth-

ods and tools able to use past samples of the sequence in order to make an

accurate prediction. Additionally, the problem of forecasting future values of

a time series is often mandatory to the cost-effective management of available

resources. These are well-known hard problems, given the non-stationary

and non linear characteristics of the time series. Because of these charac-

teristics, the resulting dynamics is hard to be adequately modeled by using

standard predictive models. Unfortunately, standard structural models cited

in Sec. 3.2 provide a poor representation of actual data and therefore re-

sult in a poor accuracy when they are used for forecasting. Consequently,

many worldwide research activities are intended to improve the accuracy of

prediction models. In this regard, computational intelligence is considered as

one of the most fruitful approaches for prediction. Several forecasting meth-

ods, with different mathematical backgrounds, such as fuzzy predictors [74],

artificial neural networks [75], evolutionary and genetic algorithms [76], and

support vector machines [77] have been resorted. Nevertheless, the problem

to deal with noisy and missing training examples, and the lack of robustness

against outliers, are still open problems. For this reason, there are several ap-

proaches in the technical literature that consider Takagi-Sugeno (TS) fuzzy

52

4.4 Applications

models for time series prediction [78–82]. A huge amount of literature is

available on short-term forecasting models applied to PV plants, even if most

of them deal with irradiation forecasting models: while not claiming to be

exhaustive, the proposed techniques include mainly statistical models [83],

stochastic predictors [84], fuzzy systems [85], ANN [86], ANN in conjunction

with statistical feature parameters [87] and artificial intelligence (AI)-based

techniques [88]. Some papers present also the comparison between the pre-

dictions obtained though different models based on two or more forecasting

techniques [89]. Despite the large amount of literature on forecasting tech-

niques, only a few papers describe forecasting models to be used for directly

predicting the daily energy production of the PV plant. These few papers use

general techniques appropriately applied to the day-head horizon. Starting

from the input of past power measurements and meteorological forecasts of

solar irradiance, the power output is estimated by means of ANN [90] or soft

computing [91], while in [92], the ANN is applied only on past energy produc-

tion values. Additionally, the ANN can be used in conjunction with numerical

weather prediction (NWP) models [93], which can be based on satellite and

land-based sky imaging [94]. NWP models have been also used to build an

outperforming multi-model ensemble (MME) for day-ahead prediction of PV

power generation [95]. More complex schemes are proposed in [96], where an

ANN is used to improve the performance of baseline prediction models, i.e., a

physical deterministic model based on cloud tracking techniques, an ARMA

model and a k-nearest neighbor (kNN) model, and in [97], where a Kalman

filter is used in conjunction with a state-space model (SSM).

The use of inference systems for data regression based on neural and fuzzy

neural networks is proposed here. The main distinguishing idea of this work

is that a new learning approach is properly tailored to analyze data associ-

ated with renewable power sources starting from available techniques based

on computational intelligence that have proven to produce very accurate pre-

dictions in several fields of application, like for example, risk management,

biomedical engineering and financial forecasting [48], but also to analyze ac-

curately the data associated with renewable power sources [98]. Actually, the

stochastic and often chaotic behavior of time series in the prediction of output

power of PV plants calls for ad hoc procedures to forecast power time series,

which are here developed working only on the past measurements of electric

quantities, as initially tested in our previous works [55].

Here, a prediction problem is brought in as a two-fold process. First,

53

4.4 Applications

the observed time series is embedded (see Sec.4.3) in order to select, among

the available samples, the ones to be used to predict the next one. Then,

such samples are used to feed different function approximation models and

techniques based on neural and fuzzy neural networks, which are suited to

predict data sequences that often show a chaotic behavior: radial basis func-

tion (RBF) [99]; Mixture of Gaussian NN; the adaptive neuro-fuzzy inference

system (ANFIS) [100]; the higher-order neuro-fuzzy inference system (HON-

FIS) [101]. In fact, a predictor can be based on such function approximation

models, whose parameters are estimated by data-driven learning procedures.

Takagi-Sugeno Fuzzy Systems Applied to Energy Time Series Pre-

diction

To explain the technique used, let us consider a time series S(n), the input

vector xn of a data regression model to be used for prediction is determined

through the so-called ‘embedding technique’, which is based on past samples

of the time series S(n):

xn = [S(n)S(n− T)S(n− 2T) . . . S(n− (D − 1)T)] , (4.19)

where D is called the ‘embedding dimension’ and T is the ‘time lag’ between

past samples of S(n). The estimated sample S̃(n+m) predicted at a distance

m will be:

S̃(n+m) = f (xn) , (4.20)

where f(·) is the regression model to be determined. In the following, we will

consider the usual case of a ‘one-step-ahead’ prediction, that is m = 1.

In this regard, the model adopted in this section for data regression is

a generalization of the ANFIS in Sec. 4.2.3 and it is based on a TS fuzzy

system made of C different fuzzy rules [102], as in Sec. 4.2.4. Generally, the

kth rule, k = 1 . . . C, of a TS system has the following form:

If x1 is B
(k)
1 and . . . and xD is B

(k)
D then

y(k) = h
(
x;ω(k)

)
,

(4.21)

where x = [x1 x2 . . . xD] is a row vector (or pattern) in the D-dimensional

(embedded) input space and y(k) is the scalar output associated with the rule.

54

4.4 Applications

The latter is characterized by the membership functions (MFs) µ
B

(k)
j

(xj) of

the fuzzy input variables B
(k)
j , j = 1 . . . D, and the set of parameters ω(k) of

the related crisp output functions in the consequent parts.

Several alternatives are possible for the fuzzification of crisp inputs, the

composition of input MFs, and the way rule outputs are combined [103].

Usually, the regression structure of the TS inference system is the following

one:

ỹ = f(x) =

C∑
k=1

µB(k)(x) y(k)

C∑
k=1

µB(k)(x)

, (4.22)

where B(k) is the overall fuzzy input variable, µB(k)(x) is the value of corre-

sponding MF (i.e., the ‘firing strength’), and ỹ is the output estimated for

any input x.

In this work, a training set of NT input-output pairs {xt, yt}, t = 1 . . . NT ,

will be considered, where xt is an embedded vector obtained as in (4.19)

and yt is the related sample to be predicted. The rule parameters of the TS

system will be estimated through a data-driven learning approach; the main

problem during this phase is to obtain a good generalization capability. In

this case, the latter is maximized only if the TS system consists of a suitable

number of rules. However, the determination of the optimal number is a very

critical problem to be solved as the inference system might be easily overfitted

in case of noisy or ill-conditioned data. Here, a constructive procedure for

the automatic determination of rules is also reported. It aims at regularizing

the network architecture by using learning theory and clustering in the joint

input-output space [45,104–106].

Subsequently, we explain here the procedure for determination of the rules,

with preliminary tests on some energy dataset. We do this to ensure that

the procedure is sound and reliable for further use on real-world applica-

tions such as the prediction problem analysed here. We propose to determine

the parameters of the TS rules by using a clustering procedure in the joint

input-output data space. The procedure is fundamentally an alternating op-

timization technique that aims at identifying the cluster prototypes [44]. Let

Γ = {Γ1,Γ2, . . . ,ΓC} be a set of C clusters (each associated with a rule out-

put) and let every pattern of the training set be assigned randomly to one of

these clusters. Then, the clustering procedure with C prototypes is based on

55

4.4 Applications

the following iterative steps:

� Step 1 . The coefficients ω(k), k = 1 . . . C, of each rule consequent are

evaluated by solving a set of (generally) nonlinear equations; the generic

equation is:

yt = h
(
xt;ω

(k)
)
, (4.23)

where yt is the output associated with the input xt; index ‘t’ spans only

the pairs of the training set assigned to the kth cluster. In this regard,

the set of nonlinear equations in (4.23) are solved using an iterative

least squares estimation [107].

� Step 2 . Each pair (xt, yt), t = 1 . . . NT , of the training set is now as-

signed to the cluster Γq, 1 ≤ q ≤ C, having the minimum distance from

it:

dt =
∣∣yt − h (xt;ω(q)

)∣∣ =

= min
k=1...C

∣∣yt − h (xt;ω(k)
)∣∣ . (4.24)

� Step 3 . For every cluster Γk, k = 1 . . . C, the local approximation error

is evaluated:

Dk =
1

Nk

∑
t
dt , (4.25)

where index ‘t’ spans only the Nk pairs of the training set assigned (in

Step 2) to the kth cluster.

� Step 4 . The convergence is based on the quantity:

Θ =

∣∣D −D(old)
∣∣

D(old)
, (4.26)

where D is the global approximation error over the whole dataset in the

current iteration defined by:

D =
1

NT

NT∑
t=1

di , (4.27)

56

4.4 Applications

and D(old) is the global approximation error calculated in the previous

iteration. The algorithm is stopped when Θ is less than a threshold θ

(set by default to 0.01). If it is greater, it goes back to Step 1 by using

the current updated association of patterns to clusters.

The proposed clustering procedure is able to provide the consequents only

of the Sugeno-type fuzzy rules, but we need also the firing strengths of the

rules’ antecedents in order to obtain a complete structure of the TS system.

In this regard, at the end of the iterations, a label q (1 ≤ q ≤ C) is associated

with each pattern, representing the rule it has been assigned to during Step 2

of the last iteration. In this way, a classification model able to assign a fuzzy

label L(x) to any pattern x of the input space is obtained:

L(x) = [µB(1)(x) µB(2)(x) . . . µB(M)(x)] , (4.28)

where the kth element of L(x) represents the fuzzy membership of the pattern

to the kth class and hence, it can be assumed as the firing strength µB(k)(x)

in (4.22) of the kth rule associated with the model h
(
·;ω(k)

)
corresponding

to that class.

When the output ỹ must be estimated for any input x during the normal

TS operation (i.e., testing), the classifier is used to determine the fuzzy la-

bel (4.28) by using the input value x only; then, the output ỹ is calculated

through (4.22) by means of the firing strengths contained in the fuzzy la-

bel L(x) and the output consequents in (4.21), whose parameters have been

early determined by clustering in the joint input-output space. In the follow-

ing, we will adopt a K-nearest neighbor (K-NN) strategy for classification.

Namely, let xt1 ,xt2 , . . . ,xtK be the K patterns of the training set that score

the smallest Euclidean distance from x; then, the fuzzy label of x will be:

L(x) =
1

K

K∑
q=1

L(xtq) . (4.29)

Preliminary tests on the approximation capability of different or-

ders of the Takagi Sugeno system

One of the core issues of relying on the proposed HONFIS method, is the

optimization of the generalization capability. The training of TS systems

poses two problems: the right computation of the number of rules (C) and

57

4.4 Applications

the local convergence of the clustering algorithm for the synthesis of the rules.

The former problem can be viewed as a ‘structural optimization’ problem

and the underfitting or overfitting of the training set can cause degradation

in the TS performance. The latter is linked to the goodness of the random

initialization of the parameters of each rule1. Here, we propose to use different

values of C and different initialization for every value of C. The best TS

system is chosen by evaluating a cost function based on network complexity

and approximation error [46, 103].

A set of experiments was put in place to preliminarly assess the perfor-

mance of the described methods and to choose the best order for the HONFIS.

The performance of the proposed approach is evaluated considering different

orders for the polynomial function h(·) of the TS rule consequent. We studied

five cases, that is from first-order to fifth-order functions. Tests were carried

out using data from the De Nittis Power Plant in the Apulia Region, Italy

(latitude φ = 41◦26′16′′, longitude λ = 15◦45′47′′). Data is relative to a sin-

gle photovoltaic plant, organized with eight cabins with two inverters each.

The output current was used as the variable to be predicted. The value was

sampled at the source with a 5-min sample interval, and it was collected from

6:00 a.m.–10:55 p.m., resulting in 204 samples per day. The used data stream

comes from a single inverter of a single cabin, and it is relative to the year

2012. In order to provide a statistical characterization of the handled time

series, whose samples are measured in Amperes, we have computed the first

four statistical moments of the whole 2012 dataset, whose histogram is also

reported in Figure 4.9: mean 85.1291; variance 1.0244×104; skewness 0.8151;

kurtosis 2.1082. Successively, the whole time series has been normalized lin-

early between zero and one in order to cope with the numerical requirements

of learning algorithms, especially for neural network models.

1In the present case, the initialization is carried out by assigning the patterns to clusters
randomly before the clustering iteration starts.

58

4.4 Applications

Output Current [A]

0 50 100 150 200 250 300

N
um

be
r

of
 O

cc
ur

en
ci

es

0

500

1000

1500

2000

2500

Figure 4.9: Histogram of the output current.

The results are reported in Table 4.3 in terms of NMSE only, as it is

sufficient to determine the best order to be used for the next comparisons.

Such results are relative to the test performed on the 30th of June as test set,

with the dataset described earlier. We have chosen this day because of the

stability of the sequence in terms of meteorological condition and irradiation.

The best results are given by third-order and fourth-order functions for the

7-days and 30-days training set, respectively.

Table 4.3: Prediction Results (NMSE) for Different TS Orders of The Rule
Consequent

TS Rule 7-days 30-days

First-order training 4.043 1.636
First-order test 0.058 0.019

Second-order training 0.596 2.019
Second-order test 0.053 0.018

Third-order training 0.611 1.591
Third-order test 0.052 0.017

Fourth-order training 0.639 1.514
Fourth-order test 0.055 0.016

Fifth-order training 0.819 1.513
Fifth-order test 0.097 0.016

NMSE values are scaled by 10−2

We illustrate in Fig. 4.10 the worst performance for 7-days training set,

59

4.4 Applications

obtained by the fifth-order function, and the best performance obtained, as

said, by the third-order function in Fig. 4.11. Similarly, we show in Fig. 4.12

the worst performance for 30-days training set, obtained by the first-order

function, and the best performance obtained in this case by the fourth-order

function in Fig. 4.13.

Figure 4.10: TS prediction on the 7-days training set: worst performance of
fifth-order consequents.

Then, we compare the prediction performances of the proposed TS ap-

proach with respect to several well-known prediction models2, that is:

� Linear (LSE) predictor, where the relationship between the value to be

predicted and the current/previous ones is modeled by using a linear

function, whose parameters are determined by least-squares techniques

on training data;

� Radial Basis Function (RBF) neural network, trained as described in

[69];

� Adaptive Neuro-Fuzzy Inference System (ANFIS) [102], which is trained

by a subtractive clustering method for rule extraction [108]. The rule

parameters are obtained by means of a standard least-squares method

coupled with the back-propagation optimization [103].

2A cross-validation technique is adopted by using a suited early-stopping procedure in
order to optimize the model complexity.

60

4.4 Applications

Experiments and performance comparison

Having assessed the performance and the order of the HONFIS in use, the

successive experiments, herein described, will consider for testing one day

for each month of 2012, and we have chosen the 15th of each month for the

sake of uniformity (the last 15 samples of 2011 are also used for the 30-day

training of 15 January). All of the computational models were trained using

time series subsampled at an interval of 1 h, thus resulting in 17 samples per

day. Four different kinds of training conditions were considered: 1-, 3-, 7-

and 30-day, associated with training sets composed of 17, 51, 119 and 510

samples, respectively. Every computational model estimated by using one of

these training sets was applied to test the day following the latest one in the

training set, that is on a test set of 17 samples. After the preliminary analysis

we carried out for determining the embedding parameters, as the latter did not

show a considerable sensitivity to seasonality and to the length of the training

set, which was relatively small with respect to the usual length of time series

processed by the AMI and FNN methods, we had adopted as the optimal

choice the values T = 5 and D = 3 for every training set and the related

experiment. We remark that all of the test sets had different irradiation

and meteorological conditions, and thus, they could be considered as a good

Figure 4.11: TS prediction on the 7-days training set: best performance of
third-order functions.

61

4.4 Applications

Figure 4.12: TS prediction on the 30-days training set: worst performance of
first-order consequents.

ensemble for representing the typical behaviors that might be encountered.

Figure 4.13: TS prediction on the 30-days training set: best performance of
fifth-order functions.

62

4.4 Applications

All of the experiments had been performed using MATLAB® 2016b, run-

ning on a 3.1-GHz Intel Core i7 platform equipped with 16 GB of memory.

In addition to the three proposed neural and fuzzy neural models, the linear

(LSE), RBF and ARIMA predictors were adopted for benchmarking. LSE

did not have parameters to be set in advance, while for ARIMA, RBF and

ANFIS, we had adopted the default options provided by the software platform

for training and model regularization (ARIMA, RBF and ANFIS models were

trained by using the supported functions in the econometrics toolbox, neural

network toolbox and fuzzy logic toolbox of MATLAB, respectively). In the

following, the results of the third-order model are reported, as it was able to

obtain the best performance in almost all of the considered cases (as per ev-

idence previously presented). The input space classification was obtained by

a three-NN classifier. The optimal number of rules was determined by Equa-

tion (4.11), using λ = 0.5 and varying M from 1–50% of NT . The prediction

performances were measured by two metrics commonly adopted for energy

time series, NMSE and MARE, as cited in Sec.3.4. The numerical results

for each tested day are reported in Tables 4.4–4.15, where the performance

of the best model is marked in bold font. As per the following discussion,

being HONFIS the model that assures the best performance in most of the

situations, the graphical illustration of the actual time series (blue line) and

the one predicted by HONFIS (red line), over the four training conditions,

is reported in Figures 4.14–4.25, respectively. In the x-axis is reported the

cumulative index of samples of the considered day, starting from Index 1 for

the first sample of 1 January 2012 (which is a leap year) and considering 17

samples per day. The output current reported in the y-axis is a dimensionless

value between zero and one, as the whole dataset has been normalized before

the model processing. Some negative values may occur because of possible

numerical issues of a trained model when its performance is inadequate.

63

4.4 Applications

Table 4.4: Prediction results for 15 January.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.4690 0.4429 0.7591 0.3523 0.0921 0.1312 0.0457 0.0884

LSE test 0.8230 0.4394 0.5463 0.4347 0.1843 0.1547 0.1542 0.1544

ARIMA training 1.9929 0.8843 0.6605 0.9852 0.3968 0.2910 0.2232 0.7345

ARIMA test 1.8852 0.5194 0.4838 0.2691 0.5822 0.2010 0.2222 0.1597

RBF training 0.1137 0.1393 0.1847 0.2901 0.0512 0.0687 0.0675 0.0801

RBF test 1.3472 0.2739 0.2959 0.4399 0.9586 0.1146 0.1134 0.1461

ANFIS training 0.0745 0.0005 0.2698 0.3383 0.0522 0.0040 0.0888 0.0910

ANFIS test 2.2393 0.0004 0.4415 0.5227 0.3895 0.0046 0.1597 0.1723

HONFIS (3rd ord.) training 0.0137 0.0005 0.0032 0.0650 0.0181 0.0027 0.0040 0.0174

HONFIS (3rd ord.) test 1.4820 0.0008 0.0009 0.0511 0.2373 0.0041 0.0044 0.0212

Table 4.5: Prediction results for 15 February.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.0978 0.2167 0.3480 0.2631 0.0906 0.1123 0.1355 0.1213

LSE test 0.4072 0.3690 0.3653 0.3786 0.1681 0.1411 0.1426 0.1527

ARIMA training 0.3354 0.7523 1.0269 1.2555 0.5194 0.2254 0.1786 0.1139

ARIMA test 0.4480 0.6653 1.4407 0.5348 0.2117 0.2257 0.3612 0.2266

RBF training 0.0060 0.0147 0.1239 0.1479 0.0253 0.0285 0.0784 0.0768

RBF test 0.3212 0.0056 0.0860 0.2660 0.1508 0.0219 0.0797 0.1129

ANFIS training 0.0001 0.0067 0.0894 0.0156 0.0003 0.0097 0.0581 0.0786

ANFIS test 0.5220 0.0071 0.0295 0.2602 0.1480 0.0113 0.0472 0.1147

HONFIS (3rd ord.) training 0.0081 0.0081 0.0067 0.0269 0.0002 0.0134 0.0065 0.0157

HONFIS (3rd ord.) test 0.7961 0.0052 0.0068 0.1235 0.1733 0.0094 0.0106 0.0644

It is important to remark that the number of samples that should be

predicted in a test set is strictly related to the computational cost of the

learning procedure, as well as to the desired horizon of predictability, for

which it is necessary to follow a given strategy for the energy management

and to broadcast the relevant information to the involved operators. For

instance, as the learning times of the previous models were in the order of

some minutes and the considered time series are subsampled at 1 h, any

model could be re-trained on a hourly basis, including a new sample to the

training set and using using a test set with one sample only. This will thus

incorporate the new information given by the the latest available sample that

was measured.

64

4.4 Applications

Table 4.6: Prediction results for 15 March.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.0399 0.0428 0.1248 0.2093 0.0663 0.0682 0.0946 0.1061
LSE test 0.0393 0.0388 0.0412 0.0463 0.0657 0.0651 0.0673 0.0720

ARIMA training 0.6048 0.3498 2.3712 0.4085 0.2417 0.1752 0.0692 0.0688
ARIMA test 0.0091 0.0190 0.6537 0.5065 0.0292 0.0437 0.0426 0.0687

RBF training 0.0041 0.0002 0.0323 0.1225 0.0168 0.0037 0.0476 0.0715
RBF test 0.0063 0.0002 0.0153 0.0128 0.1508 0.0040 0.0355 0.0310

ANFIS training 0.0001 0.0005 0.0134 0.1268 0.0002 0.0011 0.0269 0.0720
ANFIS test 0.0021 0.0003 0.0086 0.0216 0.0120 0.0010 0.0208 0.0399

HONFIS (3rd ord.) training 0.0001 0.0001 0.0039 0.0012 0.0002 0.0012 0.0090 0.0035
HONFIS (3rd ord.) test 0.9437 0.0002 0.0062 0.0003 0.1985 0.0013 0.0129 0.0035

Table 4.7: Prediction results for 15 April.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.4307 0.4117 0.4059 0.2502 0.1193 0.1482 0.1322 0.1126
LSE test 0.4356 0.4205 0.4115 0.4252 0.1882 0.1851 0.1916 0.1981

ARIMA training 1.2368 3.8105 0.8170 0.6961 0.4845 0.3825 0.1961 0.2525
ARIMA test 1.2658 0.9881 0.2392 0.1691 0.3113 0.2767 0.1543 0.1216

RBF training 0.1533 0.1309 0.1145 0.1225 0.0900 0.0828 0.0647 0.0763
RBF test 1.2685 0.0754 0.1500 0.2697 0.2595 0.0720 0.1018 0.1506

ANFIS training 0.0002 0.0066 0.1469 0.1444 0.0184 0.0011 0.0803 0.0801
ANFIS test 2.3168 0.0036 0.2457 0.1991 0.0120 0.0171 0.1437 0.1252

HONFIS (3rd ord.) training 0.0025 0.0006 0.0039 0.0003 0.0096 0.0039 0.0068 0.0030
HONFIS (3rd ord.) test 1.6248 0.0004 0.0203 0.0003 0.3250 0.0037 0.0172 0.0016

Table 4.8: Prediction results for 15 May.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.7847 0.5205 0.3469 0.2998 0.1499 0.1671 0.1442 0.1290
LSE test 0.7678 0.5437 0.5586 0.5714 0.2479 0.1896 0.2006 0.2058

ARIMA training 6.9047 1.2811 0.4089 0.9808 0.5694 0.2333 0.1765 0.2757
ARIMA test 1.9263 1.5920 1.2429 0.3656 0.3716 0.3131 0.2694 0.2795

RBF training 0.2155 0.1940 0.1347 0.1404 0.0728 0.1066 0.0946 0.0854
RBF test 7.9004 0.1939 0.2250 0.2900 2.0610 0.1077 0.1327 0.1386

ANFIS training 0.0001 0.0080 0.0762 0.1718 0.0004 0.0098 0.0564 0.0972
ANFIS test 1.1388 0.0225 0.0957 0.3253 0.3458 0.0181 0.0605 0.1483

HONFIS (3rd ord.) training 0.0119 0.0218 0.0017 0.0005 0.0123 0.0041 0.0030 0.0027
HONFIS (3rd ord.) test 1.8555 0.0002 0.0003 0.0002 0.3427 0.0009 0.0016 0.0029

65

4.4 Applications

Table 4.9: Prediction results for 15 June.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.0108 0.0121 0.0096 0.0957 0.0363 0.0383 0.0318 0.0579
LSE test 0.0119 0.0118 0.0118 0.0137 0.0376 0.0375 0.0372 0.0361

ARIMA training 0.7354 1.3923 0.3083 0.3240 0.2934 0.3922 0.1314 0.1667
ARIMA test 0.8885 0.0115 0.0670 0.0205 0.3397 0.0327 0.0831 0.0473

RBF training 0.0003 0.0002 0.0002 0.0367 0.0054 0.0049 0.0046 0.0326
RBF test 0.0005 0.0002 0.0002 0.0075 0.0073 0.0049 0.0048 0.0266

ANFIS training 0.0001 0.0005 0.0003 0.0423 0.0005 0.0017 0.0053 0.0353
ANFIS test 0.0010 0.0006 0.0004 0.0118 0.0099 0.0019 0.0064 0.0303

HONFIS (3rd ord.) training 0.0001 0.0006 0.0001 0.0053 0.0001 0.0010 0.0022 0.0068
HONFIS (3rd ord.) test 0.1763 0.0004 0.0006 0.0004 0.0482 0.0008 0.0012 0.0045

Table 4.10: Prediction results for 15 July.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.0112 0.4319 0.1981 0.1226 0.0340 0.1576 0.0949 0.0700
LSE test 0.2471 0.3071 0.2432 0.2399 0.0905 0.1597 0.1117 0.0960

ARIMA training 1.0052 2.1191 0.2111 0.8671 0.5624 0.4436 0.1372 0.2310
ARIMA test 0.9954 0.1042 0.1541 0.1041 0.5820 0.0786 0.1170 0.0788

RBF training 0.0007 0.1733 0.0471 0.0538 0.0080 0.0848 0.0328 0.0438
RBF test 0.1519 0.1249 0.0698 0.0840 0.0909 0.0860 0.0452 0.0690

ANFIS training 0.0001 0.0004 0.0214 0.0707 0.0003 0.0315 0.0037 0.0501
ANFIS test 0.2438 0.0005 0.0397 0.0891 0.0002 0.0399 0.0054 0.0621

HONFIS (3rd ord.) training 0.0001 0.0008 0.0005 0.0023 0.0009 0.0053 0.0037 0.0044
HONFIS (3rd ord.) test 2.3358 0.0005 0.0011 0.0004 0.4013 0.0059 0.0054 0.0035

Table 4.11: Prediction results for 15 August.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.0295 0.0861 0.0406 0.1226 0.0517 0.0614 0.0442 0.0853
LSE test 0.1973 0.1941 0.1963 0.1927 0.0942 0.0868 0.0846 0.0984

ARIMA training 0.8843 0.2923 0.2207 0.2990 0.6698 0.1163 0.1179 0.1566
ARIMA test 0.9124 0.2968 0.1316 0.1081 0.7546 0.1786 0.1155 0.0747

RBF training 0.0020 0.0117 0.0071 0.0758 0.0143 0.0244 0.0122 0.0529
RBF test 0.1174 0.1249 0.0157 0.0841 0.0613 0.0297 0.0452 0.0614

ANFIS training 0.0001 0.0004 0.0214 0.0707 0.0003 0.0315 0.0037 0.0501
ANFIS test 0.2438 0.0005 0.0307 0.0891 0.0002 0.0399 0.0213 0.0621

HONFIS (3rd ord.) training 0.0001 0.0085 0.0075 0.0929 0.0147 0.0053 0.0102 0.0525
HONFIS (3rd ord.) test 0.0107 0.0005 0.0350 0.0701 0.0177 0.0059 0.0236 0.0448

66

4.4 Applications

Table 4.12: Prediction results for 15 September.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.7511 0.3141 0.2900 0.2971 0.1845 0.1280 0.1281 0.1192
LSE test 0.7526 0.7263 0.7265 0.7262 0.2181 0.2088 0.2099 0.2114

ARIMA training 1.3369 1.3875 0.9725 0.3571 0.4424 0.2483 0.2423 0.1741
ARIMA test 0.4237 0.6639 0.5273 0.3427 0.3354 0.2334 0.1888 0.1604

RBF training 0.2025 0.1243 0.1076 0.1840 0.1016 0.0855 0.0708 0.0883
RBF test 1.2412 0.2118 0.3201 0.3445 0.3014 0.1155 0.1379 0.1362

ANFIS training 0.0001 0.0001 0.0498 0.1953 0.0001 0.0001 0.0467 0.0903
ANFIS test 0.4766 0.0001 0.0633 0.4668 0.1738 0.0008 0.0529 0.1582

HONFIS (3rd ord.) training 0.0001 0.0001 0.0122 0.0032 0.0001 0.0010 0.0138 0.0050
HONFIS (3rd ord.) test 1.7032 0.0002 0.0068 0.0092 0.3168 0.0011 0.0136 0.0125

Table 4.13: Prediction results for 15 October.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.1889 0.1198 0.0924 0.2720 0.0947 0.0983 0.0942 0.1047
LSE test 0.2071 0.1901 0.1899 0.1986 0.1108 0.1180 0.1194 0.1121

ARIMA training 1.5475 1.0569 0.5870 0.6301 0.3616 0.2311 0.1772 0.1965
ARIMA test 0.8957 0.6734 1.3392 0.3758 0.2439 0.2097 0.3119 0.1545

RBF training 0.0182 0.0231 0.0057 0.1583 0.0291 0.0426 0.0184 0.0677
RBF test 0.5444 0.0333 0.0126 0.1006 0.1772 0.0491 0.0273 0.0862

ANFIS training 0.0002 0.0001 0.0048 0.1692 0.0002 0.0003 0.0160 0.0702
ANFIS test 1.0372 0.0003 0.0086 0.1574 0.2217 0.0004 0.0188 0.1019

HONFIS (3rd ord.) training 0.0029 0.0036 0.0010 0.0145 0.0077 0.0078 0.0048 0.0112
HONFIS (3rd ord.) test 1.6475 0.0065 0.0004 0.0008 0.3124 0.0132 0.0030 0.0036

Table 4.14: Prediction results for 15 November.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.8224 0.4429 0.7591 0.3523 0.1139 0.1312 0.0457 0.0884
LSE test 0.5896 0.4394 0.5463 0.4347 0.1575 0.1547 0.1542 0.1544

ARIMA training 1.0569 0.7870 0.6644 1.1759 0.2311 0.2698 0.1937 0.2855
ARIMA test 0.6734 0.9403 4.4649 0.9554 0.2097 0.2776 1.2247 0.2504

RBF training 0.0725 0.1662 0.4894 0.2160 0.0335 0.0868 0.0379 0.0638
RBF test 8.5147 0.1844 0.9832 3.1527 0.6348 0.0913 0.2168 0.3780

ANFIS training 0.0001 0.0247 0.0480 0.2363 0.0001 0.0323 0.0650 0.0687
ANFIS test 5.5850 0.0197 0.0599 2.6863 0.4980 0.0294 0.0688 0.3969

HONFIS (3rd ord.) training 0.0009 0.0566 0.1659 0.0911 0.0007 0.0219 0.0048 0.0279
HONFIS (3rd ord.) test 2.3314 0.0433 0.6480 0.3782 0.5552 0.0349 0.1045 0.1206

67

4.4 Applications

Table 4.15: Prediction results for 15 December.

