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Synopsis

While expected to be standardized by the year 2020, the fifth generation (5G) cur-
rently receives considerable attention from the wireless community [1]. Among the
key features chacracterizing 5G, non-orthogonal multiple access (NOMA) is one of
the promising technologies, that are expected to address the targets of 5G wireless
communications, including high spectral efficiency, massive connectivity, and low
latency [2,3].

Back to the history of cellular communications from 1G to 4G, the radio multiple
access schemes are mostly characterized by orthogonal multiple access (OMA),
where different users are assigned to orthogonal resources in either frequency
(frequency-division multiple access (FDMA) and orthorgonal FDMA (OFDMA)),
time (time-division multiple access (TDMA)) or code (synchronous code-division
multiple access (CDMA) in underloaded condition) domains. However, 5G multiple
access is required to support a wide range of use cases, providing access to massive
numbers of low-power internet-of-thing (IoT), as well as broadband user terminals
in the cellular network. Providing high spectral efficiency, while minimizing sig-
naling and control overhead to improve efficiency, may not be feasible to achieve
by OMA techniques [4]. In fact, the orthogonality condition can be imposed as a
requirement only when the system is underloaded, that is, when the number of
active users is lower than the number of available resource elements (degrees of
freedom or dimensions).

The idea of NOMA is to serve multiple users in the same band and abandon
any attempt to provide orthogonal access to different users as in conventional
OMA. Orthogonality naturally drops when the number of active users is higher than
the number of degrees of freedom, and “collisions” appear. One possible way of
controlling collisions in NOMA is to share the same signal dimension among users
and exploit power (power-domain NOMA (PDM-NOMA)) vs. code (code-domain
NOMA (CDM-NOMA)) domains [2]. However, refer to NOMA, most of intuition
gained from the recent literature implies power-domain case [5], which was firstly
introduced by Mazzini [6], including integration of NOMA with other technologies
such as MIMO-NOMA, Cognitive Radio NOMA (CR-NOMA), mm-Wave NOMA,
full-duplex NOMA and so on.

In PDM-NOMA, it uses superposition coding, a well-known non-orthogonal
scheme for downlink transmissions [7], and makes superposition decoding possible
by allocating different levels of power to different users [8]. The “near” user, with
a higher channel gain, is typically assigned with less transmission power, which
helps making successive interference cancellation (SIC) affordable at this user [9].
Interested readers are referred to the latest works on PDM-NOMA such as [5,10].
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CDM-NOMA is characterized by sparsity employed in spreading sequences or
multi-dimensional codewords. It is worthy noting that CDM-NOMA and conven-
tional CDMA share the same working principle in exploiting different spreading
codes. As a matter of fact, several characterizing variants of CDM-NOMA, such
as low-density spreading CDMA (LDS-CDMA) [11–13], low-density spreading or-
thogonal frequency-division multiplexing (LDS-OFDM) [14], sparse code multiple
access (SCMA) [15], pattern division multiple access (PDMA) [16], and multi-user
shared access (MUSA) [17], may be inferred from the framework of CDMA. By re-
laxing orthogonality requirements, CDM-NOMA variants enable flexible resource
allocation, and reduce hardware complexity.

This thesis aims to shed some light on understanding CDM-NOMA and its
different dialects, particularly the schemes with single-carrier waveforms from
an information-theoretic perspective. At the moment, NOMA has been currently
proposed for the 3rd generation partnership project long-term evolution advanced
(3GPP-LTE-A) standard, the next general digital TV standard (ATSC 3.0), and the
5G New Radio (NR) standard. In fact, CDM-NOMA variants are currently under
consideration via Specification TS 38.812 (Study on NOMA for NR) in anticipation
to have a “ready” NR system in 2020 [18]. The emergence of a complete theoretical
work on CDM-NOMA is, therefore, of essence and of expectation to contribute as a
timely reference for future release of 5G standardization.

In order to understand CDM-NOMA1 in terms of fundamental limits, the con-
sidered framework focuses on investigating the following issues:

• the impact of system load, which classifies NOMA vs. OMA,

• the impact of sparsity, which classifies NOMA further into low-dense vs.
dense,

• the impact of regularity, which characterizes possible spreading mapping
constraints,

• the impact of the channel fading, especially flat-fading, which is very common
in practical scenarios,

• the impact of the channel knowledge, known as channel state information
(CSI), which is characterized by the rapid change of real-world communication
channels.

The first three issues are investigated subject to the ideal assumption of AWGN
channel, and the rests are studied subject to the flat-fading channel assumption,
respectively.

The thesis starts with a mathematical framework (Chapter 1), which is pro-
posed based on the seminal framework for the conventional CDMA including direct-
sequence CDMA (DS-CDMA) and multi-carrier CDMA. Based on this framework,
information-theoretic results are expected to explore the relationship between the
achievable rates and the aforementioned peculiar features of NOMA.

Chapter 2 divides different NOMA variants into single-carrier and multi-carrier
systems, corresponding to DS-CDMA and MC-CDMA, and further classifies NOMA

1Below CDM-NOMA is called shortly as NOMA for simplicity
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schemes as low-dense vs. dense groups due to sparsity of the representation matrix
of each scheme. The representation matrix S, well-known as spreading matrix in
DS-CDMA, is considered as the fundamental element of the proposed framework
since it defines different NOMA variants. Each NOMA variant is then described in
detailed and shown to be a close relative with the traditional CDMA.

The next chapters (Chapter 3–5) focus on single-carrier NOMA schemes, par-
ticularly on theoretical behavior of low-dense system. Based on the proposed
framework, theoretical analysis of NOMA is investigated considering massive con-
nectivity of 5G, i.e. the number of users K is supposed to be very large compared
to the number of REs N . The behavior of the system should thus be considered in
the asymptotic limit, where both K and N go to infinity, while the ratio K/N = β,
called load, remains finite. This corresponds to analyzing the system in the large
system limit (LSL) [19].

In Chapter 3, theoretical behavior of three distinctive cases, including dense
vs. so-called irregular and regular low-dense NOMA in the LSL, corresponding to
DS-CDMA (Ns = N) [20] vs. LDS-CDMA (Ns = 1) [21] and regular sparse NOMA
(2 ≤ Ns ∈ N

+) [22], is investigated for the AWGN channels via existing closed-form
expressions, with respect to load, sparsity and regularity. It will be shown that in
AWGN channels, irregular low-dense NOMA, for example LDS-CDMA, is superior to
all the rest in terms of spectral efficiency, given the suboptimal receivers (linear
receivers in this case) are adopted.

In the follow-up Chapter 4, irregular low-dense NOMA, as a spectral-efficient
representative, is investigated under the impact of flat-fading with perfect knowl-
edge of channel (perfect CSI) for both optimum and linear receivers. On the other
hand, Chapter 5 addresses the impact of a practical issue of no prior knowledge
of propagation channel, i.e. channel without CSI. In this chapter, capacity bounds
of low-dense NOMA are provided in the context of 5G New Radio, considering
the impact of number of coherence symbols, number of users, system load and
SNR. Finally, Chapter 6 concludes the thesis and discusses the possible future works.

Main contributions of the thesis can be listed as:

• A unified framework for several code-domain NOMA schemes is presented.
The analytical framework, built on the traditional CDMA model, proved to
be flexible enough for representing several code-domain dialects, and, in
particular, addressed properties of a fundamental element of the model, that
is, the representation matrix S. From this proposed model, the theoretical
analysis is investigated for both optimum and linear receivers in the LSL,
taking account of the impact of aforementioned issues.

• For AWGN channels, the comparative analysis will show that it is beneficial to
adopt extreme low-dense single-carrier NOMA in the LSL. Particularly, when
optimum receivers are used, the adoption of a regular low-dense spreading
matrix is worthwhile to the system achievable rates, which are higher than
those obtained with either irregular low-dense or dense formats, for any value
of load. For linear receivers, which are more favorable in practice due to low
complexity, the regular low-dense NOMA still has better performance in the

3



Contents

underloaded regime (load < 1), while the irregular counterpart outperforms
all the other schemes in the overloaded scenario (load > 1).

• For flat-fading channels (for e.g. Rayleigh fading) with perfect CSI, the behav-
ior of a typical single-carrier NOMA, that is, low density spreading NOMA
(LDS) is compared against dense spreading (DS) one. In the presence of flat-
fading, [19] showed that in the overloaded condition, the fading effect, for DS,
is to enhance spectral efficiency. What missing is the behavior of low-dense
system under the impact of fading. We filled the gap by showing that, in the
LSL, irregular LDS with fading achieved higher spectral efficiency than DS in
the overloaded mode subject to linear receivers. Moreover, the dominance of
irregular LDS-CDMA over DS in terms of spectral efficiency performance than
DS goes stronger when Eb/N0 increases.

• For Rayleigh block-fading channels without CSI, information-theoretical
bounds of LDS are derived. The capacity upper bound, defined as the ca-
pacity of low-dense NOMA with perfect CSI, is found from Chapter 4. The
capacity lower bound is derived using a pilot-based communication scheme,
as suggested in [23]. Upper and lower capacity bounds are described as a func-
tion of Eb/N0, number of coherent symbols nb, and system load β. The effect
of the number of users K is also investigated. Results indicate that, when
the above factors are favorably combined, the gap between the upper and
lower capacity bounds becomes negligible. In particular, when the number
of coherent symbols nb is high, while the number of users simultaneously
joining the network is low, the lower capacity bound well approximates the
capacity with perfect CSI, leading to the conclusion that the system is still
robust despite the absence of knowledge on the channel.

The results of this thesis have been partly published in the following articles:

Chapter 1–3:

• Mai T. P. Le, Guido Carlo Ferrante, Giuseppe Caso, Luca De Nardis, Maria-
Gabriella Di Benedetto, “On Information-theoretic limits of Code-domain
NOMA for 5G,” IET Commun., 2018, Vol. 12 Iss. 15, pp. 1864–1871.

Chapter 4:

• Mai T. P. Le, Guido Carlo Ferrante, Tony Q.S. Quek, Maria-Gabriella Di
Benedetto, “Fundamental Limits of Low-Density Spreading NOMA with Fad-
ing,” IEEE Trans. on Wireless Commun., 2018, 17, (7), pp. 4648–4659.

Chapter 5:

• M. T. P. Le, G. Caso, L. De Nardis, A. Mohammadpour, G. Tucciarone, M.-G.
Di Benedetto, “Capacity bounds of Low-Dense NOMA over Rayleigh fading
channels without CSI,” in IEEE Proc. Int. Conf. on Telecom. (ICT), pp. 428–
432, St. Malo, France, 26–28 June 2018.
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Chapter 1

A mathematical model of
Code-domain NOMA

1.1 Introduction

Apart from the fact non-orthogonality feature of NOMA has been used recently
[24], initial NOMA concept has a long story from the beginning of 1990s. Non
orthogonal signal sets with particular structures were invented such that they
may be detectable at the receiver. First investigations on designing guidelines
for non-orthogonal spreading codes were made by Ross and Taylor [25, 26] that
were applicable to an overloading system. By adding additional linearly dependent
codes while maintaining the orthogonal minimum distance (Euclidean distance) to
ensure feasible detection, the signal sets essentially became non-orthogonal. In
addition, these sets were put under the constraint as such all users should not have
higher powers than that of orthogonal set. On the receiver side, iterative decoding
algorithm such as message passing algorithm (MPA) detector, also known as belief
propagation (BP) algorithm in low-density parity-check (LDPC) codes, is employed.

CDM-NOMA exploits code to distinguish different users at the receiver, i.e. it
function similarly to the traditional DS-CDMA system. Themain feature identifying
CDM-NOMA from CDMA is by employing sparsity in spreading sequences via low-
density or low cross-correlation sequences. Based on the specific scenario, single-
carrier or multi-carrier NOMA schemes can be adopted, corresponding to single-
carrier DS-CDMA or multi-carrier CDMA (MC-CDMA), respectively. The 15 existing
proposals of NOMA proposed for the Rel-14 3GPP NR Study item [27] (Table 1.1)
and recent CDM-NOMA proposals available in the literature, therefore, will be
classified based on dense vs. low-dense and single vs. multi carrier features.

In addition to proposedmethods for NOMA from Table 1.1, includingMUSA [17],
PDMA [16,28], IGMA [29], IDMA [30,31], other NOMA schemes such as LDS-CDMA
[11] (also known as time-hopping (TH-CDMA) [21,32]), SAMA [33] will be shown
tightly correlated to traditional single-carrier DS-CDMA, therefore, are classified as
single-carrier NOMA. By contrast, LDS-OFDM [34,35], along with remained NOMA
schemes in Table 1.1 including SCMA [15,36], LSSA [37], NCMA [38], NOCA [39],
GOCA [40], LDS-SVE [41], LCRS/FDS [42], RDMA [40] are well fitted to multi-carrier
CDMA model, hence, classified here as multi-carrier NOMA, as will be shown in

5



1. A mathematical model of Code-domain NOMA

NOMA schemes Full Name Company UL/DL

1 Power-domain NOMA Power-domain non-orthogonal multiple access DCM UL/DL

2 SCMA Sparse code multiple access Huawei UL/DL

3 MUSA Multi-user shared access ZTE UL/DL

4 PDMA Pattern division multiple access CATT UL/DL

5 LSSA Low code rate and
signature based shared access ETRI UL

6 RSMA Resource spread multiple access Qualcomm UL

7 IGMA Interleave-grid multiple access Samsung UL/DL

8 IDMA Interleave division multiple access Nokia UL

9 NCMA Non-orthogonal coded multiple access LGE UL

10 NOCA Non-orthogonal coded access Nokia UL

11 GOCA Group orthogonal coded access MTK UL

12 LDS-SVE Low density spreading -
signature vector extension Fujitsu UL/DL

13 FDS Frequency domain spreading Intel UL

14 LCRS Low code rate spreading Intel UL

15 RDMA Repetition division multiple access MTK UL

Table 1.1. NOMA schemes proposed for the Rel-14 3GPP NR Study Item [27]

Chapter 2. RSMA [43, 44] is a NOMA dialect that is proposed for both type of
waveforms, depending on the specific application scenario.

1.2 A reference mathematical model

1.2.1 Single-carrier NOMA

For single-carrier NOMA, each data symbol of user k is spread by N chips of the
corresponding spreading sequence, that is similar to as DS-CDMA system. Naturally,
the mathematical model of single-carrier NOMA may be built from the baseline
model of DS-CDMA, proposed by Verdú and Shamai in [19] and [20] as follows

y = SHb + n, (1.1)

where the received signal y ∈ CN belongs to a space characterized by N signal
dimensions. Note that N also represents the number of elements over which each
symbol is spread, that is the number of REs, and equivalent to the number of

6



1.2 A reference mathematical model

‘chips’, as termed commonly in CDMA. Vector b = [b1, . . . , bK ]T ∈ CK is the vector of
symbols transmitted by K users. Being a random spreadingmatrix, S = [s1, . . . , sK ] ∈
CN×K is composed of K columns, each being the spreading sequence sk of user k
(1 6 k 6 K). Supposing the channel is flat, the channel matrix can be represented as
H = diag [h1, . . . , hK ] ∈ CK×K , whereas it reduces to the identity matrix if the AWGN
channel is assumed. Lastly, the noise n ∈ CN is described by a circularly-symmetric
Gaussian vector with zero mean and covariance N0I .

The nature of the representation matrix S defines the multiple access methods.
This matrix is known as spreading matrix or signature matrix in DS-CDMA, TH-
CDMA, LDS-CDMA, SAMA, or code matrix in MUSA, and pattern matrix in PDMA.
As amatter of fact, NOMA schemes can be classified into dense vs. low-dense, where
the corresponding matrix S is dense if all REs are used vs. low-dense, when some
REs are not used. In terms of energy, this corresponds to having all REs contain
signal energy vs. energy is concentrated on only part of the available REs, reflected
by the presence of nonzero entries in S. According to this understanding, DS-CDMA
inherently stands for dense spreading. For single-carrier NOMA, the dense group
includes DS-CDMA and IDMA, while the low-dense group includes LDS-CDMA,
TH-CDMA, SAMA, MUSA, IGMA and PDMA.

1.2.2 Multi-carrier NOMA

For multi-carrier NOMA schemes, the system can be described as a combination
of CDMA for dense NOMA (respective, LDS-CDMA for low-dense NOMA) with
multi-carrier modulation, for e.g. OFDM, that makes multi-carrier NOMA work
analogously to MC-CDMA [45]. Based on this intuition, the system model of multi-
carrier NOMA basically can be elaborated as below, assuming the number of OFDM
subcarriers shared by every user is also equal to the spreading gain N [46].
In multi-carrier NOMA, each data symbol of user k is replicated into N parallel
copies, each copy is then multiplied by a chip from the respective spreading se-
quence. All N copies are then mapped to N subcarriers and are transmitted in par-
allel. Thanks to inverse discrete Fourrier transform (IDFT) implementation, those
N parallel chips are converted into serial sequence for further transmission [46].