Prediction Model
NMSE MARE

1-Day 3-Day 7-Day 30-Day 1-Day 3-Day 7-Day 30-Day

LSE training 0.6335 0.5107 0.5513 0.3814 0.1109 0.1110 0.0970 0.0984
LSE test 0.4326 0.3922 0.4051 0.4512 0.1436 0.1552 0.1526 0.1518

ARIMA training 1.0407 1.1536 1.9333 1.1766 0.3000 0.2067 0.2194 0.2016
ARIMA test 0.9998 0.8886 0.5563 0.4208 0.2272 0.2090 0.1557 0.1769

RBF training 0.0754 0.0379 0.0540 0.2106 0.0412 0.0481 0.0383 0.0665
RBF test 0.9442 0.0793 0.1061 0.1270 0.2207 0.0768 0.0627 0.0684

ANFIS training 0.0609 0.0043 0.0556 0.2272 0.0401 0.0064 0.0410 0.0719
ANFIS test 1.2890 0.0057 0.1005 0.1443 0.2599 0.0074 0.0639 0.0643

HONFIS (3rd ord.) training 0.0060 0.0039 0.0198 0.1012 0.0083 0.0069 0.0094 0.0316
HONFIS (3rd ord.) test 1.1232 0.0079 0.0544 0.1017 0.1951 0.0083 0.0298 0.0416

(a) Behavior for one-day training (b) Prediction behavior for three-day training

(c) Prediction behavior for seven-day training (d) Prediction behavior for 30-day training

Figure 4.14: Prediction using the best model (HONFIS) for 15 January.

68

4.4 Applications

(a) Behavior for one-day training (b) Behavior for three-day training

(c) Behavior for seven-day training (d) Behavior for 30-day training

Figure 4.15: Prediction using the best model (HONFIS) for 15 February.

(a) Behavior for one-day training (b) Behavior for three-day training

(c) Behavior for seven-day training (d) Behavior for 30-day training

Figure 4.16: Prediction using the best model (HONFIS) for 15 March.

69

4.4 Applications

(a) Behavior for one-day training (b) Behavior for three-day training

(c) Behavior for seven-day training (d) Behavior for 30-day training

Figure 4.17: Prediction using the best model (HONFIS) for 15 April.

(a) Behavior for one-day training (b) Behavior for three-day training

(c) Behavior for seven-day training (d) Behavior for 30-day training

Figure 4.18: Prediction using the best model (HONFIS) for 15 May.

70

4.4 Applications

(a) Behavior for one-day training (b) Behavior for three-day training

(c) Behavior for seven-day training (d) Behavior for 30-day training

Figure 4.19: Prediction using the best model (HONFIS) for 15 June.

(a) Behavior for one-day training (b) Behavior for three-day training

(c) Behavior for seven-day training (d) Behavior for 30-day training

Figure 4.20: Prediction using the best model (HONFIS) for 15 July.

71

4.4 Applications

(a) Behavior for one-day training (b) Behavior for three-day training

(c) Behavior for seven-day training (d) Behavior for 30-day training

Figure 4.21: Prediction using the best model (HONFIS) for 15 August.

(a) Behavior for one-day training (b) Behavior for three-day training

(c) Behavior for seven-day training (d) Behavior for 30-day training

Figure 4.22: Prediction using the best model (HONFIS) for 15 September.

72

4.4 Applications

(a) Behavior for one-day training (b) Behavior for three-day training

(c) Behavior for seven-day training (d) Behavior for 30-day training

Figure 4.23: Prediction using the best model (HONFIS) for 15 October.

(a) Behavior for one-day training (b) Behavior for three-day training

(c) Behavior for seven-day training (d) Behavior for 30-day training

Figure 4.24: Prediction using the best model (HONFIS) for 15 November.

73

4.4 Applications

(a) Behavior for one-day training (b) Prediction behavior for three-
day training

(c) Prediction behavior for seven-
day training

(d) Prediction behavior for 30-day
training

Figure 4.25: Prediction using the best model (HONFIS) for 15 December.

Table 4.16: Prediction results from 15–21 January.

Prediction Model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.6304 0.6464 0.0720 0.0739

ARIMA test 1.2130 1.2252 0.1192 0.0957

RBF test 5.9196 0.5863 0.1500 0.0734

ANFIS test 1.0452 0.5863 0.1239 0.0800

HONFIS (3rd ord.) test 3.4869 0.2296 0.1651 0.0185

74

4.4 Applications

Table 4.17: Prediction results from 15–21 February.

Prediction Model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.2490 0.2390 0.1242 0.1239

ARIMA test 1.4324 1.0998 0.3048 0.2697

RBF test 1.4771 0.1224 0.2359 0.0758

ANFIS test 0.6664 0.1281 0.1895 0.0755

HONFIS (3rd ord.) test 1.0124 0.0197 0.2236 0.0147

However, in order to ensure a wide range of action, it is worth forecasting

more than one sample at a time, as previously done considering an entire day.

Although longer test sets might not be so useful and accurate, we consider

in the following also weekly test sets, so as to report the prediction results

for more days in a year and to evaluate the sensitivity of the proposed ap-

proach not only to different training, but also to different test conditions. The

numerical results for each tested week are reported in Tables 4.16–4.27. In

such a case, we have considered seven-day or 30-day training sets only, that

is longer than the test set or of the same length. As the starting day in the

test set is still the 15th of each month, the training results are the same as

the ones reported in Tables 4.4–4.15, respectively.

Table 4.18: Prediction results from 15–21 March.

Prediction Model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.1402 0.1414 0.0998 0.1007

ARIMA test 0.4567 0.2935 0.1934 0.1669

RBF test 0.2806 0.0801 0.1298 0.0657

ANFIS test 0.2732 0.0945 0.1091 0.0667

HONFIS (3rd ord.) test 3.4978 0.0008 0.3570 0.0039

75

4.4 Applications

Table 4.19: Prediction results from 15–21 April.

Prediction Model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.4062 0.4418 0.1493 0.1627

ARIMA test 0.7751 0.6039 0.2667 0.2392

RBF test 1.1634 0.1780 0.1938 0.1004

ANFIS test 0.2311 0.1044 0.3102 0.1223

HONFIS (3rd ord.) test 1.8455 0.0004 0.3343 0.0019

Table 4.20: Prediction results from 15–21 May.

Prediction Model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.4062 0.3882 0.1493 0.1299

ARIMA test 0.6885 0.4344 0.2492 0.1996

RBF test 4.4347 0.1571 0.1298 0.0773

ANFIS test 0.2962 0.1044 0.1109 0.0778

HONFIS (3rd ord.) test 1.8219 0.0003 0.3592 0.0033

Table 4.21: Prediction results from 15–21 June.

Prediction Model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.2334 0.2295 0.1031 0.0981

ARIMA test 0.3503 0.3825 0.1124 0.1502

RBF test 0.9345 0.1238 0.2062 0.0688

ANFIS test 0.5972 0.1655 0.1650 0.0818

HONFIS (3rd ord.) test 0.9560 0.01213 0.1935 0.0108

76

4.4 Applications

Table 4.22: Prediction results from 15–21 July.

Prediction Model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.1932 0.1886 0.0712 0.0725

ARIMA test 0.4167 0.4025 0.1918 0.1839

RBF test 9.8115 0.0695 0.4956 0.0400

ANFIS test 0.4592 0.0854 0.1229 0.045

HONFIS (3rd ord.) test 1.0701 0.0057 0.1905 0.0053

Table 4.23: Prediction results from 15–21 August.

Prediction Model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.1445 0.1408 0.0750 0.0815

ARIMA test 0.1283 0.1487 0.0620 0.0763

RBF test 6.2338 0.0521 1.2980 0.0473

ANFIS test 0.1523 0.0849 0.0691 0.0478

HONFIS (3rd ord.) test 0.9875 0.0045 0.1884 0.0065

Table 4.24: Prediction results from 15–21 September.

Prediction model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.1803 0.1806 0.1032 0.1023

ARIMA test 0.7250 0.3781 0.2216 0.1668

RBF test 0.4751 0.0898 0.1671 0.0670

ANFIS test 1.7361 0.1031 0.2823 0.0678

HONFIS (3rd ord.) test 1.8185 0.0017 0.3105 0.0048

77

4.4 Applications

Table 4.25: Prediction results from 15–21 October.

Prediction Model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.2266 0.2138 0.1169 0.1098

ARIMA test 0.8376 0.3808 0.2021 0.1626

RBF test 1.6818 0.0898 0.2237 0.0670

ANFIS test 1.0212 0.1225 0.1782 0.0650

HONFIS (3rd ord.) test 0.8892 0.0179 0.1884 0.0169

Table 4.26: Prediction results from 15–21 November.

Prediction Model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.4126 0.3083 0.1274 0.1166

ARIMA test 1.2414 1.3639 0.2193 0.2285

RBF test 2.6564 0.1509 0.2237 0.0686

ANFIS test 1.3567 0.1445 0.1766 0.1630

HONFIS (3rd ord.) test 1.6437 0.1159 0.2320 0.0347

Table 4.27: Prediction results from 15–21 December.

Prediction Model
NMSE MARE

7-Day 30-Day 7-Day 30-Day

LSE test 0.3800 0.3790 0.1347 0.1348

ARIMA test 1.3209 1.1432 0.2322 0.2059

RBF test 3.2432 0.2143 0.2649 0.0823

ANFIS test 0.4764 0.2168 0.1253 0.0886

HONFIS (3rd ord.) test 3.6065 0.0684 0.2519 0.0364

78

4.4 Applications

Regarding the experimental results reported above, it can be noted that

the numerical results in terms of either NMSE or MARE basically agree, and

they are coherent with the graphical behaviors, reported in the figures, be-

tween actual and predicted time series. Note that a perfect match is obtained

when the NMSE is smaller than about 5× 10−4.

In the days with the most stable meteorological conditions (i.e., 15 March

or 15 June), the prediction results for daily test sets are better than the

others. Furthermore, there are differences among the results associated with

diverse training procedures. The tests with one-day training sets have a high

variability for all of the algorithms because the prediction is highly affected

by the difference in irradiation between the day of the training and the day

of the test. In fact, when the meteorological condition varies greatly from the

training day to the sequent test day, the algorithms are trained on a set that

is almost not correlated with the test set. It can also be noted that when the

irradiation is very similar (no clouds, good weather), the performance is very

good also for the one-day training set.

A similar discussion can be made, with smaller variability, for the three-

day training sets. It has to be noted that we have inserted the one-day

and three-day training sets mainly to show the sensitivity of the models to

different training conditions. The results for seven-day training sets are much

more stable for all of the algorithms and the days. The results for 30-day

training sets are stable as well, but the sequences are much longer; thus, if

the days are variable in terms of meteorological conditions, the model has a

worse performance because the training process is more difficult. Training sets

longer than 30 days were also considered in some preliminary tests, and the

results confirm such a trend for which the performance decreases progressively

as much as the length of the training set increases.

4.4.3 Ponza Island Case Study

Increasing the use of renewable energy sources (RESs) for power generation

is at the heart of European energy policy [109]. Achieve a large scale pen-

etration of RESs into the conventional electrical power systems [110, 111] is

still challenging for several reasons: on the one hand we observe high costs

for installation, operation and maintenance in comparison to conventional

sources [112]; on the other hand, RESs are characterized by a high inter-

mittent power production [113]. Consequently, storage capacity is usually

79

4.4 Applications

necessary to make RESs dispatchable [25], combined with accurate forecast-

ing techniques to predict demand and generation profiles [114].

In this scenario, the integration of RESs is much more challenging in the

power systems of small islands that, being not connected to the national

grid and controlled by one stakeholder only, lack the necessary flexibility in

demand, generation, transmission, and pricing. It is consequently difficult to

support modern mechanisms of price responsive demand [115], to encourage

consumers’ participation to the electricity market and foster elasticity in the

load demand.

In the work presented in this section, the goal is to apply innovative fore-

casting techniques [55, 71] to predict both renewable energy (RE) produc-

tion and load energy demand in the small Italian island of Ponza, in order

to optimize the management of a centralized battery energy storage system

(BESS) [116] necessary to maximize the penetration of RESs into the ex-

isting medium voltage grid. The prediction itself is carried on using neural

networks, specifically the Echo State Network (ESN) paradigm. The stud-

ied scenario is the one considered by the Decree of the Italian Ministry of

Economic Development adopted on February 14th, 2017 which prescribes the

implementation of 2.16 MW RESs by 2030.

Broadly speaking, regarding the problem statement, electrification in

small islands without connection to the national transmission grid is one of the

most challenging issues. The electric power generation is usually carried out

by autonomous diesel-fueled power stations whose operation brings a number

of environmental and economic drawbacks [117]. Ponza island does not make

an exception: the annual energy consumption – which ranges around 11.8

GWh with a power annual peak of 4.4 MW measured during summer months

– is today supplied at 98.7% by six diesel generators (DGs), whose nominal

rated power ranges from 1020 kW to 1600 kW. In order to ensure stability

for both N and N − 1 conditions and keep generators in a safety range, the

generators are properly managed by the local electric operator who ensures

always a minimum power reserve equal to the load power consumption by

taking online at least two parallel DGs. Consequently, since the generators

work at low efficiency with a low loading rate, the annual consumption of

diesel equals 3.2 millions of liters with an overall average efficiency of the

generators around 35%.

Being located in area with an abundance of wind, sunshine and water,

and being relatively small, Ponza island has geographically ideal conditions

80

4.4 Applications

for almost all forms of RESs. In a stand-alone micro grid, the highest priority

is to keep a reliable power supply to customers, trying meanwhile to minimize

operation costs by using totally wind and solar generation. The scenario

studied in this application and prescribed for 2030 by the Decree of the Italian

Ministry of Economic Development adopted on February 14th, 2017, considers

the integration of 2.16 MW RESs, which are split into 1.16 MW photovoltaic

power plants, 0.9 MW wind plants, and 0.1 MW Organic Rankine Cycle

(ORC). In this scenario, DGs, due to their reliable power supply capability,

remain in order to control the system voltage and frequency and to balance the

power generation and consumption (primary, secondary and tertiary control).

In addition, the installation of a centralized BESS is planned, with rated

power equal to 2.7 MW and energy storage capacity equal to 1.35 MWh (a

rate of 2C is supposed) in order to provide power support, spinning reserve,

peak-shaving, and regularize intermittent RE outputs.

In this framework, forecasting techniques that are able to predict demand

and generation profiles over the next week become a paramount factor for im-

plementing an effective control strategy of the DGs and BESS, while ensuring

a safe and conservative energy management for the stand-alone microgrid.

The control strategy can be summarized as follows.

1. Diesel generation PDG is always maintained between a minimum Pmin
DG

and a maximum Pmax
DG value to avoid light-load conditions and provide

reserve capacity margin.

2. The BESS provides mainly spinning reserve to ensure stability under

N−1 conditions, thus allowing to take online a single DG when possible

and generally increase the load rate of the DGs. Consequently the

State of Charge (SOC) level is never lowered under a proper minimum

threshold SOCmin that ensures the energy reserve necessary to supply

the load for the time necessary to turn on a DG under fault conditions.

Assuming the worst case of the shedding of one of the largest 1600 kW

DG, which requires around 10 minutes to start and take the load, the

minimum energy Emin
BESS always required in the BESS is 267 kW, rounded

to 500 kW to avoid deep discharges.

3. The BESS provides smoothing of short-time RE output fluctuations

since the power regulation capability of DGs is limited by ramp con-

straint. This should require a short time scale forecasting. Anyway, it

81

4.4 Applications

is not necessary in the present case since energy storage is large enough

to handle any practical expected fluctuation (even the shedding of all

the RESs when the BESS is completely full).

4. The forecasting is performed up to three days ahead with one hour time

step on the load PLOAD and RES generation PRES profiles. Due to the

equipment rated powers of the present study and being Ponza a summer

holiday destination, we observe that the generated PRES can be larger

than PLOAD only in the central hours of the day during spring and fall

months when the PV production is high.

5. In order to reduce the number of cycles of the BESS, and extend its life-

time, we avoid deep charging and discharging frequently; consequently,

when PLOAD > PRES, the BESS is discharged (remaining always above

SOCmin level) only when it is necessary to free the necessary capacity

to store the predicted surplus of production over the three days ahead

that reveled to be a suitable long period in the present case study. The

discharge is preferably performed at the load peaks where it is easier

to reduce DGs outputs remaining always above the Pmin
DG . In this man-

ner, we try to ensure that when PRES > PLOAD the BESS is always

able to store the surplus production without the need to dump the RE

output, since there is no possibility to manage the demand side energy

consumption in our scenario. The SOC level of the BESS is allowed to

range between a lower SOClow > SOCmin and an upper SOCup < 100%

level in order to provide reserve capacity for forecasting errors.

For the described purpose, the ESN model is used as detailed in Sect.

4.2.5. In the following, we propose a generalized approach for which, at the

generic time n, the input to the ESN reservoir can be any combination of

past available samples, which are used to predict the next one S[n + m]. As

the relation between predicted and past samples usually is not given, in a

prediction problem it is important to study which samples of the sequence

are relevant to the prediction task. The naive approach described in (4.14)

resides in assuming that all the past samples of the sequence to be predicted

are equally important, without finding an optimal subset. However, a more

fruitful approach consists in selecting the samples via embedding of the se-

quence [55]. The sequence generated by a complex, often chaotic and noisy

system like the PV under exam can be observed by its output only. So, in

order to reconstruct the evolution of the system, the original sequence S[n]

82

4.4 Applications

Figure 4.26: Actual (blue) and predicted (red) load for the test samples.

must be embedded. This is done by determining two parameters [56]: the

embedding dimension D and the time lag T , in such a way the reconstructed

state at time n can be found as:

S[n] =
[
S[n] S[n− T] . . . S[n− T (D − 1)]

]T
. (4.30)

Looking at (4.14), it is evident that the ESN input is an estimate of the

unfolded, reconstructed state of the unknown system that generates the ob-

served time series, having assumed T = 1 and D = Ni. These parameters

can be estimated by using suited techniques, in the following we will adopt a

rule-of-thumb evaluation based on the processed time series, as in [118].

We carried out several experiments for assessing the proposed approach.

In the following, we introduce the results of a representative case study, which

is relative to days in the middle of May 2016. In the operation phase, a new

prediction is computed every 3 days by using the previous 30 days for training

the ESN, in order to use the predicted information for efficiently managing

the BESS. All the time series are sampled at a rate of one sample per hour

and hence, the training set is made of 24 · 30 = 720 samples, while the test

set is made of 24 · 3 = 72 samples. As we have to predict three days at once,

the prediction distance is set to m = 72.

Firstly, we illustrate the prediction of the load in Fig. 4.26 and the one

of solar production in Fig. 4.27. Both of them have high variability but the

83

4.4 Applications

Figure 4.27: Actual (blue) and predicted (red) solar production for the test
samples.

Figure 4.28: Estimated load (blue) and predicted solar production (red) for
the test.

ESN is capable of giving a robust prediction using the embedded time series,

with T = 1 and D = 7 for the load and to T = 1 and D = 17 for the solar

production. We outline that it is necessary to use a very high prediction

distance, which is usually set to one in other applications. Thus, the results

84

4.4 Applications

Figure 4.29: Estimated load power surplus.

are even more valuable in the present case.

At every iteration, the algorithm computes the difference between the

predicted solar generation and the estimated load, which are shown together

in Fig. 4.28. Defining the surplus as the positive values of the difference

between the predicted solar generation and estimated load, we can see that

in the first day of prediction there is a surplus of energy, as illustrated in

Fig. 4.29. This information is useful for the BESS, which has to present itself

at that day with the right SOC to receive the surplus. The surplus itself is

indeed managed by looking at the successive prediction days, in which there

will be no sufficient generation.

We also report in Fig. 4.30 the surplus computation for the actual load

and real solar production for the same three days, which does not differs sig-

nificantly, being smaller than the predicted one. This is a desirable property

as, conversely, if the actual surplus were greater than the predicted one it

would result in an unmanageable excess of power in the grid. Comments

similar to the present ones can be drawn from any other time period and the

related prediction of surplus.

4.4.4 Distributed prediction

As already introduced, the forecasting of power output is particularly crucial

for producers, grid operators and market players when dealing with renewable

85

4.4 Applications

Figure 4.30: Real load power surplus.

energy sources (RES) whose expected power production is inherently inter-

mittent, as is the case with photovoltaic (PV) [119,120] and wind power [121]

sources.

In the past few years, a huge amount of literature has been published about

power forecasting models related to PV plants [26, 31, 32], focused either on

the prediction of the primary source (i.e., irradiance or irradiation) [87, 122]

or on the produced output power [29, 123]. The existing solutions can be

classified into four major categories, namely, long, medium, short and very

short term forecast, and, despite the time horizon’s scale, all the proposed

solutions share similar techniques that can be divided in physical, statistical,

artificial intelligence (AI) and hybrid methods.

Concerning physical models, in [124], three electrical models were com-

pared in terms of energy production in six different days determining the

cell temperature through two thermal models and calibrating the I–V curve

on manufacturer and measured data. In general, these methods require a de-

tailed set of information for their calibration that is not always easily available.

In [125], physical models were compared to hybrid methods based on artificial

neural networks combined with clear sky solar radiation data, showing that

hybrid models trained on datasets from 10 to 50 days provide comparable

results.

Regarding statistical approaches, research activities mainly aims at im-

86

4.4 Applications

proving the accuracy of classical regressive (e.g., ARMA, ARIMA, ARMAX,

ARIMAX [35, 126]) methods that generally result in a poor accuracy when

used for forecasting. Recently, ARMAX models have been applied in [127]

showing improved performance. In [128], authors proposed a multiple time-

scale data-driven forecasting model for solar irradiance, which is based on a

spatio-temporal (ST) and autoregressive with exogenous input (ARX) pre-

diction. It is interesting to observe that the model leverages both spatial and

temporal correlations among neighboring solar sites.

AI methods relies on Artificial Neural Networks (ANN) [129], fuzzy pre-

dictors [114], evolutionary algorithms [76], and other general machine learning

models as Support Vector Machines (SVM) [130]. Comprehensive reviews on

the matter are available in literature [131, 132]. In [133], several ANN and

Deep Neural Networks (DNN) architectures are investigated and powerful

Deep Learning algorithms are introduced in the field of solar power forecast.

In [134], a non-parametric machine learning approach based on the Gradient

Boosted Regression Tree (GBRT) model is used for multi-site prediction of

solar power generation on a very short time horizon ranging from one to six

hours. The multi-site framework is adopted to improve the predictions for a

given PV plant that will be based on historical data from other PV plants

with similar patterns.

Finally, hybrid models are a combination of the previous three approaches

[26,31,32]. Recently, the Physical Hybrid Artificial Neural Network (PHANN)

[125] has been applied using several datasets and training methods and show-

ing an improved accuracy with respect to classical AI approaches.

The main feature of the majority of the approaches available in literature

is their centralized nature [135]. Prediction of PV plants production is usu-

ally limited to single plants: local data are processed in a centralized way by

a single agent and the prediction is relative to the single plant production.

Even when more enhanced algorithms [136–138] are used, resorting as input

variables not only to the past values of the produced power but also to several

others parameters such as ambient and/or module temperature, solar irradi-

ation, weather classification, the algorithms work always on local data that

refer only to the site where the PV plant is installed. In addition, these algo-

rithms usually need complex instrumentation or public/private data sources

that are not always available and that limit their applicability. The central-

ized solution is not feasible in various contexts. For example, in very large

plants, different areas of the plant (with different control units) could have

87

4.4 Applications

different production, given different conditions (e.g., irradiation, weather dif-

ferences, faults). Another example is a group of plants operated by a single

management and located in different positions in the same region: not every

plant will have the same production and data could be not consistent from

one another.

Only very recently, more advanced forecasting models have been proposed

using data related to multiple plants [128,134,139,140]. These methods try to

leverage the spatio-temporal autocorrelation that characterizes different geo-

physical data, such as weather conditions, to make more accurate predictions.

In [139], particular attention is devoted to the correct choice of spatial and

temporal statistics for building up an optimum cross-regressive model between

PV plants and, in [140], vector autoregression (VAR) and gradient boosting

(GB) frameworks are combined to share information among the distributed

PV plants and produce an optimal forecast.

In this framework, the idea of this work is to present a novel distributed

decentralized prediction technique for the forecasting of the PV power output

that relies on the easy share of historical data among different neighbour-

ing PV plants. The technique is mainly intended for asset owners that hold

a wide portfolio of PV systems that are usually geographically spread out

over large areas. Consequently, the underlying innovative idea is to keep the

algorithm manageable for the single agent, which processes only the gener-

ated power data that are always available also due to fiscal laws, and to use

more agents located in different plants that share only relevant information

to minimize communication among the plants. Our method requires only a

reliable communication channel that is always present nowadays (i.e., radio

communication, telephone line, internet broadband, wireless communication,

fiber optic, satellite communication) for operation and maintenance (O&M)

purposes.

In our innovative decentralized solution, information from different agents

(i.e., different plants or different control units in large plants) is shared be-

tween the agents themselves through a connectivity matrix that reflects the

capabilities of the real network infrastructure with a prescribed connectivity

level; distributed information is used to strengthen the prediction accord-

ingly [141]. Atop of that, since this kind of data tends to be very large, in

many occasions is too onerous to move all data from different agents (or col-

lection sites) to a single processing unit. In this context, our novel distributed

approach is a suitable solution for the PV ouput prediction problem in large

88

4.4 Applications

environments.

Therefore, in the present section we propose the following original contri-

butions:

� We use Echo State Networks (ESNs) for data prediction, which are a

class of recurrent neural networks where the central layer is generated

in a stochastic fashion but with recurrent connections [53].

� The distributed learning algorithm is based on the Alternating Direc-

tion Method of Multiplier (ADMM) optimization procedure [142]. The

agents in the prediction network can exchange only information about

the data (or its representative) with their neighbors.

� The local agents interact without the need of a coordinator, using the

Distributed Average Consensus protocol (DAC) [143].

To show the suitability and asses the performance of the proposed ap-

proach, we apply the distributed algorithm to the grid delivered active power

data of five different plants located in the Abruzzo region, Italy. The produc-

tion will be predicted by using different training and consensus conditions and

by varying the time horizon from one day to an entire week. Performances are

compared with respect to the ones obtained by the centralized version of the

ESN algorithm and with the standard local prediction made independently

in each plant.

Regarding the theoretic formulation, we present now the elemental theory

of the distributed ESN prediction is presented. The DAC and ADMM tech-

niques are explained, and the proposed distributed ESN model is introduced.

In 4.2.5, a detailed description of the ESN is already given, and thus it

is not repeated in this section. Instead, in the following, we will extend this

approach in such a way that, at the generic time n, the input to the ESN

reservoir can be a generalized combination of available past samples that

are used to predict the future ones. By the way, the good performances of

ESN compared to other benchmarking prediction models on forecasting time

series related to the management of energy sources have been recently proved

in [144].

For learning applications, it is fundamental for the reservoir to satisfy the

‘echo state property’ (ESP) [145]. In other words, given an input, its effect on

the reservoir state must disappear in a finite number of time steps. Usually,

89

4.4 Applications

by rule of thumb, the matrix W r
r is rescaled, resulting in ρ(W r

r) < 1, where

ρ(·) denotes the spectral radius operator.

In the general learning problem, the ESN is trained by feeding the reser-

voir a sequence of Q desired input-outputs pairs (x[1], d[1]), . . . , (x[Q], d[Q]).

The states are then ‘gathered’ as a sequence h[1], . . . ,h[Q]. In this phase,

the desired output is used for feedback because the ESN output is not yet

available. Defining the hidden matrix H and output vector d as:

H =

xT [1] hT [1]

...

xT [1] hT [Q]

 (4.31)

d =

f−1out(d[1])

...

f−1out(d[Q])

 (4.32)

The output vector is obtained by solving the regularized least-squares prob-

lem, resulting in the following formulation for the weight vector:

w∗ = arg min
w∈RNi+Nr

1

2
||Hw − d||22 +

λ

2
||w||22 , (4.33)

where w = [W o
i W

o
r]T and λ ∈ R+ is called the regularization factor. A close

form solution of problem in (4.33) can be obtained as:

w∗ =
(
HTH + λI

)−1
HTd . (4.34)

Given their transient state, in practice it is possible to remove the initial

elements from the sequence with which the least-squares problem is solved.

The number of these ‘dropout’ elements is fixed a priori, as discussed in the

following.

To be able to implement the ESN in a distributed way, it is necessary to

introduce two techniques that can be used for the distribution of information

between agents. The problem here is twofold: the agents in the network must

exchange information of some sort, sharing it with the connected nodes via a

regulated process, and they must reach a global optimum.

If we consider a network of a number L of agents, we can characterize it by

means of a connectivity matrixC which describes the fixed a priori connection

between the agents. It is a square matrix of dimension L and each element

90

4.4 Applications

Cij 6= 0 if and only if the two nodes i and j are connected. In this work, the

network is supposed to be connected and undirected. Also, we assume that

every node has a measurement vector denoted by θk[0], k = 1 . . . L.

To address the regulation of information between agents, the DAC network

protocol is introduced. It relies solely on local communication between the

agents and it is used to calculate the global average based only on the local

measures [146–148]. The local update of the protocol, for the iteration n, is:

θk[n] =
L∑
j=1

Ckjθj[n− 1] . (4.35)

The whole process is reduced to the global average when the single elements

of the C matrix are correctly selected:

lim
n→+∞

θk[n] =
1

L

L∑
k=1

θk[0], ∀k ∈ {1, 2, . . . , L} . (4.36)

The DAC can be halted either when a threshold is reached for the δ or when

the maximum number of iterations is completed. For the convergence, the

‘max-degree’ weights [148] can be chosen:

Ckj =

1
d+1

if k is connected to j

1− dk
d+1

if k = j

0 otherwise

, (4.37)

where dk is the degree of node k, and d is the maximum degree of the network.

To ensure the reaching of an optimum for all the agents, the ADMM is

brought in. It is a procedure used for optimization problems which can be

posed as [149]:

minimize
s∈Rd,z∈Rl

f(s) + g(z)

subject to As+Bz + c = 0,
(4.38)

where A ∈ Rp×d, B ∈ Rp×l and c ∈ Rp. To solve it, we can rely on the

91

4.4 Applications

augmented Lagrangian given by:

Lρ(s, z, t) = f(x) + g(z) + tT (As+Bz + c) +

+
ρ

2
‖As+Bz + c‖2 , (4.39)

where t ∈ Rp is the vector of Lagrange multipliers, ρ is a scalar, and the last

term is added to ensure differentiability and convergence [149]. The solution

of the problem in (4.38) can be achieved by iterating these steps:

s[n+ 1] = arg min
s
{Lρ(s, z[n], t[n])} (4.40)

z[n+ 1] = arg min
z
{Lρ(s[n+ 1], z, t[n])} (4.41)

t[n+ 1] = t[n] + ρ (As[n+ 1] +Bz[n+ 1] + c) (4.42)

Results on the convergence of ADMM are in [149, Sect. 3.2]. It is common

practice to stop ADMM after a maximum number of iterations, or when the

two residuals are found under given thresholds.

Now, we describe the proper distributed algorithm for the ESN. In general

terms, where a pure decentralized algorithm is necessary, we suppose to work

with a dataset S which is distributed among the agents of the network. As

said earlier, we are working here with multiple sets of data, all pertaining to

time series of the same physical quantity taken at different sites. Each plant

is considered as a single agent of the network. We suppose that every agent

sets the choice of the matrices W r
i , W r

r and W r
o .

Let Hk and dk be the hidden matrices and output vectors, which are

computed at the kth node according to (4.31)-(4.32) with its local dataset.

In this case, extending the result in (4.33), the global optimization problem

can be stated as:

w∗ = arg min
w∈RNi+Nr

1

2

(
L∑
k=1

‖Hkw − dk‖2
)

+
λ

2
‖w‖2 . (4.43)

In our case, the reservoir resulting from the solution of the distributed least-

squares problem is large in size. Thus, the communication of the matrices

HT
kHk is impractical and a probable network bottleneck. The problem can be

reformulated and then solved with the efficient use of the ADMM, introducing

local variables wk for every agent and forcing them to converge to the same

value:

92

4.4 Applications

minimize
z,w1,...,wL∈RNi+Nr

1

2

(
L∑
k=1

‖Hkwk − dk‖2
)

+
λ

2
‖z‖2 (4.44)

subject to wk = z, k = 1 . . . L . (4.45)

The augmented Lagrangian of problem in (4.45) is given by:

Lρ(·) =
1

2

(
L∑
k=1

‖Hkwk − dk‖2
)

+
λ

2
‖z‖2 +

+
L∑
k=1

tTk (wk − z) +
γ

2

L∑
k=1

‖wk − z‖2 , (4.46)

The updates for wk[n+ 1] and z[n+ 1] can be computed in closed form as:

wk[n+ 1] =
(
HT

kHk + γI
)−1 (

HT
k dk − tk[n] + γz[n]

)
, (4.47)

z[n+ 1] =
γŵ + t̂

λ/L+ γ
, (4.48)

where we introduced the averages ŵ = 1
L

∑L
k=1wk[n + 1] and t̂ =

1
L

∑L
k=1 tk[n]. These averages can be computed in a decentralized fashion

using a DAC step. The formula in (4.42) instead simplifies to:

tk[n+ 1] = tk[n] + γ (wk[n+ 1]− z[n+ 1]) . (4.49)

Equations (4.47) and (4.49) can be computed locally at every node, leading

to a purely distributed implementation of the general algorithm. In this

framework the communication is carried on solely with the use of the DAC

protocol.

Hence, the overall algorithm can be implemented in a purely decentralized

fashion, where communication is restricted to the use of the DAC protocol. In

cases where, on a node, the number of training samples is lower than Nr+Ni,

we can exploit the matrix inversion lemma to obtain a more convenient matrix

inversion step [150]:

(
HT

kHk + γI
)−1

= γ−1
[
I −HT

k

(
γI +HkH

T
k

)
Hk

]
. (4.50)

The pseudocode of the proposed algorithm described so far, for training a

93

4.4 Applications

distributed ESN with DAC and ADMM procedures, is reported in Algorithm

1, with the details on all the implementation steps.

Algorithm 1 Pseudocode of the Distributed ESN Algorithm with DAC and
ADMM Procedures

Input Given a network of L agents and a training set of L different time
series with length N . Given numerical parameters of the algorithm (λ, γ, ρ,
etc.) and the maximum number of iterations Niter.

Initialize tk[0] and z[0].

Initialize local ESN for each node as in (4.31)-(4.34).

Compute the inverted matrix
(
HT

kHk + γI
)−1

using (4.50) when necessary.

for n = 1 to Niter do

Update Compute current weights wk for every node using (4.47).

Consensus step. Run the DAC protocol as in (4.35)-(4.37) and compute
the averages ŵ and t̂.

Update. Compute current z using (4.48).

Update. Compute current new state tk for every node using (4.49).

Compute the ADMM residuals and stop if any convergence criterion is
satisfied.

Return as the final readout parameters on each node the latest estimation
of ŵ.

The proposed cooperative prediction approach will be applied to five PV

plants of equal rated nominal power of 998.20 kWp. All of them are located

in the Italian region named ‘Abruzzo’, in the center of Italy, on the east

coast. The geographic position of the PV plants is shown in Fig. 4.31 while

the geographic coordinates are reported in Table 4.28. The PV plants are

located along a line that extends from North (‘Arielli’) to South (‘Dogliola’)

for around 50 km and they are approximately equidistant from each other.

Each time series is the output power from one of the five solar plants in

the year 2015, with a sample interval of 15 minutes (quarter-hour production

curves). Before applying the learning procedures, the samples of time series

are normalized by using a linear mapping in the range between -1 and 1 for

regularization purpose, assuming as extremes for normalization the physical

operation of plants; i.e., -1 will correspond to 0 kW and +1 to 1000 kW.

We used a training set of 30 consecutive days for every test; the training

set contains the known samples that are used to forecast the future ones. The

94

4.4 Applications

Figure 4.31: Aerophoto showing the locations of the five PV plants.

Table 4.28: List of PV Plants with Their Geographic Coordinates

PV Plant Name Latitude Longitude

Arielli 42◦16′22.69′′ N 14◦18′49.23′′ E

Sant’Eusanio del Sangro 42◦10′24.09′′ N 14◦18′59.16′′ E

Roccascalegna 42◦5′40.05′′ N 14◦18′9.84′′ E

Carpineto Sinello 42◦1′37.06′′ N 14◦28′13.19′′ E

Dogliola 41◦57′25.67′′ N 14◦38′47.71′′ E

latter are associated with test sets having three different lengths: 1-day, 3-

days, and 7-days after the last available sample of the training set. Actually,

finding the optimal size of training data is an open issue that is crucial in

time series forecasting. A theoretical trend would lead to extend the size as

much as possible in order to exploit all the available information. However,

in this case one has to deal with the increasing computational cost related to

95

4.4 Applications

very large training sets as well as with the non-stationarity and seasonality

of observed data, for which to limit the temporal extension in the past of the

used samples can improve the performances. It should be observed that, due

to the high memory capacity of data loggers of the modern PV monitoring

systems, there is practically no limit to the length of the training set that

can contain all the available registered data. Looking for a good trade-off

in this regard, we found the use of 30 days before the samples to be tested;

more investigations on this specific problem could be faced in future research

works.

In order to solve the problem of zero solar irradiation, we have considered

the geographical data for each plant computing the sunrise and sunset times

[151] and therefore the ESN is forced to zero output during the night period.

All of the experiments described in the following were carried out using

MATLAB R2017a on a machine equipped with an Intel® Core� i7-2600 64-bit

CPU at 3.40 GHZ and with 16 GB of RAM.

Adopted Algorithms

The tests are carried out considering a network of L = 5 agents, each corre-

sponding to a single plant. The data communication network among plants is

chosen randomly with a 0.75% degree of connectivity, reflecting the tentative

capabilities of the network infrastructure. The resulting graph, where each

plant is a node, is therefore connected but not complete. We compared three

different algorithms:

� Centralized ESN (C-ESN): this option simulates the case where all data

is gathered at a single location and the straightforward ESN prediction

is applied by solving (4.33). It should be observed that the C-ESN

has only a theoretical benchmark purpose, since it is unfeasible from

a practical point of view, requiring the transmission of all the data

collected in the peripheral PV sites to a central location.

� Local ESN (L-ESN): this is the case where data is indeed distributed

but there is no communication in the network, so every agent trains

a single ESN from its subset of data. This corresponds to predictions

made in each plant independently of each other.

� Distributed ESN (D-ESN): This is the actual distributed ESN described

in earlier. We set ρ = 0.001, a maximum number of 500 iterations, and

96

4.4 Applications

εabs = εrel = 10−4.

For the numerical evaluation of performances, we used the common Root-

Mean-Square error (RMSE) measure, which is defined as:

RMSE =

√
1

T

∑
n

(
y[n]− d[n]

)2
, (4.51)

where n spans over the T samples of the test set. The first 100 predicted

samples were dropped out as they contain transient effects related to the

dynamical recurrent ESN model.

ESNs are proved to be very robust to overfitting phenomena. However,

overfitting is possible for two main reasons: the size of reservoir Nr; the

LSE regularization factor λ. In this regard, a grid search procedure can be

adopted by using data in the training set only (i.e., known samples of the

time series only), so as to set in advance the best size of the reservoir and the

best regularization factor. We preliminary tested different sizes of the reser-

voir in the range Nr = {50, 100, 150, . . . , 500} and different values of λ = 2j,

j = {−10,−9, . . . ,−1, 0, 1, . . . , 9, 10}. There were some slight changes in the

results considering different data on different plants, however we adopted a

same choice for each and every plant and prediction test, in order to prove

that overfitting is prevented by using an objective and replicable criterion

that can be set in advance, without relying on specific skills or tricking for

each time series. The adopted values are Nr = 50, with reservoir matrices

randomly initialized, and λ = 2−9.

Each ADMM iterates a maximum number of 500 times as for the DAC

procedure, whose termination threshold was set to 10−6. Consequently, each

test was composed by 10 runs, each corresponding to a different random

initialization of the ESN weights and topology. Both average and standard

deviation of RMSE are reported accordingly.

As mentioned earlier, we can generalize the combination of past samples

that are chosen to feed the reservoir of the ESN. In order to cope with the

intrinsic periodicity of PV time series, we propose to rewrite the generic input

vector in (4.14) as:

x[n−Ni + 1] =
[
S[n] S[n− T] . . . S[n− T (D − 1)]

]T
. (4.52)

This approach is novel for ESN and relies on the assumption that not all of

the past samples of the time series carry information for predicting the future

97

4.4 Applications

ones. Since the relation between predicted and past samples is not given, we

can try to select the relevant samples by embedding the time series [55]. This

is done by choosing two parameters, the embedding dimension D and the

time lag T , in such a way the reconstructed state of the underlying unknown

system, observable only through its output S[n], can be estimated at time n

as in (4.52). At the present stage no attempt is done to catch the cyclicity

in the PV output data. Future research activities will focus on tailoring

appropriate detrending strategies to remove the non-stationary trend lying

in the PV output time series. Anyway, it has been demonstrated that ESN

usually performs better than other approaches even for non-stationary data.

Looking at (4.14), it is evident that the classical ESN input is an estimate

of the unfolded, reconstructed state of the unknown system that generates

the observed time series, having assumed T = 1 and D = Ni. In this more

general context, these parameters can be estimated in an optimal way by

using the Average Mutual Information (AMI) procedure for T and the False

Nearest Neighbors (FNN) procedure for D [56].

Although numerical experiments had been carried out extensively for sev-

eral periods of 2015, for the sake of illustration we report in the following a

case study that is representative of the general behavior obtained by using

the proposed approach. The tests are relative to six days of 2015, which were

chosen for showing a set of days with variable weather conditions.

The test set always starts in the mid of February, April, June, August,

October, and December 2015. It is composed by the 15th day of the month

and, possibly, by the successive 2 and 6 days after it thus resulting in the

1-day, 3-days, and 7-days test set, respectively. The prediction distance is set

accordingly, that is m = 4 · 24 = 96 for the 1-day test set, m = 4 · 24 · 3 = 288

for the 3-days test set, m = 4 · 24 · 7 = 672 for the 7-days test set.

The training set is always composed by the 30 days prior to the 15th day

of the considered month, plus further samples before due to the adjustments

for using a different prediction distance. The embedding algorithms AMI

and FNN applied to the samples of the training set, as previously discussed,

yielded coherent results. In fact, we obtained T = 4 and hence, the time series

is inherently subsampled, as a sample every 1 hour is enough to carry on the

sufficient information. Also, we obtained as optimal embedding dimension

D = 24, that is the ESN is fed by the inputs of one entire day. This result

seems to be coherent with the cyclicity of the observed time series, which is

basically due to the daily periodicity of sun irradiation that is caught by using

98

4.4 Applications

24 samples for an entire day.

The RMSE results for the three algorithms applied to the 1-day test set

are reported in Table 4.29. On each run, once the ESN has been trained by

using one of the considered algorithms, the network is used to forecast the

time series of the output power of each plant with a related error. The total

error over all of the plants in also computed and reported in this Table and in

the following ones. In the Table there are reported both mean and standard

deviation of the previous values over the 10 runs carried out after different

(random) weight initializations and network topologies.

The global performance of D-ESN is always better than the classical L-

ESN, with a gain in terms of reduced RMSE up to 4% in some days of the

year. It is important to outline that the performance of D-ESN on each

plant is sometimes equivalent to L-ESN but, most of the times, the proposed

distributed approach outperforms considerably the local one, with a reduced

RMSE up to 15% in some plants.

A visual examination of the three predictions can be done for a single

example related to Plant 3 in the month of December 2015, as reported in

Fig. 4.32, Fig. 4.33, and Fig. 4.34, respectively, conveying the same conclu-

sions.

The numerical results of the 3-days test set are reported in Table 4.30

and they confirm the previous behavior, with D-ESN that performs better

than L-ESN and it achieves RMSE values that are comparable with the ones

obtained by the centralized approach. This is also confirmed by analyzing the

plots in Fig. 4.35, Fig. 4.36, and Fig. 4.37, which are still related to Plant 3

in the month of December 2015.

Very similar results are obtained accordingly also for the 7-days test set,

considering the numerical performances on Table 4.31 and the graphical re-

sults in Fig. 4.38, Fig. 4.39, and Fig. 4.40 for Plant 3 in December 2015. We

note that the performance on each plant, as well as the global one, remains

stable although the prediction horizon has been increased to 7 days, that is

for much more samples than in the previous tests.

In the light of these results, it is worthy to observe that the proposed

technique gives the best results for any range from 1 to 7 days ahead, so

as to become a valuable tool for companies that trade energy, especially in

the day-ahead market. From a practical point of view, the proposed D-ESN

can achieve a better prediction accuracy, with an RMSE around 4% and up

to 15% lower than L-ESN and even comparable with C-ESN, stating that

99

4.4 Applications

Figure 4.32: Predicted (red) and real (blue) value of the time series at Plant
3 in the mid of December 2015, by using C-ESN and 1-day test set.

the proposed approach produces very good forecasts in the long-term. It

is important to remark that all the previous results are obtained by using a

very high prediction step m, which is unusual in other forecasting applications

but necessary in this case, a fact that makes more valuable the good results

obtained anyway.

100

4.4 Applications

Figure 4.33: Predicted (red) and real (blue) value of the time series at Plant
3 in the mid of December 2015, by using L-ESN and 1-day test set.

Figure 4.34: Predicted (red) and real (blue) value of the time series at Plant
3 in the mid of December 2015, by using D-ESN and 1-day test set.

101

4.4 Applications

Figure 4.35: Predicted (red) and real (blue) value of the time series at Plant
3 in the mid of December 2015, by using C-ESN and 3-days test set.

Figure 4.36: Predicted (red) and real (blue) value of the time series at Plant
3 in the mid of December 2015, by using L-ESN and 3-days test set.

102

4.4 Applications

Figure 4.37: Predicted (red) and real (blue) value of the time series at Plant
3 in the mid of December 2015, by using D-ESN and 3-days test set.

Figure 4.38: Predicted (red) and real (blue) value of the time series at Plant
3 in the mid of December 2015 by using C-ESN and 7-days test set.

103

4.4 Applications

Figure 4.39: Predicted (red) and real (blue) value of the time series at Plant
3 in the mid of December 2015 by using L-ESN and 7-days test set.

Figure 4.40: Predicted (red) and real (blue) value of the time series at Plant
3 in the mid of December 2015 by using D-ESN and 7-days test set.

104

4.4 Applications

T
ab

le
4.

29
:

R
M

S
E

of
E

ac
h

P
la

n
t

an
d

A
ve

ra
ge

R
es

u
lt

fo
r

1-
d
ay

T
es

t
S
et

an
d

D
iff

er
en

t
A

lg
or

it
h
m

s

M
o
n
th

A
lg

o
ri

th
m

P
la

n
t

1
P

la
n
t

2
P

la
n
t

3
P

la
n
t

4
P

la
n
t

5
T

o
ta

l

F
eb

ru
ar

y
C

-E
S
N

0.
31

9
±

0.
08

6
0.

28
4
±

0.
11

5
0.

24
7
±

0.
07

8
0.

30
0
±

0.
12

8
0.

24
8
±

0.
07

7
0.

28
0
±

0.
09

7

L
-E

S
N

0.
34

7
±

0.
12

0
0.

26
8
±

0.
10

9
0.

26
6
±

0.
10

2
0.

30
1
±

0.
14

5
0.

24
3
±

0.
04

5
0.

28
5
±

0.
10

3

D
-E

S
N

0.
31

1
±

0.
05

3
0.

26
7
±

0.
06

6
0.

24
3
±

0.
04

7
0.

29
0
±

0.
07

4
0.

24
3
±

0.
04

5
0.

27
3
±

0.
05

6

A
p
ri

l
C

-E
S
N

0.
18

0
±

0.
00

9
0.

32
4
±

0.
00

5
0.

21
3
±

0.
00

7
0.

21
8
±

0.
00

7
0.

16
5
±

0.
00

9
0.

22
0
±

0.
00

2

L
-E

S
N

0.
19

8
±

0.
00

9
0.

32
7
±

0.
00

6
0.

22
6
±

0.
01

0
0.

22
1
±

0.
00

8
0.

15
5
±

0.
00

7
0.

22
5
±

0.
00

3

D
-E

S
N

0.
17

4
±

0.
00

9
0.

31
9
±

0.
01

2
0.

22
7
±

0.
00

7
0.

22
9
±

0.
00

9
0.

15
5
±

0.
00

7
0.

22
1
±

0.
00

3

J
u
n
e

C
-E

S
N

0.
30

6
±

0.
00

9
0.

29
1
±

0.
00

6
0.

21
6
±

0.
00

9
0.

23
3
±

0.
00

7
0.

24
4
±

0.
01

0
0.

25
8
±

0.
00

6

L
-E

S
N

0.
31

8
±

0.
01

1
0.

29
8
±

0.
00

8
0.

24
5
±

0.
00

7
0.

22
3
±

0.
00

9
0.

24
2
±

0.
01

1
0.

26
5
±

0.
00

6

D
-E

S
N

0.
30

1
±

0.
01

3
0.

28
0
±

0.
00

9
0.

20
1
±

0.
01

3
0.

22
2
±

0.
01

1
0.

24
2
±

0.
01

1
0.

24
9
±

0.
00

9

A
u
gu

st
C

-E
S
N

0.
23

7
±

0.
00

8
0.

21
8
±

0.
01

1
0.

20
1
±

0.
00

6
0.

18
7
±

0.
01

1
0.

18
0
±

0.
00

5
0.

20
5
±

0.
00

4

L
-E

S
N

0.
28

2
±

0.
01

0
0.

21
4
±

0.
01

2
0.

21
2
±

0.
01

0
0.

18
5
±

0.
01

0
0.

18
9
±

0.
00

5
0.

21
6
±

0.
00

5

D
-E

S
N

0.
21

9
±

0.
00

4
0.

21
5
±

0.
00

9
0.

21
4
±

0.
00

6
0.

19
3
±

0.
01

1
0.

18
9
±

0.
00

5
0.

20
8
±

0.
00

2

O
ct

ob
er

C
-E

S
N

0.
27

7
±

0.
00

7
0.

17
5
±

0.
00

7
0.

23
6
±

0.
00

7
0.

22
7
±

0.
00

9
0.

19
5
±

0.
00

7
0.

22
2
±

0.
00

5

L
-E

S
N

0.
27

3
±

0.
01

1
0.

20
0
±

0.
00

8
0.

24
9
±

0.
00

9
0.

24
9
±

0.
00

6
0.

21
0
±

0.
00

7
0.

23
6
±

0.
00

5

D
-E

S
N

0.
27

7
±

0.
00

7
0.

17
3
±

0.
00

7
0.

24
6
±

0.
00

6
0.

24
4
±

0.
00

9
0.

21
0
±

0.
00

7
0.

23
4
±

0.
00

5

D
ec

em
b

er
C

-E
S
N

0.
10

6
±

0.
00

4
0.

14
2
±

0.
00

4
0.

14
1
±

0.
00

5
0.

10
0
±

0.
00

3
0.

12
1
±

0.
00

2
0.

12
2
±

0.
00

2

L
-E

S
N

0.
11

8
±

0.
00

8
0.

14
0
±

0.
00

2
0.

14
8
±

0.
00

6
0.

10
6
±

0.
00

5
0.

12
1
±

0.
00

3
0.

12
7
±

0.
00

2

D
-E

S
N

0.
10

1
±

0.
00

5
0.

14
7
±

0.
00

6
0.

14
9
±

0.
00

6
0.

10
5
±

0.
00

5
0.

12
1
±

0.
00

3
0.

12
5
±

0.
00

3

105

4.4 Applications

T
ab

le
4.30:

R
M

S
E

of
E

ach
P

lan
t

an
d

A
verage

R
esu

lt
for

3-d
ay

s
T

est
S
et

an
d

D
iff

eren
t

A
lgorith

m
s

M
o
n
th

A
lg

o
rith

m
P

la
n
t

1
P

la
n
t

2
P

la
n
t

3
P

la
n
t

4
P

la
n
t

5
T

o
ta

l

F
eb

ru
ary

C
-E

S
N

0.310
±

0.008
0.270

±
0.006

0.304
±

0.009
0.323

±
0.008

0.270
±

0.006
0.296

±
0.007

L
-E

S
N

0.317
±

0.008
0.270

±
0.005

0.312
±

0.012
0.320

±
0.009

0.269
±

0.004
0.298

±
0.007

D
-E

S
N

0.309
±

0.007
0.270

±
0.004

0.301
±

0.008
0.320

±
0.006

0.269
±

0.004
0.294

±
0.005

A
p
ril

C
-E

S
N

0.230
±

0.020
0.196

±
0.025

0.178
±

0.023
0.256

±
0.008

0.177
±

0.017
0.208

±
0.008

L
-E

S
N

0.238
±

0.041
0.195

±
0.018

0.198
±

0.042
0.262

±
0.010

0.183
±

0.006
0.215

±
0.015

D
-E

S
N

0.236
±

0.011
0.190

±
0.020

0.185
±

0.008
0.257

±
0.014

0.183
±

0.006
0.210

±
0.006

J
u
n
e

C
-E

S
N

0.214
±

0.005
0.199

±
0.003

0.231
±

0.004
0.216

±
0.004

0.236
±

0.004
0.219

±
0.003

L
-E

S
N

0.223
±

0.006
0.210

±
0.003

0.242
±

0.005
0.206

±
0.004

0.231
±

0.005
0.222

±
0.003

D
-E

S
N

0.212
±

0.007
0.194

±
0.004

0.224
±

0.007
0.208

±
0.007

0.231
±

0.005
0.214

±
0.004

A
u
gu

st
C

-E
S
N

0.219
±

0.003
0.214

±
0.005

0.246
±

0.005
0.227

±
0.004

0.241
±

0.009
0.229

±
0.004

L
-E

S
N

0.224
±

0.004
0.229

±
0.006

0.260
±

0.008
0.223

±
0.006

0.251
±

0.008
0.237

±
0.004

D
-E

S
N

0.225
±

0.003
0.215

±
0.005

0.246
±

0.003
0.233

±
0.004

0.251
±

0.008
0.234

±
0.003

O
ctob

er
C

-E
S
N

0.148
±

0.005
0.240

±
0.006

0.345
±

0.003
0.354

±
0.004

0.311
±

0.005
0.279

±
0.002

L
-E

S
N

0.160
±

0.005
0.240

±
0.008

0.341
±

0.002
0.360

±
0.005

0.312
±

0.005
0.283

±
0.002

D
-E

S
N

0.154
±

0.006
0.239

±
0.005

0.349
±

0.003
0.359

±
0.005

0.312
±

0.005
0.283

±
0.002

D
ecem

b
er

C
-E

S
N

0.228
±

0.001
0.220

±
0.001

0.219
±

0.001
0.190

±
0.001

0.183
±

0.002
0.208

±
0.001

L
-E

S
N

0.234
±

0.003
0.221

±
0.001

0.238
±

0.002
0.198

±
0.003

0.181
±

0.003
0.214

±
0.001

D
-E

S
N

0.229
±

0.004
0.215

±
0.002

0.213
±

0.003
0.185

±
0.003

0.181
±

0.003
0.205

±
0.003

106

4.4 Applications

T
ab

le
4.

31
:

R
M

S
E

of
E

ac
h

P
la

n
t

an
d

A
ve

ra
ge

R
es

u
lt

fo
r

7-
d
ay

s
T

es
t

S
et

an
d

D
iff

er
en

t
A

lg
or

it
h
m

s

M
o
n
th

A
lg

o
ri

th
m

P
la

n
t

1
P

la
n
t

2
P

la
n
t

3
P

la
n
t

4
P

la
n
t

5
T

o
ta

l

F
eb

ru
ar

y
C

-E
S
N

0.
28

4
±

0.
00

6
0.

28
7
±

0.
00

4
0.

26
3
±

0.
00

4
0.

30
2
±

0.
00

6
0.

23
0
±

0.
00

6
0.

27
3
±

0.
00

5

L
-E

S
N

0.
29

1
±

0.
00

8
0.

28
6
±

0.
00

4
0.

27
0
±

0.
00

6
0.

30
2
±

0.
00

7
0.

22
9
±

0.
00

3
0.

27
6
±

0.
00

4

D
-E

S
N

0.
28

0
±

0.
00

2
0.

29
1
±

0.
00

5
0.

26
2
±

0.
00

3
0.

29
6
±

0.
00

4
0.

22
9
±

0.
00

3
0.

27
2
±

0.
00

2

A
p
ri

l
C

-E
S
N

0.
26

7
±

0.
01

1
0.

28
9
±

0.
00

9
0.

25
7
±

0.
00

9
0.

33
8
±

0.
01

2
0.

29
5
±

0.
00

8
0.

28
9
±

0.
01

0

L
-E

S
N

0.
27

3
±

0.
01

5
0.

29
4
±

0.
01

0
0.

27
1
±

0.
01

0
0.

33
2
±

0.
01

6
0.

28
7
±

0.
01

3
0.

29
1
±

0.
00

8

D
-E

S
N

0.
25

9
±

0.
01

3
0.

28
2
±

0.
01

0
0.

25
1
±

0.
01

3
0.

32
7
±

0.
01

9
0.

28
6
±

0.
01

3
0.

28
1
±

0.
01

3

J
u
n
e

C
-E

S
N

0.
23

1
±

0.
00

3
0.

25
7
±

0.
00

4
0.

27
9
±

0.
00

4
0.

25
7
±

0.
00

3
0.

21
4
±

0.
00

3
0.

24
8
±

0.
00

2

L
-E

S
N

0.
23

7
±

0.
00

4
0.

25
9
±

0.
00

4
0.

29
5
±

0.
00

4
0.

26
3
±

0.
00

5
0.

22
1
±

0.
00

4
0.

25
5
±

0.
00

2

D
-E

S
N

0.
23

1
±

0.
00

3
0.

25
4
±

0.
00

4
0.

26
9
±

0.
00

5
0.

26
0
±

0.
00

3
0.

22
1
±

0.
00

4
0.

24
7
±

0.
00

2

A
u
gu

st
C

-E
S
N

0.
25

4
±

0.
00

4
0.

23
4
±

0.
00

3
0.

25
2
±

0.
00

3
0.

25
9
±

0.
00

3
0.

23
0
±

0.
00

4
0.

24
6
±

0.
00

2

L
-E

S
N

0.
26

3
±

0.
00

4
0.

24
4
±

0.
00

3
0.

25
8
±

0.
00

5
0.

26
2
±

0.
00

5
0.

23
1
±

0.
00

5
0.

25
2
±

0.
00

3

D
-E

S
N

0.
25

8
±

0.
00

3
0.

23
5
±

0.
00

3
0.

25
2
±

0.
00

4
0.

26
5
±

0.
00

3
0.

23
1
±

0.
00

5
0.

24
8
±

0.
00

3

O
ct

ob
er

C
-E

S
N

0.
30

5
±

0.
00

2
0.

23
0
±

0.
00

2
0.

21
9
±

0.
00

2
0.

25
4
±

0.
00

2
0.

23
6
±

0.
00

2
0.

24
9
±

0.
00

2

L
-E

S
N

0.
32

0
±

0.
00

2
0.

22
9
±

0.
00

1
0.

22
1
±

0.
00

5
0.

26
0
±

0.
00

2
0.

24
4
±

0.
00

2
0.

25
5
±

0.
00

2

D
-E

S
N

0.
30

7
±

0.
00

2
0.

22
9
±

0.
00

2
0.

21
6
±

0.
00

3
0.

26
2
±

0.
00

2
0.

24
4
±

0.
00

2
0.

25
4
±

0.
00

2

D
ec

em
b

er
C

-E
S
N

0.
19

0
±

0.
00

3
0.

17
7
±

0.
00

4
0.

20
3
±

0.
00

3
0.

22
3
±

0.
00

3
0.

19
3
±

0.
00

3
0.

19
7
±

0.
00

3

L
-E

S
N

0.
18

2
±

0.
00

4
0.

17
3
±

0.
00

4
0.

21
9
±

0.
00

3
0.

23
1
±

0.
00

4
0.

19
2
±

0.
00

3
0.

19
9
±

0.
00

3

D
-E

S
N

0.
18

9
±

0.
00

2
0.

17
8
±

0.
00

3
0.

20
2
±

0.
00

3
0.

22
2
±

0.
00

3
0.

19
2
±

0.
00

3
0.

19
7
±

0.
00

2

107

Chapter 5

Conclusive remarks and

discussion

In this chapter, some conclusion will be drawn from the presented applica-

tions, discussing the reliability performance of the proposed methods.

First, several neural and fuzzy neural system approaches suitable for elec-

tric price prediction have been presented and analyzed. We have illustrated

the validity of these approaches in terms of prediction performance and stabil-

ity over different training/operative conditions. The accuracy of forecasting

makes the proposed approach a very valuable path for optimizing energy sales

by aiming at knowing beforehand what the optimal price would be for the

selling day, many days in advance. All of the proposed models are suitable

for this purpose, with the HONFIS one outperforming RBF and MoG. Fu-

ture extensions of this research could consider an on-line prediction in which

the parameters are re-learned at each new sample collected and available for

training. The forecasting would thus be more strongly resilient to sudden

changes of the time series. Also, incorporating heuristics on other statistical

features of the time series, by using for instance ensemble techniques, could

improve the prediction performances.

It is worth discussing the variation of accuracy related to the different

time-horizon considered, especially for the energy prediction application case.