Adopting the same notation of spreading matrix S = [s1, . . . , sK ] with sk being
frequency-domain spreading sequence of user k as in eq. (1.1), the baseband signal
by the kth user in time-domain is expressed by

Wskbk .

HereW denotes the N × N IDFT matrix, and bk again stands for the data symbol of
the kth user.

As a matter of fact, the receiver consists of N matched filters, corresponding
to N subcarriers, is equivalently to conducting a discrete Fourrier transform (DFT)
on the discrete baseband domain. Therefore, the received vector by user k in the
frequency domain is bk s̃k , where

s̃k = diag[h1
1, . . . , h

N
k ]sk,

with hi
k
being the fading coefficient at subcarrier i of the kth user.
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1. A mathematical model of Code-domain NOMA

Since in practice, each subcarrier is narrow enough to experience only flat fading,
the system model of multi-carrier NOMA is, therefore, mathematically equivalent
to that of single-carrier NOMA in (1.1) with respect to flat-frequency fading. This
observation is also reported by Tulino et al. [46] for the case of DS-CDMA and MC-
CDMA. Here the spreading matrix S ∈ CN×K again defines different multi-carrier
NOMA schemes.
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Chapter 2

Code-domain NOMA
classification

In this chapter, code-domain NOMA schemes available at the time of writing are
described. Due to the adopted waveform, NOMA schemes are classified as single-
vs. multi-carrier system, each group is further divided into dense vs. low-dense
based on the property of the representation matrix as discussed in Chapter 1. Code-
domain NOMA classification is illustrated in Fig. 2.1.

2.1 Single-carrier NOMA (SC-NOMA)

Different variants of single-carrier NOMA are shown belowwith their corresponding
example of representation matrix S as in Figure 2.2.

2.1.1 Dense SC-NOMA

Direct-sequence CDMA (DS-CDMA)

In DS-CDMA, spreading codes spread out the energy of signals over all the N
available REs [20]. Each column sk of the representation matrix S is formed by a
spreading code, corresponding to a single user k over K users. Two typical examples
representing for DS-CDMA spreading codes were described by Verdú and Shamai
[20], including binary and spherical sequences. In the binary sequence model, sk
is uniformly filled with N values belonging to the set {+1/

√
N,−1/

√
N }, whereas sk

is modeled as a unitarily invariant unit-norm vector in the spherical model [20].
Matrix S has the dense structure, as illustrated in Fig. 2.2, for the binary case.

Interleave Division Multiple Access (IDMA)

IDMA was shown to be a special case of the traditional CDMA employing a common
spreading code and a user-specific random interleaver [30,31]. In particular, eachDS-
CDMA spreading code is replaced by a length-N spreading code followed by a chip-
interleaver, where the interleavers should be generated independently, randomly,
and uniquely for different users [30]. The system model of IDMA can be described
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2. Code-domain NOMA classification

Code-domain
NOMA

Single-carrier

Dense

DS-CDMA
IDMA

SC-RSMA

Low-dense

LDS-CDMA
SAMA
MUSA
PDMA
IGMA

Multi-carrier

Dense

MC-CDMA
MC-RSMA
LCRS/FDS

RDMA
GOCA

Low-dense

LDS-OFDM
SCMA
NCMA
NOCA

LDS-SVE

Figure 2.1. Code-domain NOMA classfification

comparably to CDMA as follows. In CDMA, the information bit bk of the user k-th is
spread by the corresponding spreading code sk , and the users are separated easily by
their respective codes. On the other hand, the user bit bk of IDMA transmitter is first
spread by the same spreading code s = sk,∀k, and then permuted by a user-distinct
interleaver πk . This scheme relies on interleaving process for user separation, thus,
is called as interleave division multiple access. The descriptive transmitter model
of IDMA is presented in comparison with that of CDMA in Fig. 2.3.

By sharing a single spreading code for all users, the receiver complexity of
IDMA was shown to be lower than CDMA, while higher spectral efficiency can be
achieved [30,31]. With optimal power allocation, the IDMA system capacity may
reach themaximum capacity of themultiple access CDMA for binary AWGN channel,
given the same input constraints [30]. By adopting the similar strategy of separating
users, the representationmatrix S of IDMA is shown identically to that of DS-CDMA
(see Fig.2.2).

Single-carrier Resource Spread Multiple Access (SC-RSMA)

RSMA is another term of NOMA, where unique signatures attached to users may be
detected at the receivers by power, spreading or scrambling codes, interleavers or
their combinations [43]. In [44], RSMA employs low rate channel code combining
with scrambling code (by interleavers) as in IDMA to separate different users. Based
on particular scenario, RSMA can be adopted as a single or multi-carrier system
(see Section 2.2). For SC-RSMA, the scheme is favorable for optimized battery
power consumption and link budget extension by using single carrier waveforms
and low peak to average power ratio (PAPR) modulations. Furthermore, SC-RSMA
is a potential solution for uplink transmission since it allows asynchronous access
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2.1 Single-carrier NOMA (SC-NOMA)

Single-carrier-
NOMA

Dense

NOMA

DS-CDMA

− + + −

+ − + −

+ + − −

IDMA/

RSMA

+ − + −

+ − + −

− + − +

Low-dense

NOMA

LDS-CDMA

0 −1 0 0

0 0 −1 1

1 0 0 0

SAMA

1 1 0

1 0 1

N.B.

PDMA/

IGMA

1 1 0 0

0 0 1 1

1 0 1 0

MUSA

1−i

			i

			i			i

1 0 0

0 −1 1

1+ 0 − 0
K = 2N -1

Figure 2.2. Single-carrier NOMA classification with a corresponding example of matrix for
each NOMA dialect

and grant-free transmission.

2.1.2 Low-dense SC-NOMA

Low-Density Spreading CDMA (LDS-CDMA) and Time-Hopping CDMA (TH-
CDMA)

LDS-CDMA replaces dense spreading sequences of DS-CDMA by sparse counter-
parts, as such the dense matrix S in DS-CDMA becomes sparse in LDS case [11].
Consequently, the energy of LDS-CDMA signals concentrates on a part of the REs, in
lieu of uniformly spreading over all REs, as in DS-CDMA. The idea on exploiting the
sparsity of multiple access based on code domain came from sparse CDMA, which
was firstly investigated via statistical physics in [47] and [48], and subsequently
studied in [49,50].

It is worthy to note that, the same sparse structure can be observed in the time-
hopping CDMAmodel [21], hence, both can be depicted by a matrix S, composed by
N REs with only Ns � N nonzero elements in the set {+1/

√
Ns,−1/

√
Ns}, while the

remaining (N − Ns) REs are zeros (see Fig. 2.21).

Successive Iterative Cancellation Amenable Multiple Access (SAMA)

SAMA is a special case of LDS-CDMA [33]. Here, K is fixed to K = 2N − 1, that
is, the system is necessarily overloaded. In this scheme, the nonzero element of
SAMA spreading sequences are equal to one, and the matrix S should meet the two
following rules [33]:

• the size of the groups having different number of 1’s in the spreading sequence
should be maximized,

1In Fig. 2.2, LDS-CDMA also stands for TH-CDMA
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2. Code-domain NOMA classification

Figure 2.3. IDMA vs. CDMA transmitter

• the number of overlapped spreading sequences having the same number of
1’s should be minimized,

from which the maximum number of users K is computed as(
N
1

)
+

(
N
2

)
+ · · · +

(
N
N

)
= 2N − 1.

Example of matrix S with N = 4, K = 15 for SAMA case is:

S4×15
SAMA =



1 1 0 1 1 1 1 1 0 0 0 1 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0
1 1 1 1 0 0 1 0 1 0 1 0 0 1 0
1︸︷︷︸

(4
4)=1

0 1 1 1︸         ︷︷         ︸
(4

3)=4

0 0 1 0 1 1︸                   ︷︷                   ︸
(4

2)=6

0 0 0 1︸         ︷︷         ︸
(4

1)=4



.

Again matrix S contains ‘0’ and ‘1’ elements, with a specific structure designed
to be effective in the succesive inteference cancellation (SIC) based detector [33].
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2.1 Single-carrier NOMA (SC-NOMA)

An example of SAMA matrix S ∈ R2×3 is provided in Fig. 2.2, due to the specific
constraint on the ratio K/N . With such peculiar design, SAMA was demonstrated to
achieve better performance in terms of bit error rate, compared to the orthogonal
counterpart [33].

Multi User Shared Access (MUSA)

Overloading and grant-free access are two key features of MUSA [17]. By adopting
grant-free access, MUSA allows each user to choose its spreading sequence freely
from a large cardinality, that, in fact, omits the need for resource coordination by the
base station. This strategy can reduce signaling overhead and transmission delay
caused by conventional grant-based transmission. In this way, MUSA lowers power
consumption of devices, and thus is proposed for the uplink transmission [17].

MUSA spreading sequences are required to have short length and low cross-
correlation to support a large number of grant-free access users and minimize
the impact of user collision. It is, in general, difficult to design a large number
of binary spreading codes with low correlation. Non-binary and complex-value
random spreading codes with M-ary values were proposed for MUSA to address
this drawback. Two typical examples of available sets, before normalization, are
{1 + i,−1 + i,−1 − i, 1 − i}(M = 2) and {0, 1, 1 + i, i,−1 + i,−1,−1 − i,−i, 1 − i} (M = 3).
The entries of these sets are taken from complex spreading codes in the respective
M-ary set, as shown in Fig. 2.4 for the two respective sets M = 2 (a) and M = 3 (b).
A MUSA matrix example for M = 3 is shown in Fig. 2.2.

1

i

-i

-1

im

real

(a)

0 1

i

-i

-1

im

real

(b)

0

Figure 2.4. Examples of MUSA entries: (a) M = 2, (b) M = 3

Pattern Division Multiple Access (PDMA)

PDMA employs non-orthogonal patterns to map the transmitted data to a re-
source group, that can be code, power, spatial resource or any combination of
those resources, corresponding to code-, power-, or spatial-domain PDMA. In code-
domain, PDMA replaces spreading sequences as in LDS-CDMA by non-orthogonal
patterns [16], and the number users K are constrained by 2N − 1, hence, PDMA
is also considered as a special case of SAMA [45]. The concept of PDMA patterns
could be understood in a broader way compared to spreading codes. Elements of
a PDMA pattern matrix can be either filled with binary numbers in the general
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2. Code-domain NOMA classification

case, or additionally weighted by power scaling and phase shifting in the extended
case. Accordingly, the patterns of PDMA assigned to each user admit the following
description

sk =



{0, 1} in the general case
{0, αkie−jφki } in the extended case,

where αki and φki denote power scaling and phase shifting of the k th user on the ith

RE, respectively.
The pattern is designed to enable user separation so that every user has its

respective pattern, and as such more users can be multiplexed on a limited number
of REs, i.e. is intrisically realized as an overloaded system. In addition, to reduce
the receiver complexity, sparsity is also introduced in PDMA patterns. In this way,
PDMA is characterized by overloading and sparsity features, and is thus realized
as a low-dense system. For example, six users with their different patterns can be
mapped to three REs, where one user data can be mapped to one, or even all three
REs [16]. An example of the PDMA pattern matrix for N = 3, K = 6 is

SPDMA =



1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1


.

With the flat fading assumption, the channel matrix is given as H = diag [h1, . . . , h6].
The received signal is achieved as



y1
y2
y3


=



h1 h2 0 h4 0 0
h1 0 h3 0 h5 0
0 h2 h3 0 0 h6





b1
b2
b3
b4
b5
b6



+



n1
n2
n3


. (2.1)

By optimizing power scaling and phase shifting factors in the pattern matrix,
PDMA scheme can significantly improve spectral efficiency compared with OMA
techniques [16,28]. The PDMA representation matrix provided in the Fig.2.2 stands
for the general case.

Interleave-grid multiple access (IGMA)

Figure 2.5 shows the schematic of IGMA transmitter, which is characterized by
two blocks: bit-level interleavers and grid mapping patterns. Basically, users may
be separated by either only bit-level interleaver or grid mapping pattern, or by a
combination of both blocks. After channel coding, by applying either low rate FEC
code or a combination of a moderate FEC code and repetition code, user data is
permuted by a bit-level interleaver [29].

In case only the bit-level interleaver is used to separate users, IGMA becomes
IDMA, and the adopted interleaver should be user-specific. After modulation, the
generated symbol sequence is subsequently processed by a grid-mapping pattern,
including a zero padding block and a symbol-level interleaving. The zero padding
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2.1 Single-carrier NOMA (SC-NOMA)

Figure 2.5. Examples of IGMA transmitter [29].

Figure 2.6. Examples of grid mapping process when N = 4, ρk = 0.5 and L = 8 [29].

component of the grid-mapping is used in order to reduce the receiver complexity
by introducing the sparsity into the mapping of the modulated symbols into the
resource elements, while the interleaving is adopted to further randomize interfer-
ence. An example of grid-mapping process is displayed in Fig. 2.6, where there is
simultaneous K users, N = 8 bits (chips) and a density ρk = 0.5, denoting the ratio
of used REs (with nonzero element, for example element 1) over the total REs [51].

The spreading matrix S ∈ R8×K of IGMA system model corresponding to the
grid mapping example in Fig. 2.6 can be expressed as follows.

SIGMA =



1 1 1 0 · · · 0
0 0 0 1 · · · 0
1 1 0 1 · · · 1
0 0 1 0 · · · 1
0 1 1 0 · · · 0
1 0 0 1 · · · 0
0 1 0 1 · 1
1︸︷︷︸
s1

0︸︷︷︸
s2

1︸︷︷︸
s3

0︸︷︷︸
s4

· · · 1︸︷︷︸
sK



.

A summary of aforementioned low-dense SC-NOMA schemes is provided in the
Table 2.1, where they are shown to have a mutual link. In particular, SAMA, MUSA,
PDMA, and IGMA are shown to be well connected with LDS-CDMA, which all are
reflected by sparsity nature of the matrix S. It is reasonable then to take LDS-CDMA
as a representative for low-dense NOMA to compare with the dense case from the
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2. Code-domain NOMA classification

information-theoretic viewpoint.

Multiple Access
schemes Based-domain Entries of matrix S Relationship with other

MA schemes

LDS-CDMA/
TH-CDMA Sequence-based {+1, 0,−1} DS-CDMA with low-dense

spreading sequences

SAMA Sequence-based {0, 1}
LDS-CDMA with specific
design of S ∈ RN×(2N−1)

MUSA Sequence-based {1 + i,−1 + i,−1 − i, 1 − i}
LDS-CDMA with
grant-free access

PDMA Pattern-based {0, 1} or {0, αe−jφki }
LDS-CDMA with

non-orthogonal patterns

IGMA Interleave-based {0, 1} LDS-CDMA with
interleavers

Table 2.1. Properties of low-dense SC-NOMA schemes

2.2 Multi-carrier NOMA (MC-NOMA)

2.2.1 Dense MC-NOMA

While DS-CDMA is considered as an initial model for single-carrier dense NOMA,
multi-carrier CDMA (MC-CDMA) may be inherently referred as a representative for
multi-carrier dense NOMA. Basically, MC-CDMA combines DS-CDMA with orthog-
onal waveforms, for instance OFDM. According to this principle, different dialects
for dense multi-carrier NOMA such as multi-carrier resource spread multiple access
(MC-RSMA), low code rate and signature based shared access (LSSA), repetition divi-
sion multiple access (RDMA), group orthogonal coded access (GOCA), are classified
into this category and are further described in this section.

Multi-carrier Resource Spread Multiple Access (MC-RSMA)

Adopting multi-carrier waveform, the abovementioned RSMA scheme (c.f. Section
2.1) is therefore called as multi-carrier RSMA [43,44]. It is considered as an opti-
mized solution for low-latency access and it allows for grant-free transmission [44].

Low code rate and signature based shared access (LSSA)

LSSA is proposed as a potential candidate for 5G-NR for uplink massive machine-
type communication (mMTC) [37]. In this scheme, spreading sequences of DS-
CDMA are replaced either by low code rate FEC coding for mitigating multi-user
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2.2 Multi-carrier NOMA (MC-NOMA)

interference (MUI), or by higher channel coding non-orthogonal spreading se-
quences [37], and then are multiplexed at bit/symbol level thanks to a particular
signature pattern. This signature consists of a reference signal (RS), complex binary
sequence, and permutated pattern of a short length vector, which is shared among
user’s signatures. After multiplexing, the multi-carrier modulation is carried out by
IFFT implementation as in OFDM in order to exploit frequency diversity, as shown
in Fig. 2.7.