A one-day training is based on a very small number of samples in the training

set, which is interesting for the computational cost of the learning procedure

but it is an issue when many model parameters must be estimated, which is

the well-known curse of dimensionality for neural networks. In fact, the third-

order polynomial adopted for HONFIS makes it the most complex model

109

among the ones considered for this prediction problem, and its performances

improve with respect to the other models as much as the the number of

samples increases in the training set, although a larger training set may not

be the optimal choice.

Although of relative usefulness, the numerical results for weekly test sets

are similar to the previous ones. In the case of seven-day training sets, all of

the neural models suffer from the curse of dimensionality, as the information

given by a training set of the same length of the test set is too small to

ensure a robust estimation of the model parameters. In such cases, the LSE

predictor yields better performances than the others models albeit too shallow

in absolute terms. In the case of 30-day training sets, HONFIS is able to

obtain the best results for weekly test sets, with a numerical score in terms

of both NMSE and MARE that is stable enough with respect to shorter test

sets of one day only.

The performance of the prediction is highly affected by the intrinsic sea-

sonality of the time series considered. Anyway, HONFIS achieves the best

results for almost all of the training sets with respect to the other proposed

neural models, and all of them outperform both the LSE benchmark and the

ARIMA approach, which is not a feasible solution in this case mainly for

the intrinsic chaotic properties of the sequence. This reinforces the fact that

the prediction of photovoltaic production is a promising field for the applica-

tion of neural and fuzzy neural approaches along with the use of a suitable

embedding procedure.

The results are very promising and suggest several opportunities for future

work. We could make use of detrending techniques, such as mean-reverting

approaches, in order to remove seasonal differences and spike outliers, as well

as to improve the training accuracy. Additionally, it could be useful to test

distributed learning approaches [147], by which the results could be improved

sharing the data from different cabins of the same plant or from different

nearby plants. Instead, regarding the ESN, we first tested it in a peculiar

isolated grid case. The optimal management of a BESS, with prediction

of PB production and load forecasting, was chosen as a problem, showing

the versatility of the suited ESN method. In fact, the tests show that it is

feasible and can be used effectively in the proposed context. Future works

could consider different time horizons for the prediction and incorporating

other information to strengthen the prediction, particularly the wind speed,

in a learning scenario on distributed multiple sources of data [152,153].

110

We then extended the ESN model to work with a novel, distributed ap-

proach for the prediction of time series in a network of multiple power plants.

We relied on the ESN paradigm and direct application of ADMM and DAC

protocols in order to accurately handle the communication and information

sharing among the PV plants in the network. By testing it on real-world data,

we demonstrated the efficiency of the described method, comparing it with

respect to the centralized and local versions of the same algorithm. While

having good performances on every analyzed time horizon, the distributed

algorithm improves the performance for 1-day, 3-days and even for a 7-days

long prediction. The proposed approach demonstrates to be a valuable tool

for distribution companies that have interest to make dispatchable the inter-

mittent energy produced by RESs, for traders that have interest to predict

energy productions on the next 3-7 days in order to submit effective bids in

the day-head energy market, and for O&M companies interested to properly

scheduling the programmed maintenance operations.

111

Part III

Other Contributions

113

Chapter 6

Validated Distributed Ensemble

Clustering

6.1 Introduction

In addition to the supervised problems discussed so ar, another interesting

field of application of distributed computing paradigms is given by unsuper-

vised learning problems, clustering in particular.

With the advent of big data, cloud storage, social networks and so on, it

is necessary to deal with a huge amount of information and data that cannot

be stored, as in the past, in a central database or computing node. Thus,

new techniques are mandatory for modeling and managing distributed data

sources. In this chapter, an unsupervised learning algorithm is presented that

is suitable for clustering data in a distributed environment.

As explained in [154], there are some aspects that need a careful attention

when dealing with big data; the algorithms must be able to handle different

kind of data (numerical, categorical or hierarchical), working at a reasonable

speed even when the volume of the data increases. In astronomy, for instance,

several telescopes spread all over the world are able to collect up to 1 GB of

data per hour. This amount of data may be difficult to transmit to a central

node for analysis and processing of the whole dataset [155]. Technologies

such as Sensor Networks, Cloud Storage and Social Networks reshape the ICT

world with big data [156, 157], while pervasive computing and the Internet

of Things make more convenient to process data in a decentralized manner

when data are collected across the network [158,159].

For these reasons, latest researches are moving towards distributed tech-

115

6.1 Introduction

niques. The information is exchanged only thorough the neighbors, each node

having a visibility on a partial (local) dataset only, thus avoiding a central

node that detains all data as depicted in Fig. 6.1. There is a network of

agents that are linked together and that acquire data autonomously. We

suppose that the connectivity is known a priori and fixed. For the sake of

simplicity, we will assume that the network is fully connected (every node

can be reached from another node), and undirected (the adjacency matrix

is symmetric). This framework solves the problems of security, processing,

transferability and privacy. Additionally, the computational cost at each node

is generally less than the cost of communication between agents, without con-

sidering that sometimes the transmission from a node to the central one is

almost impossible, making the centralized solution expensive and/or infeasi-

ble.

Figure 6.1: A distributed scenario for clustering.

Several authors have treated the unsupervised distributed learning prob-

lem. In order to reduce the computational cost while preserving the seri-

alization of the algorithm, in [160–162] several methods based on Gaussian

mixture components are presented. In these methods, the authors assume

that each node retrieves data from an environment that can be described by

a probability density function as a mixture of elementary conditions. The

mixture parameters are commonly estimated in an iterative way through the

Expectation-Maximization (EM) algorithm, performing the E-step locally at

each node and reaching the consensus in the M-step by local exchange of

information among neighbors. Although the algorithms are very scalable

and robust, they need bridge sensors to reach consensus and furthermore the

number of Gaussian components must be known beforehand.

In [163, 164] the idea is to split the original problem into different sub-

problems that are solved using the K-Means algorithm at the singles nodes.

116

6.1 Introduction

Then, local results are processed together in a central node to find a com-

mon structure through the merging of the different solutions. To reduce the

amount of data to be exchanged in the communication process, in [165] a

Principal Component Analysis (PCA) control is applied to extract relevant

features before applying the K-Means algorithm. A similar approach is the

one presented in [166,167] where a master-slave architecture is proposed and

a central node manages the local results to find the optimal partition. An

technique that can be efficiently implemented in a purely distributed fashion

is based on the well-known Fuzzy C-Means (FCM) algorithm.

With particular focus on the image segmentation, in [168] an approach

suitable for large size image processing is presented. This algorithm divides

the computation among the processors minimizing the need of accessing the

secondary storage. In [169, 170] a FCM algorithm is applied in a context

where sites receive data from multiple sources. Consensus criteria and a col-

laborative approach are used to find out an agreement among the nodes.

Finally, particular attention should be devoted to the recent Ensemble Clus-

tering (EC) techniques [171] that are characterized by two main phases: (i)

generation of a number of local clustering solutions; (ii) determination of

global consensus solution by merging the local ones. When the dataset is

very large, EC techniques represent a proper approach to obtain a common

structure of partitions through a process of collaboration and communication

among the agents ([172, 173]). In [174] the authors proposed an EC ap-

proach through decentralized observations. It is an on-line algorithm that is

basically different from the approach proposed in this chapter. Also, it relies

on exchanging patterns among agents and it is not oriented to the privacy-

preserving of data.

Given the unsupervised nature of the problem, it is very difficult to de-

termine the best solution among a set generated ones, which are obtained by

using the chosen clustering procedure. Moreover, the problem is much harder

in a distributed scenario, where voting procedures and consensus strategies

are mandatory to find out the result that best fits the actual structure of

local data with respect to a pre-defined metric. Leveraging consensus across

multiple clustering results provides more accurate and stable solutions when

compared to traditional (centralized) clustering techniques. Therefore, the

problem to be faced is twofold: to deploy a centralized intelligence, for us-

ing consensus or other similar cooperative techniques, and to solve a cluster

validity problem, in order to estimate the right number of clusters.

117

6.2 The Proposed Clustering Algorithm

The main scope of this contribution is to discuss and propose a new solu-

tion to such problems, when clustering is applied to multiple sources of data

within the distributed environment described so far. In the framework of the

EC approach presented in [175, 176], we will introduce the Validated Dis-

tributed Ensemble Clustering (V-DEC) algorithm. The proposed approach is

based on two main concepts: in order to reduce the amount of exchanged in-

formation, only the prototypes of local clusters are communicated among

neighbors; also, clustering validity indexes are adopted to avoid conflicts

among nodes and to converge to a coherent data partition at the end of

the communication process.

The rest of the chapter is organized as follows. We introduce in Section 6.2

the details of the proposed V-DEC algorithm and in Section 6.3 the use of

cluster validity indexes to overcome some clustering problems in a distributed

learning environment. The experimental results are illustrated in Section 6.4,

based on numerical simulations applied to well-known datasets and clustering

benchmarks, while in Section 6.4.1 we draw our conclusions with some final

remarks.

6.2 The Proposed Clustering Algorithm

The proposed solution is illustrated in the following, where a toy problem

consisting of four Gaussian sources in a 2-D data space is used to better

explain each step of the algorithm.

6.2.1 Initial clustering

In the first iteration of the algorithm, each node has a partial vision of the

entire dataset. Autonomously, the agents try to find out the local partition

of their own data applying a clustering algorithm. In particular, the dif-

ferent local results can be obtained by employing different algorithms such

as K-means, fuzzy C-means, spectral clustering, Expectation-Maximization

(EM), etc., by varying their parameters using different metrics or dissimilarity

measures, number of clusters, initial random centers, and so on.

One of the novelties of the V-DEC approach is the capability to work

with different datasets without the requirement that each node starts with

the same local dataset to reach a final consensus. For instance, in a sensor

network that is measuring the level of air pollution in a physical environment

118

6.2 The Proposed Clustering Algorithm

Algorithm 2 V-DEC Algorithm

Initial clustering

Let R = {Rik}1≤i≤m as the intial set of clustering.

Collaboration phase

Conflict detection

k = conflicts(R) withKi,j
k = 1− S(Ck

i , CC(Ck
i , Rj))

where S(Ck
i , C

l
j) = max{S(Ck

i , C
m
j), ∀m ⊆ [1, nj]

Conflict Resolution

Ki,j
k = argmaxKr,s

l
Cl(Kr,s

l) and CC(Ck
i , Rj) = C l

j

The local resolution of conflicts is obtained by:

if k < thereshold then:

R
′

= R
′ \k ∪ merge(k,Rj)

else

R
′

= R
′{Cj

k ∪ split(Cj
k, |k|)

if {Validity index(R
′
) > Validity index(R)} then:

R = R
′

end

end

Additional refinements

Consensus computation .

using sensors spread all over the land, it is not realistic to assume that each

node starts with the same concentration of polluting agents.

We will consider in the following the K-means algorithm as the reference

clustering procedure, assuming to initialize every agent with the same number

of clusters (so as to prevent an undetermined number of clusters in every

local model) but with different centroids. The initial clustering applied to the

chosen toy problem is shown in Fig. 6.2. In this case, each agent has access

to a different dataset and, based on a different initialization of centroids,

different results are obtained at each node (N1 to N4) with several errors:

some clusters are split and others are grouped as a unique one.

119

6.2 The Proposed Clustering Algorithm

Figure 6.2: Initial clustering on a 2-D toy problem at four nodes: each color
represents a different cluster a pattern is assigned.

6.2.2 Collaboration phase

The collaboration phase starts with the conflict detection achieved thanks

to the local exchange of the centroid information or, equivalently, if another

algorithm is used in place of K-means, with the exchange of the suited local

representative . Let σ(Ck, Ch) be the similarity measure between two clusters

Ck and Ch, respectively; such a measure will be defined and discussed suc-

cessively, but it is always assumed to be normalized in the range from 0 to

1.

The similarity measure σ between two clusters of two different agents is

defined as the percentage of elements of a cluster that are closest to the cluster

in the other agent, similar to a KNN measure. To compute it for a cluster

in a node with a cluster of another node, the agents need to previously share

all the centroids information. Once the centroids are shared, the agent can

compute the distance of every single element in the cluster with respect to

all of the centroids of another node. Firsly, we define the distance between a

single point of a cluster and the centroid of another cluster in another node.

120

6.2 The Proposed Clustering Algorithm

Given the m-th cluster in the node i, Ci
m, with L data points pml , the distance

between a data point and the n-th cluster in node j, Cj
n , whose centroid is

cjn, is:

dl,n = d(pml , c
j
n), (6.1)

where d is the euclidean distance. For each data point pml in the first node

i, we compute the minimum distance respect to every cluster Cj
n in the other

node j:

k̂ = arg min
n=1,...,N

{dn}, (6.2)

where N is the number of clusters in node j. Then we define Kn as the

number of elements in Ci
m for which k̂ = n; here we are simply counting how

many elements in the cluster m of the first node i have found to have the

minimum distance with the centroid of cluster n of the second node j. Given

that, the distance between Ci
m and Cj

n can be defined as the percentage of

such elements respect to all of the elements in the cluster:

σ(Ci
m, C

j
n) =

Kn

L
. (6.3)

When clustering is performed independently at each node, referring to

different instances of a same data source, there might be used a different

label or a different index order to represent clusters that correspond to a

same local distribution. Consequently, it is important to set a function ϕ

able to determine which cluster in a node corresponds to a same cluster in

another node. Let Ci
k be the k-th cluster found at node i, then Cj

h = ϕ(Ci
k, j)

will find the cluster Cj
h at node j as the one corresponding to the same local

distribution of data points as cluster Ci
k at node i. Such a correspondence is

based on the similarity measure between clusters and hence, referring to the

previous example where index h is the essential outcome of the function ϕ:

h = arg max
m

{
σ(Ci

k, C
j
m)
}
. (6.4)

While finding a correspondence, some conflicts may occur. We can define

two type of conflicts, namely type-I, defined between a cluster in a node and

its corresponding cluster in another node, and type-II, defined by two clus-

ters in the same node. Usually, each cluster is found to be corresponding to

121

6.2 The Proposed Clustering Algorithm

a cluster in another node with similarity equal or nearly equal to 1. If so,

we can be confidently sure that the cluster is in fact the same cluster (from

the same local distribution) in the other node. There may be the occurrence

in which a cluster is found to be corresponding to a cluster with an unsat-

isfactory similarity. This means that, the elements of the cluster are labeled

as pertaining to two or more different clusters of another node, removing the

possibility of identifying a unique corresponding cluster with sufficient confi-

dence. If we define a similarity threshold σt, we can formalize the definition

of the type-I conflict:

A type-I conflict between the k-th cluster at node i and its corresponding clus-

ter at node j occurs when the similarity between them is below the satisfactory

threshold:

σ(Ci
k, ϕ(Ci

k, j)) < σt. (6.5)

(Another possible way of defining the conflict would be to evaluate the differ-

ence in similarity between the one computed with the corresponding cluster

and the one computed with the other cluster for which the similarity is not 0).

This means that when type-I a conflict occurs, there are more than one clus-

ter at node j that could be considered as the possible corresponding cluster;

in other words, the elements of the cluster at node i are found to be spread

in two or more clusters at node j, without one of them having a sufficient

portion of elements of the cluster at node i uniquely labeled (uniquely) as

its. Instead, the type-II conflict arises when more than one cluster in a node

finds the same corresponding cluster in another node:

A type-II conflict between two clusters at the same node j occurs when they

have a similarity equal to 1 with respect to a same cluster in a node i:

ϕ(Cj
m) = ϕ(Cj

n) = Ci
k (6.6)

with

σ(Ci
k, C

j
m) = σ(Ci

k, C
j
n) = 1 (6.7)

The mismatch degree of a correspondence can be measured still relying

on the similarity between clusters. Namely, we can define a bounded function

µ in the range 0 to 1, which measures the complement to 1 of the similarity

122

6.2 The Proposed Clustering Algorithm

between the original cluster and the one chosen as corresponding in the other

node:

µ(Ci
k, j) = 1− σ(Ci

k, ϕ(Ci
k, j)) , (6.8)

where µ is 0 in case of perfect correspondence (perfect similarity). Evidently,

function µ can be used also to estimate the relevance of a possible type-II

conflict as, in the case of a cluster at node j corresponding to more than one

cluster at node i, the related similarities will be different (in general) and

hence, the two correspondences will have a degree of mismatch greater than

0.

Once conflicts are determined, we execute two operations to improve the

cluster similarities: ‘merging’ and ‘splitting’. In the cluster ensemble ap-

proaches previously cited, the operations involved in the resolution of the

conflicts are three: merge, split and recluster. In particular the authors ap-

ply there merging and splitting together (when a cluster is merged the other

involved in the conflict is split) while the recluster is used if the initial clus-

tering result is under a certain goodness threshold. We revised this version

to make it more suited for purely distributed environment, changing the op-

erations involved. We start by solving the type-I conflicts by applying the

merge operator to the clusters involved. The strategy is to solve the type-I by

merging the clusters from which the uncertainty arises (all the clusters of the

same node whose correspondence is in conflict), so to have only corresponding

clusters with σ = 1.

In our algorithm the merging operation is simply done by reassigning

the labels coherently after selecting and storing the elements which generate

conflicts. We can see in Fig. 6.3 when two clusters are merged together (in

the toy problem example).

There are two possible outcomes for every type-I conflict after merging:

� the conflict is solved: the merged clusters come indeed from the same

local distribution and are now labeled as such.

� the conflict is transformed in a type-II conflict: two clusters of another

node find the same corresponding cluster in the new, merged one that

comes from two different local distributions.

Consequently, after the merging step, we will have only type-II conflicts.

We will address these ones by using a ‘splitting’ step. The K-Means algorithm

123

6.2 The Proposed Clustering Algorithm

Figure 6.3: Toy problem after merging

(or any other appropriate clustering algorithm) is applied to the conflict’s

data points with a suited cluster number initialization. This way each cluster

involved in the conflict is split in different clusters coherently. As we can see

from Fig. 6.4 the split operators is able to divide clusters erroneously classified

by the initial clustering.

To ensure the accuracy of the merging and splitting steps, we have in-

serted validation indexes to check if the new clustering result is effectively

better than the previous. These indexes are detailed in sec.6.3. At the start

of the collaboration phase, these indexes are computed for every agent. At

each new result of the conflict resolution step, these indexes are recomputed

and compared with the old ones. The modification of the result is then car-

ried on only if the validity indexes of the new cluster result are better that

the old ones, otherwise the changes on the labels are discarded.

After the conflict resolution, detection of the conflict must be reiterated and

cluster labels must be normalized to ensure that each result has a complete

set of labels (if there are N clusters in a results they should be labeled con-

tinuously from 1 to N, without gaps to avoid computational problems). The

centroids are also locally recomputed after each modification of the results.

124

6.2 The Proposed Clustering Algorithm

Figure 6.4: Toy problem after splitting

6.2.3 Consensus computation

In the last step of the V-DEC algorithm, it produces different partitions that

represent only permutation of the original ones. In these results all of the

conflicts are solved. In the state of the art clustering ensemble techniques

a consensus operation is in place and works exchanging all the datapoints

between every learner.

Considering that all the partitions that differ only in cluster labeling can be

considered identical in terms of clustering accuracy, a relabeling operation is

necessary to find a common agreement. Since every agent has already evalu-

ated all the centroids there is no need to exchange other information, because

the centroids have been exchanged in the collaboration phase. Thus, each

agent reaches the consensus agreement by applying the initial clustering al-

gorithm (e.g. K-means) to the complete set of centroids. In this way, each

agent is able to relabel its own clusters to reach a global agreement. After

all, given the shared centroids, this consensus resembles a global clustering

for label reassignment.

To better converge to an unified result, for result evaluation purpose only, the

relabeling is done incorporating the real labels of the clusters inside the anal-

125

6.3 Cluster Validity in a Distributed Scenario

ysis. This is further explained in the results section. A visual representation

should be seen in Fig. 6.5 where all the clusters are labeled correctly, making

this procedure suitable for purely distributed environment where each agent

has to compute the labels independently.

Every node has all the centroids, so it can recluster them and assign its

own node to the right cluster of nodes (label)

Figure 6.5: Toy problem after consensus

6.3 Cluster Validity in a Distributed Scenario

In this paper, we apply an approach based on an ensemble clustering tech-

nique, where the collaboration process in a network as in Fig. 6.1 is carried

out by the exchange of information between agents and by a consensus vot-

ing algorithm. The novelty is the capability to work in a purely distributed

environment where each node has a different vision of the global data (i.e., it

has an own local dataset).

By exploiting the local datasets and the communication among neighbors,

the agents must be able to reach an agreement on the global results. Namely,

the obtained results should approximate sufficiently well the situation where

126

6.3 Cluster Validity in a Distributed Scenario

a same clustering strategy were executed on a centralized node that collects

all the local datasets. In order to achieve a data structure that is common and

globally coherent with all data, as well as to detect a possible disagreement

among local partitions, we propose the use of cluster validation indexes.

In fact, as it is difficult to evaluate the correctness of a partition given

the unsupervised nature of the clustering problem, several indexes have been

proposed in the literature that can be used to assess the quality of a clustering

result. As described in the following, in the proposed V-DEC algorithm the

agents communicate with each other to detect main conflicts and to solve them

by merging or splitting clusters. Therefore, a suitable cluster validation index

could be adopted to verify if such operations yield either an improvement or a

worsening of global clustering results. Such a management of local changes of

a clustering result is one of the novelties introduced by the V-DEC algorithm.

Some clustering ensemble techniques [176] are based on a combination of

the intercluster similarity, some cluster quality criterion and user-defined pa-

rameters. One of the main issues in these kind of problem is to end up with

trivial solutions (only one clusters with all the elements or many clusters with

only one element). To avoid this, δi and δj are introduced in [176]. These

are quality criteria that incorporate the external knowledge in the quality

measure (e.i. estimation of number of clusters, a-priori-labeled samples, con-

straints). These criteria are useful if there is in fact some a priori knowledge

to incorporate in the analysis. We decided to not use them because we want

to be able to solve the clustering problem without external knowledge.

Once the local similarity criterion γ is computed, a global agreement co-

efficient Γ is evaluated for the management of the global results.

Γ =
1

m

m∑
i=1

Γi (6.9)

where

Γi =
1

m− 1

m∑
j=1,j 6=i

γi,j (6.10)

These two steps are complex and onerous in terms of time and resources (and

do not guarantee privacy). Instead, in V-DEC we introduce validity indexes to

evaluate the local changes based on the global results for better performance.

127

6.4 Experimental Results

We use three different indexes that are tested with several datasets:

� Davies-Bouldin Index ([177]): this is an internal evaluation index,

where the validation of how well the clustering has been done is made

using quantities and features inherent to the dataset.

� Dunn Index ([178]): it is of the same group as the Davies-Bouldin

index, in that it is an internal evaluation scheme, where the result is

based on the clustered data itself. The aim is to identify sets of clusters

that are compact, with a small variance between members of the cluster,

and well separated, where the means of different clusters are sufficiently

far apart, as compared to the within cluster variance.

� DW-DB Index ([179]): The double weighted Davies-Bouldin index is

a modified version of the DB Index. It is a double weighted index

that avoids to fall into some local minimums that affect the standard

Davies-Bouldin Index.

Whenever a modification takes place in a local result, the agent computes

the index taking into account the other results. If the modified result ob-

tains better indexes the changes are accepted and the centroids recomputed,

otherwise the conflict is eliminated and the algorithm iterates. This check

is necessary to avoid to fall into a local minimum or maximum, in fact the

multiple iterations of split and merge without any check could produce the

situation in which there is one cluster for all the objects or one cluster for

each object. There are differences in performance depending on which index

is used. The DB index performs well in highly differentiated datasets but

is too inaccurate when the clusters are not well separated. The Dunn index

is useful when there are a lot of attributes but it is harder to compute and

tends to fall in a situation where only one global cluster is found. The DW-

DB index performs better than the others in both separable or non-separable

classes and different datasets.

6.4 Experimental Results

We tested the V-DEC algorithm on four different available datasets of the UCI

repository and one toy problem built ad hoc to test it in different distributed

scenario. A schematic description is given in Tab.6.1 where we present some

additional information on them.

128

6.4 Experimental Results

Table 6.1: Description of the datasets

Dataset Features Instances Classes Task

Iris Data Set 4 150 3 Classification
Wine Data Set 13 178 3 Classification
Ionosphere Data Set 34 351 2 Classification

� Iris Data Set is a classification dataset, composed by 150 instances for

each of the three classes. The input is given by 4 features.

� Wine Data Set where the task is to identify the correct type of wine

among 3 classes thanks to 178 instances composed by 13 features.

� Ionosphere Data Set The Ionosphere dataset consists of 16 high-

frequency antennas and 17 pulse numbers for the Goose Bay system.

Instances are described by 2 attributed per pulse number. It is a bi-

nary classification dataset, where each learner get 87 datapoints with

10 attributes each.

� Toy Problem In addition to the mentioned UCI datasets we used also

a toy problem dataset composed by four classes that could be arranged

and distributed very easily to preliminary test the V-DEC algorithm.

In all cases, input variables are normalized between 0 and 1, and missing

values are replaced with the average computed over the rest of the dataset. We

compare the following techniques, with the same set of runs and parameters:

� Centralized Algorithm

� Samarah Algorithm that is part of the Cluster Ensemble techniques

presented in [176]

� V-DEC: Validated Distributed Ensemble Clustering.

The initial clustering algorithm used is the K-Means with a random ini-

tialization. We also tested the E-M algorithm to compare the results and to

see how much the final result is affected by using different local clustering al-

gorithms. After a grid search procedure, we fixed the threshold for the merge

criterion (σt) by setting it to 0.4. This is found to be the safest value because

it avoids unnecessary merging of clusters that become hard to split in sequent

phase without skipping the merge when it is needed.

129

6.4 Experimental Results

For each test we performed 100 runs and taking the average value. All

experiments are carried on using MATLAB R2013b on a on a machine with

Intel Core i5 processor with a CPU @ 3.00 GHz with 16 GB of RAM.

As stated in the Consensus section, to be able to evaluate the quality of

the final clustering results it is necessary that the labels of each learner are

all coherent. To achieve that, a data-driven clustering is applied to all the

centroids. The results’ centroids are gathered in a matrix, clustered via K-

Means and, taking in account the real clusters’ centroids, relabeled. This way

it is possible to compute quality indexes to evaluate the performance.

As explained before we partition all the datasets to test the algorithm in

a purely distributed scenario, differentiating from [176] where all the dataset

is given to each node. The number of attributes is different from dataset to

dataset, but is always greater than three.

In order to evaluate the performances we use four quality indexes to com-

pare the results with those obtained in [176]:

� Rand Index ([180])

� Falks-Mallows ([181])

� F-measure ([181])

� K-Index ([182])

In Tab.6.2 are reported the results for all of the similarity indexes pre-

sented below, in order to compare how the results change when we increase

the number of agents in the network, as well as change the initial classification

algorithm. All the indexes are normalized between 0 and 1 (0 being ’worst

result’ and 1 being ’best result’), for the sake interpretability Best results for

each initial configuration are highlighted in bold. As we can see results are

quite insensitive to the increasing of the network, since the initial algorithm

should has more impact in some dataset.

In Tab.6.3 the V-DEC approach is compared with the cluster ensemble

techniques and the centralized approach in terms of the quality indexes. Best

results for each dataset are reported in bold. As we can see the performance

are slightly less good when we compared with the ensemble clustering tech-

nique. This is coherent with our analysis, because they use the entire dataset

at each node, while we are tested our algorithm in a purely distributed con-

text, forcing each agent to have partial and different vision for each dataset.

130

6.4 Experimental Results

Dataset Algorithm N learners FM RI KI
Iris K-Means 1 0.786 ± 0.065 0.845 ± 0.066 0.737 ± 0.196

EM 1 0.827 ± 0.110 0.859 ± 0.101 0.711 ± 0.260
K-Means 4 0.761 ± 0.055 0.828 ± 0.062 0.661 ± 0.020

EM 4 0.676 ± 0.069 0.758 ± 0.050 0.585 ± 0.121
Wine K-Means 1 0.429 ± 0.007 0.594 ± 0.001 0.226 ± 0.003

EM 1 0.534 ± 0.062 0.629 ± 0.073 0.352 ± 0.119
K-Means 4 0.453 ± 0.037 0.570 ± 0.050 0.231 ± 0.062

EM 4 0.441 ± 0.036 0.570 ± 0.033 0.236 ± 0.063
Vehicle K-Means 1 0.367 ± 0.018 0.637 ± 0.021 0.262 ± 0.012

EM 1 0.377 ± 0.025 0.660 ± 0.020 0.245 ± 0.040
K-Means 4 0.369 ± 0.025 0.616 ± 0.039 0.234 ± 0.033

EM 4 0.356 ± 0.027 0.615 ± 0.0302 0.199 ± 0.032
K-Means 10 0.366 ± 0.025 0.617 ± 0.031 0.226 ± 0.027

EM 10 0.342 ± 0.024 0.624 ± 0.022 0.193 ± 0.028
Ionosphere EM 1 0.685 ± 0.059 0.613 ± 0.090 0.319 ± 0.305

K-Means 1 0.605 ± 0.000 0.589 ± 0.000 0.411 ± 0.000
EM 4 0.620 ± 0.067 0.533 ± 0.021 0.089 ± 0.114

K-Means 4 0.599 ± 0.211 0.581 ± 0.020 0.389 ± 0.470
EM 10 0.612 ± 0.060 0.532 ± 0.018 0.107 ± 0.093

K-Means 10 0.596 ± 0.296 0.573 ± 0.024 0.342 ± 0.091

Table 6.2: Cluster quality indexes for K-Means and EM initialization over
different initial network configurations.

It is important to underline, that despite of this constraint we are also able

to obtain comparable performance with the centralized approach.

Dataset Algorithm Rand Index F-Measure F-M Index
Iris C 0.73 (± 0.03) 0.64 (± 0.02) 0.60 (± 0.01)

S 0.85 (± 0.00) 0.78 (± 0.00) 0.78 (± 0.01)
V-DEC 0.76 (± 0.05) 0.65 (± 0.07) 0.59 (± 0.02)

Wine C 0.68 (± 0.09) 0.66 (± 0.03) 0.62 (± 0.04)
S 0.88 (± 0.04) 0.83 (± 0.06) 0.83 (± 0.06)

V-DEC 0.75 (± 0.06) 0.71 (± 0.08) 0.70 (± 0.05)
Ionosphere C 0.56 (± 0.01) 0.53 (± 0.03) 0.50 (± 0.04)

S 0.59 (± 0.03) 0.53 (±0.07) 0.50 (± 0.09)
V-DEC 0.71 (± 0.02) 0.58 (± 0.04) 0.49 (± 0.05)

Table 6.3: Cluster quality Indexes for the Centralized, the ensemble clustering
approach and the V-DEC algorithm.