Figure 2.7. Example of LSSA transmitter structure [37]

Repetition Division Multiple Access (RDMA)

Figure 2.8 shows an example of RDMA transmitter with K users, where a simple
cyclic-shift repetition code, instead of spreading code of CDMA, is used to sepa-
rate users at the receivers and OFDM is employed for multi-carrier waveform [40].
The repetition pattern is designed in such a way to optimize the diversity in both
frequency and time for each repeated modulated symbol. In general, RDMA trans-
mitter structure is simpler than MC-RSMA and IDMA since no random interleave
or scrambler is required.

Group Orthogonal Coded Access (GOCA)

While RDMA uses different repetition patterns to distinguish different users, GOCA
uses the same repetition pattern for all users, whilst employs an additional two-stage
block (see Fig. 2.9). In this block, GOCA sequences are divided into groups, each
constitutes a sameorthogonal sequence set and different non-orthogonal sequences,
that are used subsequently in the first and second stage. Localized time or frequency-
repetition, adopted to keep orthogonality among orthogonal sequences in the same
group, are expected to significantly reduce multi-user interference. An example of
sequence generation block in GOCA transmitter is illustrated in Fig. 2.10.

Two otherMC-NOMAcandidates proposed by Intel are frequency domain spread-
ing (FDS) and low code rate spreading (LCRS), that function similarly to LSSA and
GOCA [42, 52]. Basically, user symbols are spread to multiple resource blocks to
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2. Code-domain NOMA classification

Figure 2.8. Example of RDMA transmitter structure [40]

Figure 2.9. Example of GOCA transmitter structure [40]

achieve higher diversity gain, and finally transmitted on multiple waveform, OFDM-
based waveform, typically, with the aid of IFFT operation. In addition, user-specific
scrambling or interleavingmay be employed to further improvemulti-user detection
performance [42].

2.2.2 Low-dense MC-NOMA

In this subclass ofMC-NOMA, the low-dense schemes, including LDS-OFDM, SCMA,
NCMA, NOCA and LDS-SVE, are described as follows.

Low-density spreading OFDM (LDS-OFDM)

LDS-OFDM can be seen as a combined system of LDS-CDMA and OFDM, where LDS-
CDMA is applied as multiple access technique and OFDM is applied for multi-carrier
modulation. In particular, data symbol of each user is spread over a small set of
sub-carriers due to the low-dense property of signatures. Each sub-carrier is shared
by many users, hence, is designed to be orthogonal and used by a limited number of
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2.2 Multi-carrier NOMA (MC-NOMA)

Figure 2.10. Example of sequence generation in GOCA transmitter structure [40]

symbols to avoid superposition [35]. By adopting spreading sequences, LDS-OFDM
is, in fact, an enhanced version of MC-CDMA, where the difference is that the
spreading signatures are sparse or low-dense by employing zero padding [35].

Figure 2.11. Example of Uplink MC-LDSMA (LDS-OFDM) block diagram [53]

Very first concept of LDS-OFDM came from Jinho Choi [34] termed as low-
density spreading for multicarrier system (LDS-MC). In [34], the number of nonzero
elements Ns in the spreading sequences was considered as an evaluator for the
tradeoff between diversity gain and computational complexity of receivers. The
diversity gain grows proportional to Ns, whereas the complexity also increases.
Maximum Likelihood detection and iterative receiver (including a MAP detector
and decoder) were employed for uncoded and coded LDS-MC systems, respectively.
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2. Code-domain NOMA classification

For both cases, the performance improvement in terms of BER has been observed
compared to conventional OFDM. Later on, LDS-OFDM, termed as Multicarrier
low-density spreading multiple access (MC-LDSMA) in [53], [35], was studied with
different proposals at the receiver side. An example of MC-LDSMA block diagram is
shown in Fig. 2.11. A turbo multi-user detector/decoder (MUDD) using extrinsic
information transfer (EXIT) charts was proposed in [14] was shown to gain the BER
improvement with less iterations, compared to the same scenario of MC-CDMA.

Based on bipartite graph, a joint sparse graph for OFDM, including single graph
of LDS-OFDM and LDPC codes, was proposed in [35]. At the receiver, a corre-
sponding joint multiuser detection with FEC decoding was presented, showing an
enhancement in terms of BER over conventional systems such as group-orthogonal
multi-carrier CDMA, LDS-OFDM and turbo structured LDS-OFDM. Due to the con-
straints on the number of users sharing the same subcarrier and the number of
subcarrier for spreading each symbol, radio resource allocation for LDS-OFDM
naturally becomes a challenge for 5G system design. In [53], proposed power-
allocation algorithms have been considered in single-user and multiuser scenarios.
Optimal and suboptimal algorithms have been proposed aiming to solve the two
following tasks: sub-carrier partition to maximize the user rate (water-filling) and
optimizing power allocation for a given sub-carrier partitioning (a maximum ratio
transmission) [53]. Numerical analysis showed that proposed algorithms improved
performance in terms of spectral efficiency and outage probability compared to that
of OFDMA.

Related to bipartite graph, it is also worth to mention random access schemes,
in parallel with CDM-NOMA, built on the combination of packet erasure correcting
codes and SIC technique with ALOHA [54,55]. This may enable the possibility to
use coding theory for designing efficient random access protocols, which are of
practical interests, particularly in IoT scenarios.

Sparse Code Multiple Access (SCMA)

SCMA is an extended case of LDS-CDMA, where modulation and spreading are com-
bined and merged into a unified process, named SCMA encoder [36]. In particular,
the SCMA encoder, first maps the encoded bits into K complex vectors (codewords),
corresponding to K users, then these vectors are multiplexed over N orthogonal
resources, for example OFDMA, and transmitted on the radio channels. Since SCMA
maps those encoded bits directly to sparse multi-dimensional codewords, that are
equivalent to joint processing of modulation and spreading, this brings further a
‘shaping gain’ from optimization of a multi-dimensional constellation. An example
of SCMA encoding and multiplexing is shown in Fig. 2.12.

To distinguish different users and avoid collision among users, codewords, dedi-
cating for a user, are selected from a predefined codebook set, and are, typically,
sparse, complex, and multi-dimensional. This feature makes the decoding process
time consuming, as dictated as an exponential order in computational complexity.
Since factor graph is exploited for presenting the mapping matrix, entries of map-
ping matrix S consist of binary values, indicating the index of the nonzero elements
of signal input.
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2.2 Multi-carrier NOMA (MC-NOMA)

Figure 2.12. Example of SCMA encoding and multiplexing [33]

Non-orthogonal coded multiple access (NCMA)

Similar to SCMA, NCMA also adopts the non-orthogonal codebooks, whose code-
words obtained by Grassmannian line packing problem [38]. As illustrated in Fig.
2.13, receivers distinguish different users with the aid of UE specific non-orthogonal
code cover (NCC), which represent a non-orthogonal codeword attached to each
user.

By employing additional layers via superposed symbol, the throughput of NCMA
increases at an expense of small BLER loss under specific scenarios, for example,
huge connections with small packet in mMTC, or for reducing the collision prob-
ability in contention based MA. As a matter of fact, NCMA is favorable due to
low receiver complexity by adopting parallel interference cancellation (PIC) at the
receiver.

Figure 2.13. Example of NCMA structure in UL [38]

Non-orthogonal coded access (NOCA)

Figure 2.14 shows an example of NOCA transmitter, where SF is the spreading
factor and C j

SF is the spreading sequence of the j-th user. As other proposed NOMA
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2. Code-domain NOMA classification

schemes, the NOCA idea is that data symbols are spread in either frequency or time
domain by non-orthogonal sequences before transmission [39].

Figure 2.14. Example of NOCA transmitter structure [39]

Figure 2.15. Example of LDS-SVE transmitter structure [41]

The original modulated data stream is first converted into P parallel sequences,
each is then spread to SF subcarriers, leading to P × SF subcarriers in total. NOCA
sequences are designed to have constant modulus, low cubic metric, and low corre-
lation properties as dictated in [39].

Low Density Spreading-Signature Vector Extension (LDS-SVE)

LDS-SVE is an extended version of LDS-CDMA using multi-carrier waveform (two-
carrier in particular), proposed by Fujitsu for uplink OFDM system [41]. The trans-
mitter structure of LDS-SVE illustrated in Fig. 2.15 shows that after modulation,
each symbol is spread onto the two subcarriers. This is obtained with the aid of
transformation matrix U in multiplication with the real and imaginary parts of two
modulate symbols, denoted by s1, s2. The output forms a vector x constituting two
parallel symbols, and is further mapped onto REs sparsely, as in LDS-CDMA case.
The mapped subcarriers are, in general, designed in an optimized way to increase
the diversity gain.
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Chapter 3

Theoretical analysis of SC-NOMA
over AWGN channels

3.1 Theoretical framework

In this chapter, the theoretical behavior of SC-NOMA is analyzed under the impact
of three main factors. First, the load factor provides a straightforward way to study
the system behavior in the underloaded (β < 1) vs. overloaded (β > 1) regimes. As
mentioned above, overloaded systems are necessarily NOMA, since as soon as β
overcomes the boundary value β = 1, new users find all REs occupied. In fact, SC-
NOMA 1 schemes introduced in Chapter 2 are characterized by overloaded property,
i.e. β > 1.

The second typical feature under analysis is the dense vs. low-dense aspect,
corresponding to the dense vs. low-dense groups. Either all N dimensions are used,
as in CDMA or IDMA, or only a part of the dimensions is used, as in low-dense
systems. Due to sparsity, the system can be graded fromdense to extreme low-dense.
The number of used dimensions, that we call Ns, defines the degree of sparseness.
If Ns = N , the system is dense. If Ns = 1, then the system is extreme low-dense.
All other degrees of sparseness lie in between these two extreme cases. The dense
vs. low-dense feature is directly reflected by the properties of matrix S, as defined
in the mathematical model (eq. (1.1)). Regarding the energy feature, the matrix
S of low-dense system contains most of elements that are ‘0’, where ‘0’ indicates
elements with zero energy. A heuristic way to think of NOMA scheme is thus as a
version of the overloaded CDMA scheme and low-dense NOMA can be referred to
as sparse overloaded CDMA [47]. Naturally, it is expected to investigate the effect
of those NOMA parameters, including the load β and the degree of sparseness Ns,
on theoretical behavior of dense vs. low-dense NOMA.

Achievable rates of low-dense NOMA in the LSL were early and extensively
evaluated via sparse CDMA by means of the replica method, also known as heuristic
statistical physics, in [47–50]. Since the derivations provided by replicamethodwere
typically non-rigorous, the information-theoretic analyses on low-dense NOMA
were found rigorously via closed-form expressions in LDS/TH-CDMAmodel [21,32],

1afterwards SC-NOMA is called shortly as NOMA in this chapter
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3. Theoretical analysis of SC-NOMA over AWGN channels

and in regular sparse NOMA model [22,56]. Given that multiple system models are
possibly proposed due to different assumptions, below we reported all curves along
with the existing relevant theoretical results in our analytical model (c.f. Chapter
1).

Regarding the third feature, the regularity, low-dense NOMA (Ns < N) are fur-
ther classified into irregular vs. regular based on spreading mapping constraints,
given that Ns is also the number of occupied REs per user, whereas N is the total
number of REs per user. Previous works on sparse CDMA and low-dense NOMA
were classified as irregular since the number of occupied REs per user was ran-
domly Poissonian distributed with fixed mean [47, 48], and randomly uniformly
distributed [21,32]2, respectively. On the other hand, in terms of spreading matrix,
the regularity assumption in [22,56] requires matrix S be structured with exactly
Ns ∈ N

+ and βNs ∈ N
+ non-zero entries per column and row, respectively. It is

equivalent to having each user occupying Ns REs and each RE being allocated with
exact βNs users, subject to Ns and βNs being integers. It is, in general, challenging
to have such an ideal model in practical scenarios where users are not allowed to
independently select the spreading sequences, they must be coordinated or central
scheduled [56]. The regular low-dense NOMA via regular sparse CDMA was early
demonstrated to be superior to the dense in terms of bit error rate in high noise
regime in [49], and in terms of spectral efficiency via explicit analytical expressions
in recent works [22,56].

In the following, theoretical behavior of irregular vs. regular low-dense NOMA
(Ns < N) is analyzed with the adopted reference models LDS/TH-CDMA [21,32] vs.
regular sparse NOMA [22,56], respectively. DS-CDMA is adopted as a representative
of the dense NOMA group (Ns = N) [20]. Both optimal and linear receivers are
considered in all cases. Spectral efficiency expressions [bits/s/Hz] for different cases
are reported for the self-contained purpose of the chapter.

It is important to notice that the theoretical results of irregular low-dense NOMA
are available only for Ns = 1 [21,32] (see 3.2), while closed-form expressions of the
regular case are valid only for intermediate degrees of sparseness, specifically for
Ns > 2, βNs ∈ N

+ [22] (see 3.3). For irregular low-dense NOMA, since the closed-
form expressions for intermediate Ns do not exist yet in the literature (and in general,
are not easy to achieve), the results will be shown via Monte Carlo simulations for
a full coherent overview. For regular low-dense NOMA, the regularity in case of
Ns = 1 yields a typical setting, which includes a set of parallel Gaussian multiple
access channels (MAC), that will be investigated further in 3.3. The references for
mapping information-theoretic results in code-domain NOMA are summarized in
Table 3.1, with the corresponding numbered equations in this thesis.

3.2 Dense vs. Irregular low-dense NOMA

In this part, theoretical behavior of dense vs. irregular low-dense NOMA is analyzed
with the two corresponding reference models, that are DS-CDMA (Ns = N) [20]
and LDS/TH-CDMA (Ns < N) [21]. Since the AWGN channel is used for both cases,

2The irregular low-dense NOMA in [21,32] is called as partly-regular sparse NOMA in [22,56]
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3.2 Dense vs. Irregular low-dense NOMA

Dense NOMA Low-dense NOMA
(Ns = N) (1 < Ns < N) (Ns = 1)

Irregular Regular Irregular Regular

Optimum Eq. (3.2) Eq. (3.1) Eq. (3.9) Eq. (3.4) Eq. (3.11)
receivers [20] by Monte-Carlo [22] [21] of this thesis

simulations [20]
Linear Eqs. (3.5, 3.6) Eq. (3.7) Eq. (3.12) Eq. (3.8) Eq. (3.13)
receivers [20] [21] [22] [21] of this thesis

Table 3.1. Summary of available theoretical bounds with corresponding references

the channel matrix H in eq. (1.1) becomes an identity matrix. The only difference
in the mathematical model between DS-CDMA and LDS-CDMA is situated in the
sparseness of matrix S. In DS-CDMA (Ns = N), all entries of S are randomly filled by
binary values of {±1}, while in LDS-CDMA, for example with Ns = 1, each column
of S, representing a user, contains only one nonzero entry ({+1} or {−1}), and all
the rest are nil.

3.2.1 Optimum receivers

The general spectral efficiency for optimum receivers in both dense NOMA and
low-dense NOMA cases can be computed via [20–22]

CN
opt(γ) =

1
N

log2 det [I + γSS∗] , (3.1)

where γ denotes the signal-to-noise (SNR) ratio.

Dense NOMA

The optimum capacity for the dense case is equal to [20]

Cdense
opt (β, γ) =

β

2
log2

(
1 + γ −

1
4
F (γ, β)

)
+

1
2

log2

(
1 + γ β −

1
4
F (γ, β)

)
−

log2 e
8γ
F (γ, β) ,

(3.2)

where
F (x, z) B

(√
x(1 +

√
z)2 + 1 −

√
x(1 −

√
z)2 + 1

)
. (3.3)

Irregular low-dense NOMA

• 1 < Ns < N: In order to study the behavior of the system, Monte-Carlo sim-
ulations are introduced for optimum receivers of irregular low-dense NOMA
based on eq. (3.1).
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3. Theoretical analysis of SC-NOMA over AWGN channels

• Ns = 1: The closed-form capacity expression of the irregular case is [21]

Cirreg
opt (β, γ) =

∑
k>0

βke−β

k!
log2

(
1 + kγ

)
. (3.4)

It is worth mentioning that, Maximum Likelihood is typically adopted as
the optimum receiver and is, in general, favorably replaced in real-world
communication systems by sub-optimal receivers due to complexity issue.