A visual representation of the results is given in Fig. 6.6, 6.7, 6.8:

6.4.1 Conclusion

In this chapter, we have introduced a distributed algorithm able to work in

an environment where data are collected among a network of agents. In par-

131

6.4 Experimental Results

Figure 6.6: Quality Indexes comparison for Iris Dataset

Figure 6.7: Quality Indexes comparison for Wine Dataset

132

6.4 Experimental Results

Figure 6.8: Quality Indexes comparison for Ionosphere Dataset

ticular, we consider the traditional cluster ensemble techniques and extend

them. Since the traditional approaches have the requirement that each node

must have the same (complete) dataset, we allows each agent to work with

a different and partial dataset. For this reason the algorithm is slightly less

good of the traditional cluster ensemble techniques. However, experimental

results suggest that the procedure is able to efficiently match a fully central-

ized implementation, using only in-network implementation. Additionally

our approach require the exchange of only the representatives, making it very

efficient in computation.

133

Chapter 7

Finite precision Random Vector

Functional Link Network

7.1 Introduction

With the deep penetration of sensor network architectures in several appli-

cation contexts, many issues are raised regarding the implementation and

development of machine learning algorithms for low computational power de-

vices in distributed systems.

Internet of Things (IoT), cloud computing, pervasive computing and so

on, have revolutionized the way signals are processed and information is man-

aged. To infer knowledge from big data partitioned over geographically dis-

tinct locations is considered a fundamental problem now in many scientific

fields [183, 184], including sensor networks [185], smart grids [186], medical

applications [187] and many others. In this kind of scenario, it is often for-

bidden to transmit all data to a centralized authority, for reasons of security,

privacy, computational efficiency and economical costs.

Neural networks are usually adopted to solve most of the above mentioned

machine learning problems but, unfortunately, these approaches are often

computationally intensive and memory demanding. This makes difficult to

deploy them on distributed systems where additional constraints might be im-

posed, such as the low computational power of a simple and cheap hardware.

Thus, more efficient approaches become necessary.

Usually, neural network parameters are estimated via learning algorithms

running on standard computers with double precision floating point arith-

metic due to the associated high computational demand. However, to up-

135

7.1 Introduction

loading the network model on a digital, possibly distributed, architecture with

finite precision arithmetic, after a direct quantization of coefficients, leads to

unsatisfactory results due to the non linear nature of the network [188, 189].

Nonetheless, many real-time applications need an adaptive learning, as in the

case of the well-known consensus strategy, where the model must be dynam-

ically adapted to new observations even after the hardware implementation.

There have been various proposals to make inference in contexts with

limited hardware resources. A learning procedure for generating multilayer

integer-weight neural networks has been presented in [190]. Differential evo-

lution strategies have been also applied to train neural networks with small

integer constraints [191, 192]. In [193], a training mechanism with quantized

weights that reduces the cost of hardware implementation has been presented

and in [194] both approximation and quantization techniques are used for

network pruning. However, all of such models are not suited to deal with

distributed learning and data processing.

Random Vector Functional-Link (RVFL) can be viewed as a feed-forward

neural network with a single hidden layer, resulting in a linear combination

of a fixed number of non-linear expansions of the original input [195]. By

solving the general problem of data regression, RVFLs can be applied to

signal processing applications where function approximation, classification or

time series forecasting is required. In particular, this technique has been used

to implement distributed learning systems where training data is diffused

under a decentralized information structure [196, 197], or to solve specific

classification problem [198].

So far, only preliminary studies have been proposed for RVFL networks

with limited hardware resources [199]; for instance, in [200] the algebraic

properties of the mathematical model are investigated, considering the im-

plementation on FPGA architectures with a relatively high number of bits

(i.e., more than 16). In this work, we introduce a methodology to address the

challenging problem of hardware implementation with finite precision arith-

metic. Also, a novel optimization strategy based on a Genetic Algorithm

(GA) is introduced, in order to estimate the inner parameters of the network

under the constraint of finite precision arithmetic. The numerical simulations

reported herein prove that the overall approach is able to simultaneously

speed up the computation in the testing (operational) phase and to reduce

the memory overhead on digital architectures based, for example, on a simple

microcontroller using a very low number of bits.

136

7.2 RVFL Architecture

7.2 RVFL Architecture

The peculiarity of a RVFL feed-forward neural network is the inner layer

fixed a priori with a predefined set of nodes. Given a d-dimensional input

x = [x1 . . . xd]
T , the RVFL aims at estimating a scalar output y ∈ R. The

traditional formulation uses a weighted sum of C non-linear transformations

of the input:

f(x) =
C∑

m=1

βmhm(x;wm) . (7.1)

Each h : X → R is a base, hidden function, or functional link. In the following,

a sigmoid basis functions is adopted:

h(x;w, b) =
1

1 + exp {−wTx+ b}
. (7.2)

The resulting model is linear in the β parameters and the parameters

w1, ...,wC are initially assigned randomly before the training process, ac-

cording to an uniform probability distribution. Under few assumptions on

the smoothness of the underlying function, the RVFL has universal approx-

imation capability if a large number of hidden functions is provided, that is

forcing C to be large enough [201].

The problem of learning with an RVFL model of the form (7.1) should

be reorganized as a linear regression over the coefficients β = [β1 . . . βC]T .

Considering a training set of N input-output pairs {xi, yi}, i = 1 . . . N , a

hidden matrix H can be organized in the following way:

H =

h1(x1) · · · hC(x1)

...
. . .

...

h1(xN) · · · hC(xN)

 , (7.3)

while the output vector is y = [y1 . . . yN]T .

The optimization procedure can be expressed as a standard regularized

least-squares (RLS) problem where the optimal β for training a RVFL is

found by minimizing the following objective function:

min
β∈RC

1

2
‖y −Hβ‖2 +

λ

2
‖β‖2 , (7.4)

137

7.3 A Finite Precision Model of RVFL Networks

where λ > 0 is the regularization factor. The problem (7.4) is strictly convex,

so the solution can be found by setting the gradient equal to 0, from which

we obtaining the well-known solution:

β∗ =
(
HTH + λI

)−1
HTy . (7.5)

7.3 A Finite Precision Model of RVFL Net-

works

In this section, it is firstly tested what happens when all the introduced pa-

rameters, input and output values, and the computation of hidden functions

are subject to a uniform quantization. Successively, a non-uniform distribu-

tion of the input interval is also investigated to underline how the results

change. Namely, it is proposed a non linear A/D conversion of input signals

by considering the actual structure of data to be processed. In both cases,

the genetic optimization is used to tune their implementation on hardware

architectures based on a finite precision arithmetic.

7.3.1 Uniform Quantization

In a finite precision implementation of a RVFL network all the introduced

parameters, input and output values, and the computation of hidden functions

are subject to a uniform quantization. Let qn(·) be a uniform quantizer in

the respective range of the input variable, with a two’s complement binary

representation using n bits. It is applied element-wise if the input is either

a vector or a matrix. With respect to the previous processing, given a same

generation of random of weights, a quantized hidden matrix H(n) will be

arranged on the basis of the following hidden functions:

h(n)(x;w, b) = qn

(
1

1 + exp {−qn(wT)qn(x) + qn(b)}

)
. (7.6)

Then, the generic output for an n-bit finite precision implementation of a

RVFL will be:

f (n)(x) = qn

(
C∑

m=1

β(n)
m h(n)m (x;wm)

)
. (7.7)

138

7.3 A Finite Precision Model of RVFL Networks

Since the weights are extracted from a uniform distribution, the param-

eters w1, ...,wC can be considered as forced to be quantized, as well as the

results of the hidden functions, in such a way that the intrinsic randomness of

the RVFL input and inner layers is still preserved. However, a main problem

arises in the computation of finite precision β(n) parameters in (7.12), which

can be reformulated as an Integer Least Squares (ILS) problem:

min
β(n)∈RC

1

2

∥∥∥y − qn(H(n)β(n)
)∥∥∥2 +

λ

2

∥∥β(n)
∥∥2

s.t. β(n) ∈ Z(n) ,

(7.8)

where Z(n) represents here a generic set of integers to which quantized values

can be assimilated. Also, due to the nonlinear nature of the output quan-

tization, the finite precision RVFL in (7.12) is no longer linear in the β(n)

parameters.

ILS is a common problem in many fields of signal processing as, for

example, channel coding, cryptography, radar imaging and global position-

ing [202, 203]. It has been shown that ILS is an NP-hard problem and the

algorithms for solving it have exponential complexity [204, 205]. Computa-

tionally, an ILS problem is equivalent to a LS where there is a constraint on

the quantization of the result. In fact, a constraint on the bounded represen-

tation of the weights can be treated as a box constraint and solved similarly

to an ILS problem regardless of the bounds [206].

A straightforward approximation of the ILS solution, which will be the

baseline for the successive experiments, is to quantize with a two’s comple-

ment representation using n bits the result obtained from (7.5):

β
(n)
rnd = qn

((
H(n)TH(n) + λI

)−1
H(n)T qn(y)

)
, (7.9)

where outputs y are in general quantized, as this learning step could be

performed on a fixed point hardware as well.

As previously said, such an approach is only an approximation of the

correct ILS solution and the performance of the resulting RVFL may be worse

due to the nonlinear nature of the overall processing system. For such a

reason, we propose in the following an optimization of the NP-hard nonlinear

ILS problem, which is based on a GA approach in order to obtain an optimal

set of quantized β(n) parameters.

139

7.3 A Finite Precision Model of RVFL Networks

Genetic Optimization

GAs are adaptive or meta-heuristic search algorithms used for solving both

constrained and unconstrained optimization problems. They are inspired by

the process of natural selection that belongs to the biological evolution [207].

Any GA starts from a population of candidate solutions, called individuals,

and repeatedly modifies them using different operators (selection, mutation

and crossover) in an iterative process obtaining a succession of sets of individ-

uals (i.e., the generations). The population ‘evolves’ over successive genera-

tions, toward an optimal solution obtained by the improvement of the fitness

of the best individual.

The GA starts from a generation of completely random individuals and

the successive generation is obtained through the application of selection,

mutation and crossover operators. In other words, at each generation the

fitness of each individual is evaluated and a new solution is randomly created

from the current one considering the fitness values. Successively, the solution

is modified (mutated or recombined) to form the new generation.

The quantized parameters β(n) we are searching for are binary coded in

a finite precision arithmetic. These are combined to form the so called chro-

mosome, which is a string of bits each one treated as a gene. In the proposed

approach, the genome of each individual is represented by a binary string of

nC bits as illustrated in Fig. 7.4.

Figure 7.1: Visual scheme of the binary organization of a β(n) solution.

Given a dataset on which the GA optimization is being performed, the

quantized weights and the related quantized hidden functions h
(n)
m , m =

1 . . . C, are computed once for all at the beginning of the process. Then,

for each individual and in every generation, the output (7.12) is computed for

all inputs of the dataset by using the particular instance of β(n) associated

with the chromosome of the individual. The fitness of the individual is the

140

7.3 A Finite Precision Model of RVFL Networks

Noise-to-Signal Ratio (NSR):

NSRdB = 10 log10

∑N
i=1

(
yi − f (n)(xi)

)2∑N
i=1 (yi − ȳ)2

, (7.10)

where ȳ is the average value of the output values yi on the dataset. Thus, the

lower is the NSR the better is the fitness.

The general steps of the GA can be summarized as:

1. A population of chromosomes G0 with P individuals is created and set

as the current generation.

2. The chromosomes are evaluated by a defined fitness function and sorted

by ascending values of it.

3. Some chromosomes are selected from the current generation for perform-

ing genetic operations. Cloning, mutations and crossover are applied

and the produced offspring replaces their parents in the next genera-

tion.

4. The next generation becomes the current one.

The steps 2-4 are repeated for a predefined fixed number Mgen of generations.

The goodness of the performance of the algorithm relies on the values of P and

Mgen as well as on the mutation rate (Mr) and on the crossover rate (Cr). The

last one are used to control the rate at which mutation and crossover occur in

terms of probability thresholds. The next generation Gk+1 is produced from

the current one Gk in the Step 3 of the previous algorithm as in the following:

1. The last two individuals of Gk are deleted.

2. The best individual of Gk is guaranteed to survive to the next genera-

tion, for that it is cloned and put in Gk+1 (elitism).

3. The algorithm selects a fraction equal to Mr of the mutation rate to

update the second individual of Gk by using a ‘Uniform’ function, then

it is put in Gk+1.

4. A “Roulette Wheel” procedure is used to randomly select a pair of

parents. A probability threshold Cr is used to produce the offspring

of two parents by means of a “two-point” crossover. Successively, each

of the two resulting individuals is mutated with a probability equal to

141

7.3 A Finite Precision Model of RVFL Networks

Table 7.1: Detailed Description of Datasets

Dataset Features Instances Desired output

Airfoil 6 1503 Pressure level

Concrete 9 1030 Compressive strength

Energy 8 768 Heating Load

Istanbul 8 536 Stock exchange returns

Mr and placed in Gk+1. This step is repeated until the next generation

contains exactly P individuals.

The successive simulations will be performed by fixing the following parame-

ters: P = 100, Mgen = 100, Cr = 0.8, and Mr = 0.01, while the evolutionary

process is stopped if the best fitness stalls for 5 consecutive generations within

a relative interval of ±0.01%. The optimal solution found at the end of the

GA optimization will be denoted as β
(n)
gen.

Description of the Experiments

Here, we evaluate the performances of the proposed approach on four public

datasets summarized in Table 7.6, which are available on the UCI repository

(https://archive.ics.uci.edu/ml/datasets.html):

� Airfoil is a NASA dataset where data of two or three dimensional airfoil

blade subsections conducted in an anechoic wind tunnel are acquired at

various tunnel speeds and angles of attack. The aim is to predict the

scaled sound pressure level [208].

� Concrete is considered in order to predict the compressive strength,

which is the most important material in civil engineering, several quan-

titative attributes of the material are described [209].

� Energy contains an energy analysis using 12 different building shapes.

Varying several characteristics, like the glazing area distribution, the

orientation and so on, the aim of the dataset is to assess the heating

load requirement of buildings [210].

� Istanbul includes returns of Istanbul Stock Exchange with seven other

international indexes [211].

142

7.3 A Finite Precision Model of RVFL Networks

Table 7.2: Optimal Number of Hidden Nodes (C) Found by The Inner-fold
Cross-validation

Dataset n=4 n=8 n=12 n=16 float-64

Airfoil 200 200 300 300 500

Concrete 200 200 200 500 400

Energy 200 200 500 500 500

Istanbul 300 300 300 300 300

The input and output values of datasets are normalized before training

in order to accommodate every feature in the range between 0 and 1. The

weights w of the sigmoid basis functions are extracted randomly from a uni-

form distribution over the interval [−1,+1], while the scalars b are extracted

randomly from a uniform distribution over the interval [−0.1,+0.1]. The

performance is obtained through a 10-fold cross validation, where the overall

NSR is obtained comparing actual values of outputs with the predicted ones

in every fold. The tests were carried on on different machines resulting in

different training times (15 to 30 minutes).

First of all, we consider the baseline solution standard rounding β
(n)
rnd pa-

rameters obtained from (7.9). Four different number of bits for the weight

quantization n are considered: 4, 8, 12, and 16. The performance of such

solutions is compared to the one obtained by a software implementation on

standard computers using 64-bit floating point arithmetic, which will be as-

similated to the analog result β∗ in (7.5).

In order to compute the optimal number of hidden nodes C and the regu-

larization factor λ, we executed an inner-fold cross-validation of the train-

ing data. In particular, we searched in a grid-search procedure the set

{200, 300, 400, 500} for the optimum number of hidden nodes C and the set

{2−10, 2−9, . . . , 29, 210} for λ.

The optimum C and λ for every number of bits is reported in Table 7.2

and Table 7.3. It can be noted that the optimum value of C for Airfoil,

Concrete and Energy datasets is low for n = 4 and n = 8 and it increases as

the precision increases. Instead, for the Istanbul dataset it is constant (i.e.,

C = 300). The regularization factor has a different trend; as the number of

bits varies, the behavior is almost the same for every dataset. In fact, it is as

high as possible (i.e., λ = 210) for n = 4 and then decreases.

143

7.3 A Finite Precision Model of RVFL Networks

Table 7.3: Optimal λ Found by Inner-fold Cross-validation

Dataset n=4 n=8 n=12 n=16 float-64

Airfoil 210 28 2−4 2−10 2−10

Concrete 210 22 2−6 2−10 2−10

Energy 210 22 2−5 2−10 2−10

Istanbul 210 22 2−4 2−5 2−5

Table 7.4: Performance (NSR) of Basic Rounding Vs. Bit Precision

Dataset n=4 n=8 n=12 n=16 float-64

Airfoil -23.816 -26.604 -28.858 -30.175 -30.237

Concrete -6.644 -11.233 -13.181 -15.038 -15.150

Energy -8.386 -18.025 -19.909 -23.738 -24.122

Istanbul 1.784 -5.420 -6.674 -6.722 -6.723

Taking the optimal choices of C and λ, the baseline performance in terms

of NSR versus the number of bits is shown in Table 7.4. For every dataset,

the NSR for values of n greater than 8 is similar to the 64-bit floating point

precision, with differences as low as 0.1 dB. Therefore, it is worth considering

optimized implementations where a number of bits equal to or lower than 8

is considered.

The results obtained by using the GA optimization, keeping the same

choices of C and λ, are reported in Table 7.5. We outline that GA optimiza-

tion improves the performance for n ≤ 12, in the majority of cases. This

can be explained taking into account that, for a higher number of bits, the

huge cardinality of the search space makes more sparse and evanescent the

GA approach in a relatively limited time.

Finally, for the sake of illustration, we report in Fig. 7.2 the comparison of

actual and predicted values of Energy dataset using a software implementation

with 64-bit floating point precision, while in Fig. 7.3 there is shown the GA

optimization using 8 bits. Evidently, the behavior is comparable even with a

numerical difference of about 5.5 dB.

144

7.3 A Finite Precision Model of RVFL Networks

Table 7.5: Performance (NSR) of Genetic Optimizer Vs. Bit Precision

Dataset n=4 n=8 n=12 n=16

Airfoil -25.784 -26.484 -29.067 -30.082

Concrete -7.982 -11.537 -13.386 -14.673

Energy -10.779 -18.595 -20.437 -23.137

Istanbul 1.531 -6.026 -6.619 -6.608

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

45

Sample

O
ut

pu
t

actual
predicted

Figure 7.2: Output on Energy dataset using 64-bit floating point precision.

7.3.2 Nonuniform Quantization

In this section, we propose a nonuniform quantizer, in addition to the uniform

quantization over all of the parameters of the network. This is done in order to

cope with the actual structure of datasets and also to compensate the round-

ing of internal parameters of the neural model. In effect, it is well-known that,

except in the case of the uniform distribution, the non-uniform quantization

is superior in the sense that it results in a smaller average quantization error.

For these reasons, it is assumed for the rest of the chapter, a nonuniform

quantization of input values and a uniform quantization elsewhere.

Let un(·;θ) be a nonuniform quantizer using n bits for representing the

145

7.3 A Finite Precision Model of RVFL Networks

0 100 200 300 400 500 600 700 800
5

10

15

20

25

30

35

40

45

Sample

O
ut

pu
t

actual
predicted

Figure 7.3: Output on Energy dataset using 8-bit precision optimized by GA.

quantization values. Since x is a d-dimensional array, the nonuniform quan-

tizer is applied with different quantization values on each dimension. Thus,

θ is a 2n× d matrix of real numbers and the output un(x;θ) of the quantizer

will be a d-dimensional array where the jth element is un,j = θrj, j = 1 . . . d,

being θrj ∈ θ the largest value no greater than xj in the jth column of θ, for

any 1 ≤ r ≤ 2n.

Consequently, given a same generation of random of weights, a quantized

hidden matrix H(n) will be arranged on the basis of the following hidden

functions:

h(n)(x;w, b,θ) = qn

(
1

1 + exp {−qn(wT)un(x;θ) + qn(b)}

)
. (7.11)

Then, the generic output for an n-bit finite precision implementation of a

RVFL will be:

f (n)(x) = qn

(
C∑

m=1

β(n)
m h(n)m (x;wm,θ)

)
. (7.12)

Since the RVFL weights are extracted from a uniform distribution, the

parameters w1, ...,wC can be considered as forced to be quantized as well as

146

7.3 A Finite Precision Model of RVFL Networks

the results of the hidden functions, in such a way that the intrinsic randomness

of the RVFL’s inner layer is still preserved. By the way, the nonuniform

quantization of input values should also improve the numerical accuracy in

representing the quantized outputs of hidden functions, which undergo strong

saturation effects.

However, a main problem arises in the computation of finite precision β(n)

parameters in (7.12), which can be reformulated as an Integer Least Squares

(ILS) problem:

min
β(n)∈RC

1

2

∥∥∥y − qn(H(n)β(n)
)∥∥∥2 +

λ

2

∥∥β(n)
∥∥2

s.t. β(n) ∈ Z(n) ,

(7.13)

where Z(n) refers here as a generic set of integers to which quantized values

can be assimilated. It has been shown that ILS is an NP-hard problem and

the algorithms for solving it have exponential complexity [206]. Also, the

ILS problem in (7.13) becomes nonlinear in the β(n) parameters. The un-

derlying idea of this paper is that an optimized nonlinear quantization might

also compensate, and possibly regularize, the approximate solution of the

said ILS problem. Therefore, we will consider in the following a straightfor-

ward approximation of the result obtained in (7.5), by using a finite precision

representation:

βrnd(n) = qn

((
H(n)TH(n) + λI

)−1
H(n)T qn(y)

)
, (7.14)

where output values y are in general quantized, as they can be obtained from

measures by digital equipments.

GA Optimization of Nonuniform Quantizer

Differently from what is proposed in the uninform quantization, here the GA

is applied to the θ parameters of the nonuniform quantizer and hence, the

chromosome of each individual is represented by an array of d·2n real numbers

(i.e., quantization values) as illustrated in Fig. 7.4. It is a possible solution

that implements a nonuniform quantizer.

Given a dataset on which the GA optimization is being performed, the

quantized weights wm are computed once for all at the beginning of the

process. Then, for each individual and in every generation, the RVFL is

trained using (7.14) and the hidden matrix H(n), which is obtained through

147

7.3 A Finite Precision Model of RVFL Networks

Figure 7.4: A chromosome defining the nonuniform quantizer, where θTj ,
j = 1 . . . d, is the jth column of θ.

(7.11) using the particular instance of θ associated with the chromosome of

the individual. Successively, the output on a test set is computed using (7.12).

The fitness of the individual is the Noise-to-Signal Ratio (NSR) defined as in

(7.10).

The steps of the GA are the same as in the uniform quantization proce-

dure.

The goodness of the performance of the algorithm relies on the values of P

and Mgen as well as on the mutation rate (Mr) and on the crossover rate (Cr).

The successive simulations will be performed by fixing the following parame-

ters: P = 100, Mgen = 100, Cr = 0.8, and Mr = 0.01, while the evolutionary

process is stopped if the best fitness stalls for 5 consecutive generations within

a relative interval of ±0.01%.

Description of the Experiments

In this section, we evaluate the performances of the proposed approach

on the three different and well-known and commonly consolidated datasets

summarized in Table 7.6, which are available on the UCI repository

(https://archive.ics.uci.edu/ml/datasets.html):

� Airfoil. The aim is to predict the scaled sound pressure level when

different tunnel speed or angles of attack are applied on airfoil blade

section.

� Concrete. Several quantitative attributes of civil materials are used to

predict the compressive strength, which is the most important one.

� Energy. Twelve different building shapes, with several characteristics,

are used to assess the heating load requirement of buildings.

Both input and output values of datasets are normalized before training

in order to accommodate every feature in the range between 0 and 1. The

148

7.3 A Finite Precision Model of RVFL Networks

Table 7.6: Description of The Adopted Datasets

Dataset Features Instances Desired output

Airfoil 6 1503 Pressure level

Concrete 9 1030 Compressive strength

Energy 8 768 Heating Load

weights w of the sigmoid basis functions are extracted randomly from a uni-

form distribution over the interval [−1,+1], while the scalars b are extracted

randomly from a uniform distribution over the interval [−0.1,+0.1]. Every

test result of RVFL is obtained through a 10-fold cross validation, where the

overall NSR is obtained comparing actual values of outputs with the predicted

ones in every fold. Nonetheless, given the stochastic nature of the RVFL ini-

tialization, as well as for GAs, all the performances reported in the following

are an average of the results obtained by repeating the same experiment over

10 independent runs.

First of all, we consider the baseline solution where a finite precision RVFL

is trained and tested using the above steps and a uniform quantization of input

values. Four different values of n (i.e., bits for quantization) are considered:

4, 8, 10, and 12. The performances are compared with respect to the one

obtained by a software implementation on a standard computer or DSP us-

ing 64-bit floating point arithmetic. Higher values of n are not considered,

because in such cases the hardware complexity starts to be considerable and

the performances are very close to the one obtained using a floating point

arithmetic.

In order to compute the optimal number of hidden nodes C and the regu-

larization factor λ, we executed an inner-fold cross-validation of the training

data. In particular, we performed a grid-search procedure where C was varied

from 50 to 500 in a step of 50 and λ was in the set {2−10, 2−9, . . . , 29, 210}.
The optimum values of C and λ for every number of bits is reported in Ta-

ble 7.7 and Table 7.8, respectively. It can be noted that the optimum value

of C tends to increase as the precision increases, whilst λ decreases.

Taking the optimal choices of C and λ, the performances in terms of NSR

versus the number of bits are shown in Table 7.9. As expected, it is worth

considering optimized implementations of finite precision RVFLs using 12 or

a lower number of bits, as the related performances are different from the one

using a floating point architecture.

149

7.3 A Finite Precision Model of RVFL Networks

Table 7.7: Optimal Hidden Nodes (C) Found by Cross-validation

Dataset n=4 n=8 n=10 n=12 float-64

Airfoil 50 50 50 50 500

Concrete 50 100 50 150 500

Energy 150 50 50 250 500

Table 7.8: Optimal Regularization Factor (λ) Found Cross-validation

Dataset n=4 n=8 n=10 n=12 float-64

Airfoil 29 20 2−3 2−7 2−10

Concrete 28 22 2−4 2−6 2−10

Energy 29 20 2−4 2−5 2−10

Table 7.9: Performance (NSR) using a Uniform Quantizer of RVFL Inputs

Dataset n=4 n=8 n=10 n=12 float-64

Airfoil -24.358 -28.055 -28.339 -28.890 -30.369

Concrete -6.635 -11.233 -11.883 -12.997 -15.326

Energy -8.578 -18.061 -18.920 -19.862 -24.433

Table 7.10: Performance (NSR) using a GA-optimized Nonuniform Quantizer
of RVFL Inputs

Dataset n=4 n=8 n=10 n=12

Airfoil -24.453 -28.165 -28.362 -28.851

Concrete -7.105 -11.573 -11.855 -13.202

Energy -8.629 -19.424 -21.682 -24.262

The results obtained by using the GA optimization, keeping the same

choices of C and λ, is reported in Table 7.10. While the improvements on

Airfoil are not relevant, as it probably contains noisy and spread data, for

Concrete and Energy the NSR decreases of 1 or 2 dB, more significantly with

a higher number of bits as the space of solution enlarges and there is more

margin to found a better local optimum.

To confirm the efficacy of the proposed approach, we report in Fig. 7.5

150

7.4 Conclusion

the quantization levels obtained in the case of a 10-bit finite precision imple-

mentation of a RVFL trained on the Energy dataset. The optimal solution

found by the GA determines an evident nonuniform distribution of the quan-

tization levels, which is also different for each dimension. Finally, we report

Figure 7.5: Quantization levels of a 10-bit nonuniform quantizer optimized
by GA on the Energy dataset.

in Fig. 7.6 the comparison of actual and predicted values of Energy dataset

using a 8-bit nonuniform quantizer optimized by GA. Evidently, the behavior

is comparable with a numerical difference of about 1.4 dB and for NSR values

around 19 dB.

7.4 Conclusion

In this work, a method for implementing of RVFL networks on finite precision

hardware architectures is proposed. A genetic algorithm is adopted for opti-

mizing the performances of a uniform quantizer applied to all the parameters

in the algorithm and a nonuniform quantizer is applied to input values only,

to optimize the performances even when a low number of bits is adopted. For

the uniform quantization, the performance gap between the basic rounding

and the GA optimization shrinks as the number of bits increases, while the

GA procedure obtains better performance using even 4 and 8 bits. Also, the

151

7.4 Conclusion

0 100 200 300 400 500 600 700 800
5

10

15

20

25

30

35

40

45

Sample

O
ut

pu
t

actual
predicted

Figure 7.6: Output on Energy dataset using a 8-bit precision and GA opti-
mization.

numerical results obtained with the nonuniform quantizatin show that the

proposed approach is effective even using a small number of bits and it com-

pensates the effects of rounding in the successive layers of the neural network.

Future works could focus on other nature-inspired optimization process, like

for example particle swarms, or might consider hardware architectures and fi-

nite precision adaptive, online strategies reflecting the numerical results herein

obtained.

152

Chapter 8

Remote Water Quality

Prediction Monitoring

8.1 Motivation

A novel context where distributed computing is receiving an increasing inter-

est is the forecasting and monitoring of physico-chemical parameters in water

reservoirs using satellite images. This class of remote sensing applications

implies fast, precise and accurate predictions that can avoid the utilization of

much more complicated in situ analysis methodologies.

Freshwater ecosystems are an important natural resource, essential for

multiple purposes such as drinking, domestic use, industrial cooling, power

generation, agriculture, waste disposal, and transportation routes [212].

Therefore, many scientists have studied and published papers on the influ-

ence of freshwater physico-chemical-parameters to the changing ecosystems.

The prediction of such water quality variables is a very important aspect for

the analysis of any aquatic system. The time evolution of physico-chemical

variables of aquatic ecosystems is very complex and nonlinear. Therefore, the

research on the various methods for prediction of water quality reservoir has

important theoretical value and practical significance.

One of the main processes leading to water deterioration in lentic en-

vironments is the eutrophication, which is mostly caused by anthropogenic

activities, as well as the releases of industrial and domestic effluents into

water bodies. Physico-chemical water parameters typically related to eu-

trophication are, among others, Chlorophyll-a (C), Turbidity (T) and Sus-

pended Solids (SS), and can be used to assess the eutrophic state of wa-

153

8.1 Motivation

ter bodies [213, 214]. Generally, these parameters are analyzed through a

manual measurement after taking water samples from laboratory to ana-

lyze their concentrations. These processes are time-consuming and require

trained personnel. There already exist numerous water quality prediction

methods [215–217], mainly monitoring the water quality of reservoirs using

artificial neural network (ANN) [218], fuzzy neural network [219], series pre-

diction model of water quality fused with ARIMA and neural network [220],

regression analysis [221], gray theory [222], time series analysis [220], fuzzy

reasoning [223], satellite remote sensing [224], wavelet transform model [225]

and Adaptive Neuro Fuzzy Inference System (ANFIS) [226]. These tech-

niques were applied alone or together with other computational techniques to

support the evaluation of spatial and seasonal variations in water quality.

Artificial neural networks (ANNs) with cross-validation have recently

gained attention in the literature of water quality monitoring [214, 226–232].