3.2.2 Linear receivers

For dense NOMA, closed-form capacity expressions for all linear receivers are avail-
able as in [20]. For irregular low-dense NOMA, while the same mutual information
is obtained for different linear receivers, including minimum mean square error
(MMSE), single user matched filter (SUMF), and zero forcing (ZF) with respect to the
particular case Ns = 1, closed-form achievable rates for 1 < Ns < N are available
only for the SUMF receiver [21]).

Dense NOMA

The spectral efficiency of SUMF and MMSE receivers for the dense system in the
LSL is [20]

Cdense
SUMF (β, γ) =

β

2
log2

(
1 +

γ

1 + γ β

)
, (3.5)

and
Cdense
MMSE(β, γ) =

β

2
log2

(
1 + γ −

1
4
F (γ, β)

)
, (3.6)

where F (γ, β) is defined as in eq. (3.3).

Irregular low-dense NOMA

Due to the peculiar sparse structure of matrix S in LDS-CDMA when Ns = 1, the
linear receivers (MMSE, SUMF, ZF) yield the same mutual information, while it
remains unknown for the in-between cases 1 < Ns < N for the MMSE and ZF
receivers [21]. Therefore, theoretical behavior of irregular low-dense NOMA linear
receivers for the intermediate degree of sparseness cases is investigated via the
mutual information of the SUMF receiver of LDS-CDMA [21] as follows:

• 1 < Ns < N: The mutual information of irregular low-dense NOMA with
the SUMF receiver writes [21]

Rirreg
lin (β, γ, Ns) = β

∑
k>0

(N2
s β)k

k!
e−N

2
sβ log2

*
,
1 +

γ

1 + k
Ns
γ

+
-
. (3.7)

• Ns = 1: The closed-form expression of the irregular low-dense achievable
rate with linear receivers when Ns = 1 is [21]

Rirreg
lin (β, γ) = β

∑
k>0

βke−β

k!
log2

(
1 +

γ

kγ + 1

)
. (3.8)
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3.2 Dense vs. Irregular low-dense NOMA

Figure 3.1. Achievable rates (bits/s/Hz) of dense NOMA vs. irregular low-dense NOMA as a
function of β with fixed Eb/N0 = 10 [dB] (parts of the data used to draw this
figure were extracted from [21])

Figure 3.1 shows the achievable rates of dense vs. irregular low-dense systems
with optimum and linear receivers as a function of β with fixed value of Eb/N0 = 10
[dB]. With respect to load factor β, the border line (vertical dashed line) at β = 1
divides Fig. 3.1 into two areas corresponding to OMA (underloaded with β < 1) and
NOMA (overloaded with β > 1), with dark and light shaded area, respectively.

In the LSL, Fig. 3.1 shows that for optimum receivers, dense systems always
outperform irregular low-dense, irrespective of β, that is, whether OMA or NOMA.
Achievable rates for the irregular type drop with Ns from the dense case (Ns = N) to
the extreme low-dense case (Ns = 1), and the gap between the irregular low-dense
and dense becomes negligible at Ns = 2, and tends to vanish from Ns > 2, e.g.
Ns = 5. On the other hand, the behavior of linear detection changes, with respect
to the level of density of the system. For MMSE receivers, achievable rates of the
dense systems are higher than the irregular low-dense in the OMA area, while this
situation is inverse in the NOMA area, starting from about β > 1.2. With growing Ns,
for example Ns = {2, 5}, the gap between the achievable rates of irregular low-dense
NOMA with the SUMF receiver and dense NOMA, sharply reduces, to converge to
the SUMF dense curve. Given that optimum detection is unfeasible to implement in
practice due to the receiver complexity, the above observation provides the ground
for suggesting irregular low-dense NOMA in the LSL, for example, for irregular
low-dense case with Ns = 1.

The reported analysis holds in the case of flat-fading channel, as investigated
and proved in [32].
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G(x, y, z) B
*..
,
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√
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√
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√
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z)2 + 1)√

y − (1 −
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z)2 −

√
y − (1 +

√
z)2

+//
-

2

,

x, y, z ∈ R+, y > (1 +
√

z)2.
(3.10)

3.3 Dense vs. Regular low-dense NOMA

Theoretical analysis of regular low-dense NOMA is investigated in this part, in
comparison with the dense case.

• 1 < Ns < N: Closed-form expressions of regular low-dense NOMA achiev-
able rates for both optimum and MMSE receivers in [22] are valid under the
following constraints:

– if each user has 2 ≤ Ns ∈ N
+ non-zero entries in its spreading se-

quence, 2 ≤ βNs ∈ N
+ users shoud be assigned in the same RE;

– spreading matrix S is assumed to converge to a bipartite Galton-
Watson tree in the LSL (see ( [22], Theorem 2) for a full description).
To effectively induce non integer values of Ns and βNs, one may employ
time-sharing between different (Ns, βNs) points in the admissible set to
achieve the same total throughput as mentioned in ( [22], Remark 4).

• Ns = 1: The regularity imposes β ∈ N+ users per each RE, that is equivalent
to having a set of N parallel Gaussian MAC channels [57]. This observation
may bringmore insight on the behavior of the regular with respect to optimum
and linear receivers.

3.3.1 Optimum receivers

• 1 < Ns < N: For the regular one, the closed-form expression of optimum
capacity is valid for Ns > 2, subject to Ns, βNs being integers [22]

Creg
opt (γ, β, Ns) =

β(Ns − 1) + 1
2

log2

(
1 + (δ + α)γ −

1
4
F (δγ, β̃)

)
+ (β − 1) log2

(
1 + αγ −

1
4
F (δγ, β̃)

)
−
β(Ns − 1) − 1

2
log2

(
(1 + βNsγ)2

G(δγ, ψ, β̃)

)
,

(3.9)

where α B 1 − 1/Ns, δ B β − 1/Ns, β̃ B α/δ, ψ B βNs/δ,
F (x, z) defined in (3.3) and G(x, y, z) defined as in eq. (3.10).
• Ns = 1: In this case, the regular low-dense NOMA scheme turns out a set
of N parallel Gaussian MAC channels, each with β (1 < β ∈ N) users. This
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3.3 Dense vs. Regular low-dense NOMA

setting makes sense only in the overloaded regime. One may easily obtain the
spectral efficiency that in this case is

CMAC
opt (β, γ) = log2(1 + βγ). (3.11)

It is worth highlighting that finding the spectral efficiency as a function of
Eb/N0 (via the relation Eb/N0 = βγ/C(γ) [19]) yields exactly the Cover-Wyner
bound as in [20], corresponding to a system with no spreading.

The behavior of regular low-dense NOMA vs. dense NOMA with optimum
receivers is shown on Fig. 3.2. For the sake of full comparison, theoretical behavior
of the irregular low-dense with Ns = 1 and the orthogonal case are also plotted for
reference. Achievable rates are plotted as a function of system load β, for a fixed
value of Eb/N0 = 10 [dB] (Fig. 3.2a), and as a function of Eb/N0, for fixed β = 2
(Fig. 3.2b). In contrast to the irregular counterpart, achievable rates for the regular
low-dense NOMA, which are superior to all other cases, grow gradually for lower
values of Ns < N , and reach the ultimate rate (Cover-Wyner bound) when Ns = 1.

The reason that makes the optimal spectral efficiency of the irregular low-dense
to be lower than the dense casemay be caused by the randomnature of user-resource
allocation, leading to a condition in which some users are not assigned with any RE,
while some REs are left unused. On the other hand, the regularity feature of the
regular low-dense NOMA contributes to increasing the optimal spectral efficiency
by employing user-mapping intentionally. Nonetheless, this also imposes as a direct
consequence additional practical challenges in having some kind of coordination
while allocating the resources to users [22,56].

3.3.2 Linear receivers

• 1 < Ns < N: The closed-form expressions of regular low-dense NOMA
achievable rates for linear MMSE (LMMSE) are [22]

Creg
LMMSE(γ, β, Ns) = β log2

*.
,

1 + βNsγ

1 + Nsδγ −
NsF (δγ,β̃)

4

+/
-
, (3.12)

where δ, β̃, F (x, z) defined as in eq. (3.9).
• Ns = 1: In this particular case, the achievable rate of the regular low-dense
NOMA with respect to the LMMSE receiver may be derived via the setting of
parallel MAC channels, each with β users as follows

RMAC
LMMSE(γ, β) = β log2

(
1 +

γ

1 + (β − 1)γ

)
. (3.13)

Figure 3.3 shows the achievable rates of MMSE, ZF, SUMF receivers for the dense
(Ns = N), LMMSE receiver for the regular low-dense schemes with Ns = {1, 2, 5}.
The linear receiver for the irregular low-dense NOMA with the typical case Ns = 1
is also shown for comparison. A remarkable observation from low-dense NOMA
with Ns = 1 can be given: capacity of regular low-dense NOMA with linear receiver
outperforms all the rest when β 6 1 (OMA area), particularly to the typical setting
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3. Theoretical analysis of SC-NOMA over AWGN channels
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Figure 3.2. Achievable rates (bits/s/Hz) of dense NOMA (Ns = N) vs. regular and irregular
low-dense NOMA (Ns < N) with optimum receivers
(a) as a function of β = K/N for fixed Eb/N0 = 10 [dB]
(b) as a function of Eb/N0 for fixed β = 2
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3.4 Conclusion

when Ns = 1; while in the overloaded regime (NOMA area), there is an intersection
where capacity of irregular low-dense NOMA with Ns = 1 outperforms all other
cases. By numerical equation solving, the exact value of the intersection is located
at β = 1.232, from which irregular low-dense NOMA with Ns = 1 dominates those
of dense NOMA (c.f. Figs. 3.1 and 3.2), as well as with all other degrees of sparseness
(Ns > 1) till about β ≈ 5, and then tend to converge for β > 5 (with the negligible
gap of about 5% at β = 5). These observed results can be used as a driving rationale
in system design.
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Figure 3.3. Achievable rates (bits/s/Hz) of dense NOMA (Ns = N) with SUMF, MMSE, ZF re-
ceivers vs. low-dense NOMA (Ns = 1, 2, 5) with linear receivers as a function
of β for fixed Eb/N0 = 10 [dB]

3.4 Conclusion

Motivated by the key challenge of finding and analyzing theoretical bounds for
NOMA in massive communications, this chapter sheds some light on the relation-
ship between achievable rates and NOMA parameters, such as load factor, degree
of sparseness and regularity.

Theoretical investigations were interpreted in the LSL for both optimum and
linear receivers, based on closed-form expressions existing for three distinctive
cases, that are, dense vs. regular low-dense and irregular low-dense NOMA, corre-
sponding to DS-CDMA (Ns = N) [20] vs. LDS-CDMA (Ns = 1) [21] and regular sparse
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3. Theoretical analysis of SC-NOMA over AWGN channels

NOMA (2 ≤ Ns ∈ N
+, βNs ∈ N

+) [22]. For any value of load, low-dense NOMA cases
were shown to be more spectral-efficient than dense ones. For optimum receivers,
achievable rates of the regular low-dense are higher than the irregular low-dense
and dense NOMA regardless of load. To this end, the system must be constrained
to have exactly Ns REs per user and βNs ∈ N users per resource; this imposes either
central scheduling or users coordination. For linear receivers, spectral efficiency of
regular low-dense NOMA was proved to be higher than all the other cases in the
underloaded regime, while spectral efficiency of irregular low-dense dominated
other NOMA cases in the overloaded systems, particularly when the system load β
is within an interval that is about [1.2, 5]. When Ns increases, that is sparseness
decreases, achievable rates of low-dense cases rapidly converged to achievable rates
of the dense case, as soon as Ns = 2.

In conclusion, by changing the spreading strategy from dense to low-dense,
specific theoretical limits hold, showing that, to obtain higher achievable rates for
linear decoders while still enjoying the lower receiver complexity, it is advisable
to adopt sparse communications, and in particular irregular extreme low-dense
schemes when systems are overloaded and regular extreme low-dense cases in the
underloaded regime.
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Chapter 4

Theoretical analysis of
Low-dense SC-NOMA over
Rayleigh fading channels with
perfect CSI

In this chapter, spectral efficiency of low-dense SC-NOMA in the presence of fading
with perfect knowledge of channel is derived for linear detection with independent
decoding as well as optimum decoding. In the case of optimum decoding, it is found
that low-density spreading underperforms dense spreading for all loads. Conversely,
linear detection is characterized by different behaviors in the underloaded vs. over-
loaded regimes. In particular, it is shown that spectral efficiency changes smoothly
as load increases. However, in the overloaded regime, the spectral efficiency of
low-density spreading is higher than that of dense spreading.

4.1 Introduction

4.1.1 Background and Motivation

In SC-NOMA, it is characterized by different dialects, such as low-density spreading
CDMA (LDS) [11–13], multi-user shared access (MUSA) [17], successive iterative
cancellation amenablemultiple access (SAMA) [33], pattern divisionmultiple access
(PDMA) [16,28], interleave division multiple access (IDMA) [30,31] and interleave-
gridmultiple access (IGMA) [29] and so on. As amatter of fact, those NOMA variants
enable flexible resource allocation, and reduce hardware complexity by relaxing
orthogonality requirements.

In this work, we focus on LDS. As a typical variant of SC-NOMA, LDS inherits
all above advantages and will be shown later in this chapter to obtain increased
system throughput compare to conventional CDMA, particularly in massive com-
munications. LDS, therefore, may be appropriately fit to IoT scenario [2] and is
also considered as a potential candidate for uplink machine-type-communications
(mMTC) [2]. Conventional direct-sequence CDMA (DS) is based on the spread spec-
trum technique, that uses spreading sequences to spread the signal over a given
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bandwidth. In traditional CDMA, signal dimensions, also known as chips (the ter-
minology stemmed from the chip-rate of the sample), are all filled in with nonzero
values, making the structure of DS be a form of “dense spreading” with nonzero
values commonly binary or spherical [20]. The idea of LDS is to use spreading
sequences that are the sparse counterparts of the dense spreading sequences of
conventional CDMA; a fraction only of the dimensions is filled with nonzero en-
tries [11]. The same concept of LDS can be found in [21] within the framework of
time hopping CDMA, where time hopping and chips are mapped to frequency hop-
ping and subbands, respectively. Specifically, the analysis therein can be considered
as a reference for LDS in terms of information theoretic bounds.

On the other hand, the massive connectivity of 5G wireless communications
is modeled by letting the number of devices to be much larger compared to the
number of degrees of freedom, therefore, the asymptotic system behavior should
be considered in the large system limit, where the number of users and dimensions
go to infinity with same scaling [20]. Note that in CDMA, N is also the number
of dimensions. The behavior of DS with random spreading was analyzed in the
LSL in pioneering works of Tse and Hanly [58], Tse and Zeitouni [59], Verdú and
Shamai [20], and Shamai and Verdú [19]. Subsequently, LDS was similarly analyzed
in [21] in the case of a channel without fading. There has been no investigation of
the effect of frequency-flat fading so far on the spectral efficiency of LDS.

Therefore, the goal of this chapter is to fill the gap by investigating LDS within
the information theoretic framework considered in [19–21] in the presence of
frequency-flat fading. We analyze fundamental limits in the LSL when the number
of simultaneous transmissions becomes large with respect to the number of degrees
of freedom.

4.1.2 Other Related Work

Based on the scaling between the number of users and number of degrees of freedom,
other related works beyond those mentioned so far investigated either large-scale
systems [47–49] or small-scale systems [11–13]. The two different regimes require
asymptotic derivations (as the number of users and degrees of freedom grow with
same scaling) and non-asymptotic derivations (for finite values of the number
of users and degrees of freedom), respectively. The aforementioned literature is
detailed as follows:

Large-scale system

Most of prior works [48,49] on LDS in the LSL was derived by means of the replica
method, which was first used for DS by Tanaka [60]. Since the replica method is
not rigorous, Tanaka’s capacity formula was verified (up to a given load, called
spinodal, approximately equal to βs ≈ 1.49) in the LSL by Montanari and Tse in [47],
where random spreading with sparse sequences was used in the proof, jointly with
belief propagation detection. Adopting the replica method, Raymond and Saad
in [49] and Yoshida and Tanaka in [48] analyzed binary sparse CDMA in terms of
spectral efficiency with different assumptions on the sparsity level (i.e., the number
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4.1 Introduction

of nonzero entries) NS of signatures (in particular, NS is a deterministic finite value
in [49], whereas NS is a Poissonian random variable in [48]).

Small-scale system

Recent investigations [11–13] analyzed LDS with finite values for the number of
users and signal dimensions, in the overloaded regime, where the number of users
exceeds the number of dimensions. In [11], each user spreads data over a small
number of dimensions (e.g., NS = 3) with other dimensions being zero padded.
The resulting spreading sequence for each user is then interleaved such that the
signature matrix from all K users appears to be very sparse. The analysis focused
on the bit error rate for different receiver structures. A comparison with different
received powers was also described to address the near-far problem. Using the same
framework proposed in [11], an information theoretic analysis of LDS with fading
was presented in [12] for a bounded numbers of active users. In particular, the
capacity region of time-varying fading LDS channel was analytically determined
and tested by simulation, given different sparsity levels and different maximum
number of users per dimension.

4.1.3 Approach and Contribution

In this chapter, we extend the information theoretic framework of time- and frequency-
hopping CDMA considered in [21] for LDS in the presence of frequency-flat fading
along the lines of [19]. In [21], the reference channel is the additive white Gaussian
noise (AWGN) channel: in order to apply some of the result derived in [21] in an
IoT setting, it is mandatory to extend the analysis to channels with fading. We
propose an information theoretic analysis where achievable spectral efficiency with
different receiver structures is derived for the case of sparse signatures (NS = 1),
and compare our results to the spectral efficiency of direct-sequence (DS) CDMA,
which represents the archetypal example of dense spreading (NS = N), under the
same input constraints such as energy per symbol and bandwidth [19].

The major contributions of this chapter are as follows:

• A rate achievable with linear detection is derived in Theorem 1 in closed form.
It is possible to show that sparse signaling outperforms dense signaling when
the network is overloaded (K > N) and that the effect of fading is to slightly
increase the achievable rate in this region.

• The spectral efficiency with optimum detection is derived in Theorem 3 in
closed form. It is possible to show that dense signaling outperforms sparse
signaling in this setup.

• The spectral efficiency with optimum detection is derived by finding the
limiting spectral distribution of a matrix ensemble that jointly describes
spreading and fading: this is a mathematical result of independent interest.
The combinatorial structure of the moments of such distribution is compared
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to the combinatorial interpretations available for the case of LDS and DS
without fading.

• The spectral efficiency with optimum detection in the LSL also validates the
decoupling principle in the CDMA literature, showing its equivalence to the
average rate of a set of parallel channels. Intuitively, themultiuser low-density
NOMA with optimum detection may be interpreted as a bank of channels,
where each channel experiences an equivalent single-user channel.

• The results provide an insight into the design of signaling in dense networks.
As envisioned in the IoT setting, many simple transceivers will be part of large
networks: results in this chapter suggest that, in the uplink of such networks,
sparse signaling can achieve a rate several times larger than that achievable
via dense signaling.

4.1.4 Organization

The chapter is organized as follows. Section 4.2 introduces the reference model for
LDS based on the general framework of traditional DS with the same energy and
bandwidth constraints. The most important results in the literature relevant to our
analysis are recalled in Section 4.3. Achievable spectral efficiency of LDS with linear
and optimum receivers are presented in Section 4.4. Finally, conclusions based on
the comparison of fundamental limits of LDS in 5G network are drawn in Section
4.6.

4.2 Reference model

The proposed reference model of a LDS system in the presence of frequency-flat
fading follows the traditional discrete complex-valued CDMA model

y = SAb + n, (4.1)

where: y ∈ CN is the received signal; b = [b1, . . . , bK ]T ∈ CK is the vector of symbols
transmitted by the K users; S = [s1, . . . , sK ] ∈ RN×K is a random spreading matrix,
column i being the unit-norm spreading sequence of user i; A ∈ CK×K is a diagonal
matrix of complex-valued fading coefficients diag(a1, . . . , aK ); and n ∈ CN is a
circularly symmetric Gaussian vector with a zero mean and covarianceN0I . Users
transmit independent symbols and obey the power constraint E[| bk |2] 6 E for all k,
hence

E[ bb∗] = EI . (4.2)

The load of the system is defined as the ratio between the number of users K and
the number of dimensions N , and is denoted by β := K/N . Systems with β < 1 and
β > 1 are referred to as underloaded and overloaded systems, respectively.

Both LDS and DS systems can be modeled by (5.2) with sparse and dense spread-
ing matrix S, respectively. In the simplest models, all elements of S are nonzero in
DS, e.g. ski ∈ {±1/

√
N }, while all but one element per column is nonzero in LDS, i.e.

sk ∈ {±e
N
i }i=1,...,N . For the sake of clarity, we define rigorously below what we mean

by sparse vector and sparse matrix.
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Definition 1 (Sparse vector). A vector v ∈ RN is NS-sparse if the cardinality of the
set of its nonzero elements is NS, i.e. ‖v‖0 := |{vi , 0}i=1,...,N | = NS.

Definition 2 (Sparse matrix). A matrix S = [s1, . . . , sK ] is NS-sparse if each column
sk is an NS-sparse vector.

A reference model for time- and frequency-hopping CDMAwas presented in [21]
building on the seminal paper [20]. The present work extends the model of [21] by
introducing fading along the lines of [19]. Notice that the assumption underpinning
the fading model is that fading coefficients do not change over the whole signature,
and more generally over the whole coherence block. This assumption may seem to
clash with the pursued large system analysis since the latter requires increasingly
large signatures. However, notice that the LSL is only used to derive closed form
expressions of performance of interest: It is well known that results derived in the
LSL are in fact very good approximations of performance of finite systems. The only
important assumption is to keep the same load β in the finite system and in the
large system.

In the following, we consider the very sparse scenario corresponding to sparse
matrices with 1-sparse column vectors. In this case, each spreading sequence sk
contains only one nonzero element, equal to either +1 or −1, with equal probability.
Hence, the energy of the sequence is concentrated in just one nonzero pulse, while
in DS, the energy is uniformly spread over all N dimensions.

System performance is measured by spectral efficiency C, defined as the total
number of bits per dimension, that can be reliably transmitted [19–21]. The per-
symbol signal-to-noise ratio (SNR) is given by [61]

γ :=
1
K E[ ‖b‖2]
1
N E[ ‖n‖2]

=
N
K
·

b
N
·
Eb
N0
=

1
β
· C · η, (4.3)

where C = b/N is expressed in bits per dimension, b is the number of bits encoded
in b, E[ ‖b‖2] = bEb, E[ ‖n‖2] = NN0, and η := Eb/N0.

4.3 Previous Results

In this section, we summarize the results in the literature that are most relevant
to our analysis, namely spectral efficiency for LDS without fading and spectral
efficiency of DS with and without fading.

Spectral efficiency in the absence of fading for LDS and DS

Themodel in (5.2) reduces to that in [21] when A = I (no fading). Optimumdecoding
with LDS achieves the following spectral efficiency:

Copt
lds (β, γ) =

∑
k>0

βke−β

k!
log2(1 + kγ) bits/s/Hz. (4.4)

Spectral efficiency with DS is [19,20]
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Copt
ds (β, γ) = β log2

(
1 + γ −

1
4
F(γ, β)

)
+ log2

(
1 + βγ −

1
4
F(γ, β)

)
−

1
4 log 2

·
F(γ, β)

γ
bits/s/Hz, (4.5)

where

F(x, z) =
(√

x(1 +
√

z)2 + 1 −
√

x(1 −
√

z)2 + 1
)2
. (4.6)

Linear detectors, such as single-user matched filter (SUMF), zero-forcing (ZF),
and minimum mean square error (MMSE), result in the same mutual information
with LDS. An achievable spectral efficiency for these multiple access channels is
Rsumflds = βI (b1; r1 |S) (b/s/Hz) with b Gaussian and S sparse, where I (b1; r1 |S) is the
achievable rate (bits/symbol) of user 1:

Rsumflds (β, γ) = Rzflds(β, γ) = Rmmselds (β, γ)

= β
∑
k>0

βke−β

k!
log2

(
1 +

γ

kγ + 1

)
bits/s/Hz. (4.7)

Differently from LDS, linear detectors with DS achieve different spectral efficiency.
Among the above mentioned linear detectors, MMSE achieves the highest spectral
efficiency, which is equal to [20]

Cmmse
ds (β, γ) = β log

(
1 + γ −

1
4
F(γ, β)

)
. (4.8)

Spectral efficiency in the presence of fading for DS

In the presence of fading, spectral efficiency with optimum decoding is [19]

Copt
ds (β, γ) = Cmmse

ds (β, γ) +
η − 1 − log η

log 2
(4.9)

where η > 0 satisfies the following fixed point equation

η = 1 − β + β E

[
1

1 + η | a |2γ

]
, (4.10)

and Cmmse
ds (β, γ) is spectral efficiency with MMSE, given by

Cmmse
ds (β, γ) = β E[ log2(1 + γ | a |2η)]. (4.11)

It is noteworthy that fading increases spectral efficiency with MMSE at high load.
The intuition provided in [19, Section III-C] is that some user appears very low-
powered at the receiver, thus the “interference population,” i.e., the number of
effective interferers is reduced. A similar behavior is not observed with ZF, which
removes all interference irrespective of power. This effect is called “interference
population control.”
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4.4 Spectral Efficiency of LDS with Frequency-Flat Fading

4.4 Spectral Efficiency of LDS with Frequency-Flat Fad-
ing

In this section, we derive spectral efficiency with a bank of single-user matched
filters and independent decoding in Section 4.4.1 and with optimum decoding in
Section 4.4.2.

4.4.1 Single-User Matched Filter (SUMF)

The decision variable for user 1 is

r1 = sT
1 y

= sT
1

*
,

K∑
k=1

skakbk+
-
+ sT

1 n

= a1b1 +

K∑
k=2

sT
1 skakbk + sT

1 n,

(4.12)

where the last step follows from the signatures being unit norm. Assuming Gaussian
coding, bk ∼ NC(0, E), the conditional mutual information (bits/symbol) for user 1
is

I (r1; b1 |S, A) = I (y1; b1 |ρ12, . . . , ρ1K, a1, . . . , aK )

= E

log2

*
,
1+

| a1 |
2γ

1+γ
∑K

k=2 ρ
2
1k | ak |

2
+
-


, (4.13)

where ρ1k := sT
1 sk and the expectation is taken with respect to {ρ12, . . . , ρ1K } and

{a1, . . . , aK }. The corresponding mutual information of the multiuser channel is

Rsumflds (β, γ) := βI (r1; b1 |S, A) bits/s/Hz.

In the following theorem we propose an explicit form of (4.13) for 1-sparse matrices
(cf. Definition 2).

Theorem 1. Let S ∈ RN×K be a 1-sparse spreading matrix. In the LSL, the following
rate is achievable with a bank of SUMF detectors:

Rsumflds (β, γ) =
β

log 2

∫ 1

0

e−t
(
β+ 1

1−t ·
1
γ

)
1 − t

dt bits/s/Hz. (4.14)

Proof See Appendix 4.A.
The result in Theorem 1 allows us to study asymptotics for low and high SNR.

In the low-SNR regime, the minimum energy per bit per noise level is given by (see
Appendix 4.B for the proof)

ηmin = lim
γ→0

βγ

Rsumflds (β, γ)
= log 2 dB, (4.15)
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4. Theoretical analysis of Low-dense SC-NOMA over Rayleigh fading channels with
perfect CSI

1 2 3 4 5 6

2

4

6

8

10

12

ˇ

R (bits/s/Hz)
LDS without fading, � D 10 dB
LDS without fading, � D 20 dB
LDS without fading, � D 40 dB
DS without fading, � D 10 dB
DS without fading, � D 20 dB
DS without fading, � D 40 dB
LDS with fading, � D 10 dB
LDS with fading, � D 20 dB
LDS with fading, � D 40 dB
DS with fading, � D 10 dB
DS with fading, � D 20 dB
DS with fading, � D 40 dB

Figure 4.1. Achievable spectral efficiency (bits/s/Hz) of LDS with SUMF detection (thick
lines) and DS with MMSE detection (thin lines with marks) for several values
of η as a function of the load in the presence (dark shade) or absence (light
shade) of fading.

as in the case without fading, and with fading and dense spreading. Note that (4.15)
holds for any β > 0. The slope at η = ηmin is (see Appendix 4.C for the proof)

S sumf0 =2 log 2 lim
γ→0

( ∂
∂γ Rsumflds

)2

− ∂2

∂γ2 Rsumflds

=
β

1 + β
bits/s/Hz/(3 dB), (4.16)

that is the same slope achieved with dense signaling. In the high-SNR regime, rate
grows logarithmically with high-SNR slope equal to (see Appendix 4.D for the proof)

S sumf∞ = log 2 lim
γ→∞

γ
∂Rsumflds
∂γ

= βe−β bits/s/Hz/(3 dB), (4.17)

which is the same as LDS without fading, and, compared with the high-SNR slope
achieved by DS with MMSE,

Smmse
∞,ds = β1{β∈[0,1) } +

1
2

1{β=1} + 01{β>1}, (4.18)

shows that, for β > 1, LDS is preferable to DS.
Figure 4.1 shows the achievable spectral efficiency with linear detection, and

compares DS and LDS in the presence and absence of fading. In the presence of
fading, the same qualitative phenomenon observed without fading holds, namely
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4.4 Spectral Efficiency of LDS with Frequency-Flat Fading

LDS outperforms DS, when load is approximately higher than unity. We stress that
the curves for DS are capacities whereas the curves for LDS are merely achievable
rates, and that this is sufficient to claim that LDS outperforms DS in the overloaded
regime. The gap in performance with and without fading follows the same pattern
for both DS and LDS, namely rates are decreased in the underloaded regime and
increased in the overloaded regime. Finally, we notice that both LDS and DS are
characterized by the same slope at β = 0 and the same asymptotic value as β → ∞.

4.4.2 Optimum decoding

The spectral efficiency achieved with optimum decoding is the maximum (over the
distributions on b) normalized mutual information between b and y knowing S and
A, which is given by [19,62]

Copt
N (β, γ) =

1
N

log2 det(I + γSAA∗S∗). (4.19)

We can express (4.19) in terms of the set of eigenvalues of the Grammatrix SAA∗S∗,
{λn(SAA∗S∗) : 1 6 n 6 N }, as follows:

Copt
N (β, γ) =

∫ ∞

0
log2(1 + γλ) dFSAA∗S∗

N (λ), (4.20)

being FSAA∗S∗

N (x) the empirical spectral distribution (ESD) of SAA∗S∗, namely [63,64]:

FSAA∗S∗

N (x) :=
1
N

N∑
n=1

1{λn (SAA∗S∗)6x } . (4.21)

Being S and A random, also FSAA∗S∗

N is random. In the LSL, as is well known, the
ESD can admit a limit (in probability or stronger sense), which is called limiting
spectral distribution (LSD) [64] and is denoted by F (x). Hence, if the limit exists,
spectral efficiency Copt

N (γ) converges to

Copt(β, γ) =
∫ ∞

0
log2(1 + γλ) dF (λ) . (4.22)

Our main goal is, therefore, to find the LSD of the matrix ensemble {SAA∗S∗}. To
this end, we compute in Theorem 2 the average moments of the ESD in the LSL and
prove convergence in probability of the sequence of (random) moments of the ESD,

mL :=
1
N
tr(SAA∗S∗)L =

∫ ∞

0
λL dFSAA∗S∗

N (λ), (4.23)

to the (nonrandom) moments of the LSD. Then, by verifying Carleman’s condition,
Lemma 1 shows that these moments uniquely specify the LSD [65]. Finally, we use
the LSD to derive the spectral efficiency in the LSL in Theorem 3.
Theorem 2. Given the matrix ensemble {SAA∗S∗} with S an N × K sparse spreading
matrix and A a K × K diagonal matrix of Rayleigh fading coefficients, it results

mL
P
−−→ m̄L :=

L∑
l=1

⌊
L
l

⌋
βl, (4.24)

where
⌊L
l

⌋
:=

(
L−1
l−1

)
L!
l! denotes the Lah numbers [66].
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Table 4.1. Summary of LSDs, moments, and their combinatorial structure for different
scenarios with and without fading.

Scenario DS with no fading LDS with no fading LDS with fading

LSD Marc̆enko-Pastur
law Poisson law Compound Poisson

law

LSD moment m̄L
∑L

l=1 Nl β
l ∑L

l=1

{
L
l

}
βl

∑L
l=1

⌊L
l

⌋
βl

Coefficient Nl =
1
L

(
L
l

) (
L
l−1

) {
L
l

}
= 1

l!
∑l

j=0(−1)l−j
(
l
j

)
jL

⌊L
l

⌋
=

(
L−1
l−1

)
L!
l!