Moreover, an information-theoretic (IT) approach to model-based inference

has been used to simulate the changing ecosystems [233–235].

The key physico-chemical parameters that can influence water ecosystems

have been found to be: Chlorophyll-a Levels (C); Total Suspended Solids

(TSS); Transparency/Turbidity (T). They have been found to be important

factors in the water quality monitoring [215,236–238]. The methods currently

used for water analysis are time-consuming and extremely costly, because

they require sample collection, trained people and specialized laboratories.

We propose to analyze water quality by ANNs models and remote sensing

technology. The algorithm to retrieve water parameters from satellite images

has been developed by using ‘in situ measurements’ and a series of Landsat

images. In this work an IT method is proposed to predict C, TSS and T

parameters, focusing on ANN and Leave-One-Out (LOO) cross-validation.

However, to focus the scope of the analysis and further pursue the goal of this

work, some remarks should be drawn regarding the physical properties and

interactions between sunlight and water bodies. To be able to discriminate

parameters such as TSS from the water reflectance, it is very important to

take into account the absorption and scattering properties of the water bodies.

These properties depend on the wavelengths of the electromagnetic spectrum.

In the whole 400-1300 nm region of the spectrum, the scattering is due mainly

to solid sediments. Instead, the absorption for the same spectrum region is

regulated mainly by Chlorophyll-a and other organic materials. We note

that these properties are much more evident when considering radiation with

154

8.2 Methodologies

wavelength under 500 nm and are almost negligible otherwise.

In this analysis, it is also very important to be able to discriminate be-

tween the water radiance and the radiance of the light scattered by the bottom

surface of the water body. Fortunately, the wavelengths in which we are in-

terested are affected only lightly by this confusion. In particular, the spectral

and spatial resolution must be adequate in order to analyze the water param-

eters. For instance, Thematic Mapper (TM) is appropriate for the study of

water bodies that are not too large, but its spectral resolution is not enough

to determine some water quality variables. Other sensors have better spec-

tral resolution but a too coarse spatial resolution. In this work, the Enhanced

TM (ETM) is chosen and the analysis is done combining multiple bands to

balance out the poor spectral resolution. This is the reason why we used

different images and different spectral bands, to be able to reconstruct and

wholly analyze the chosen water bodies.

8.2 Methodologies

The proposed approach for monitoring water quality parameters is based

mostly on Neural Networks and satellite images. First of all the images from

Landsat 7 sensor ETM+ and Landsat 8 were acquired. Typically, in order to

obtain and predict the C, TSS, and T concentration from the reflectance of

the satellite images, all the satellite image bands from visible and NIR were

first calibrated for radiance values and, subsequently, for reflectance values.

After that, they are given in input to an Artificial Neural Network (ANN) for

the actual analysis.

Image-based methods for atmospheric correction can estimate path radi-

ance without using atmospheric properties, their accuracy is highly dependent

on what is captured in a scene, as described in many papers [239–243]. The

characteristics of the analyzed bands are reported in Table 8.1.

Table 8.1: Characteristics of visible and NIR bands of the analyzed sensors.

Satellite Bands
Spectral

Resolution [nm]
Spatial

Resolution [m]
Temporal

Resolution [days]
Landsat7(ETM+) TM1 450-520 30 16
Landsat7(ETM+) TM2 520-600 30 16
Landsat7(ETM+) TM3 630-690 30 16
Landsat7(ETM+) TM4 760-900 30 16

155

8.2 Methodologies

The multitemporal Landsat images and the linear mixed models were

also used and applied for the determination and quantification of spectral re-

flectance optical factors of dispersed elements in the water reservoir, drinking

water management and several other fields [229]. However, there are scant

reports analyzing seasonal cycles and recent satellite images as Landsat-8.

One of the problems with the traditional neural network model is associated

with the choice of the network structure. The training parameters can eas-

ily fall into local minima, seriously affecting the precision and reliability of

the model [225]. Specifically, when these methods are directly applied to

physico-chemical parameters prediction, the results are often unsatisfactory.

Based on the previous applications cited above, in this work we propose

a method for predicting C, T, and SS in the water reservoir. By applying

Wavelet Artifical Neural Networks (WANN) and remote sensing techniques

to assess water quality, with respect to the seasonal cycle, we implement a

simple and operative method that can be available for the monitoring of mul-

tiple variables related to the ecological systems with precise and less expensive

sampling than the methods currently used for analysis of water in reservoirs.

The proposed method consider the seasonal characteristics of a region, ana-

lyzing full cycle (March to May), emptying cycle (June to August), dry cycle

(September to November) and a filling cycle (December to February) of the

water reservoir; the neural network is trained by hydrological cycle. Four im-

ages are collected per year, corresponding to each hydrological cycle of each

collection water body.

8.2.1 Landsat 7, ANN and LOO

The chosen Landsat 7 ETM+ satellite has a spatial resolution of 30 m for

the six reflective bands, 60 m for the thermal band, and includes a panchro-

matic (pan) band with a 15 m resolution. L7 has a 378 Gigabit (Gb) Solid

State Recorder (SSR) that can hold 42 min (approximately 100 scenes) of

sensor data and 29 h of housekeeping telemetry concurrently (L7 Science

Data User’s Handbook, available at http://landsathandbook.gsfc.nasa.

gov/handbook.html).

The proposed method for this satellite corrects a path radiance spectrum

estimated by the dark object subtraction (DOS) method so that the spectrum

meets general spectral characteristics of path radiance. The atmospheric ef-

fects that influence the signal registered by remote sensors might be mini-

156

http://landsathandbook.gsfc.nasa.gov/handbook.html
http://landsathandbook.gsfc.nasa.gov/handbook.html

8.2 Methodologies

mized in order to provide reliable spectral information. In aquatic systems,

the application of atmospheric correction avoids the under or overestimation

of remote sensing reflectance (Rrs). An accurate Rrs provides better infor-

mation about the state of aquatic system, establishing more precisely the

concentration of aquatic compounds [244]. In this part of the study, the DOS

method with semi-automatic classification plug-in is used, as described else-

where [245, 246]. Afterward, a relative scattering model is chosen based on

the atmospheric conditions of the image at the acquisition time and the ini-

tial haze value for the other spectral bands is then calculated. Equations and

parameters to convert calibrated Digital Numbers (DNs) to physical units,

such as at-sensor radiance and reflectance, have been presented in a ‘sensor-

specific’ manner elsewhere [247]. These values are calculated for each band

after the normalization for the visible and NIR bands, by using the following

formulas:

Lλ = LMINλ + (Qcal −Qcalmin)

(
LMAXλ − LMINλ

Qcalmax −Qcalmin

)
, (8.1)

or

Lλ = Qcal ×GAIN BAND + OFFSET BAND, (8.2)

where:

Lλ: Spectral radiance at the sensor’s aperture [W/(m2 × sr × µm)],

Qcal: Quantized calibrated pixel value [DN],

Qcalmin: Minimum quantized calibrated pixel value corresponding to LMINλ

[DN],

Qcalmax: Maximum quantized calibrated pixel value corresponding to LMAXλ

[DN],

LMINλ: Spectral at-sensor radiance that is scaled to Qcalmin [W/(m2 × sr ×
µm)],

LMAXλ: Spectral at-sensor radiance that is scaled to Qcalmax [W/(m2 × sr ×
µm)],

GAIN BAND: Band-specific rescaling gain factor [(W/(m2 × sr × µm))/DN].

An ANN is a parallel-distributed processor that resembles the human

brain by acquiring knowledge through a learning process and then stores

the knowledge in the connection strength between computational units called

157

8.2 Methodologies

neurons [248]. We used for this purpose a simple feed-forward neural network

in which the information moves in only one direction, from the input to the

output nodes. The preprocessed data is given as the input of the ANN, and

the outputs are: C, TSS, and T. In Fig. 8.1 there are shown the inputs of the

neural network considering the processed image of Landsat satellite, sensor

ETM+, band 1, band 2, band 3 and band 4. The process is repeated for each

year from 2007 to 2014. As a result, estimates of C, T, and TSS are obtained

at the output.

Figure 8.1: Diagram of the adopted ANN.

We used the LOO method to partition the dataset into training set (Tr)

and test set (Ts). We split the data set D of size N into N partitions of size

1 such that:

D = Q1 ∪Q2 ∪ ... ∪QN−1 ∪QN (8.3)

with Qi∩Qj = 0 for every i 6= j. Each partition Qi is used systematically for

testing exactly once whereas the remaining partitions are used for training.

Let Pi = D − Qi be the training set with respect to the test partition Qi,
i = 1 . . . N ; then, we can compute the error for each test partition considering

such a trained model. The error over all partitions is considered as the LOO

performance (error) [37], [249].

8.2.2 Landsat 8 and WANN

Landsat-8 data are obtained from the U.S. Geological Survey (USGS), they

include spectral band 2 (Blue), band 3 (Green) and band 4 (Red) (available

at https://espa.cr.usgs.gov/). All satellite images used were calibrated for

radiance values and, subsequently, for reflectance values, as described in many

papers [239–242].

158

8.2 Methodologies

In this case, atmospheric interference calculation and correction in the

satellite images were done using an improved Dark Object Subtraction (DOS)

method for Landsat-8 multispectral satellite image [250]. DOS is perhaps

the simplest yet most widely used image-based absolute atmospheric correc-

tion approach for classification and change detection applications [250–252].

DOS approach assumes the existence of dark objects (zero or small surface

reflectance) throughout a Landsat scene and a horizontally homogeneous at-

mosphere. The minimum digital number (DN) value in the histogram from

the entire scene is thus attributed to the effect of the atmosphere and is

subtracted from all the pixels as described in [253]. This method was cho-

sen so the spectrum meets general spectral characteristics of path radiance.

These include bad weather conditions, such as clouds, that affect both the

amount of incoming solar radiation reaching the water surface and the frac-

tion of light leaving the water surface and reaching the satellite sensor [254].

DOS method with semi-automatic classification plugin was used, as described

elsewhere [246].

The reflectance calibration of the Operational Land Imager (OLI) was

performed using methods based on atmospheric modeling as showed in (8.4).

Various models exist with different degrees of spectral resolution, number of

atmospheric constituents, cloud management, etc.. These models are gen-

erally based on the radiative transfer equation, which is given below in its

generalized form.

Lsensor =
Eo ∗ cos(θ) ∗ τ ∗ ρ

π
+
Ed ∗ τ ∗ ρ

π︸ ︷︷ ︸+Lpath, (8.4)

Ground reflected

where:

Lsensor: Radiance received at the sensor.

Eo: Solar radiance at the top of the atmosphere.

θ: Incidence angle of solar radiance on the surface (0 for vertical, 90 for hor-

izontal).

τ : Transmittance factor .

ρ: Reflectance factor.

Ed: Scattered background radiation (of the sky).

Lpath: Path scattered radiation reaching the sensor.

159

8.2 Methodologies

This equation describes the core process of many models. Atmospheric

models need to take into account the complex time and space varying com-

position of the atmosphere, as well as the wavelength dependent interactions

caused by the radiance reaching the sensor. The primary characteristics of

the OLI instrument relevant to this paper are presented in table 8.2, reporting

characteristics of the analyzed bands: band 2, band 3 and band 4. From here,

the spectral bands will be referred to by their band number, name or center

wavelength.

Table 8.2: Landsat-8 Operational Land Imager (OLI).

Landsat-8
Band Band Name Center Wavelength(nm) Bandwidth(nm)

2 Blue 482 60
3 Green 561 57
4 Red 655 38

Wavelet artificial neural network (WANN) is a mathematical modeling

method combining wavelet transform with an artificial neural network; it has

emerged as an effective tool to simplify the non-stationarity in the dataset

and has been widely applied by coupling it with neural networks for water re-

source variables forecasting [255–257]. The learning associated to the weights

is easier than in conventional neural networks. The error function is a con-

vex function and has a nonlinear approximation, strong fault tolerance, fast

convergence speed and good prediction results. WANN has been effectively

applied in signal processing, predictive control, fault diagnosis, and pattern

recognition [258–260]. There are, however, scarce reports for analysis of the

Landsat-8 surface reflectance and image processing.

Therefore, this study aids to analyze water quality using a hybrid sys-

tem, WANN and remote sensing techniques to estimate and predict water

parameters from satellite images. In order to develop the WANN model,

wavelet sub time series were generated by using discrete wavelet transforma-

tion (DWT) and applying Haar Wavelet Transformation with one decompo-

sition Level. These sequences are used as inputs to the WANN model. Haar

Wavelet Transformation is a simple form of compression which involves av-

eraging and differencing terms, storing detail coefficients, eliminating data

160

8.2 Methodologies

and reconstructing the matrix such that the resulting matrix is similar to the

initial one [261,262].

This approach is based on neural networks and fuzzy logic, and the in-

ference system is treated as a function approximation problem. An ANFIS

neural network implements a fuzzy inference system as in previous chapters.

The wavelet transform is an integral transform whose kernel is a class of

special functions, called wavelets [263]. The main advantage of this method,

compared to other methods, is in its spectral location capability in space and

frequency, which allows the analysis of non-stationary signals in their various

scales [264] [265]. WANN was trained by season, four images are collected

per year, corresponding to four different cycles of the reservoir.

Its essence is to express a function through the telescopic or translation

of basic mother wavelet function ψ(t).

ψj,k(t) = 2j/2ψ(2jt− k) (8.5)

y(k) =
N∑
j=1

ωiψj(
M∑
k=1

xk ∗ Ukj
aj

) , (8.6)

where x =
[
x1 x2 · · ·xN

]
is the input, composed by the pixels of satellite

images, and y(k) is the predicted output value (C, T, SS). Ukj is the connection

weight from the kth node (input layer) to the jth node (hidden layer); ψj is

the activation function of the jth neuron (hidden layer); ωj is the layer weight

from the jth nodes (hidden layer) to the output; aj is the expansion parameter

of wavelet function; and bj is the translation parameter of wavelet function.

WANN is based on the topology and structure of the back propagation

neural network. The wavelet basis function is the incentive function of the

neurons. By using the advantage of the wavelet signal analysis and combin-

ing the function of the neural network training and prediction, the signal is

transmitted forward and the error is propagated backward, so as to achieve

a more accurate predictive value signal.

This study adopted a three-layer network structure: the input with m

nodes, the hidden layer with n nodes, and the output with a single node [225].

The WANN network structure is shown in Fig. 8.2.

The validation process of the WANN was conducted with images from the

year 2017. Fig. 8.2 shows the architecture of the ANN with the column vector

161

8.2 Methodologies

Figure 8.2: WANN

Pi, (i = 1, 2, .., 768) as input. The WANN was trained with the following

parameters: Learning rate 0.01, tansig transference function in all the neurons

of the hidden layer and purelin in the output layer. The network training

function is a gradient descent with momentum and adaptive learning rate.

The wavelet transform used in the present study is the discrete transform,

which allows for the multi-resolution analysis of a signal, decomposing said

signal into approximations and details.

The approximations are high ranges, i.e., low-frequency signal compo-

nents. The details are the low ranges, i.e., high frequency components [266]

[267]. One sampling station was initially chosen for analysis and a geographic

image of the water sampling station, of 32x32 pixels, was cropped, correspond-

ing to an array containing 1024 pixels. Each digital pixel value corresponds

to an average of radiance values, emittance or backscatter of the different tar-

gets that can be contained in the pixel from the vicinity of the water sampling

station, as displayed in an example in Fig. 8.3.

Subsequently, the Haar wavelet transform was applied, with only one level

of decomposition, resulting in a matrix array of 16x16 pixels for each of the

following three components: Horizontal (H), vertical (V) and diagonal (D).

The conversion of the arrays of the H, V and D components to their respective

column-matrices was performed, and subsequently, a concatenation of the

three arrays (each containing 256 pixels) was executed, generating a vector

with 768 column size (256 x 3).

The images of the geographical area containing the water sampling col-

lection point, decomposed via wavelet into its three wavelet components was

used as the input for WANN. Preliminary tests were conducted considering

162

8.3 Case Studies

Figure 8.3: Pre Processing Images: Cefni reservoir with group of pixels area
in gray values and corresponding digital numbers (DN)

the image representations isolated for each wavelet component, with satisfac-

tory results. However, when the input data of the three wavelet components

was considered, the approximations were even better, which motivated the

choice of this arrangement in the proposed solution.

8.3 Case Studies

In this section, two case studies for the two presented methodlogies are re-

ported.

8.3.1 Tucurui plant

Study Area

A water reservoir in northern Brazil was chosen as the first study area. It

is considered as a deep reservoir, with a maximum depth of 77 m and an

average depth of 19.8 m. The reservoir is located at coordinates: latitude 03o

45’ 03” S, longitude 49o 40’ 03” W. The power plant reservoir was built in

Tocantins river, about 7 km from the city of Tucurui. The reservoir has a

total flooded area of approximately 2850km2, with approximately 50.8 million

m3 of water. In the Brazilian Amazonian region, there are 5 reservoirs in

operation: Couracy Nunes, Curua Una, Tucurui, Balbina, and Samuel. The

UHE Tucurui plant is a large-scale hydroelectric power plant that is located

in the state of Para on the Tocantins River [268]. As previously stated, we

propose remote monitoring of the reservoir using Landsat 7 in order to predict

163

8.3 Case Studies

the physico-chemical parameters of the water in seven points, as shown in

Fig. 8.4. Water samplings were conducted at 7 sampling stations: Caraipu 1

(C1), Caraipu 2 (C2), Breu Branco (MBB), Jacundá Velho (MJV), Upstrem

1 (M1), Upstrem 3 (M3), Ipixuna (MIP). The images were collected for the

years from 2007 up to 2014 and then, they were classified and converted to

vector format; the output of the neural network has been validated with values

observed in laboratory. The selected sampling stations are named: C1, C2,

M1, M3, MBB, MJV, MIP.

Figure 8.4: The area considered in this study.

The collection of water in these points were done periodically 4 times a

year corresponding to the hydrological cycle: full, emptying, dry and filling.

The different cycles are a consequence of the differences in rainfall during the

year and they influence a lot the water monitoring. Hydroelectric plants cur-

rently constitute an indispensable component for supplying renewable energy.

However, this reservoir, as the others in the Amazon region, has had several

impacts on the ecosystem: loss of biodiversity of terrestrial and aquatic fauna

and flora, high concentration of organic matter in the water bottom due to

vegetation inundation, chemical changes in the water downstream, large vol-

ume of anoxic water in the reservoir and downstream, loss of water quality

(low dissolved oxygen, high conductivity, low pH, high content of dissolved

and particulate, organic matter), high concentration of aquatic macrophytes

and reduction of fisheries downstream. The reservoir has impacted also on

the human settlements in the area by weakening physical infrastructure, de-

creasing efficiency in land use, creating resettlement problems and influencing

164

8.3 Case Studies

mining operations on the reservoir itself [269]. For these reasons, the area is

of high interest and water monitoring is one of the most important things

that have to be in place to ensure the sustainability of the reservoir.

Experimental Results

The ANN results for each sampling station are shown in Table 8.3 and Ta-

ble 8.4 for training and test sets, respectively. The values are considered in

terms of mean squared error (MSE), considering the parameters to be esti-

mated. The relative error Er was calculated by the following formula and

showed in Table 8.5:

Er =
|Xe −Xo|

Xo

, (8.7)

where Xe is the estimated value and Xo the observed value.

Table 8.3: MSE in the ANN training.
MSE

Parameters Station Full Emptying Dry Filling

C
C1 1.25× 10−23 3.70× 10−07 1.35× 10−22 6.68× 10−24

C2 4.44× 10−22 3.97× 10−24 5.61× 10−22 2.73× 10−07

MBB 1.27× 10−22 5.37× 10−09 1.33× 10−23 2.04× 10−22

T
MJV 3.78× 10−06 3.72× 10−08 2.43× 10−22 1.11× 10−22

M1 5.39× 10−08 2.78× 10−07 5.83× 10−07 1.88× 10−10

M3 1.14× 10−08 9.67× 10−09 3.15× 10−22 4.67× 10−21

TSS
M3 4.63× 10−07 2.43× 10−08 9.88× 10−23 3.83× 10−23

MJV 3.10× 10−05 7.70× 10−09 1.31× 10−21 3.80× 10−23

MIP 4.89× 10−24 5.06× 10−09 3.01× 10−04 1.66× 10−22

Table 8.4: MSE in the ANN test (2014).
MSE Validation by Cycle

Parameters Station Full Emptying Dry Filling

C
C1 1.1593 17.1529 0.2679 5.4940
C2 0.1555 4.3905 0.4366 0.0889

MBB 0.3346 0.0070 0.8778 0.1564

T
MJV 0.1789 0.0736 0.0156 0.0828
M1 0.0010 0.4436 0.4957 0.0272
M3 0.0966 0.2470 0.2272 0.2318

TSS
M3 0.0444 1.1343 0.0006 1.6069

MJV 0.0106 1.1881 0.0471 0.2483
MIP 1.1363 0.0135 11.3284 0.7024

165

8.3 Case Studies

Table 8.5: Relative Error (Er) in the ANN test (2014).
Relative Error

Parameters Station Full Emptying Dry Filling

C
C1 0.0800 0.5791 0.1392 0.3128
C2 0.0421 0.6663 0.0751 0.0479

MBB 0.1106 0.0229 0.2067 0.0886

T
MJV 0.4824 0.0979 0.0793 0.2423
M1 0.0180 0.1885 0.1416 0.0307
M3 0.3495 0.1421 0.1479 0.1731

TSS
M3 0.0440 0.4702 0.0303 0.1960

MJV 0.0229 1.1978 0.0682 0.0647
MIP 0.0425 0.0174 0.4975 0.0328

The validation results of 2014 for the different sampling stations are re-

ported in Figs. 8.5-8.7, comparing the observed values of laboratory results

with the ones estimated by wavelet transformation of the remote sensing

images and subsequent analysis by ANN, as proposed in this paper. The

X-axis of each figure represents the hydrological cycle; the Y -axis represents

the quantitative value of the analyzed parameter in that hydrological cycle.

Coherently with the numerical results given in Table 8.4 and Table 8.5, the

errors between expected and observed values are quite low. In particular, the

bests results are obtained during the dry season cycle 3 (September-October-

November) for TSS. This period corresponds to a less cloudy period in the

Region. This facilitates the analysis based on satellite images and allows us

to obtain more accurate results.

Overall, the obtained errors are quite low and the ANN performance shows

good results in the evaluation of physico-chemical parameters that, in turn,

allows the identification of possible anthropogenic impacts that are relevant

in environmental management and in political decision-making processes.

Figure 8.5: C levels in hydroelectric power plant reservoir for sample station:
C1 - Caraipu 1, C2 - Caraipu 2, MBB - Breu Branco; E = Estimated; O =
Observed-

166

8.3 Case Studies

Figure 8.6: T levels in hydroelectric power plant reservoir for sample station:
M1 - Upstrem 1, M3 - Upstrem 3 , MJV - Jacunda Velho; E = Estimated; O
= Observed.

Figure 8.7: TSS levels in hydroelectric power plant reservoir for sample sta-
tion: MIP - Ipixuna, M3 - Upstrem 3 , MJV - Jacunda Velho; E = Estimated;
O = Observed.

8.3.2 Cefni Reservoir

Study Area

The Cefni reservoir (also called ”Queen Elizabeth”) is located in the center of

Anglesey, Wales, UK, and it is managed by Welsh Water and Hamdden Ltd,

while the associated fishery is managed by the Cefni Angling Association.

The associated area is 860000 squared meters (86 ha), with a length of 2.3

km (Fig. 8.8).

Cefni Reservoir on the Isle of Anglesey was overflown as part of the UK

Natural Environment Research Council (NERC). The lake is shallow, with

a maximum depth of approximately 4 m and contains beds of submersed,

floating-leaved and emergent aquatic macrophyte species. It is also known to

support dense growths of toxic blue-green algae during summer.

The reservoir is surrounded by an approximately 100-m wide plantation of

coniferous trees with agricultural fields beyond [270]. The collection of water

was done periodically in this reservoir.

167

8.3 Case Studies

Figure 8.8: Cefni Reservoir, Anglesey, UK.

Water samplings for physico-chemical water quality evaluations are per-

formed periodically at Cefni and the associated data were provided by the

Welsh Water and Hamdden Ltd Company. These data were collected from

January 2013 to December 2017.

The relationship between Chlorophyll-a Levels, Suspended Solids, Turbid-

ity and spectral response of the reservoir was determined using the physical

water samples collected.

These data have been extracted from the samples and analyzed. We com-

pared it to the proposed parameters level extracted from the remote sensing

images, analyzed with a WANN method, as described above.

Experimental Results

In the following, the results of the prediction are shown. The table 8.6 shows

the WANN training results for Cefni. The mean square errors (MSE) for neu-

ral network training are shown to be low for all the Chlorophyll a, Turbidity

and Suspended Solids.

The relative errors were calculated by the following formula in (8.8) and

showed in 8.6:

168

8.3 Case Studies

Table 8.6: Mean square errors in the WANN training conducted in the present
study

MSE
Var Summer Autumn Winter Winter
C 9.1× 10−22 3.5× 10−09 4.1× 10−22 5.7× 10−22

T 1.1× 10−06 8.3× 10−06 2.2× 10−08 3.4× 10−09

SS 2.2× 10−24 3.5× 10−08 2.9× 10−05 4.6× 10−24

RelativeError(Er) =
|χe − χo|

χo
(8.8)

where:

χe: Estimated Value

χo: Observed Value

Table 8.7: Relative Error (Er) in the sampling station, evaluated parameter
and season cycle

Relative Error
Var Summer Autumn Winter Winter
C 0.0001 0.1402 0.1301 0.0412
T 0.2027 0.0881 0.0257 0.0186
SS 0.0201 0.0305 0.2321 0.0514

Validation results for 2017 are shown in the Figures 8.9, 8.10, 8.11. The

laboratory results correspond to the observed values and the analysis by ANN

correspond to the estimated values (namely C, T and SS).

The X-axes of figures represent the season cycles (1, 2, 3 and 4), re-

spectively, summer, autumn, winter, and spring. The Y-axis represents the

quantitative value of the analyzed parameters.

Tables 8.7 and 8.8 show the errors between expected and observed values.

Best results were obtained for Chlorophyll a in the summer season, cycle 1.

This period corresponds to the less cloudy period in the region, being the

best estimates by WANN and satellite images from Landsat-8. The results

are satisfactory also for the other cycles and the other parameters

The results estimated in the present study when compared with those ob-

served in the laboratory proved extremely close to each other, demonstrating

169

8.3 Case Studies

Figure 8.9: Predicting Chlorophyll a Levels in the Cefni reservoir by WANN
and satellite images.

Figure 8.10: Predicting Turbidity in the Cefni reservoir by WANN and satel-
lite images.

Figure 8.11: Predicting Solids Suspended in the Cefni reservoir by WANN
and satellite images.

170

8.3 Case Studies

Table 8.8: Approximation errors of the proposed method for 2017 in the
sampling station, evaluated parameter and seasonal cycle.

MSE Validation
Var Summer Autumn Winter Winter
C 0.0001 0.4522 0.2603 0.1700
T 0.2094 0.1156 0.0115 0.0103
SS 0.2300 0.0501 0.4101 2.1121

the adequate efficiency of the proposed method, WANN showed good results

in the evaluation of physico-chemical parameters.

171

Bibliography

[1] C. Chatfield, Time-Series Forecasting. CRC Press, 2000. [Online].
Available: https://books.google.it/books?id=fLlGsTFb21EC

[2] J. G. Box, G., “Time series analysis: forecasting and control,” 1970.

[3] D. R. Brockwell, P., Time Series: Theory and Methods. Springer, 1991.

[4] P. Newbold, C. Agiakloglou, and J. Miller, “Adventures with arima
software,” International Journal of Forecasting, vol. 10, no. 4, pp.
573 – 581, 1994. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/0169207094900256

[5] S. L. Ho and M. Xie, “The use of arima models for reliability
forecasting and analysis,” in Proceedings of the 23rd International
Conference on on Computers and Industrial Engineering. Elmsford,
NY, USA: Pergamon Press, Inc., 1998, pp. 213–216. [Online]. Available:
http://dl.acm.org/citation.cfm?id=303088.303181

[6] J. H. Kim, “Forecasting autoregressive time series with bias-
corrected parameter estimators,” International Journal of Forecasting,
vol. 19, no. 3, pp. 493 – 502, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0169207002000626

[7] Y. Q. Fan, J., Nonlinear Time Series. Springer, 2003.

[8] T. Teräsvirta, “Specification, estimation, and evaluation of smooth
transition autoregressive models,” Journal of the American Statistical
Association, vol. 89, no. 425, pp. 208–218, 1994. [Online]. Available:
https://doi.org/10.1080/01621459.1994.10476462

[9] T. Schreiber and A. Schmitz, “Surrogate time series,” Phys. D,
vol. 142, no. 3-4, pp. 346–382, Aug. 2000. [Online]. Available:
http://dx.doi.org/10.1016/S0167-2789(00)00043-9

[10] S. Lundbergh, T. Teräsvirta, and D. Van Dijk, “Time-varying smooth
transition autoregressive models,” Journal of Business & Economic
Statistics, vol. 21, no. 1, pp. 104–121, 2003.

[11] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

173

https://books.google.it/books?id=fLlGsTFb21EC
http://www.sciencedirect.com/science/article/pii/0169207094900256
http://www.sciencedirect.com/science/article/pii/0169207094900256
http://dl.acm.org/citation.cfm?id=303088.303181
http://www.sciencedirect.com/science/article/pii/S0169207002000626
https://doi.org/10.1080/01621459.1994.10476462
http://dx.doi.org/10.1016/S0167-2789(00)00043-9

BIBLIOGRAPHY

[12] C. M. Bishop et al., Neural networks for pattern recognition. Oxford
university press, 1995.

[13] R. F. Engle, “Autoregressive conditional heteroscedasticity with esti-
mates of the variance of united kingdom inflation,” Econometrica: Jour-
nal of the Econometric Society, pp. 987–1007, 1982.

[14] T. Bollerslev, “Generalized autoregressive conditional heteroskedastic-
ity,” Journal of econometrics, vol. 31, no. 3, pp. 307–327, 1986.

[15] T. Bollerslev, R. Y. Chou, and K. F. Kroner, “Arch modeling in finance:
A review of the theory and empirical evidence,” Journal of economet-
rics, vol. 52, no. 1-2, pp. 5–59, 1992.

[16] M. Panella, F. Barcellona, and R. L. D’ecclesia, “Forecasting energy
commodity prices using neural networks,” Advances in Decision Sci-
ences, vol. 2012, 2012.

[17] R. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder, Forecasting
with exponential smoothing: the state space approach. Springer Science
& Business Media, 2008.

[18] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[19] M. G. Frei and I. Osorio, “Intrinsic time-scale decomposition: time–
frequency–energy analysis and real-time filtering of non-stationary sig-
nals,” in Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, vol. 463, no. 2078. The Royal So-
ciety, 2007, pp. 321–342.