Proof. See Appendix 4.E. �

In particular, m̄L is the Lth moment of the random variable
∑J

j=1 Z j where J
is distributed according to a Poisson law with mean β and, conditionally on J,
{Z j : 1 6 j 6 J} is a set of i.i.d. exponentially distributed random variables with
unit rate.

In the following lemma, we verify that the LSD is uniquely determined by the
sequence of moments (m̄L)L>1.

Lemma 1. The sequence of moments (m̄L)L>1 satisfies the Carleman’s condition,
namely the series

∑
k>1 m̄−1/(2k)

2k diverges.

Proof. See Appendix 4.F. �

Therefore, Theorem 2 and Lemma 1 imply that the probability measure F (λ)
in (4.22) is the probability measure of a compound Poisson distribution generated
by the sum of a mean-β Poissonian number of unit-rate exponentially distributed
random variables:

F (dλ) = e−βδ0(dλ) +
∑
k>1

e−β βk

k!
·

e−λλk−1

(k − 1)!
dλ . (4.25)

The spectral efficiency in the LSL is thus given by the average rate experienced
through a set of parallel channels, indexed by k = 1, 2, · · · , with signal-to-noise ratio
equal to λγ, used with probability (e−β βk/k!) · (e−λλk−1/(k − 1)!) dλ. Indeed, this
observation may validate the claim by Guo and Verdú that in the LSL, the CDMA
channel followed by multiuser detection can be decoupled into a bank of parallel
Gaussian channels, each channel per user [67]. This is referred to as decoupling
principle, which leads to the convergence of the mutual information of multiuser
detection for each user to that of equivalent single-user Gaussian channel as the
number of users go to infinitive, given the same input constraints. Given that
the randomness of ESD vanishes in the LSL (cf. Theorem 2), one may invoke the
“self-averaging” property in the statistical physics [67]. Similarly to CDMA, the self-
averaging principle yields to the strong property that for almost all realizations of
the spreading sequences and noise of low-density NOMA, the macroscopic quantity
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Figure 4.2. Achievable spectral efficiency (bits/s/Hz) of LDS (thick lines) and DS (thin lines
with marks) with optimum decoding for several values of η as a function of
the load in the presence (dark shade) or absence (light shade) of fading.

(spectral efficiency in this case) converges to an equivalent deterministic quantity
in the large system regime.

Theorem 3. The spectral efficiency with optimum decoding in the LSL is given by

Copt(β, γ) =
∑
k>1

e−β βk

k!

∫ ∞

0

e−λλk−1

(k − 1)!
log2(1 + γλ) dλ . (4.26)

Proof. Plug (4.25) into (4.22) and commute summation and integration, which is
followed from Tonelli’s theorem. �

Similarly to the previous section, it is interesting also here to study the asymp-
totic behavior of spectral efficiency as a function of η. In the low-SNR regime, the
minimum energy per bit per noise level is given by (see Appendix 4.G for the proof)

ηmin = lim
γ→0

βγ

Copt
lds (β, γ)

= log 2 dB, (4.27)

as in the case without fading, and with fading and dense spreading, irrespective of
β > 0. The slope at η = ηmin is (see Appendix 4.H for the proof)

S opt0 = 2 log 2 lim
γ→0

( ∂
∂γCopt

lds
)2

− ∂2

∂γ2 Copt
lds

=
2β
β + 2

bits/s/Hz/(3 dB), (4.28)
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which is the same as with dense signaling in the presence of fading (cf. (147) in [19]).
In the high-SNR regime, rate grows logarithmically with high-SNR slope equal to
(see Appendix 4.I for the proof)

S opt∞ = log 2 lim
γ→∞

γ
∂Copt

lds
∂γ

= 1 − e−β bits/s/Hz/(3 dB), (4.29)

which is the same as without fading.
Figure 4.2 shows the achievable spectral efficiency with optimum decoding and

compares DS and LDS, in the presence and absence of fading. It is shown that, in
general, LDS underperforms DS irrespective of fading; however, the main gap is
concentrated around β = 1, and decreases as load goes either to 0 or∞.

We conclude this section by highlighting the combinatorial connection between
themoments found in Theorem 2 andmoments of theMarc̆enko-Pastur and Poisson
laws (see also Table 4.1), which correspond to the limiting spectral distributions of
dense [20] and sparse [21] schemes, respectively. We showed that the Lth moment
is essentially a polynomial in β with coefficients equal to Lah numbers. Similar
results hold for dense and sparse schemes without fading, where Lah numbers are
replaced by Narayana numbers and Stirling numbers of the second kind, respec-
tively. All numbers are well-known in combinatorics: Narayana numbers enumerate
non-crossing partitions into nonempty subsets; Stirling numbers of the second
kind enumerate partitions into nonempty subsets; and Lah numbers enumerate
partitions into nonempty linearly ordered subsets [66].

4.5 Synopsis of results for LDS vs DS systems

Wecollect themain results on LDS andDS systems fromanother perspective, namely
for the case of fixed load and variable η, in Figs. 4.3 and 4.4. For fixed β, one can
find the spectral efficiency as a function of η by solving (4.3) with respect to γ and
computing the spectral efficiency for such value of γ. Achievable spectral efficiency
(b/s/Hz), as a function of η with optimum and linear detection in the presence and
absence of fading, is shown for β = 1 and β = 2, respectively. To summarize the
sources, results for DS were derived in [20] without fading and in [19] with fading,
whereas results for LDS without fading were derived in [21].

Both figures show that all schemes are equivalent in the low-SNR regime, and
that DS outperforms LDS with optimum decoding, particularly in the high-SNR
regime, where spectral efficiency of the two schemes is characterized by different
slopes. With linear detection, the scenario is completely different: when load
increases beyond approximately unity, LDS outperforms DS, with a widening gap as
η increases. Indeed, LDS keeps a positive high-SNR slope while DS cannot afford it
(cf. (4.17) vs. (4.18)). Note the effect of the “interference population control” with
DS (cf. Section 4.3) on both figures: spectral efficiency with fading is higher than
spectral efficiency without fading. A similar behavior holds with LDS as shown on
Fig. 4.4.
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Figure 4.3. Achievable spectral efficiency (bits/s/Hz) of LDS (thick lines) and DS (thin lines
with marks) with optimum detection as a function of η (dB) with load β = 1
in the presence (dark shade) or absence (light shade) of fading.
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Figure 4.4. Achievable spectral efficiency (bits/s/Hz) of LDS (thick lines) and DS (thin lines
with marks) with optimum detection as a function of η (dB) with load β = 2
in the presence (dark shade) or absence (light shade) of fading.
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4.6 Conclusion

In this chapter, a theoretical analysis of LDS systems in the presence of flat fading
in terms of spectral efficiency with linear and optimum receivers was carried out in
the LSL, i.e., as both the number of users K and the number of degrees of freedom
N grow unboundedly, with a finite ratio β = K/N . Spectral efficiency was derived as
a function of the load β and signal-to-noise ratio γ. The framework used extended
the model in [21], which was build on the seminal work [20], to the case with
fading, along the lines of [19] in both the underloaded and overloaded regimes
corresponding to β < 1 and β > 1, respectively. The behavior of LDS was compared
against DS. Since spreading sequences of LDS are indeed the sparse counterparts of
DS ones, the reference model introduced in [21] for time hopping CDMA could also
be adopted in the present context, in order to describe both DS and LDS, where the
spreading matrix S ∈ CN×K of the model defines the sparsity of the system. Note
that the model in [21] originally defined for time hopping CDMA, also fits the dual
frequency domain in describing frequency-hopping CDMA.

In the absence of fading, previous work showed that, in the LSL, DS has higher
spectral efficiency than LDS when the system is underloaded (β < 1). However, a
drastic drop occurs at about β = 1, and eventually, in the overloaded regime (β > 1),
LDS outperforms DS [21]. In this chapter, we were to able to show that this is the
case also in the presence of fading.

This is particularly important in view of massive deployment of wireless devices
and ultra-densification of the network towards 5G. Overloaded systems, where the
number of resources is lower than the number of users accessing the network, will
play a pivotal role in 5G, and this work provides a theoretical ground for choosing
LDS with respect to DS, and more generally choosing sparsity over density in sig-
naling formats. In the presence of flat fading, [19] showed that in the overloaded
condition, the fading effect, for DS, is to enhance spectral efficiency. In this chapter,
we filled the gap by showing that, in the LSL, LDS with fading achieved higher
spectral efficiency than DS in the overloaded mode. Moreover, the dominance
of LSD-CDMA over DS in terms of spectral efficiency performance than DS goes
stronger when Eb/N0 increases.

In conclusion, results of this chapter suggest that for overloaded systems, it is
suggested to adopt low-density spreading with linear receivers. This property holds
despite fading. Moreover, low-density spreading CDMA, employing linear receivers,
achieves even higher spectral efficiency with respect to the dense system in the
presence of flat fading, which is a practical issue in wireless communications.

Future investigations will focus on refining the understanding of overloaded
systems with a more general structure of the sparsity of spreading sequences, e.g.,
when NS > 1. It is interesting to understand which value of NS represents the
boundary between dense and low-dense systems, in terms of capacity, and more
generally how the system behaves as a function of NS.
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4.A Proof of Theorem 1

In order to compute (4.13) we need to find the distribution of ζ :=
∑K

k=2 ρ
2
1k | ak |

2.
We recall that ρ1k := sT

1 sk , hence the moment generating function (MGF) of ρ2
1k is

Mρ2 (t) := E[ etρ
2
] =

(
1 −

1
N

)
+

1
N

et,

irrespective of k. Since | ak |2 is exponentially distributed with unit rate, we conclude

Mρ2 | a |2 (t) := E[ etρ
2 | a |2] = E[ Mρ2 (t | a |2)] = 1 +

t
(1 − t)N

.

Therefore, the MGF of ζ is (Mρ2 | a |2 (t))K−1, and in the LSL

Mζ (t) → eβ
t

1−t .

Now, we express the logarithm via the following integral representation [68]

log(1 + x) =
∫ ∞

0

1
s

(1 − e−sx )e−s ds,

which is valid for x > 0. Hence one has

log
(
1 +

| a |2

ζ + 1/γ

)
=

∫ ∞

0

ds
s

e−s/γ (1 − e−s | a |
2
)e−sζ,

and by taking the expectation and changing variable, t = s
1+s ,

E

[
log

(
1 +

| a |2

ζ + 1/γ

)]
=

∫ 1

0

e−t
(
β+ 1

(1−t )γ

)
1 − t

dt.

4.B Proof of (4.15)

With a change of variable, we can rewrite Rsumflds (β, γ) as follows:

Rsumflds (β, γ) =
β

log 2
gβ (1/γ),

where
gβ (α) :=

∫ ∞

0
dz e−αze−β

z
1+z

1
1 + z

. (.30)

We observe that ηmin is expressed in terms of gβ (α) as follows:

ηmin = lim
α→∞

log 2
αgβ (α)

,

hence we need to study αgβ (α) as α → ∞. Since gβ (α) does not admit a closed form,
we have to study the specific integral in (.30). The basic observation is that the
term e−β

z
1+z is bounded on the integration interval from below and above, namely
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4.B Proof of (4.15)

e−β
z

1+z ∈ (e−β, 1]. Furthermore, most of the mass is concentrated in a neighborhood
of z = 0, as α increases. It makes sense to partition the domain [0,∞) in two
subintervals, [0, ε ) and [ε,∞), for some ε > 0 fixed:

gβ (α) =
∫ ε

0
dz e−αze−β

z
1+z

1
1 + z

+

∫ ∞

ε
dz e−αze−β

z
1+z

1
1 + z

. (.31)

The first integral in (.31) is upper and lower bounded by

C1(ε )
∫ ε

0
dz e−αz

1
1 + z

, (.32)

with C1(ε ) = C̄1(ε ) := 1 and C1(ε ) =
¯
C1(ε ) := e−β

ε
1+ε , respectively. Similarly, the

second integral in (.31) is upper and lower bounded by

C2(ε )
∫ ∞

ε
dz e−αz

1
1 + z

, (.33)

with C2(ε ) = C̄2(ε ) :=
¯
C1(ε ) and C2(ε ) =

¯
C2(ε ) := e−β, respectively. The integrals in

(.32)–(.33) can be expressed by means of known functions,

α

∫ ε

0
dz e−αz

1
1 + z

= αeα[E1(α) − E1(α(1 + ε ))]

= 1 +O(1/α),

where E1(x) denotes the exponential integral1 for x > 0, for which the following
asymptotic expansion holds αe−αE1(α) = 1 − α−1 +O(α−2), and

α

∫ ∞

ε
dz e−αz

1
1 + z

= αeαE1(α(1 + ε ))

6 e−εα(1 + ε )−1,

which vanishes as α → ∞, where the inequality follows from the standard bracketing
of E1 through elementary functions. Therefore, we proved that, for all ε > 0, the
term

C1(ε ) α
∫ ε

0
dz e−αz

1
1 + z

= C1(ε ) +O(1/α), (.34)

contributes finitely to the integral, while the term

C2(ε ) α
∫ ∞

ε
dz e−αz

1
1 + z

→ 0, (.35)

asymptotically vanishes. Hence, αgβ (α) → C1(ε ) as α → ∞, and the result follows
since ε > 0 is arbitrary.

1En (x) :=
∫∞

1 dt 1
tn e−xt for all x > 0 and n positive integer.
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4.C Proof of (4.16)

A sketch of the proof is provided. The slope can be written as follows:

S0 = β lim
α→∞

αI1(α)2

I1(α) − α
2 I2(α)

, (.36)

where

Ik (α) :=
∫ ∞

0
dz

zk

1 + z
e−z

(
α+

β
1+z

)
.

As α → ∞, the mass of the integral is increasingly concentrated in a neighborhood
of the origin, say z ∈ [0, ε]:

Ik (α) ∼
∫ ε

0
dz

zk

1 + z
e−z

(
α+

β
1+z

)
, α → ∞.

For any fixed ε > 0, it results β
1+z ∈ [ β

1+ε , β]; therefore, as α → ∞ it also results

Ik (α) ∼
∫ ε

0
dz

zk

1 + z
e−z(α+β), α → ∞.

The above integral can be expressed in closed form for k = 1 and k = 2. The result
follows by computing the limit of the ratio in (.36), which turns out not to depend
on ε .

4.D Proof of (4.17)

By explicitly computing the derivative in the definition of S∞, we can rewrite it as
follows:

S∞ = β lim
α→0

αIβ (α), (.37)

where

Iβ (α) :=
∫ ∞

0
dz e−αze−β

z
1+z

z
1 + z

. (.38)

The idea of the proof is to find upper and lower bounds on αIβ (α), that match in
the limit. To this end, observe that

e−β
z

1 + z
6 e−β

z
1+z

z
1 + z

6 e−β
(
1 +

(β − 1)+

z

)
. (.39)

Hence, a lower bound is

αIβ (α) > α
∫ ∞

0
dz e−αze−β

z
1 + z

= e−β (1 − αeαE1(α))

→ e−β . (.40)

50



4.E Proof of Theorem 2

In order to compute the upper bound, split the domain of integration to avoid a
singularity at z = 0 (cf. (.39)) as follows. For any ε > 0, it results

αIβ (α) 6 α
∫ ε

0
dz z + α

∫ ∞

ε
dz e−αze−β

(
1 +

(β − 1)+

z

)
= α

ε2

2
+ e−β−εα + (β − 1)+αE1(εα)

→ e−β, (.41)

where for z ∈ [0, ε] we used a trivial upper bound for the integrand of Iβ (α). The
result follows from (.37), (.40) and (.41).

4.E Proof of Theorem 2

In this appendix, we compute the moments (4.23) and prove that convergence in
probability to their mean holds.

The first remark is that matrix SAA∗S∗ is diagonal:

SAA∗S∗ =
K∑
j=1

s j a j a
∗
j s
∗
j

=

K∑
j=1

| a j |
2eKπj

eK∗πj

=

N∑
i=1

( K∑
j=1

1{πj=i } | a j |
2
)
eNi eN∗i ,

(.42)

where πk denotes the nonzero element of the signature sk and eni denotes the ith

vector of the canonical basis of Rn. In the last step, we move randomness from
vectors to scalars, which will be shortly useful. Indeed, mL can be written as follows:

mL =
1
N
tr(SAA∗S∗)L

=
1
N

N∑
i=1

([SAA∗S∗]ii)L

=
1
N

N∑
i=1

( K∑
j=1

1{πj=i } | a j |
2
)L
.