[20] J. L. Kling and D. A. Bessler, “A comparison of multivariate forecasting
procedures for economic time series,” International Journal of Forecast-
ing, vol. 1, no. 1, pp. 5–24, 1985.

[21] J. P. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, and N. Jenkins,
“Integrating distributed generation into electric power systems: A
review of drivers, challenges and opportunities,” Electr. Power Syst.
Res., vol. 77, no. 9, pp. 1189 – 1203, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0378779606001908

[22] V. D. Dio, S. Favuzza, D. L. Cascia, F. Massaro, and G. Zizzo,
“Critical assessment of support for the evolution of photovoltaics and
feed-in tariff(s) in Italy,” Sustainable Energy Technol. Assess., vol. 9,
pp. 95 – 104, 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S2213138814001015

174

http://www.sciencedirect.com/science/article/pii/S0378779606001908
http://www.sciencedirect.com/science/article/pii/S2213138814001015
http://www.sciencedirect.com/science/article/pii/S2213138814001015

BIBLIOGRAPHY

[23] Y. Du, D. D.-C. Lu, G. James, and D. J. Cornforth, “Modeling and
analysis of current harmonic distortion from grid connected PV invert-
ers under different operating conditions,” Sol. Energy, vol. 94, pp. 182
– 194, 2013.

[24] A. Samadi, R. Eriksson, L. S. o. der, B. G. Rawn, and J. C. Boemer,
“Coordinated active power-dependent voltage regulation in distribution
grids with PV systems,” vol. 29, no. 3, pp. 1454–1464, June 2014.

[25] X. Han, S. Liao, X. Ai, W. Yao, and J. Wen, “Determining the minimal
power capacity of energy storage to accommodate renewable genera-
tion,” Energies, vol. 10, no. 4, pp. 1996–1073, 2017.

[26] R. H. Inman, H. T. C. Pedro, and C. F. M. Coimbra, “Solar forecasting
methods for renewable energy integration,” Prog. Energy Combust. Sci.,
vol. 39, no. 6, pp. 535 – 576, 2013.

[27] E. M. Garrigle and P. Leahy, “Quantifying the value of improved
wind energy forecasts in a pool-based electricity market,” Renew.
Energy, vol. 80, pp. 517 – 524, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0960148115001135

[28] N. Liu, Q. Tang, J. Zhang, W. Fan, and J. Liu, “A hybrid
forecasting model with parameter optimization for short-term load
forecasting of micro-grids,” Appl. Energy, vol. 129, pp. 336 – 345, 2014.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0306261914005182

[29] E. G. Kardakos, M. C. Alexiadis, S. I. Vagropoulos, C. K. Simoglou,
P. N. Biskas, and A. G. Bakirtzis, “Application of time series and ar-
tificial neural network models in short-term forecasting of pv power
generation,” in Power Engineering Conference (UPEC), Sept 2013, pp.
1–6.

[30] A. Clements, A. Hurn, and Z. Li, “Strategic bidding and rebidding
in electricity markets,” Energy Economics, vol. 59, pp. 24 – 36, 2016.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0140988316301839

[31] M. Q. Raza, M. Nadarajah, and C. Ekanayake, “On recent advances in
PV output power forecast,” Solar Energy, vol. 136, pp. 125 – 144, 2016.

[32] J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. J. M. de Pison,
and F. Antonanzas-Torres, “Review of photovoltaic power forecasting,”
Solar Energy, vol. 136, pp. 78 – 111, 2016.

[33] N. Al-Messabi, C. Goh, and Y. Li, “Heuristic grey-box modelling for
photovoltaic power systems,” Systems Science & Control Engineering,
vol. 4, no. 1, pp. 235–246, 2016.

175

http://www.sciencedirect.com/science/article/pii/S0960148115001135
http://www.sciencedirect.com/science/article/pii/S0306261914005182
http://www.sciencedirect.com/science/article/pii/S0306261914005182
http://www.sciencedirect.com/science/article/pii/S0140988316301839
http://www.sciencedirect.com/science/article/pii/S0140988316301839

BIBLIOGRAPHY

[34] D. Coyle, G. Prasad, and T. M. McGinnity, “A time-series prediction
approach for feature extraction in a brain-computer interface,” IEEE
transactions on neural systems and rehabilitation engineering, vol. 13,
no. 4, pp. 461–467, 2005.

[35] C. Bennett, R. A. Stewart, and J. Lu, “autoregressive with
exogenous variables and Neural Network short-term load forecast
models for residential low voltage distribution networks,” Energies,
vol. 7, no. 5, pp. 2938–2960, 2014. [Online]. Available: http:
//www.mdpi.com/1996-1073/7/5/2938

[36] S. Tzafestas and E. Tzafestas, “Computational intelligence techniques
for short-term electric load forecasting,” J. Intell. Robotics Syst., vol. 31,
no. 1-3, pp. 7–68, May 2001.

[37] A. Proietti, M. Panella, F. Leccese, and E. Svezia, “Dust detection
and analysis in museum environment based on pattern recognition,”
Measurement, vol. 66, pp. 62 – 72, 2015.

[38] D. S. Broomhead and D. Lowe, “Multivariable functional interpolation
and adaptive networks,” Complex Systems 2, pp. 321–355, 1988.

[39] M. Panella, A. Rizzi, and G. Martinelli, “Refining accuracy of envi-
ronmental data prediction by MoG neural networks,” Neurocomputing,
vol. 55, no. 3-4, pp. 521–549, 10 2003.

[40] J. Jang, C. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Comput-
ing: a Computational Approach to Learning and Machine Intelligence.
Prentice-Hall, Upper Saddle River, NJ, 1997.

[41] A. Rizzi, M. Panella, F. F. Mascioli, and G. Martinelli, “A recursive
algorithm for fuzzy Min-Max networks,” in Proceedings of International
Joint Conference on Neural Networks (IJCNN 2000), vol. 6. IEEE,
July 2000, pp. 541–546.

[42] M. Panella, “A hierarchical procedure for the synthesis of ANFIS
networks,” Advances in Fuzzy Systems, vol. 2012, pp. 1–12,
2012. [Online]. Available: http://www.hindawi.com/journals/afs/
2012/491237

[43] M. Panella, A. Rizzi, F. M. F. Mascioli, and G. Martinelli, “Anfis
synthesis by hyperplane clustering,” in Proceedings Joint 9th IFSA
World Congress and 20th NAFIPS International Conference (Cat. No.
01TH8569), vol. 1, July 2001, pp. 340–345 vol.1.

[44] M. Panella, L. Liparulo, and A. Proietti, “A higher-order fuzzy neural
network for modeling financial time series,” in Proc. of IEEE Inter-
national Joint Conference on Neural Networks (IJCNN 2014), Beijing,
China, 2014, pp. 3066–3073.

176

http://www.mdpi.com/1996-1073/7/5/2938
http://www.mdpi.com/1996-1073/7/5/2938
http://www.hindawi.com/journals/afs/2012/491237
http://www.hindawi.com/journals/afs/2012/491237

BIBLIOGRAPHY

[45] A. Sharma, R. Podolsky, J. Zhao, and R. A. McIndoe, “A modified
hyperplane clustering algorithm allows for efficient and accurate clus-
tering of extremely large datasets,” Bioinformatics, vol. 25, no. 9, pp.
1152–1157, 2009.

[46] S. Haykin, Neural Networks, a Comprehensive Foundation, 2nd Edition.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1999.

[47] A. Mellit and S. A. Kalogirou, “Artificial intelligence techniques
for photovoltaic applications: A review,” Progress in Energy
and Combustion Science, vol. 34, no. 5, pp. 574 – 632, 2008.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0360128508000026

[48] M. Panella, “Advances in biological time series prediction by neural
networks,” Biomedical Signal Processing and Control, vol. 6, no. 2, pp.
112–120, 2011.

[49] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” Science, vol.
304, no. 5667, pp. 78–80, 2004.

[50] M. H. Tong, A. D. Bickett, E. M. Christiansen, and G. W. Cottrell,
“Learning grammatical structure with echo state networks,” Neural
Networks, vol. 20, no. 3, pp. 424 – 432, 2007, echo State Networks
and Liquid State Machines.

[51] A. H. Moghaddam, M. H. Moghaddam, and M. Esfandyari, “Stock mar-
ket index prediction using artificial neural network,” J. of Economics,
Finance and Administrative Science, vol. 21, no. 41, pp. 89 – 93, 2016.

[52] F. Triefenbach, A. Jalalvand, K. Demuynck, and J.-P. Martens, “Acous-
tic modeling with hierarchical reservoirs,” IEEE Trans. on Audio,
Speech, and Language Proc., vol. 21, no. 11, pp. 2439–2450, Nov. 2013.

[53] H. Jaeger, “Adaptive nonlinear system identification with echo state
networks,” in Adv. in Neural Inf. Proc. Syst., 2002, pp. 593–600.

[54] S. Scardapane, D. Wang, and M. Panella, “A decentralized training
algorithm for echo state networks in distributed big data applications,”
Neural Networks, vol. 78, pp. 65 – 74, 2016.

[55] A. Rosato, R. Altilio, R. Araneo, and M. Panella, “Embedding of time
series for the prediction in photovoltaic power plants,” in 2016 IEEE
16th International Conference on Environment and Electrical Engineer-
ing, June 2016, pp. 1–4.

[56] H. Abarbanel, Analysis of Observed Chaotic Data. Springer, New York,
1996.

177

http://www.sciencedirect.com/science/article/pii/S0360128508000026
http://www.sciencedirect.com/science/article/pii/S0360128508000026

BIBLIOGRAPHY

[57] M. Panella, A. Rizzi, F. M. F. Mascioli, and G. Martinelli, “ANFIS
synthesis by hyperplane clustering,” in IFSA World Congress and 20th
NAFIPS International Conference, 2001. Joint 9th, vol. 1, July 2001,
pp. 340–345 vol.1.

[58] C. C. Williams, “Evaluating the penetration of the commodity econ-
omy,” Futures, vol. 35, no. 8, pp. 857 – 868, 2003.

[59] T. O. Awokuse and J. Yang, “The informational role of commodity
prices in formulating monetary policy: a reexamination,” Economics
Letters, vol. 79, no. 2, pp. 219 – 224, 2003.

[60] S. Shafiee and E. Topal, “An overview of global gold market and gold
price forecasting,” Resources Policy, vol. 35, no. 3, pp. 178 – 189, 2010.

[61] C. Baumeister and L. Kilian, “Forty years of oil price fluctuations: Why
the price of oil may still surprise us,” J. Econ. Perspect., vol. 30, no. 1,
pp. 139–60, February 2016.

[62] L. Yu, S. Wang, and K. K. Lai, “Forecasting crude oil price with an emd-
based neural network ensemble learning paradigm,” Energy Economics,
vol. 30, no. 5, pp. 2623 – 2635, 2008.

[63] J. Bastian, J. Zhu, V. Banunarayanan, and R. Mukerji, “Forecasting
energy prices in a competitive market,” IEEE Comput. Appl. Power,
vol. 12, no. 3, pp. 40–45, Jul. 1999.

[64] C. P. Rodriguez and G. J. Anders, “Energy price forecasting in the
Ontario competitive power system market,” vol. 19, no. 1, pp. 366–374,
Feb. 2004.

[65] N. M. Pindoriya, S. N. Singh, and S. K. Singh, “An adaptive wavelet
neural network-based energy price forecasting in electricity markets,”
vol. 23, no. 3, pp. 1423–1432, Aug. 2008.

[66] N. Amjady and M. Hemmati, “Energy price forecasting - problems and
proposals for such predictions,” IEEE Power Energy Mag., vol. 4, no. 2,
pp. 20–29, Mar. 2006.

[67] R. Weron, “Electricity price forecasting: A review of the state-of-the-
art with a look into the future,” International Journal of Forecasting,
vol. 30, no. 4, pp. 1030 – 1081, 2014.

[68] S. K. Aggarwal, L. M. Saini, and A. Kumar, “Electricity price forecast-
ing in deregulated markets: A review and evaluation,” Int. J. Electr.
Power Energy Syst., vol. 31, no. 1, pp. 13 – 22, 2009.

[69] A. G. Bors and I. Pitas, “Median radial basis function neural network,”
IEEE Transactions on Neural Networks, vol. 7, no. 6, pp. 1351–1364,
1996.

178

BIBLIOGRAPHY

[70] M. Panella, A. Rizzi, and G. Martinelli, “Refining accuracy of envi-
ronmental data prediction by MoG neural networks,” Neurocomputing,
vol. 55, pp. 521–549, 2003.

[71] A. Rosato, R. Altilio, R. Araneo, and M. Panella, “Takagi-Sugeno fuzzy
systems applied to voltage prediction of photovoltaic plants,” in 17th
Int. Conf. Environ. and Electr. Eng. and 1st Ind. and Com. Power
Systems Europe, June 2017, pp. 1–6.

[72] S. Haykin, Neural Networks, A Comprehensive Foundation. Prentice-
Hall, Englewood Cliffs, NJ, 1999.

[73] A. Rizzi, M. Buccino, M. Panella, and A. Uncini, “Genre classification
of compressed audio data,” in Proceedings of IEEE Workshop on Mul-
timedia Signal Processing (MMSP 2008). IEEE, October 2008, pp.
654–659.

[74] N. N. Karnik and J. M. Mendel, “Applications of type-2 fuzzy logic
systems to forecasting of time-series,” Information sciences, vol. 120,
no. 1, pp. 89–111, 1999.

[75] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neu-
ral networks:: The state of the art,” International journal of forecasting,
vol. 14, no. 1, pp. 35–62, 1998.

[76] G. G. Szpiro, “Forecasting chaotic time series with genetic algorithms,”
Physical Review E, vol. 55, no. 3, p. 2557, 1997.

[77] F. E. Tay and L. Cao, “Application of support vector machines in fi-
nancial time series forecasting,” Omega, vol. 29, no. 4, pp. 309–317,
2001.

[78] A. K. Palit and R. Babuska, “Efficient training algorithm for takagi-
sugeno type neuro-fuzzy network,” in IEEE International Conference
on Fuzzy Systems, vol. 3, 2001, pp. 1367–1371.

[79] N. K. Kasabov and Q. Song, “Denfis: dynamic evolving neural-fuzzy
inference system and its application for time-series prediction,” IEEE
Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 144–154, 2002.

[80] E. D. Lughofer, “Flexfis: A robust incremental learning approach for
evolving takagi-sugeno fuzzy models,” IEEE Transactions on Fuzzy Sys-
tems, vol. 16, no. 6, pp. 1393–1410, 2008.

[81] J. Andreu and P. Angelov, “Forecasting time-series for nn gc1 using
evolving takagi-sugeno (ets) fuzzy systems with on-line inputs selec-
tion,” in International Conference on Fuzzy Systems, 2010, pp. 1–5.

179

BIBLIOGRAPHY

[82] H. Zuo, G. Zhang, W. Pedrycz, V. Behbood, and J. Lu, “Fuzzy regres-
sion transfer learning in takagi-sugeno fuzzy models,” IEEE Transac-
tions on Fuzzy Systems, vol. PP, no. 99, pp. 1–1, 2016.

[83] S. Safi, A. Zeroual, and M. Hassani, “Prediction of global
daily solar radiation using higher order statistics,” Renewable
Energy, vol. 27, no. 4, pp. 647 – 666, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0960148101001537

[84] S. Kaplanis and E. Kaplani, “Stochastic prediction of hourly
global solar radiation for Patra, Greece,” Applied Energy, vol. 87,
no. 12, pp. 3748 – 3758, 2010. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0306261910002205

[85] R. Iqdour and A. Zeroual, “Prediction of daily global solar radiation
using fuzzy systems,” Int. J. Sustainable Energy, vol. 26, no. 1, pp.
19–29, 2007.

[86] C. Voyant, M. Muselli, C. Paoli, and M.-L. Nivet, “Optimization of an
artificial neural network dedicated to the multivariate forecasting of
daily global radiation,” Energy, vol. 36, no. 1, pp. 348 – 359, 2011.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0360544210005955

[87] F. Wang, Z. Mi, S. Su, and H. Zhao, “Short-term solar irradiance
forecasting model based on artificial Neural Network using statistical
feature parameters,” Energies, vol. 5, no. 5, pp. 1355–1370, 2012.
[Online]. Available: http://www.mdpi.com/1996-1073/5/5/1355

[88] A. Mellit and S. A. Kalogirou, “Artificial intelligence techniques
for photovoltaic applications: A review,” Prog. Energy Combust.
Sci., vol. 34, no. 5, pp. 574 – 632, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360128508000026

[89] F. O. Hocaoğlu, O. N. Gerek, and M. Kurban, “Hourly solar radiation
forecasting using optimal coefficient 2-D linear filters and feed-forward
neural networks,” Sol. Energy, vol. 82, pp. 714–726, 2008.

[90] C. Chen, S. Duan, T. Cai, and B. Liu, “Online 24-h solar power
forecasting based on weather type classification using artificial neural
network,” Solar Energy, vol. 85, no. 11, pp. 2856 – 2870, 2011.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0038092X11003008

[91] C. Monteiro, L. A. Fernandez-Jimenez, I. J. Ramirez-Rosado,
A. Muñoz-Jimenez, and P. M. Lara-Santillan, “Short-term forecast-
ing models for photovoltaic plants: analytical versus soft-computing
techniques,” Mathematical Problems in Engineering, vol. 2013, no. ID
767284.

180

http://www.sciencedirect.com/science/article/pii/S0960148101001537
http://www.sciencedirect.com/science/article/pii/S0306261910002205
http://www.sciencedirect.com/science/article/pii/S0306261910002205
http://www.sciencedirect.com/science/article/pii/S0360544210005955
http://www.sciencedirect.com/science/article/pii/S0360544210005955
http://www.mdpi.com/1996-1073/5/5/1355
http://www.sciencedirect.com/science/article/pii/S0360128508000026
http://www.sciencedirect.com/science/article/pii/S0038092X11003008
http://www.sciencedirect.com/science/article/pii/S0038092X11003008

BIBLIOGRAPHY

[92] E. Izgi, A. ’́Oztopal, B. Yerli, M. K. Kaymak, and A. D. Şahin, “Short-
mid-term solar power prediction by using artificial neural networks,”
Solar Energy, vol. 86, no. 2, pp. 725 – 733, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0038092X11004245

[93] L. A. Fernandez-Jimenez, A. Munoz-Jimenez, A. Falces, M. Mendoza-
Villena, E. Garcia-Garrido, P. M. Lara-Santillan, E. Zorzano-Alba, and
P. J. Zorzano-Santamaria, “Short-term power forecasting system for
photovoltaic plants,” Renewable Energy, vol. 44, pp. 311 – 317, 2012.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0960148112001516

[94] F. Barbieri, S. Rajakaruna, and A. Ghosh, “Very short-term
photovoltaic power forecasting with cloud modeling: A review,”
Renewable Sustainable Energy Rev., vol. 75, pp. 242 – 263, 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S136403211630733X

[95] M. Pierro, F. Bucci, M. D. Felice, E. Maggioni, D. Moser,
A. Perotto, F. Spada, and C. Cornaro, “Multi-model Ensemble
for day ahead prediction of photovoltaic power generation,” Solar
Energy, vol. 134, pp. 132 – 146, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0038092X16300731

[96] Y. Chu, B. Urquhart, S. M. Gohari, H. T. Pedro, J. Kleissl, and
C. F. Coimbra, “Short-term reforecasting of power output from a 48
MWe solar PV plant,” Solar Energy, vol. 112, pp. 68 – 77, 2015.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0038092X14005611

[97] H. Takeda, “Short-term ensemble forecast for purchased photovoltaic
generation,” Solar Energy, vol. 149, pp. 176 – 187, 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0038092X17302785

[98] P. Mirowski, S. Chen, T. K. Ho, and C. N. Yu, “Demand forecasting in
smart grids,” Bell Labs Technical Journal, vol. 18, no. 4, pp. 135–158,
March 2014.

[99] C.-N. Ko and C.-M. Lee, “Short-term load forecasting using SVR
(support vector regression)-based radial basis function neural network
with dual extended Kalman filter,” Energy, vol. 49, pp. 413 – 422, 2013.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0360544212008766

[100] G. Osório, J. Matias, and J. C. ao, “Short-term wind power forecasting
using adaptive neuro-fuzzy inference system combined with evolution-
ary particle swarm optimization, wavelet transform and mutual infor-
mation,” Renewable Energy, vol. 75, pp. 301 – 307, 2015.

181

http://www.sciencedirect.com/science/article/pii/S0038092X11004245
http://www.sciencedirect.com/science/article/pii/S0960148112001516
http://www.sciencedirect.com/science/article/pii/S0960148112001516
http://www.sciencedirect.com/science/article/pii/S136403211630733X
http://www.sciencedirect.com/science/article/pii/S136403211630733X
http://www.sciencedirect.com/science/article/pii/S0038092X16300731
http://www.sciencedirect.com/science/article/pii/S0038092X14005611
http://www.sciencedirect.com/science/article/pii/S0038092X14005611
http://www.sciencedirect.com/science/article/pii/S0038092X17302785
http://www.sciencedirect.com/science/article/pii/S0038092X17302785
http://www.sciencedirect.com/science/article/pii/S0360544212008766
http://www.sciencedirect.com/science/article/pii/S0360544212008766

BIBLIOGRAPHY

[101] J. R. Castro, O. Castillo, M. A. Sanchez, O. Mendoza, A. Rodŕıguez-
Diaz, and P. Melin, “Method for higher order polynomial Sugeno Fuzzy
inference systems,” Information Sciences, vol. 351, pp. 76 – 89, 2016.

[102] J.-S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,”
IEEE transactions on systems, man, and cybernetics, vol. 23, no. 3, pp.
665–685, 1993.

[103] J.-S. Jang, C. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Comput-
ing: a Computational Approach to Learning and Machine Intelligence.
Upper Saddle River, NJ, USA: Prentice Hall, 1997.

[104] M. Panella, A. Rizzi, F.M. Frattale Mascioli, and G. Martinelli, “ANFIS
synthesis by hyperplane clustering,” in Proc. of IFSA/NAFIPS, vol. 1,
Vancouver, Canada, 2001, pp. 340–345.

[105] M. Panella and A. S. Gallo, “An input-output clustering approach to
the synthesis of ANFIS networks,” IEEE Transactions on fuzzy systems,
vol. 13, no. 1, pp. 69–81, 2005.

[106] Z. He and A. Cichocki, “An efficient K-hyperplane clustering algorithm
and its application to sparse component analysis,” in Lecture Notes
in Computer Science, D. L. et al., Ed. Berlin Heidelberg, Germany:
Springer-Verlag, 2007, vol. 4492, pp. 1032–1041.

[107] G. Seber and C. Wild, Nonlinear Regression. NJ: Wiley-Interscience:
Hoboken, 2003.

[108] S. Chiu, “Fuzzy model identification based on cluster estimation,” Jour-
nal of Intelligent & Fuzzy Systems, vol. 2, pp. 267–278, 1994.

[109] P. del Ŕıo, G. Resch, A. Ortner, L. Liebmann, S. Busch, and C. Panzer,
“A techno-economic analysis of EU renewable electricity policy path-
ways in 2030,” Energy Policy, vol. 104, pp. 484 – 493, 2017.

[110] R. Araneo, S. Celozzi, and C. Vergine, “Eco-sustainable routing of
power lines for the connection of renewable energy plants to the Italian
high-voltage grid,” Int. J. Energy Environ. Eng., vol. 6, no. 1, pp. 9–19,
2014.

[111] E. Lucchetti, J. Barbier, and R. Araneo, “Assessment of the technical
usable potential of the TUM Shaft Hydro Power plant on the Aurino
River, Italy,” Renewable Energy, vol. 60, pp. 648–654, Dec. 2013.

[112] A. Jäger-Waldau, M. Szabó, N. Scarlat, and F. Monforti-Ferrario, “Re-
newable electricity in Europe,” Renew. Sustain. Energy Rev., vol. 15,
no. 8, pp. 3703–3716, Oct. 2011.

182

BIBLIOGRAPHY

[113] F. Chen, D. Liu, and X. Xiong, “Research on stochastic optimal op-
eration strategy of active distribution network considering intermittent
energy,” Energies, vol. 10, no. 4, pp. 1996–1073, 2017.

[114] A. Rosato, R. Altilio, R. Araneo, and M. Panella, “Prediction in pho-
tovoltaic power by neural network,” Energies, vol. 10, no. 7, 2017.

[115] C. Cecati, C. Citro, and P. Siano, “Combined operations of renewable
energy systems and responsive demand in a smart grid,” IEEE Trans.
Sustain. Energy, vol. 2, no. 4, pp. 468–476, Oct. 2011.

[116] R. Araneo and M. C. Falvo, “Simulation of a ESS in a prosumer power-
plant with a PV system and an EV charging station,” in 16th Int. Conf.
Environ. and Electr. Eng., June 2016, pp. 1–5.

[117] G. Singh, P. Baredar, A. Singh, and D. Kurup, “Optimal sizing and
location of pv, wind and battery storage for electrification to an island:
A case study of kavaratti, lakshadweep,” Journal of Energy Storage,
vol. 12, pp. 78 – 86, 2017.

[118] R. Altilio, A. Rosato, and M. Panella, “A new learning approach for
takagi-sugeno fuzzy systems applied to time series prediction,” in Proc.
of IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE 2017), 2017, pp.
1–6.

[119] C. B. Martinez-Anido, B. Botor, A. R. Florita, C. Draxl,
S. Lu, H. F. Hamann, and B.-M. Hodge, “The value of
day-ahead solar power forecasting improvement,” Solar Energy,
vol. 129, pp. 192 – 203, 2016. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0038092X16000736

[120] D. P. Larson, L. Nonnenmacher, and C. F. Coimbra, “Day-ahead
forecasting of solar power output from photovoltaic plants in the
american southwest,” Renew. Energy, vol. 91, pp. 11 – 20, 2016.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0960148116300398

[121] R. Rodrigues, V. Mendes, and J. Catalão, “Protection of wind en-
ergy systems against the indirect effects of lightning,” Renew. Energy,
vol. 36, no. 11, pp. 2888–2896, Nov. 2011.

[122] A. Tuohy, J. Zack, S. E. Haupt, J. Sharp, M. Ahlstrom, S. Dise,
E. Grimit, C. Mohrlen, M. Lange, M. G. Casado, J. Black, M. Mar-
quis, and C. Collier, “Solar forecasting: Methods, challenges, and per-
formance,” IEEE Power Energy Mag, vol. 13, no. 6, pp. 50–59, Nov.
2015.

[123] L. Cavalcante and R. J. Bessa, “Solar power forecasting with sparse vec-
tor autoregression structures,” in 2017 IEEE Manchester PowerTech,
June 2017, pp. 1–6.

183

http://www.sciencedirect.com/science/article/pii/S0038092X16000736
http://www.sciencedirect.com/science/article/pii/S0038092X16000736
http://www.sciencedirect.com/science/article/pii/S0960148116300398
http://www.sciencedirect.com/science/article/pii/S0960148116300398

BIBLIOGRAPHY

[124] A. Dolara, S. Leva, and G. Manzolini, “Comparison of different physical
models for PV power output prediction,” Solar Energy, vol. 119, pp. 83
– 99, 2015.

[125] E. Ogliari, A. Dolara, G. Manzolini, and S. Leva, “Physical and hy-
brid methods comparison for the day ahead pv output power forecast,”
Renewable Energy, vol. 113, pp. 11 – 21, 2017.

[126] C. Wan, J. Zhao, Y. Song, Z. Xu, J. Lin, and Z. Hu, “Photovoltaic
and solar power forecasting for smart grid energy management,” CSEE
Journal of Power and Energy Systems, vol. 1, no. 4, pp. 38–46, Dec.
2015.

[127] Y. Li, Y. Su, and L. Shu, “An armax model for forecasting the power
output of a grid connected photovoltaic system,” Renewable Energy,
vol. 66, pp. 78 – 89, 2014.

[128] C. Yang, A. A. Thatte, and L. Xie, “Multitime-scale data-driven spatio-
temporal forecast of photovoltaic generation,” IEEE Transactions on
Sustainable Energy, vol. 6, no. 1, pp. 104–112, Jan. 2015.

[129] W. Yan, “Toward automatic time-series forecasting using neural net-
works,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 7, pp. 1028–1039, July 2012.

[130] R. Samsudin, A. Shabri, and P. Saad, “A comparison of time series
forecasting using support vector machine and artificial neural network
model,” Journal of Applied Sciences, vol. 10, pp. 950–958, 2010.

[131] C. Voyant, G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli, F. Motte,
and A. Fouilloy, “Machine learning methods for solar radiation forecast-
ing: A review,” Renewable Energy, vol. 105, pp. 569 – 582, 2017.

[132] A. K. Yadav and S. S. Chandel, “Solar radiation prediction using Artifi-
cial Neural Network techniques: A review,” Renewable and Sustainable
Energy Reviews, vol. 33, pp. 772 – 781, 2014.

[133] A. Gensler, J. Henze, B. Sick, and N. Raabe, “Deep learning for solar
power forecasting – An approach using AutoEncoder and LSTM neural
networks,” in 2016 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Oct 2016, pp. 002 858–002 865.

[134] C. Persson, P. Bacher, T. Shiga, and H. Madsen, “Multi-site solar power
forecasting using gradient boosted regression trees,” Solar Energy, vol.
150, pp. 423 – 436, 2017.

[135] A. Hamlyn, H. Cheung, L. Wang, C. Yang, and R. Cheung, “Distributed
monitoring and centralized forecasting network for dg-connected dis-
tribution systems,” in 2008 IEEE Power and Energy Society General
Meeting, July 2008, pp. 1–7.

184

BIBLIOGRAPHY

[136] A. Nguyen, M. Velay, J. Schoene, V. Zheglov, B. Kurtz, K. Murray,
B. Torre, and J. Kleissl, “High PV penetration impacts on five local dis-
tribution networks using high resolution solar resource assessment with
sky imager and quasi-steady state distribution system simulations,” So-
lar Energy, vol. 132, pp. 221 – 235, 2016.

[137] A. Dolara, F. Grimaccia, S. Leva, M. Mussetta, and E. Ogliari, “A
physical hybrid artificial neural network for short term forecasting of
PV plant power output,” Energies, vol. 8, no. 2, pp. 1138–1153, 2015.
[Online]. Available: http://www.mdpi.com/1996-1073/8/2/1138

[138] J. R. Trapero, N. Kourentzes, and A. Martin, “Short-term solar ir-
radiation forecasting based on dynamic harmonic regression,” Energy,
vol. 84, pp. 289 – 295, 2015.

[139] M. Ceci, R. Corizzo, F. Fumarola, D. Malerba, and A. Rashkovska,
“Predictive modeling of PV energy production: How to set up the learn-
ing task for a better prediction?” IEEE Trans. Ind. Informat., vol. 13,
no. 3, pp. 956–966, Jun. 2017.

[140] R. J. Bessa, A. Trindade, and V. Miranda, “Spatial-temporal solar
power forecasting for smart grids,” IEEE Trans. Ind. Informat., vol. 11,
no. 1, pp. 232–241, Feb. 2015.

[141] S. Scardapane, R. Fierimonte, P. D. Lorenzo, M. Panella, and A. Uncini,
“Distributed semi-supervised support vector machines,” Neural Net-
works, vol. 80, pp. 43 – 52, 2016.

[142] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal pa-
rameter selection for the alternating direction method of multipliers
(ADMM): Quadratic problems,” vol. 60, no. 3, pp. 644–658, Mar. 2015.

[143] T. Morstyn, B. Hredzak, G. D. Demetriades, and V. G. Agelidis, “Uni-
fied distributed control for dc microgrid operating modes,” vol. 31, no. 1,
pp. 802–812, Jan. 2016.

[144] A. Rosato, R. Altilio, R. Araneo, and M. Panella, “A Smart Grid in
Ponza Island: Battery Energy Storage Management by Echo State Neu-
ral Network,” in Proc. of IEEE International Conference on Environ-
ment and Electrical Engineering (IEEE EEEIC 2018), 2018, pp. 1–4.

[145] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127 – 149, 2009.

[146] L. Georgopoulos and M. Hasler, “Distributed machine learning in net-
works by consensus,” Neurocomputing, vol. 124, pp. 2 – 12, 2014.

185

http://www.mdpi.com/1996-1073/8/2/1138

BIBLIOGRAPHY

[147] S. Scardapane, R. Fierimonte, D. Wang, M. Panella, and A. Uncini,
“Distributed music classification using random vector functional-link
nets,” in 2015 International Joint Conference on Neural Networks
(IJCNN), July 2015, pp. 1–8.

[148] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[149] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers,” Foundations and Trends® in Machine
Learning, vol. 3, no. 1, pp. 1–122, 2011.

[150] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Transactions on Signal Processing, vol. 58,
no. 10, pp. 5262–5276, Oct 2010.

[151] J. A. Duffie and W. A. Beckman, Solar engineering of thermal processes,
3rd ed. New York: Wiley, 2006.

[152] S. Scardapane, R. Fierimonte, P. D. Lorenzo, M. Panella, and A. Uncini,
“Distributed semi-supervised support vector machines,” Neural Net-
works, vol. 80, pp. 43 – 52, 2016.

[153] R. Fierimonte, R. Altilio, and M. Panella, “Distributed on-line learning
for random-weight fuzzy neural networks,” in Proc. of IEEE Int. Conf.
on Fuzzy Systems (FUZZ-IEEE 2017), 2017, pp. 1–6.

[154] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Zomaya,
S. Foufou, and A. Bouras, “A survey of clustering algorithms for big
data: Taxonomy and empirical analysis,” IEEE transactions on emerg-
ing topics in computing, vol. 2, no. 3, pp. 267–279, 2014.

[155] R. Hanisch, “Distributed data systems and services for astronomy and
the space sciences,” in Astronomical Data Analysis Software and Sys-
tems IX, vol. 216, 2000, p. 201.

[156] C. Lynch, “Big data: How do your data grow?” Nature, vol. 455, no.
7209, pp. 28–29, 2008.

[157] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” in Proceedings of the 3rd international symposium on Informa-
tion processing in sensor networks. ACM, 2004, pp. 20–27.

[158] D. Saha and A. Mukherjee, “Pervasive computing: a paradigm for the
21st century,” Computer, vol. 36, no. 3, pp. 25–31, 2003.

[159] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

186

BIBLIOGRAPHY

[160] R. D. Nowak, “Distributed em algorithms for density estimation and
clustering in sensor networks,” Signal Processing, IEEE Trans. on,
vol. 51, no. 8, pp. 2245–2253, 2003.

[161] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed expectation-maximization algorithm for density estimation and
classification using wireless sensor networks,” in Acoustics, Speech and
Signal Processing, 2008. ICASSP 2008. IEEE International Conf. on.
IEEE, 2008, pp. 1989–1992.

[162] D. Gu, “Distributed em algorithm for gaussian mixtures in sensor net-
works,” Neural Networks, IEEE Trans. on, vol. 19, no. 7, pp. 1154–1166,
2008.

[163] S. Kantabutra and A. L. Couch, “Parallel k-means clustering algorithm
on nows,” NECTEC Technical journal, vol. 1, no. 6, pp. 243–247, 2000.

[164] X. Pan, J. E. Gonzalez, S. Jegelka, T. Broderick, and M. I. Jordan,
“Optimistic concurrency control for distributed unsupervised learning,”
in Advances in Neural Information Processing Systems, 2013, pp. 1403–
1411.

[165] Y. Liang, M.-F. Balcan, and V. Kanchanapally, “Distributed pca and
k-means clustering,” in The Big Learning Workshop at NIPS, 2013.

[166] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, “Towards effective and ef-
ficient distributed clustering,” in Workshop on Clustering Large Data
Sets (ICDM2003), 2003.

[167] X. Xu, J. Jäger, and H.-P. Kriegel, “A fast parallel clustering algo-
rithm for large spatial databases,” in High Performance Data Mining.
Springer, 2002, pp. 263–290.

[168] S. Rahimi, M. Zargham, A. Thakre, and D. Chhillar, “A parallel fuzzy
c-mean algorithm for image segmentation,” in Fuzzy Information, 2004.
Processing NAFIPS’04. IEEE Annual Meeting of the, vol. 1. IEEE,
2004, pp. 234–237.

[169] L. Vendramin, R. J. G. B. Campello, L. F. Coletta, and E. R. Hruschka,
“Distributed fuzzy clustering with automatic detection of the number
of clusters,” in International Symposium on Distributed Computing and
Artificial Intelligence. Springer, 2011, pp. 133–140.

[170] J. Zhou, C. Philip Chen, L. Chen, and H.-X. Li, “A collaborative fuzzy
clustering algorithm in distributed network environments,” Fuzzy Sys-
tems, IEEE Trans. on, vol. 22, no. 6, pp. 1443–1456, 2014.

[171] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse frame-
work for combining multiple partitions,” The Journal of Machine Learn-
ing Research, vol. 3, pp. 583–617, 2003.

187

BIBLIOGRAPHY

[172] S. Zhang, H.-S. Wong, and Y. Shen, “Generalized adjusted rand indices
for cluster ensembles,” Pattern Recognition, vol. 45, no. 6, pp. 2214–
2226, 2012.

[173] P. Hore, L. O. Hall, and D. B. Goldgof, “A scalable framework for
cluster ensembles,” Pattern Recognition, vol. 42, no. 5, pp. 676–688,
2009.

[174] D. Katselis, C. L. Beck, and M. van der Schaar, “Ensemble online
clustering through decentralized observations,” in Decision and Con-
trol (CDC), 2014 IEEE 53rd Annual Conference on. IEEE, 2014, pp.
910–915.

[175] C. Wemmert, P. Gançarski, and J. J. Korczak, “A collaborative ap-
proach to combine multiple learning methods,” International Journal
on Artificial Intelligence Tools, vol. 9, no. 01, pp. 59–78, 2000.

[176] G. Forestier, P. Gancarski, and C. Wemmert, “Collaborative clustering
with background knowledge,” Data & Knowledge Engineering, vol. 69,
no. 2, pp. 211–228, 2010.

[177] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, vol.
PAMI-1, no. 2, pp. 224–227, 1979.

[178] J. Dunn, “A fuzzy relative of the isodata process and its use in detecting
compact well-separated clusters,” Journal of Cybernetics, vol. 3, no. 3,
pp. 32–57, 1973.

[179] F. F. Mascioli, G. Risi, A. Rizzi, and G. Martinelli, “A nonexclusive
classification system based on co-operative fuzzy clustering,” in Proc.
EUSIPCO’98, 1998, pp. 395–398.

[180] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” Journal of the American Statistical association, vol. 66, no. 336,
pp. 846–850, 1971.

[181] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering valida-
tion techniques,” Journal of Intelligent Information Systems, vol. 17,
no. 2, pp. 107–145, 2001.

[182] T. Kv̊alseth, “A coefficient of agreement for nominal scales: An asym-
metric version of kappa,” Educational and Psychological Measurement,
vol. 51, no. 1, pp. 95–101, 1991, cited By 7. [Online]. Available:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0011838503&
partnerID=40&md5=bb15325339ed058b510853f6e08f85ae

[183] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEEE transactions on knowledge and data engineering, vol. 26, no. 1,
pp. 97–107, 2014.

188

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0011838503&partnerID=40&md5=bb15325339ed058b510853f6e08f85ae
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0011838503&partnerID=40&md5=bb15325339ed058b510853f6e08f85ae

BIBLIOGRAPHY

[184] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102,
no. 4, pp. 460–497, 2014.

[185] J. B. Predd, S. Kulkarni, and H. V. Poor, “Distributed learning in
wireless sensor networks,” IEEE Signal Processing Magazine, vol. 23,
no. 4, pp. 56–69, 2006.

[186] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent systems
in a distributed smart grid: Design and implementation,” in Power Sys-
tems Conference and Exposition, 2009. PSCE’09. IEEE/PES. IEEE,
2009, pp. 1–8.

[187] S. Scardapane, R. Altilio, V. Ciccarelli, and M. Panella, “Privacy-
preserving data mining for distributed medical scenarios,” in Advances
in Neural Networks. Springer, 2017.

[188] G. Magoulas, M. Vrahatis, T. Grapsa, and G. Androulakis, “A train-
ing method for discrete multilayer neural networks,” in Mathematics of
Neural Networks. Springer, 1997, pp. 250–254.

[189] E. M. Corwin, A. M. Logar, and W. J. Oldham, “An iterative method
for training multilayer networks with threshold functions,” IEEE Trans-
actions on Neural Networks, vol. 5, no. 3, pp. 507–508, 1994.

[190] A. Khan and E. Hines, “Integer-weight neural nets,” Electronics Letters,
vol. 30, no. 15, pp. 1237–1238, 1994.

[191] V. Plagianakos and M. Vrahatis, “Neural network training with con-
strained integer weights,” in Evolutionary Computation, 1999. CEC 99.
Proceedings of the 1999 Congress on, vol. 3. IEEE, 1999, pp. 2007–
2013.

[192] V. P. Plagianakos and M. N. Vrahatis, “Training neural networks with
threshold activation functions and constrained integer weights,” in Neu-
ral Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS
International Joint Conference on, vol. 5. IEEE, 2000, pp. 161–166.

[193] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep
convolutional neural networks for object recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE International Con-
ference on. IEEE, 2015, pp. 1131–1135.

[194] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[195] W. F. Schmidt, M. A. Kraaijveld, and R. P. Duin, “Feedforward neu-
ral networks with random weights,” in Pattern Recognition, 1992. Vol.

189

BIBLIOGRAPHY

II. Conference B: Pattern Recognition Methodology and Systems, Pro-
ceedings., 11th IAPR International Conference on. IEEE, 1992, pp.
1–4.

[196] S. Scardapane, M. Panella, D. Comminiello, and A. Uncini, “Learn-
ing from distributed data sources using random vector functional-link
networks,” Procedia Computer Science, vol. 53, pp. 468–477, 2015.

[197] R. Fierimonte, R. Altilio, and M. Panella, “Distributed on-line learning
for random-weight fuzzy neural networks,” Proc. of IEEE International
Conference on Fuzzy Systems, 2017.

[198] S. Scardapane, R. Fierimonte, D. Wang, M. Panella, and A. Uncini,
“Distributed music classification using random vector functional-link
nets,” in Neural Networks (IJCNN), 2015 International Joint Confer-
ence on. IEEE, 2015, pp. 1–8.

[199] R. Altilio, A. Rosato, and M. Panella, “A nonuniform quantizer for
hardware implementation of neural networks,” in Circuit Theory and
Design (ECCTD), 2017 European Conference on, 2017.

[200] J. M. Mart́ınez-Villena, A. Rosado-Muñoz, and E. Soria-Olivas,
“Hardware implementation methods in random vector functional-link
networks,” Applied Intelligence, vol. 41, no. 1, pp. 184–195, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s10489-013-0501-1

[201] B. Igelnik and Y.-H. Pao, “Stochastic choice of basis functions in adap-
tive function approximation and the functional-link net,” IEEE Trans-
actions on Neural Networks, vol. 6, no. 6, pp. 1320–1329, 1995.

[202] P. J. Teunissen, “An optimality property of the integer least-squares
estimator,” Journal of Geodesy, vol. 73, no. 11, pp. 587–593, 1999.

[203] J. Goldberger and A. Leshem, “Iterative tomographic solution of inte-
ger least squares problems with applications to mimo detection,” IEEE
Journal of Selected Topics in Signal Processing, vol. 5, no. 8, pp. 1486–
1496, Dec 2011.

[204] P. van Emde Boas, Another NP-complete partition problem and the
complexity of computing short vectors in a lattice. Universiteit van
Amsterdam. Mathematisch Instituut, 1981.

[205] D. Micciancio, “The hardness of the closest vector problem with pre-
processing,” IEEE Transactions on Information Theory, vol. 47, no. 3,
pp. 1212–1215, Mar 2001.

[206] X.-W. Chang and Q. Han, “Solving box-constrained integer least
squares problems,” IEEE Trans. Wireless Communications, vol. 7, pp.
277–287, 2008.

190

http://dx.doi.org/10.1007/s10489-013-0501-1

BIBLIOGRAPHY

[207] J. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis With Applications to Biology, Control, and Artificial
Intelligence. Bradford Books, 1992.

[208] T. F. Brooks, D. S. Pope, and M. A. Marcolini. (1989) Airfoil self-noise
and prediction. [Online]. Available: https://ntrs.nasa.gov/search.jsp?
R=19890016302

[209] I.-C. Yeh, “Modeling of strength of high-performance concrete using ar-
tificial neural networks,” Cement and Concrete research, vol. 28, no. 12,
pp. 1797–1808, 1998.

[210] A. Tsanas and A. Xifara, “Accurate quantitative estimation of energy
performance of residential buildings using statistical machine learning
tools,” Energy and Buildings, vol. 49, pp. 560–567, 2012.

[211] O. Akbilgic, H. Bozdogan, and M. E. Balaban, “A novel hybrid rbf neu-
ral networks model as a forecaster,” Statistics and Computing, vol. 24,
no. 3, pp. 365–375, 2014.

[212] F. A. Khan and A. A. Ansari, “Eutrophication: an ecological vision,”
The botanical review, vol. 71, no. 4, pp. 449–482, 2005.

[213] D. G. F. Cunha, M. do Carmo Calijuri, and M. C. Lamparelli, “A
trophic state index for tropical/subtropical reservoirs (tsi tsr),” Ecolog-
ical Engineering, vol. 60, pp. 126–134, 2013.

[214] E. Tebbs, J. Remedios, and D. Harper, “Remote sensing of chlorophyll-a
as a measure of cyanobacterial biomass in lake bogoria, a hypertrophic,
saline–alkaline, flamingo lake, using landsat etm+,” Remote Sensing of
Environment, vol. 135, pp. 92–106, 2013.

[215] C. Dona, J. M. Sanchez, V. Caselles, J. A. Domı́nguez, and A. Ca-
macho, “Empirical relationships for monitoring water quality of lakes
and reservoirs through multispectral images,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 5,
pp. 1632–1641, 2014.

[216] C. F. Cerco and M. R. Noel, “Impact of reservoir sediment scour on wa-
ter quality in a downstream estuary,” Journal of environmental quality,
vol. 45, no. 3, pp. 894–905, 2016.

[217] J. Tundisi, J. Goldemberg, T. Matsumura-Tundisi, and A. Saraiva,
“How many more dams in the amazon?” Energy Policy, vol. 74, pp.
703–708, 2014.

[218] J. Eynard, S. Grieu, and M. Polit, “Wavelet-based multi-resolution
analysis and artificial neural networks for forecasting temperature and
thermal power consumption,” Engineering Applications of Artificial In-
telligence, vol. 24, no. 3, pp. 501–516, 2011.

191

https://ntrs.nasa.gov/search.jsp?R=19890016302
https://ntrs.nasa.gov/search.jsp?R=19890016302

BIBLIOGRAPHY

[219] L.-x. GUO and C.-h. DENG, “Prediction model for dissolved oxygen
in fish pond based on fuzzy neural network [j],” Journal of Fisheries of
China, vol. 30, no. 2, pp. 225–229, 2006.

[220] D. Ö. Faruk, “A hybrid neural network and arima model for water
quality time series prediction,” Engineering Applications of Artificial
Intelligence, vol. 23, no. 4, pp. 586–594, 2010.

[221] J. Abaurrea, J. Aśın, A. C. Cebrián, and M. A. Garćıa-Vera, “Trend
analysis of water quality series based on regression models with corre-
lated errors,” Journal of Hydrology, vol. 400, no. 3, pp. 341–352, 2011.

[222] X. Wang, X.-p. Zhao, Z. Liu, and S. Dong, “Research on lake eutroph-
ication forecasting methods based on grey theory,” Computer Simula-
tion, vol. 1, pp. 17–19, 2011.

[223] S. Mahapatra, S. K. Nanda, and B. Panigrahy, “A cascaded fuzzy in-
ference system for indian river water quality prediction,” Advances in
Engineering Software, vol. 42, no. 10, pp. 787–796, 2011.

[224] M. Awad, “Sea water chlorophyll-a estimation using hyperspectral im-
ages and supervised artificial neural network,” Ecological informatics,
vol. 24, pp. 60–68, 2014.

[225] L. Xu and S. Liu, “Study of short-term water quality prediction model
based on wavelet neural network,” Mathematical and Computer Mod-
elling, vol. 58, no. 3, pp. 807–813, 2013.

[226] A. Najah, A. El-Shafie, O. A. Karim, and A. H. El-Shafie, “Performance
of anfis versus mlp-nn dissolved oxygen prediction models in water qual-
ity monitoring,” Environmental Science and Pollution Research, vol. 21,
no. 3, pp. 1658–1670, 2014.

[227] F. Soltani, R. Kerachian, and E. Shirangi, “Developing operating rules
for reservoirs considering the water quality issues: Application of anfis-
based surrogate models,” Expert Systems with Applications, vol. 37,
no. 9, pp. 6639–6645, 2010.

[228] A. A. Najah, A. El-Shafie, O. A. Karim, and O. Jaafar, “Water quality
prediction model utilizing integrated wavelet-anfis model with cross-
validation,” Neural Computing and Applications, vol. 21, no. 5, pp.
833–841, 2012.

[229] M. Bonansea, M. C. Rodriguez, L. Pinotti, and S. Ferrero, “Using multi-
temporal landsat imagery and linear mixed models for assessing water
quality parameters in ŕıo tercero reservoir (argentina),” Remote Sensing
of Environment, vol. 158, pp. 28–41, 2015.

192

BIBLIOGRAPHY

[230] M. Bonansea and R. Fernandez, “Remote sensing of suspended solids
concentration in a reservoir with frequent wildland fires on its water-
shed,” Water Science and Technology, vol. 67, no. 1, pp. 217–223, 2012.

[231] N. Karakaya, F. Evrendilek, G. Aslan, K. Gungor, and D. Karakas,
“Monitoring of lake water quality along with trophic gradient using
landsat data,” 2012.

[232] B. R. Neto, R. Hauser-Davis, T. Lobato, A. Saraiva, I. Brandão,
T. Oliveira, and A. Silveira, “Estimating physicochemical parameters
and metal concentrations in hydroelectric reservoirs by virtual sensors:
A case study in the amazon region,” Computer Science and Engineer-
ing, vol. 4, no. 2, pp. 43–53, 2014.

[233] C. J. Bradshaw and B. W. Brook, “The conservation biologist’s
toolbox–principles for the design and analysis of conservation studies,”
Conservation Biology for All, pp. 313–334, 2010.

[234] C. Grueber, S. Nakagawa, R. Laws, and I. Jamieson, “Multimodel in-
ference in ecology and evolution: challenges and solutions,” Journal of
evolutionary biology, vol. 24, no. 4, pp. 699–711, 2011.

[235] X. Giam and J. D. Olden, “A new r 2-based metric to shed greater
insight on variable importance in artificial neural networks,” Ecological
Modelling, vol. 313, pp. 307–313, 2015.

[236] E. Alcântara, N. Bernardo, F. Watanabe, T. Rodrigues, L. Rotta,
A. Carmo, M. Shimabukuro, S. Gonçalves, and N. Imai, “Estimat-
ing the cdom absorption coefficient in tropical inland waters using
oli/landsat-8 images,” Remote Sensing Letters, vol. 7, no. 7, pp. 661–
670, 2016.

[237] F. S. Y. Watanabe, E. Alcântara, T. W. P. Rodrigues, N. N. Imai,
C. C. F. Barbosa, and L. H. d. S. Rotta, “Estimation of chlorophyll-a
concentration and the trophic state of the barra bonita hydroelectric
reservoir using oli/landsat-8 images,” International journal of environ-
mental research and public health, vol. 12, no. 9, pp. 10 391–10 417, 2015.

[238] S. Martins, N. Bernardo, I. Ogashawara, and E. Alcantara, “Sup-
port vector machine algorithm optimal parameterization for change de-
tection mapping in funil hydroelectric reservoir (rio de janeiro state,
brazil),” Modeling Earth Systems and Environment, vol. 2, no. 3, p.
138, 2016.

[239] E. Kaneko, H. Aoki, and M. Tsukada, “Image-based path radiance esti-
mation guided by physical model,” in Geoscience and Remote Sensing
Symposium (IGARSS), 2016 IEEE International. IEEE, 2016, pp.
6942–6945.

193

BIBLIOGRAPHY

[240] T. Blakey, A. Melesse, M. C. Sukop, G. Tachiev, D. Whitman, and
F. Miralles-Wilhelm, “Developing benthic class specific, chlorophyll-a
retrieving algorithms for optically-shallow water using seawifs,” Sen-
sors, vol. 16, no. 10, p. 1749, 2016.

[241] G. Lantzanakis, Z. Mitraka, and N. Chrysoulakis, “Comparison of phys-
ically and image based atmospheric correction methods for sentinel-2
satellite imagery,” in Perspectives on Atmospheric Sciences. Springer,
2017, pp. 255–261.

[242] L. Shi, Z. Mao, P. Chen, S. Han, F. Gong, and Q. Zhu, “Comparison
and evaluation of atmospheric correction algorithms of quac, dos and
flaash for hico hyperspectral imagery,” in SPIE Remote Sensing. Inter-
national Society for Optics and Photonics, 2016, pp. 999 917–999 917.

[243] M. Nazeer and J. E. Nichol, “Selection of atmospheric correction
method and estimation of chlorophyll-a (chl-a) in coastal waters of
hong kong,” in Earth Observation and Remote Sensing Applications
(EORSA), 2014 3rd International Workshop on. IEEE, 2014, pp. 374–
378.

[244] N. Bernardo, F. Watanabe, T. Rodrigues, and E. Alcântara, “Atmo-
spheric correction issues for retrieving total suspended matter concen-
trations in inland waters using oli/landsat-8 image,” Advances in Space
Research, 2017.

[245] L. Congedo, “Semi-automatic classification plugin for qgis,” 2013.

[246] L. Congedo, L. Sallustio, M. Munafò, M. Ottaviano, D. Tonti, and
M. Marchetti, “Copernicus high-resolution layers for land cover classi-
fication in italy,” Journal of Maps, vol. 12, no. 5, pp. 1195–1205, 2016.

[247] G. Chander, B. L. Markham, and D. L. Helder, “Summary of current
radiometric calibration coefficients for landsat mss, tm, etm+, and eo-1
ali sensors,” Remote sensing of environment, vol. 113, no. 5, pp. 893–
903, 2009.

[248] A. C. Teodoro, F. Veloso-Gomes, and H. Goncalves, “Retrieving tsm
concentration from multispectral satellite data by multiple regression
and artificial neural networks,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 45, no. 5, pp. 1342–1350, 2007.

[249] R. Altilio, L. Liparulo, A. Proietti, M. Paoloni, and M. Panella, “A
genetic algorithm for feature selection in gait analysis,” in 2016 IEEE
Congress on Evolutionary Computation (CEC), July 2016, pp. 4584–
4591.

194

BIBLIOGRAPHY

[250] S. Gilmore, A. Saleem, and A. Dewan, “Effectiveness of dos (dark-
object subtraction) method and water index techniques to map wet-
lands in a rapidly urbanising megacity with landsat 8 data,” in Re-
search@ Locate’15. http: http://SunSITE. Informatik. RWTH-Aachen.
DE/Publications/CEUR-WS/., 2015, pp. 100–108.

[251] M. A. Spanner, L. L. Pierce, D. L. Peterson, and S. W. Running, “Re-
mote sensing of temperate coniferous forest leaf area index the influence
of canopy closure, understory vegetation and background reflectance,”
TitleREMOTE SENSING, vol. 11, no. 1, pp. 95–111, 1990.

[252] M. E. Jakubauskas, “Thematic mapper characterization of lodgepole
pine seral stages in yellowstone national park, usa,” Remote sensing of
environment, vol. 56, no. 2, pp. 118–132, 1996.

[253] P. S. Chavez Jr, “Radiometric calibration of landsat thematic map-
per multispectral images,” Photogrammetric Engineering and Remote
Sensing, vol. 55, no. 9, pp. 1285–1294, 1989.

[254] P. Brezonik, K. D. Menken, and M. Bauer, “Landsat-based remote sens-
ing of lake water quality characteristics, including chlorophyll and col-
ored dissolved organic matter (cdom),” Lake and Reservoir Manage-
ment, vol. 21, no. 4, pp. 373–382, 2005.

[255] J. J. Makwana and M. K. Tiwari, “Intermittent streamflow forecasting
and extreme event modelling using wavelet based artificial neural net-
works,” Water resources management, vol. 28, no. 13, pp. 4857–4873,
2014.

[256] R. Sahay and V. Sehgal, “Wavelet regression models for predicting flood
stages in rivers: a case study in eastern india,” Journal of Flood Risk
Management, vol. 6, no. 2, pp. 146–155, 2013.

[257] R. R. Sahay and A. Srivastava, “Predicting monsoon floods in rivers
embedding wavelet transform, genetic algorithm and neural network,”
Water resources management, vol. 28, no. 2, pp. 301–317, 2014.

[258] B. Tahani, B. Boumedyen, A. M. Naceur, O. P. Fogh, and
A. Christophe, “Multiple fault detection based on wavelet denois-
ing: Application on wind turbine system,” in Control and Automation
(MED), 2017 25th Mediterranean Conference on. IEEE, 2017, pp.
419–423.

[259] R. Barzegar, J. Adamowski, and A. A. Moghaddam, “Application of
wavelet-artificial intelligence hybrid models for water quality prediction:
a case study in aji-chay river, iran,” Stochastic environmental research
and risk assessment, vol. 30, no. 7, pp. 1797–1819, 2016.

195

BIBLIOGRAPHY

[260] M. Ravansalar, T. Rajaee, and O. Kisi, “Wavelet-linear genetic pro-
gramming: A new approach for modeling monthly streamflow,” Journal
of Hydrology, vol. 549, pp. 461–475, 2017.

[261] K. H. Talukder and K. Harada, “Haar wavelet based approach for im-
age compression and quality assessment of compressed image,” arXiv
preprint arXiv:1010.4084, 2010.

[262] D. Gupta and S. Choubey, “Discrete wavelet transform for image pro-
cessing,” International Journal of Emerging Technology and Advanced
Engineering, vol. 4, no. 3, pp. 598–602, 2015.

[263] D. Tomassi, D. Milone, and J. D. Nelson, “Wavelet shrinkage using
adaptive structured sparsity constraints,” Signal Processing, vol. 106,
pp. 73–87, 2015.

[264] P. S. Addison, The illustrated wavelet transform handbook: introductory
theory and applications in science, engineering, medicine and finance.
CRC press, 2017.

[265] M. Shoaib, A. Y. Shamseldin, B. W. Melville, and M. M. Khan, “Hy-
brid wavelet neural network approach,” in Artificial Neural Network
Modelling. Springer, 2016, pp. 127–143.

[266] A. Sandryhaila and J. M. Moura, “Big data analysis with signal pro-
cessing on graphs: Representation and processing of massive data sets
with irregular structure,” IEEE Signal Processing Magazine, vol. 31,
no. 5, pp. 80–90, 2014.

[267] A. X. Patel, P. Kundu, M. Rubinov, P. S. Jones, P. E. Vértes, K. D.
Ersche, J. Suckling, and E. T. Bullmore, “A wavelet method for model-
ing and despiking motion artifacts from resting-state fmri time series,”
Neuroimage, vol. 95, pp. 287–304, 2014.

[268] P. da Silva Holanda, C. J. C. Blanco, A. L. A. Mesquita, A. C. P. B.
Junior, N. M. de Figueiredo, E. N. Macêdo, and Y. Secretan, “As-
sessment of hydrokinetic energy resources downstream of hydropower
plants,” Renewable Energy, vol. 101, pp. 1203–1214, 2017.

[269] J. G. Tundisi, M. A. Santos, and C. F. S. Menezes, “Tucurúı reser-
voir and hydroelectric power plant,” Sharing Experiences and Lessons
Learned in Lake Basin Mangement, Burlington, Vermont. Management
Experiences and Lessons Learned Brief, vol. 1, pp. 1–20, 2003.

[270] T. Malthus and D. George, “Airborne remote sensing of macrophytes
in cefni reservoir, anglesey, uk,” Aquatic Botany, vol. 58, no. 3-4, pp.
317–332, 1997.

196

	Abstract
	List of Figures
	List of Tables
	I Background and Introduction
	Introduction
	Motivation
	Scope of the work
	Organization
	Research Contributions

	Time Series Analysis
	Definition, description and examples
	Basic properties and terminology
	Components
	Time Plot
	Real Data

	Stationarity
	Approaches to time series analysis

	II Energy Time Series Prediction
	Time Series Prediction
	Introduction
	Univariate Prediction Models
	Autoregressive and Moving Average models
	Nonlinear models
	Heteroschedastic Models
	Nonparametric models

	Multivariate prediction models
	Error Measures

	Neural and Fuzzy Neural Networks for Energy-related Time Series Prediction
	Introduction
	Models
	Radial Basis Function
	Gaussian Mixture Model
	Adaptive Neuro Fuzzy Inference System
	Higher Order Neuro Fuzzy Inference System
	Echo State Network

	Embedding
	Applications
	Energy market price prediction
	Energy Production
	Ponza Island Case Study
	Distributed prediction

	Conclusive remarks and discussion

	III Other Contributions
	Validated Distributed Ensemble Clustering
	Introduction
	The Proposed Clustering Algorithm
	Initial clustering
	Collaboration phase
	Consensus computation

	Cluster Validity in a Distributed Scenario
	Experimental Results
	Conclusion

	Finite precision Random Vector Functional Link Network
	Introduction
	RVFL Architecture
	A Finite Precision Model of RVFL Networks
	Uniform Quantization
	Nonuniform Quantization

	Conclusion

	Remote Water Quality Prediction Monitoring
	Motivation
	Methodologies
	Landsat 7, ANN and LOO
	Landsat 8 and WANN

	Case Studies
	Tucurui plant
	Cefni Reservoir

	Bibliography