(.43)

Call the sum in parenthesis Si:

Si :=
K∑
j=1

1{πj=i } | a j |
2. (.44)

Hence, the expected value of mL is

E[ mL] = E[ SL
1 ] = M (L)

S1
(0), (.45)
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where M (L)
S1

denotes the Lth derivative of the MGF of S1 [65]. It can be shown that
MSi (t) =

(
1 + t

(1−t)N
)K , hence

M (L)
Si

(0) =
L∑
l=1

(
L − 1
l − 1

)
L!
l!

K!
(K − l)! N l

, (.46)

which in the LSL becomes

E[ mL]→
L∑
l=1

⌊
L
l

⌋
βl, (.47)

where Lah numbers make their appearance
⌊L
l

⌋
:=

(
L−1
l−1

)
L!
l! . Alternatively, E[ mL] can

be expressed by using generalized Laguerre polynomials, which naturally appear in
the Taylor expansion of the asymptotic MGF of S1.

In order to prove convergence in probability, it is sufficient to show thatVar[ mL] =
E[ m2

L]− (E[ mL])2 → 0. We have already found E[ mL]. By using (.43) and (.44), E[ m2
L]

can be expressed as follows:

E[ m2
L] = E

[( 1
N

N∑
i=1

SL
i

)2]
(.48)

=
1

N2

N∑
i=1

E[ S2L
i ] +

1
N2

∑
i,j

E[ SL
i SL

j ]. (.49)

Thefirst term isO(1/N ) becauseE[ S2L
i ] is bounded in the LSL. The second term tends

to E[ SL
1 SL

2 ]. In order to show that this term becomes asymptotically equal to E[ mL]2,
we can actually show more, namely S1 and S2 are asymptotically independent (S1 ⊥

S2).
To this end, interpret Si as the sum of a (random) number of weights wk := | ak |2,

namely Si =
∑

k∈Ki
wk for Ki := {k : πk = i} ⊆ [K]. Ki is the subset of users

who have chosen dimension i. Since the weights are i.i.d. random variables, the
only source of dependence between Si and Sj lies in the number of users who have
chosen dimensions i and j, respectively. These numbers are Ki := |Ki | and are
not independent. Indeed, the vector (K1, K2, . . . , KN ) is distributed according to a
Multinomial law with probabilities (1/N, 1/N, . . . , 1/N ). In particular, the MGF of
(K1, K2) is

MK1,K2 (t1, t2) =
( 1

N
(et1 + et2 + (N − 2))

)K
,

and tends in the LSL to

MK1,K2 (t1, t2) → eβ(et1−1) · eβ(et2−1),

where each term can be recognized as the MGF of a Poisson random variable with
mean β. Since K1 ⊥ K2 asymptotically, also S1 ⊥ S2 from the independence of the
weights.
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4.F Verifying the Carleman Condition

4.F Verifying the Carleman Condition

Carleman’s condition is
∑

k>1 m̄−1/(2k)
2k = ∞. We start off by upper bounding m̄2k as

follows:

m̄2k =

2k∑
l=1

⌊
2k
l

⌋
βl

(a)
<

2k∑
l=1

(2k − 1)2k−l
(
2k
l

)
βl

(b)
6 (2k − 1)2k−1

2k∑
l=1

(
2k
l

)
βl

(c)
< (2k − 1)2k (1 + β)2k,

(.50)

where (a) follows from the inequality
⌊2k
l

⌋
= (2k−1)!/(l−1)! = (2k−1)(2k−2) . . . (2k−

(2k− l)) < (2k−1)2k−l, (b) derives from upper bounding (2k−1)2k−l with (2k−1)2k−1,
(c) is from the binomial formula by including in the sum the l = 0 term. Therefore,
m̄1/(2k)

2k < (2k − 1)(1 + β), thus

∑
k>1

m̄−1/(2k)
2k >

1
1 + β

∑
k>1

1
2k − 1

= ∞.

4.G Proof of (4.27)

It is convenient to represent Copt(β, γ) (in nats) as

Copt(β, γ) =
∑
k>1

e−β βk

k!

∫ γ

0
k exp(1/x) E1+k (1/x)

dx
x
, (.51)

which can be derived by differentiating in (5.6) under the integral signwith respect to
γ and integrating back after the integration with respect to λ. From the fundamental
theorem of calculus, we have

∂

∂γ

∫ γ

0
exp(1/x) E1+k (1/x)

dx
x
= exp(1/γ) E1+k (1/γ)

1
γ
,

which tends to 1 as γ → 0, hence, by L’Hôpital’s rule,

lim
γ→0

Copt(β, γ)
γ

= lim
γ→0

∂Copt(β, γ)
∂γ

=
∑
k>1

e−β βk

k!
k = β. (.52)

4.H Proof of (4.28)

The second derivative of Copt(β, γ) can be computed similarly to Appendix 4.G,
which results in
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− lim
γ→0

∂2

∂γ2
Copt(β, γ)

= −
∑
k>1

e−β βk

k!
lim
γ→0

∂

∂γ
exp(1/γ) E1+k (1/γ)

1
γ

=
∑
k>1

e−β βk

k!
k (1 + k) = 2β + β2. (.53)

The result follows by (.53) and (.52).

4.I Proof of (4.29)

Using (.51) and the fundamental theorem of calculus yields

lim
γ→∞

γ
∂Copt

lds
∂γ

=
∑
k>1

e−β βk

k!
lim
γ→∞

k exp(1/γ) E1+k (1/γ) =
∑
k>1

e−β βk

k!
= 1 − e−β . (.54)
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Chapter 5

Theoretical analysis of
Low-dense SC-NOMA over
Rayleigh fading channels
without CSI

In this chapter, upper and lower bounds on capacity of low-dense SC-NOMA are
investigated in the context of 5G New Radio (5G-NR), under the worst hypothesis
of no channel knowledge at the receiver, i.e. operation without channel state
information. The impact of peculiar features of 5G-NR on capacity bounds of
optimum receivers is investigated. The upper bound, defined as the system capacity
with perfect CSI, and the lower bound corresponding to a pilot-based communication
model, are found. These bounds indicate that the achievable rates of low-dense
SC-NOMAwithout CSI are lower, as expected, than those with perfect CSI, although
the above gap vanishes to negligible values, when some of the system parameters,
in particular speed of variation of the channel against symbol duration, number of
simultaneous users, and system load, i.e. number of users vs. number of resource
elements, favorably combine.

5.1 Introduction

In recent real-world mobile communication channels, the rapid change of fading
coefficients may severely affect estimation at the receiver. Receivers may have, in
fact, no knowledge of channel state information (CSI), i.e. channel state information
at the receiver (CSIR), except for the distribution of channel gains, a condition that
is commonly referred to as noncoherent setting [69]. As a consequence, capacity, i.e.
the fundamental criterion for predicting achievable rates, may be reduced compared
to ideal conditions of perfect CSI detection, leading to a so-called noncoherent
capacity [69,70].

As a matter of fact, NOMA is a study item for 5G-New Radio (5G-NR), the stan-
dardization of which was launched by 3GPP in April 2016, with two phases aimed
at defining 5G specifications before its commercialization in 2020. While other 5G
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specifications are ongoing, the parameters of the radio framework were already
specified in the very recent 3GPP specification TS 38.211 [71]. Understanding chan-
nel capacity for code-domain NOMA system in the absence of CSIR becomes, hence,
essential. Closed-form expressions for noncoherent capacity are, however, difficult
to obtain, even for the ‘easy’ memoryless channel [69], leading to a common prac-
tice to look for upper and lower capacity bounds, where the upper bound naturally
corresponds to the capacity with perfect CSIR (coherent capacity) [72]. In order to
find the lower bound, a popular method is to adopt a pilot-based communication
model, for example, for the continuous fading model [23], and for the block-fading
model [73].

This chapter investigates capacity bounds of low-dense SC-NOMA over Rayleigh
fading channels without CSIR, based on the framework presented in [32]. The
upper bound can be readily evaluated via the corresponding coherent capacity
[32], whereas the lower bound can be derived via the capacity of a pilot-based
communication scheme.

The chapter is organized as follows. Section 5.2 describes the channel and signal
models. Capacity bounds are presented in Sec. 5.3. Results and discussion are
reported in Sec. 5.4. Section 5.5 concludes the chapter.

5.2 System model

5.2.1 Channel model: Rayleigh block-fading assumptions

To reflect the nature of fading communication, either continuous or block-fading
model can be selected to derive the capacity bounds with the duality property
[73,74]:

nb =
1

2 fmTs
, (5.1)

where nb represents the number of coherent symbols within a block in which the
channel is considered stationary (block-fading model), Ts is the symbol period,
fm = v fc/c is the maximum Doppler frequency, fc being the carrier frequency, v
is the velocity of interest, and c is the speed of light. nb can be considered as the
discretized version of the coherence time T of a continuous-fading model. For 3GPP
LTE and IEEE 802.16 WiMAX, the values of nb may range from unity to several
hundreds [73], or even to thousands for 5G-NR as further detailed in Section 5.4.

5.2.2 Signal model

The model provided in [32] for low-dense NOMA was adopted, with the inclusion of
a Rayleigh block-fading model. The channel model is rewritten as

Y = SAX + N, (5.2)

where Y ∈ CN×nb is the received signal with N referring to the number of resource
elements (REs); X = [x1, . . . , xK ]T ∈ CK×nb with xk being the row-vector including nb
symbols transmitted by the k-th user; S = [s1, . . . , sK ] ∈ RN×K is a random spreading
matrix, column k being the unit-norm spreading sequence of user k; A ∈ CK×K is a
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5.3 Capacity bounds of low-dense NOMA

diagonal matrix of complex-valued fading coefficients {a1, . . . , aK }; and N ∈ CN×nb

denotes the noise with each column-vector n ∈ CN being described by a circularly-
symmetric Gaussian random vector with zero mean and covariance matrix N0I .
Compared to [32], vectors y, n, x are expanded with an additional dimension, since
the reference unit is now a coherence block consisting of nb symbols rather than
one symbol, whereas matrices A and S still hold in the new context.

The massive connectivity feature of 5G networks, that is, the large number
of users that the system must provide with robust access simultaneously, is well
reflected in a typical asymptotic analysis, known as system analysis in the asymptotic
regime. As a matter of fact, the fundamental limits of NOMA and traditional DS-
CDMA frameworks in the asymptotic regimewere provided in [32] and [19] as further
detailed in Section 5.3.

Noteworthy that the channel model in eq. (5.2) is equivalent to the general
model Y = HX + N given in [75] for DS-CDMA, where H ∈ CN×K is replaced
by SA ∈ CN×K . As stated by Tulino and Verdú in [75], the dimension roles of N
and K of matrix H may assume different meanings for different systems; N and
K are, for instance, the number of users vs. chips (REs) in DS-CDMA [19] and
time-hopping CDMA [21], or the number of receiving (nR) and transmitting (nT )
antennas in multiple-input multiple-output (MIMO). Therefore, results obtained
for the different systems can be reused provided that a same signaling model holds,
and the parameters are given the right meaning. In particular, the capacity lower
bound for NOMA can be derived based on the analysis of lower bound for a MIMO
system, provided by a pilot-based scheme [23].

5.3 Capacity bounds of low-dense NOMA

In this section, we find the optimum capacity bounds of low-dense NOMA in the
noncoherent setting with the upper bound given by the capacity with perfect CSIR
(coherent capacity) [32] and the lower bound based on the capacity of a pilot-based
scheme originally proposed by Hassibi and Hochwald [23], and further refined by
Rusek et al. [73].

5.3.1 Capacity upper bound

The ergodic capacity with perfect knowledge of the channel at the optimum receiver
provided for the general model when X is a circularly-symmetric complex Gaussian
with zero mean and covariance Q, in bits/s/Hz, is provided in [76], and writes:

C = E [log2 det (IN + HQH∗)] , (5.3)

where IN denotes the identity matrix.
For code-domain NOMA, eq. (5.3) becomes [32]:

C(SNR) = E [log2 det (IN + SNRSAA∗S∗)] , (5.4)

whereas for single-user MIMO [75], the capacity is

C(SNR) = E [log2 det (IN +
SNR

K
HH∗)] . (5.5)
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The presence of coefficient 1/K in eq. (5.5) may be explained based on the fact that
the transmitted power is divided equally among K transmitting antennas, while in
the NOMA model, each user transmits with full power (see eq. (5.4)).

The closed-form expression of coherent capacity for the particular case of low-
dense NOMA in the asymptotic regime is as follows [32]:

C(β, SNR) =
∑
k>1

e−β βk

k!

∫ ∞

0

e−λλk−1

(k − 1)!
log2(1 + SNRλ) dλ, (5.6)

where β is the system load, and the first term of right-hand side expression of eq.
(5.6) is the probability density function (PDF) of a compound Poisson distribution
with exponentially-distributed summands.

5.3.2 Capacity lower bound

In this section, capacity lower bound for low-dense NOMA is derived from the capac-
ity of a pilot-based communication [23,73]. First, a description of the pilot-based is
provided, then, a follow-up discussion on optimizing the number of pilot symbols
is presented, and two capacity lower bounds of low-dense NOMA corresponding to
two different ways of allocating power to the pilots conclude the section.

Pilot-based channel model

Two phases typically characterize a pilot-based scheme: the pilot phase and the
data transmission phase, where the latter is implemented after a minimum mean-
square error (MMSE) channel estimation obtained during the pilot phase. Among
the total nb symbols of a fading block, np symbols, called pilot symbols, are allo-
cated for learning the channel, and the remaining (nb − np) are dedicated for data
transmission.

Three assumptions rule the pilot-based scheme proposed in this work. First,
based on 5G properties as will be also indicated in Section 5.4, nb is much greater
than both {K, N }, and it is, therefore, reasonable to assume nb > 2K , i.e. the number
of users is always lower than half the number of coherence symbols. Secondly,
perfect channel estimation (via pilot phase) is assumed. Lastly, each transmission
is assumed to be self-contained, that is, both pilot and data phases are referred to a
specific fading block of nb symbols [73]; specific iteration of the procedure including
training, estimation and data transmission is applied to each block.

Pilot phase For pilot symbols, one can write:

Yp = SAP + Np, (5.7)

where P ∈ CK×np is the matrix of known pilot symbols replacing the transmitted
signal X with the constraint PP∗ = npI , Yp and Np are matrices of size N × np.

Data transmission phase In this phase, a similar equation to eq. (5.2) can be applied
with new dimensions of output and input being N × (nb − np) and K × (nb − np),
respectively.

58



5.3 Capacity bounds of low-dense NOMA

Optimizing the number of pilot symbols

The number of pilot symbols np directly affects the fundamental limits of a system
in the noncoherent setting, and the issue of defining the optimal np has been
extensively investigated in the literature [23, 70, 73]. If np is too small, the time
dedicated to channel sounding may be insufficient to provide good estimates, while
a too large np value implies reduced data transmission rates [23].

An early study on the multi-antenna channel capacity by Marzetta [77], showed
that to optimize the throughput of a pilot-based scheme, one should, in general,
spend half of coherence time for training. The later work on multi-antenna capacity
by Hassibi and Hochwald [23] provided a fine description of the optimal training
interval as a function of the number of transmitting antennas K , receiving antennas
N , fading coherence time T , and SNR. In fact, it was shown that in case of either low
SNR or T slightly larger than K , the pilot-based scheme is suboptimal; oppositely,
when SNR is high or T � K , the lower bound capacity provided based on the pilot
scheme approaches the coherent capacity. As detailed in Section 5.4, for NOMA
with pilot-based channel estimation, capacity bounds can be analyzed under the
impact of the number of symbols within a coherence block nb, the number of users
K , the number of REs N (via the system load β = K/N) and SNR.

The effect of pilot power allocation

Another condition also directly affecting capacity of pilot-based systems is pilot
power allocation. In general, in order to have tight capacity bounds, a favorable
condition is to avoid imposing constraints on power allocated to pilot symbols.
Two capacity lower bounds are derived below, with no power constraint vs. with
constraint.

No constraint on pilot power allocation If one can freely allocate power to pilot and
data symbols (pilot power-boosting mode), the optimum number of pilot symbols
is equal to the number of users, that is, np = K [23, 70]. Intuitively, to learn the
channel properly, the receiver should receive at least one pilot symbol from each
user, i.e. K pilot symbols in total. The lower bound of nonherent capacity of NOMA,
given that the pilot power-boosting is allowed, can be directly inferred from [23,73]
with the aforementioned assumption of nb > 2K , as follows:

CLB =
(
1 −

K
nb

)
C (γeff) , (5.8)

where:
γeff =

nbSNR
nb − 2K

(
√
α −
√
α − 1)2 (5.9)

is the effective SNR replacing the ‘regular’ one of eq. (5.4, 5.6), and:

α =
nbSNR + K

nbSNR
nb−2K
nb−K

. (5.10)
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From eq. (5.6), the closed-form expression for the lower bound capacity of
NOMA is rewritten as follows:

CLB(β, γeff) =
(
1 −

K
nb

) ∑
k>1

e−β βk

k!

∫ ∞

0

e−λλk−1

(k − 1)!
log2(1 + γeffλ) dλ, (5.11)

where γeff is taken from eq. (5.9).

With constraint on pilot power allocation If the pilot and data symbols are required
to have the same power, then solving a convex optimization, depending on SNR, nb,
and K , leads to the following spectral efficiency, in bits/s/Hz [23]:

max
16np6nb

(
1 −

np

nb

)
C *

,

SNR2np/K
1 + SNR(1 + np/K )

+
-
. (5.12)

5.4 Results and discussion

In this section, capacity bounds of low-dense NOMA, described in Sec. 5.3, are
analyzed as a function of:

• number of coherence symbols nb,

• number of users K ,

• system load β = K/N .

The analysis of lower bound focuses on the case of no pilot power constraint
(eq. (5.11)), the optimal number of pilot symbols, is thus equal to the number of
users, i.e. np = K . An example with pilot power constraint (eq. (5.12)) is shown for
reference in Sec. 5.4.3.

5.4.1 The impact of number of coherence symbols

The calibration of nb in the 5G context, is particularly relevant for New Radio (5G-
NR). According to the duality property from eq. (5.1), factors that directly affect
nb include the carrier frequency, the symbol period, and vehicular velocities. The
new requirements and specifications of 5G has an impact on values of nb compared
to the former generations such as 3GPP LTE [78], or IEEE 802.16 WiMAX [79], in
particular:

• The carrier frequency fc varies within a wide range 1 − 100 GHz, with the
deployment of macro sites at lower frequencies, and micro and pico sites at
higher frequencies [80].

• Supported mobility speeds v are up to 500 km/h, while the vehicular velocities
of interest are about 120 km/h [80].
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• According to 3GPP TS 38.211 [71], the most distinguished difference in frame
structure of 5G-NR compared to LTE is the so-called numerology, i.e. the
subcarrier spacing. In LTE, there is only one type of subcarrier spacing, that
is 15 kHz, while multiple types of subcarrier spacing are supported in 5G-
NR by scaling up in the power of 2, to the order of fifth numerology, that is,
25 × 15 = 480 kHz. Since the subcarrier spacing lies between 15 kHz and 480
kHz, its inverse is the symbol period Ts ranging from 2µs to 66.7µs.

Based on the relationship between nb and the above parameters, one obtains very
high values of nb if the values of fc, v,Ts are low and vice versa. Taking into account
typical values in the 5G-NR context, nb can vary from one to thousands, where its
range in the earlier generations LTE or WiMAX was only from one to hundreds [73].
This increase is due to the fact that very large spacing of subcarrier in 5G-NR is also
supported, leading to the improvement in the capacity of the pilot-based scheme
(c.f. eq. (5.11)).

Figure 5.1 shows the capacity bounds of low-dense NOMA as a function of
Eb/N0, with upper bound defined by coherent capacity (solid line) and lower bounds
obtained by a pilot-based scheme (via eq.(5.11)) with fixed np = K = 10 and different
values nb = {25, 50, 100, 500}, under the constraint nb > 2K . The system load β

is kept fixed and equal to unity, i.e. K = N . Although the capacity bounds are
considered in the asymptotics, where both K and N should be very large, the order
of ten users or REs, however, was mentioned in [32,67] is enough representative for
a large-scale system. Note that, to show a fair comparison among systems, capacity
bounds are shown below as a function of Eb/N0 rather than of SNR via the relation
Eb

N0
= β.SNR/C(SNR) [20].
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Figure 5.1. Capacity bounds (bits/s/Hz) of low-dense NOMA as a function of Eb/N0 for
fixed β = 1, with upper bound defined by coherent capacity (solid line) and
lower bounds by a pilot-based scheme (eq. (5.11)) for different values nb
(nb = 25, 50, 100, 500). Note that the pilot power-boosting mode for the pilot
scheme is adopted with fixed np = K = 10.

One may observe that given a same number of users, for e.g. K = 10, the
scenario producing higher number of symbols in a coherence block benefits the
tighter capacity bound to the perfect CSIR case. When nb is very high and K is
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fairly low (nb = 500, K = 10), the gap between the upper and lower bounds becomes
negligible. Remind that, such a high value of nb is, in fact, feasible in 5G-NR.

5.4.2 The impact of number of users

The impact of K on the capacity lower bounds of low-dense NOMA, defined by
the pilot-based scheme with pilot-boosting power (eq.(5.11)) is investigated with
respect to the number of coherence symbols, for example, up to the favorable value
nb = 500. Figure 5.2 shows capacity lower bounds of low-dense NOMA as a function
of nb with different values K = {25, 50, 100}, providing fixed β = 1 and Eb/N0 = 10
[dB]. One may find that the higher the K values, the lower the capacity of the
pilot-based scheme, contrarily to MIMO, where the more the transmitting antennas
K , the higher the system capacity; in NOMA since the more users, the more pilot
symbols, less symbols are available for data transmission. The gap in capacity
bounds between the lower K = 10 and higher cases K = 100 is thus substantial, as
shown in Fig. 5.2.
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Figure 5.2. Capacity lower bounds (bits/s/Hz) of low-dense NOMA pilot-based scheme
(eq.(5.11)) with fixed nb = 500, β = 1 and Eb/N0 = 10 [dB] as a function of
nb with different values K = {10, 50, 100}.

5.4.3 The impact of system load

The system load β = K/N , which is an important factor in NOMA [32], leads to
underloaded and overloaded systems when the number of users K is lower (or β < 1)
or higher than the number of REs (or β > 1). For optimum receivers, it was shown
in [20, 21, 32] that the coherent capacity and the capacity lower bounds increase
along with system load, irrespective of dense vs. low-dense spreading formats.
Figure 5.3 displays the coherent capacity and its lower bounds given for the pilot-
boosting power case as a function of β for fixed Eb/N0 = 10 [dB] in different nb and
K combinations, such as {nb , K } = {25, 10}, {100, 10}, {500, 10}, {500, 100}. When β

increases, the capacity lower bounds with more coherence symbols (high nb) and
few users (low K) reach closer to the upper bound, as also observed in the β = 1
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case. It is worthy to note that, the same lower capacity bounds can be attained
given the same scaling of the combination {nb, K }.

The capacity lower bound with the power constraint mode for the case {nb =
25, K = 10} is also shown in Fig. 5.3, and is, as expected, lower than that of without
pilot power constraint, given the same combination {nb, K }. From β > 1, the
gap among the different cases expands substantially, particularly the lower bound
derived for the case with pilot power constraint.
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Figure 5.3. Capacity bounds of low-dense NOMA scheme with upper bound being the co-
herent capacity and lower bound obtained with a pilot-based scheme as a
function of β = K/N and fixed Eb/N0 = 10 [dB].

5.5 Conclusion

Information-theoretical bounds of low-dense NOMA, under the hypothesis of
Rayleigh block-fading channels without CSI, were derived. The capacity upper
bound, defined as the capacity of low-dense NOMA with perfect CSI, was found
based on the general framework proposed in [32]. The capacity lower bound was
derived using a pilot-based communication scheme, as suggested in [23]. Upper and
lower capacity bounds were described as a function of Eb/N0, number of coherent
symbols nb, and system load β. The effect of the number of users K was also inves-
tigated. Results indicate that, when the above factors are favourably combined, the
gap between the upper and lower capacity bounds becomes negligible. In particular,
when the number of symbols nb is high, while the number of users simultaneously
joining the network is low, the lower capacity bound well approximates the capacity
with perfect CSI, leading to the conclusion that the system is robust despite the
absence of knowledge on the channel.
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Chapter 6

Conclusions and Future works

Multiple access (MA) communication has been always present as a crucial research
topic where many users may share the limited available resources under time-
bandwidth constraints. Being acknowledged as an important enabler for 5G multi-
ple access, NOMA with its diverse dialects recently attracted a huge attention in
the wireless community from both industry and academia due to its massive con-
nectivity, high bandwidth efficiency, ultra-low latency services, and heterogeneous
data traffic.

The appearance of this thesis, which addressed the theoretical analysis of NOMA,
and provided the latest research on different dialects of NOMA, is therefore very
timely to provide a reference for the design of 5G multiple access. In this thesis,
we focused on the classification of SC-NOMA from the well-known framework of
CDMA, and on the fundamental limits of SC-NOMA under several practical issues
including the impact of system features such as system load, sparsity, regularity,
and the impact of channel, such as flat fading with and without CSI. Theoretical
analysis of interest is all considered in large system limit, corresponding to massive
communication, when both the number of users K and the number of degrees of
freedom N grow unboundedly while its ratio β = K/N is kept finite.

6.1 Conclusions

Below main conclusion are drawn from each chapter of the thesis.
In Chapter 1, an analytical framework, built on the traditional CDMAmodel, was

introduced and was later proved to be flexible enough for representing several code-
domain dialects. This chapter also addressed properties of a fundamental element
of the model, that is, the representation matrix S. Based on this framework, NOMA
schemes were classified as single- vs. multi-carrier system due to the adopted
waveform, and further divided into low-dense vs. dense group due to the property
of the characterizing mapping matrix S of each NOMA dialect in Chapter 2.

In the remained chapters, single-carrier NOMA schemes were investigated in
terms of spectral efficiency.

In Chapter 3, theoretical investigations of single-carrier NOMAwere interpreted
based on closed-form expressions existing for three distinctive cases in AWGN
channels, that are, dense vs. regular low-dense and irregular low-dense NOMA,
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6.1 Conclusions

corresponding to the model of DS-CDMA (Ns = N) [20] vs. LDS-CDMA (Ns = 1) [21]
and regular sparse NOMA (2 ≤ Ns ∈ N

+, βNs ∈ N
+) [22]. Both optimum and linear

receivers were taken into consideration. For any value of load, results shown that
low-dense NOMA were more spectral-efficient than dense cases. In particular,
spectral efficiency of the regular low-dense was always higher than the irregular
low-dense and the dense NOMAwith respect to optimum receivers. The price to pay
is that one should allocate exactly Ns REs per user and βNs ∈ N users per resource,
that is equivalently to have either central scheduling or users coordination. The
theoretical behavior is distinctive for linear receivers: regular low-dense NOMA was
proved to have highest achievable rates than all the other cases in the underloaded
regime, while spectral efficiency of irregular low-dense overcome other NOMA cases
in the overloaded systems (for e.g. when the system load β ∈ [1.2, 5]).

Chapter 4 and 5 focused on fundamental limits of irregular low-dense NOMA.
In particular, Chapter 4 studied the impact of flat fading on theoretical analysis
of irregular low-dense systems with linear and optimum receivers in the LSL. To
this end, spectral efficiency was derived as a function of the load and signal-to-
noise ratio. The framework used extended the model in [21], which was build on
the seminal work [20], to the case with fading, along the lines of [19] in both the
underloaded and overloaded regimes corresponding to β < 1 and β > 1, respectively.
Given that themodel in [21] originally defined for time hopping CDMA, it was shown
that the model also fits the dual frequency domain in describing frequency-hopping
CDMA. Since spreading sequences of irregular low-dense system are indeed the
sparse counterparts of the dense ones, the reference model introduced in [21]
for time hopping CDMA could also be adopted in the present context, in order
to describe both dense and low-dense, where the spreading matrix S ∈ CN×K of
the model defines the sparsity of the system. Theoretical behavior of irregular
low-dense system was compared against the dense given the the presence of flat
fading was taken into consideration. One remark from [19] is that for dense case,
the fading effect improves spectral efficiency in the overloaded condition. In this
chapter, we analytically showed that, in the LSL, irregular low-dense NOMA with
fading obtained higher gain in terms of spectral efficiency than the dense in the
overloaded mode. The out-performance of low-dense case over the dense in terms
of spectral efficiency goes stronger when Eb/N0 increases.

In Chapter 5, a practical issue, that is no prior channel knowledge (CSI) at the
receiver side, was tackled. Theoretical behavior of SC-NOMA, particularly irregular
low-dense cases, was considered under this assumption. It is, in general, not
easy to obtain the closed-form expressions of the so-called noncoherent capacity.
Information-theoretical bounds of irregular low-dense NOMA under the hypothesis
of Rayleigh block-fading channels without CSI were therefore derived, adopting
the proposed framework (c.f. Chapter 4 [32]). Based on this setting, the capacity
of low-dense NOMA with perfect CSI found in Chapter 4 turned out the capacity
upper bound of interest. To find the capacity lower bound of irregular low-dense,
we applied a pilot-based communication scheme, as suggested by [23]. The results
illustrated upper and lower capacity bounds as a function of Eb/N0, number of
coherent symbols nb, and system load β. The effect of the number of usersK was also
studied. We showed that when the above factors are favorably combined, the lower
capacity bound reaches the upper bound. In particular, when there is many symbols
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consisting a block, i.e. nb is high, while the number of users simultaneously joining
the network is low, the gap between the bounds is negligible. This implies that the
system is still robust under some conditions despite the absence of knowledge on
the channel.

In conclusion, results suggest that for overloaded systems, i.e. massive deploy-
ments, low-density spreading may be, at least theoretically, the right way forward,
based on the increased capacity with respect to dense coding with linear receivers.
This property holds despite fading. It is also shown that, with linear receivers,
low-density NOMA achieves even higher performance in terms of spectral efficiency
in the presence of flat fading, which is common in wireless communications.

6.2 Future works

While most of the current researches focus on power-domain NOMA, there are still
many rooms and challenges to target for code-domain NOMA, particularly in 5G
context. In this section, we draw several brief lines on code-domain NOMA that
can be developed in the future.

• Future work may focus on refining the understanding of overloaded systems
with a more general structure of the sparsity of spreading sequences, e.g.,
when NS > 1. It is interesting to understand which value of NS represents the
boundary between dense and low-dense systems, in terms of capacity, and
more generally how the system behaves as a function of NS.

• While it was shown that tight capacity bounds of low-dense SC-NOMA can be
obtained in 5G NR scenario in Chapter 5, closed-form expressions of nonco-
herent capacity are expected to be derived for the verification with the bounds
given by the pilot-based communication.

• Traditional receivers such as optimum and linear receivers were considered for
all cases in theoretical analysis of NOMA while multi-user detection (MUD)
techniques, for e.g. message passing algorithm (MPA)-based receivers, are
suggested as low-complexity receivers for code-domain NOMA. Spectral effi-
ciency of typical code-domain NOMA with respect to MPA-based detector is
hence attracted to investigate.

• Theoretical study of this thesis focused on single-carrier NOMA. It is therefore
appealing to have a fair comparison between SC-NOMA and MC-NOMA, par-
ticularly for low-dense signalling system, given that for dense format, capacity
of MC-CDMA was shown lower than that of SC-CDMA [46].

• Theoretical study on hybrid scheme of power- and code-domain may open
new direction for 5G multiple access design.
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Glossary

3GPP-LTE-A 3rd generation partnership project long-term evolution advanced

CDMA Code-division multiple access

CDM-NOMA Code-domain non orthogonal multiple access

CR-NOMA Cognitive radio non orthogonal multiple access

CSI Channel state information

FDMA Frequency division multiple access

FDS Frequency domain spreading

IDMA Interleave division multiple access

IDFT Inverse discrete Fourrier transform

IGMA Interleave-grid multiple access

IoT Internet-of-thing

GOCA Group orthogonal coded access

LCRS Low code rate spreading

LDPC Low-density parity-check

LDS-CDMA Low density spreading code division multiple access

LDS-SVE Low density spreading-signature vector extension

LSL Large system limit

LSSA Low code rate and signature based shared access

MA Multiple Access

MIMO Multiple-input multiple-output

MMSE Minimum mean square error

MPA Message passing algorithm

MUSA Multi-user shared access

NCMA Non-orthogonal coded multiple access

NOCA Non-orthogonal coded access

NR New Radio
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OFDMA Orthogonal frequency division multiple access

OMA Orthogonal multiple access

PDMA Pattern division multiple access

PDM-NOMA Power-domain non orthogonal multiple access

SCMA Sparse code multiple access

SUMF Single user matched filter

TDMA Time-division multiple access

TH-CDMA Time-hopping code division multiple access

RDMA Repetition division multiple access

RE Resource element

RSMA Resource spread multiple access

UL Uplink

ZF Zero forcing
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